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a b s t r a c t 

We study the homogenized properties of linear viscoelastic composite materials in three dimensions. The compos- 

ites are assumed to be constituted by a non-aging, isotropic viscoelastic matrix reinforced by square or hexagonal 

arrangements of elastic transversely isotropic long and short fibers, the latter being cylindrical inclusions. The 

effective properties of these kind of materials are obtained by means of a semi-analytical approach combining 

the Asymptotic Homogenization Method (AHM) with numerical computations performed by Finite Elements (FE) 

simulations. We consider the elastic-viscoelastic correspondence principle and we derive the associated local and 

homogenized problems, and the effective coefficients in the Laplace–Carson domain. The effective coefficients 

are computed from the microscale local problems, which are equipped with appropriate interface loads arising 

from the discontinuities of the material properties between the constituents, for different fibers’ orientations in 

the time domain by inverting the Laplace–Carson transform. We compare our results with those given by the Lo- 

cally Exact Homogenization Theory (LEHT), and with experimental measurements for long fibers. In doing this, 

we take into consideration Burger’s and power-law viscoelastic models. Additionally, we present our findings for 

short fiber reinforced composites which demonstrates the potential of our fully three dimensional approach. 
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. Introduction 

Materials characterized by both a viscoelastic response and a

omposite-like geometrical arrangement are found in several biolog-

cal contexts driven by natural evolution, see, e.g., ( Atthapreyangkul

t al., 2021; Ojanen et al., 2017; Sherman et al., 2017 ). Especially,

ong and short fiber-reinforced composites are being increasingly ex-

loited in a variety of engineering and manufacturing processes be-

ause of their capability of optimising properties such as light weight,

tiffness, and strength. On the one hand, high performance composites

re typically made of long continuous fibres embedded in a polymer

atrix and exhibit viscoelastic properties (see, e.g., Ornaghi Jr. et al.,

020; Wang et al., 2020 ). On the other hand, reinforcement via short

bers (i.e., fiber-shaped inclusions) can provide a valuable alternative

n the modelling of failures appearing in composites reinforced by long

bers, see, e.g., Cepero-Mejías et al., 2020; Nonato Da Silva et al., 2020 .

aterial composites reinforced by short fibers can also provide signifi-

ant economical and manufacturing advantages over continuous fiber-

einforced composites without compromising high performance, as long
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s the aspect ratio is high enough to support load transfer ( Huang and

uang, 2020; Wang and Smith, 2019; Yu et al., 2014 ). 

The multiscale modelling of viscoelastic composites has been in-

reasingly addressed in recent contributions. In this respect, microme-

hanical models are particularly suitable whenever the aim is to deter-

ine the effective response of materials on the basis of individual con-

tituents’ properties, such as viscoelastic moduli and fibers properties in

erms of geometrical arrangement, volume fraction and orientation. For

nstance, in Sevostianov et al. (2016) , the effective viscoelastic proper-

ies of short fiber reinforced composites are investigated by means of

he fraction-exponential operators of Scott Blair-Rabotnov. Moreover,

n Kern et al. (2019) a frequency-domain finite element simulations are

onsidered to determine the effective moduli of viscoelastic coated fiber-

einforced composites. The investigation of the polymer alignment with

he aid of direct numerical simulations of the turbulent channel flow

f a viscoelastic FENE-P fluid is conducted in Pereira et al. (2020) . In

ddition, the effective viscoelastic creep behavior of aligned short fiber

omposites is obtained in Wang and Smith (2019) via a RVE-based Fi-

ite Element algorithm. In Ornaghi Jr. et al. (2020) , the Authors eval-
ticle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. (a) Macroscale: viscoelastic heterogeneous material with (b) square (i,ii) 

or hexagonal (iii,iv) arrays of non-overlapping long and short fibers, respec- 

tively. (c) 𝜀 -structural level. Microscale: periodic cell for long and short fibers 

inclusions that do not intersect the boundaries. 
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ate the creep, recovery, and viscoelastic properties of unidirectional

arbon/epoxy filament wound composite laminates under controlled

tress, time, and temperature. Recently, a probabilistic micromechan-

cs damage framework to predict the macroscopic stress-strain response

nd progressive damage in unidirectional glass-reinforced thermoplastic

olymer composites has been proposed in Chen et al. (2021) . 

Among the most used techniques addressing the calculation of the

ffective properties of viscoelastic heterogeneous structures we find the

symptotic Homogenization Method (AHM). For example, analytical

losed form expressions for the effective coefficients of fibrous viscoelas-

ic composites are obtained in Rodríguez-Ramos et al. (2020) , Otero

t al. (2020) by means of the two-scale AHM. The theoretical bases

f the method are found in the contributions of several authors (see,

.g., Allaire and Briane, 1996; Auriault et al., 2009; Bakhvalov and

anasenko, 1989; Bensoussan et al., 1978; Sanchez-Palencia, 1980 ). In

eneral, the technique takes advantage of the scales separation assump-

ion for decoupling the spatial variables into a microscopic and a macro-

copic one. Thus, the solution of the original problem at the macroscale

s approximated by considering the solution of the corresponding local

roblems on a periodic cell and of the homogenized problem. This per-

its to decrease the computational complexity of the problem at hand,

nd to encode the information at the microscale into the effective coef-

cients of the macroscale model. 

The main disadvantage of the AHM is that the analytical solution of

he local problems can be derived for a few of simple composite struc-

ures which can be reduced to one or two dimensions analysis (as those

or laminated composites and long fibers). For instance, in studies re-

ated with viscoelastic composites for laminated and fiber reinforced

omposites ( Cruz-González et al., 2020a; Otero et al., 2020 ). For this

eason, in order to handle more complex microstructures, numerical ap-

roaches based on the Finite Elements (FE) provide a robust alternative

o solve the local problems for more general microstructures. Based on

hese considerations, in the present work, we aim to study the effec-

ive properties of viscoelastic composites by means of the combination

f the AHM and the FE method, the latter allows us to find the nu-

erical solution of the microscale periodic local problem for different

hree-dimensional arrangements. This approach provides a new and ef-

cient computational platform for computing the effective properties of

iscoelastic composites in three dimensions. 

The main aim of this work is to calculate the effective properties of

on-aging, linear viscoelastic composites in three dimensions. For our

urposes, we employ the modeling approach introduced in our previous

ork ( Cruz-González et al., 2020b ), wherein a combined framework

ased on theoretical and computational techniques for computing the

ffective properties of viscoelastic composites is employed. Specifically,

n Cruz-González et al. (2020b) , we analyzed several types of compos-

te structures reinforced by fibers and inclusions. Here, however, we

o further in our investigations and consider hexagonal periodic cells

nd unidirectionally aligned short fibers. Furthermore, in the present

ramework, we consider the fibers to be transversely isotropic, while

n Cruz-González et al. (2020b) , the study was focused on composites

ith isotropic constituents. This extension requires a suitable generali-

ation of the computational set up of the problem found, for example,

n Penta and Gerisch (2016) for elastic composites. In particular, the

nterface loads related to the auxiliary local cell problems are obtained

or more general orthotropic materials, and then specialised to trans-

erse isotropic constituents in our calculations. Another extension of the

resent work with respect to Cruz-González et al. (2020b) is that, in the

resent study, we take into consideration different fiber’s orientations. 

We further notice that, to the best of our understanding, the ma-

or novelty of this work with respect to others existent in the liter-

ture and focused on the study of viscoelastic composites (see, e.g.

miri-Rad et al., 2019; Ornaghi Jr. et al., 2020; Otero et al., 2020;

odríguez-Ramos et al., 2020; Sevostianov et al., 2016; Tang and Fe-

icelli, 2015; Tran et al., 2011; Wang and Pindera, 2016a; Wang and

mith, 2019; Yancey and Pindera, 1990; Yi et al., 1998 ) is that here,
2 
sing a semi-analytical approach, we are capable to compute the effec-

ive properties of three-dimensional, non-aging, viscoelastic composite

aterials. Particularly, it should be pointed out that although we con-

idered some of the results given in Yancey and Pindera (1990) and

ang and Pindera (2016a,b) for comparison with ours, our methodol-

gy provides further developments because of the possibility of consid-

ring more complex cell geometries. Indeed, we calculate the effective

roperties for a viscoelastic composite reinforced with perfectly aligned

hort fibers and this geometrical configuration is not treatable under the

wo-dimensional formulation reported in Wang and Pindera (2016a,b) .

The manuscript is organized as follows. In Section 2 , we present

he geometrical description of the model and we formulate the linear

iscoelastic heterogeneous problem. In Section 3 , we apply the two-

cale AHM to obtain the macroscale functional form of the effective

iscoelastic coefficients. In Section 4 , we calculate the effective prop-

rties by solving appropriate local (cell) problems in three dimensions.

he theoretical framework is illustrated in general by considering that

oth phases are viscoelastic, although the results are then presented by

onsidering purely elastic fibers embedded in a viscoelastic matrix for

he sake of comparison against previous analytical results and relevant

xperiments. In Section 5 , we compare our results against alternative

omogenisation techniques in the case of long fibers, and emphasise

he potential of our new approach by illustrating the results in the case

f composites reinforced by short fibers (i.e., cylindrical inclusions). Fi-

ally, in Section 6 , we summarize our findings and highlight the limi-

ations of the current model and possible further developments of the

ork. 

. Model description 

We identify the heterogeneous, linear viscoelastic material with an

pen, bounded set Ω ⊂ ℝ 

3 (see Fig. 1 (a)). In particular, we consider Ω
s a two-constituent composite made of a matrix reinforced by square

 Fig. 1 (b) (i,ii)) or hexagonal ( Fig. 1 (b) (iii, iv)) arrays of unidirectional

nd periodically distributed long and short fibers in Ω (see Fig. 1 (b)).

urthermore, we consider the existence of two distinct, well-separated

ength scales 𝓁 and 𝐿 which are related with the characteristic size of the

eriodic micro-structure and that of the whole composite, respectively

see Fig. 1 ). In this framework, we introduce the dimensionless scaling

arameter 𝜀 as follows, 

 = 

𝓁 
𝐿 

≪ 1 , (1) 

nd the microscopic spatial variable 

 = 

𝑥 

𝜀 
, (2) 

here 𝑥 is said to be the macroscopic spatial variable. 
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In particular, we set Ω = Ω
𝜀 

1 ∪ Ω
𝜀 

2 with Ω
𝜀 

1 ∩ Ω𝜀 
2 = Ω𝜀 

1 ∩ Ω
𝜀 

2 = ∅, and

here Ω𝜀 
2 denotes the matrix and Ω𝜀 

1 = ∪𝑁 

𝑖 =1 𝑖 Ω
𝜀 
1 represent the inclu-

ions with 𝑁 ∈ ℕ . Additionally, the interface between Ω𝜀 
1 and Ω𝜀 

2 (see

ig. 1 (b)) is denoted by Γ𝜀 . Referring to Fig. 1 (c), the unitary peri-

dic cell 𝑌 is considered to be constituted by a fiber (long or short) 𝑌 1 
n the matrix 𝑌 2 so that the periodic cell is given by 𝑌 = 𝑌 1 ∪ 𝑌 2 with

 1 ∩ 𝑌 2 = 𝑌 1 ∩ 𝑌 2 = ∅. At this scale, the interface between 𝑌 1 and 𝑌 2 is

enoted by Γ𝑌 , see also Di Stefano et al. (2020) for an illustration of

arious periodic cell arrangement in the context of electro-active com-

osites. 

.1. Statement of the problem 

For the sake of simplicity, we neglect inertia and external volume

orces in the model, and impose continuity conditions for displacements

nd tractions on the interface Γ𝜀 , i.e., the matrix and the sub-phases are

n ideal contact. Therefore, the balance of linear momentum in Ω ⧵ Γ𝜀 

ogether with the interface conditions read 

 ⋅ 𝝈𝜀 ( 𝑥, 𝑡 ) = 𝟎 in (Ω ⧵ Γ𝜀 ) ×ℝ , (3a) 

 𝒖 
𝜀 ( 𝑥, 𝑡 ) � = 𝟎 on Γ𝜀 ×ℝ , (3b) 

 𝝈
𝜀 ( 𝑥, 𝑡 ) 𝒏 ( 𝑦 ) � = 𝟎 on Γ𝜀 ×ℝ , (3c) 

here 𝝈𝜀 represents the second-order stress tensor and 𝑢 𝑢 𝑢 𝜀 is the dis-

lacement field. Moreover, 𝑛 𝑛 𝑛 ( 𝑦 ) denotes the outward unit vector to the

nterface Γ𝜀 , and the operator � 𝜙𝜀 � describes the jump of 𝜙𝜀 across the

nterface Γ𝜀 between Ω𝜀 
1 and Ω𝜀 

2 . Notice that the superscript 𝜀 is used

o indicate the notation 𝜙𝜀 ( 𝑥, 𝑡 ) = 𝜙( 𝑥, 𝑦, 𝑡 ) (refer to Di Stefano et al.,

020 for a comprehensive discussion regarding this notation). The sys-

em of Eqs. (3a) –(3c) has to be supplemented with boundary conditions

n 𝜕Ω ×ℝ and initial conditions in Ω × {0} . However, these conditions

o not play a role in the derivation of the effective coefficients, and they

re typically to be specified explicitly only when the aim is to obtain a

pecific solution of the macroscale system of homogenized PDEs, which

s not the case here. 

In the present framework, the composite behaves as a non-aging vis-

oelastic material so that ( Christensen, 1982 ) 

𝜀 ( 𝑥, 𝑡 ) = ∫
𝑡 

0 
 

𝜀 ( 𝑥, 𝑡 − 𝜏) ∶ 𝜕 𝜉
𝜉𝜉( 𝑢 𝑢 𝑢 𝜀 ( 𝑥, 𝜏)) 

𝜕𝜏
𝑑𝜏, (4) 

here  

𝜀 is the fourth-order tensor of relaxation moduli, which here is

cale-dependent. The discontinuities of the properties between the host

edium and the subphases are encoded in the tensor  

𝜀 and, thus, its

omponents are assumed to be smooth functions of 𝑥 in (Ω ⧵ Γ𝜀 ) ×ℝ ,

ut discontinuous on Γ𝜀 ×ℝ . Furthermore, we notice that, in Eq. (4) , 𝜉𝜉𝜉

enotes the second-order strain tensor for small displacements, namely 

( 𝑢 𝑢 𝑢 𝜀 ( 𝑥, 𝑡 ) ) = 

1 
2 
(
∇ 𝑢 𝑢 𝑢 𝜀 ( 𝑥, 𝑡 ) + (∇ 𝑢 𝑢 𝑢 𝜀 ( 𝑥, 𝑡 )) 𝑇 

)
, (5) 

nd we require both minor and major symmetry properties for  , i.e., 

 

𝜀 
𝑖𝑗𝑘𝑙 

=  

𝜀 
𝑗𝑖𝑘𝑙 

=  

𝜀 
𝑖𝑗𝑙𝑘 

=  

𝜀 
𝑘𝑙𝑖𝑗 

. (6) 

The integral in Eq. (4) , standing for the stress-strain relationship for

on-aging, viscoelastic materials, can be manipulated by means of in-

egral transforms. In particular, the Laplace–Carson transform, which is

iven by 

̂𝜀 ( 𝑥, 𝑝 ) = 𝑝 ∫
∞

0 
𝑒 − 𝑝𝑡 𝜙𝜀 ( 𝑥, 𝑡 ) 𝑑𝑡, ∀ 𝑡 ≥ 0 , (7) 

here 𝑝 is the variable in the Laplace–Carson space, reduces (4) to an

lgebraic equation representing the constitutive relations in classical

lasticity theory (see, for instance, Lakes, 2009 ). This methodology orig-

nally proposed by Hashin (1965) and known as the elastic-viscoelastic
3 
orrespondence principle, continues to gain interest in the scientific lit-

rature (see Liu et al., 2020; Vilchevskaya et al., 2019; Yang et al.,

019 and references therein). Hence, based on the above considerations,

he original system (3a) –(3c) written in the Laplace–Carson domain is

iven by 

 ⋅
[̂ 

𝜀 ( 𝑥, 𝑝 ) ∶ 𝜉𝜉𝜉
(
�̂� 𝑢 𝑢 𝜀 ( 𝑥, 𝑝 ) 

)]
= 0 0 0 in (Ω∖ Γε ) × [ 0 , +∞) (8a) 

 ̂𝑢 𝑢 𝑢 𝜀 ( 𝑥, 𝑝 ) � = 0 0 0 on Γ𝜀 × [ 0 , +∞) (8b) 

 [ ̂ 

𝜀 ( 𝑥, 𝑝 ) ∶ 𝜉𝜉𝜉
(
�̂� 𝑢 𝑢 𝜀 ( 𝑥, 𝑝 ) 

)
] 𝑛 𝑛 𝑛 ( 𝑦 ) � = 0 0 0 on Γ𝜀 × [ 0 , +∞) . (8c) 

. Asymptotic homogenization approach 

In this section, we summarize the methodology described in Cruz-

onzález et al. (2020b) and write the local and homogenized problems

esulting from the application of the AHM to Eqs. (8a) –(8c) . 

Before going further, we remark that using the chain rule the follow-

ng relation for the spatial derivatives holds 

𝜕 ̂𝜙𝜀 
𝑖 
( 𝑥, 𝑝 ) 

𝜕𝑥 𝑗 
= 

𝜕 ̂𝜙𝑖 ( 𝑥, 𝑦, 𝑝 ) 
𝜕𝑥 𝑗 

+ 

1 
𝜀 

𝜕 ̂𝜙𝑖 ( 𝑥, 𝑦, 𝑝 ) 
𝜕𝑦 𝑗 

. (9) 

oreover, Eq. (5) becomes, 

𝑘𝑙 ( ̂𝜙𝜀 ( 𝑥, 𝑝 ) ) = 𝜉𝑘𝑙 ( ̂𝜙( 𝑥, 𝑦, 𝑝 )) + 

1 
𝜀 
𝜉
( 𝑦 ) 
𝑘𝑙 
( ̂𝜙( 𝑥, 𝑦, 𝑝 )) , (10) 

here we have introduced the notation 

( 𝑦 ) 
𝑘𝑙 
( ̂𝜙( 𝑥, 𝑦, 𝑝 )) = 

1 
2 

( 

𝜕 ̂𝜙𝑘 ( 𝑥, 𝑦, 𝑝 ) 
𝜕𝑦 𝑙 

+ 

𝜕 ̂𝜙𝑙 ( 𝑥, 𝑦, 𝑝 ) 
𝜕𝑦 𝑘 

) 

. (11) 

The AHM ( Bakhvalov and Panasenko, 1989; Cioranescu and Donato,

999 ) proposes the solution of the viscoelastic heterogeneous problem

8a) - (8c) as a formal series expansion in powers of 𝜀 . In the Laplace–

arson domain it reads 

̂
 

 

 

𝜀 ( 𝑥, 𝑝 ) = 

+∞∑
𝑖 =0 

𝜀 𝑖 �̂� 𝑢 𝑢 ( 𝑖 ) ( 𝑥, 𝑦, 𝑝 ) , (12) 

here the coefficients ̂𝑢 𝑢 𝑢 ( 𝑖 ) ( 𝑥, 𝑦, 𝑝 ) are assumed to be periodic in the micro-

copic variable 𝑦 . Thus, following the standard procedure in asymptotic

omogenization (see Bakhvalov and Panasenko, 1989; Cioranescu and

onato, 1999 ), after substitution of the series expansion (12) in the orig-

nal problem (8a) –(8c) and by equating the result in the same powers

f 𝜀, we obtain that, in the limit 𝜀 → 0 , 

̂ 𝜀 
𝑚 
( 𝑥, 𝑝 ) = �̂� (0) 

𝑚 
( 𝑥, 𝑦, 𝑝 ) + ̂𝑢 (1) 

𝑚 
( 𝑥, 𝑦, 𝑝 ) 𝜀 + 𝑜 ( 𝜀 ) 

= �̂� 𝑚 ( 𝑥, 𝑝 ) + �̂�𝑘𝑙𝑚 ( 𝑦, 𝑝 ) 𝜉𝑘𝑙 ( ̂𝑣 𝑣 𝑣 ( 𝑥, 𝑝 )) 𝜀 + 𝑜 ( 𝜀 ) , (13) 

here ̂𝑣 𝑣 𝑣 is a smooth vector function of 𝑥 and 𝑝, and the third order tensor

̂𝑘𝑙𝑚 is the solution of the 𝜀 -local problem given by 

𝜕 

𝜕𝑦 𝑗 

[ 
̂ 𝑖𝑗𝑠𝑞 ( 𝑦, 𝑝 ) 𝜉( 𝑦 ) 𝑠𝑞 

( ̂𝜒𝜒𝜒𝑘𝑙 ( 𝑦, 𝑝 )) + ̂ 𝑖𝑗𝑘𝑙 ( 𝑦, 𝑝 ) 
] 
= 0 in ( 𝑌 ⧵ Γ𝑌 ) × [0 , +∞) , 

(14a) 

 ̂𝜒𝑘𝑙𝑚 ( 𝑥, 𝑦, 𝑝 ) � = 0 on Γ𝑌 × [0 , +∞) , (14b) 

 ̂ 𝑖𝑗𝑠𝑞 ( 𝑦, 𝑝 ) 𝜉( 𝑦 ) 𝑠𝑞 
( ̂𝜒𝜒𝜒𝑘𝑙 ( 𝑦, 𝑝 )) + ̂ 𝑖𝑗𝑘𝑙 ( 𝑦, 𝑝 )] 𝑛 

( 𝑦 ) 
𝑗 

� = 0 on Γ𝑌 × [0 , +∞) , (14c) 

̂𝑘𝑙𝑚 ( 𝑦, 𝑝 ) = 0 in 𝑌 × {0} , (14d) 

here 

( 𝑦 ) 
𝑠𝑞 
( ̂𝜒𝜒𝜒𝑘𝑙 ( 𝑦, 𝑝 )) = 

1 
2 

( 

𝜕 ̂𝜒𝑘𝑙𝑠 ( 𝑦, 𝑝 ) 
𝜕𝑦 𝑞 

+ 

𝜕 ̂𝜒𝑘𝑙𝑞 ( 𝑦, 𝑝 ) 
𝜕𝑦 𝑠 

) 

. (15) 
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he uniqueness of the solution of the local problem (14a) –(14d) is guar-

nteed by enforcing either, the condition ⟨�̂�𝑘𝑙𝑚 ⟩𝑦 = 0 or by fixing the

alue of �̂�𝑘𝑙𝑚 at one point of the reference periodic cell 𝑌 (see Penta

nd Gerisch, 2016; Penta and Gerisch, 2017 ). In particular, in the sub-

equent sections we will use the latter because of its advantage when

ealing with numerical simulations. Note that, the 𝜀 -local problem has

o be supplemented with an initial condition in 𝑌 × {0} . 
For completeness in our analysis, we report the homogenized equa-

ion at the macroscale in the Laplace–Carson space, which is obtained

fter equating in the same powers of 𝜀 0 . Specifically, this can be written

s 

̂
 

(∗) 
𝑖𝑗𝑘𝑙 

( 𝑝 ) 𝜕 
𝜕𝑥 𝑗 

𝜉𝑘𝑙 ( ̂𝑣 𝑣 𝑣 ( 𝑥, 𝑝 )) = 0 in Ωℎ × [0 , +∞) , (16a) 

here 

̂
 

(∗) 
𝑖𝑗𝑘𝑙 

( 𝑝 ) ∶= 

⟨̂ 𝑖𝑗𝑘𝑙 ( 𝑦, 𝑝 ) + ̂ 𝑖𝑗𝑚𝑛 ( 𝑦, 𝑝 ) 𝜉( 𝑦 ) 𝑚𝑛 

(
�̂�𝜒𝜒𝑘𝑙 ( 𝑦, 𝑝 ) 

)⟩
𝑦 
. (17) 

s the effective relaxation modulus in the Laplace–Carson space. In Eq.

17) , the notation ⟨𝜙⟩𝑦 denotes the cell average operator and is defined

y the expression 

𝜙⟩𝑦 = 

1 |𝑌 | ∫𝑌 

𝜙 𝑑𝑦, (18) 

ith |𝑌 | being the volume of the periodic cell 𝑌 . 

. Calculation of the effective properties 

For simplicity in our calculations, we consider that the relaxation

odulus, ̂ 𝑖𝑗𝑘𝑙 , is 𝑦 -constant in each constituent of the periodic cell 𝑌 ,

.e. 

̂
 𝑖𝑗𝑘𝑙 ( 𝑦, 𝑝 ) = 

{ ̂ 

(1) 
𝑖𝑗𝑘𝑙 

( 𝑝 ) , if 𝑦 ∈ 𝑌 1 , 

̂ 

(2) 
𝑖𝑗𝑘𝑙 

( 𝑝 ) , if 𝑦 ∈ 𝑌 2 , 
(19) 

here the superscript indicate the corresponding constituent, “(1) ” for

he matrix and “(2) ” for the inclusion (see Fig. (1) (c)). Then, the local

roblem (14a) –(14d) is rewritten as follows, 

𝜕 

𝜕𝑦 𝑗 

[̂ 

(1) 
𝑖𝑗𝑠𝑞 

( 𝑝 ) 𝜉( 𝑦 ) 
𝑠𝑞 

(
�̂�𝜒𝜒
(1) 
𝑘𝑙 
( 𝑦, 𝑝 ) 

)]
= 0 in 𝑌 1 × [ 0 , +∞) , (20a) 

𝜕 

𝜕𝑦 𝑗 

[̂ 

(2) 
𝑖𝑗𝑠𝑞 

( 𝑝 ) 𝜉( 𝑦 ) 
𝑠𝑞 

(
�̂�𝜒𝜒
(2) 
𝑘𝑙 
( 𝑦, 𝑝 ) 

)]
= 0 in 𝑌 2 × [ 0 , +∞) , (20b) 

̂
(1) 
𝑘𝑙𝑚 

( 𝑦, 𝑝 ) = �̂�
(2) 
𝑘𝑙𝑚 

( 𝑦, 𝑝 ) on Γ𝑌 × [ 0 , +∞) , (20c) 

̂ 

(1) 
𝑖𝑗𝑠𝑞 

( 𝑝 ) 𝜉( 𝑦 ) 
𝑠𝑞 

(
�̂�𝜒𝜒
(1) 
𝑘𝑙 
( 𝑦, 𝑝 ) 

)]
𝑛 
(y) 
𝑗 

− 

[̂ 

(2) 
𝑖𝑗𝑠𝑞 

( 𝑝 ) 𝜉( 𝑦 ) 
𝑠𝑞 

(
�̂�𝜒𝜒
(2) 
𝑘𝑙 
( 𝑦, 𝑝 ) 

)]
𝑛 
(y) 
𝑗 

= 𝑓 
( 𝑦 ) 
𝑖𝑘𝑙 

( 𝑝 ) on Γ𝑌 × [ 0 , +∞) , (20d) 

̂𝑘𝑙𝑚 ( 𝑦, 𝑝 ) = 0 in 𝑌 × {0} . (20e) 

e notice that, in Eq. (20d) , the stress jump conditions lead to the oc-

urrence of interface loads, i.e., 

 

( 𝑦 ) 
𝑖𝑘𝑙 

( 𝑝 ) = 

[̂ 

(2) 
𝑖𝑗𝑘𝑙 

( 𝑝 ) − ̂ 

(1) 
𝑖𝑗𝑘𝑙 

( 𝑝 ) 
]
𝑛 
(y) 
𝑗 

, (21) 

hich arise as a consequence of the discontinuities in the coefficients

f ̂ between the host medium and the sub-phases, and represent the

riving force to obtain nontrivial solutions of the six elastic-type local

roblems ( ( 𝑘, 𝑙) , 𝑘 ≥ 𝑙) (see Penta and Gerisch, 2016; Penta and Gerisch,

017 ). In particular, when the matrix and subphases are orthotropic

aterials and considering Voigt’s notation, the interface loads 𝑓 
( 𝑦 ) 
𝑖𝑘𝑙 

read 

 

 

 

( 𝑦 ) 
11 ( 𝑝 ) = [ ̂ 

(2) 
11 ( 𝑝 ) − ̂ 

(1) 
11 ( 𝑝 )] 𝑛 

( 𝑦 ) 
1 𝑒 𝑒 𝑒 1 + [ ̂ 

(2) 
21 ( 𝑝 ) − ̂ 

(1) 
21 ( 𝑝 )] 𝑛 

( 𝑦 ) 
2 𝑒 𝑒 𝑒 2 

+ [ ̂ 

(2) ( 𝑝 ) − ̂ 

(1) ( 𝑝 )] 𝑛 ( 𝑦 ) 𝑒 𝑒 𝑒 3 , (22a) 
31 31 3 

4 
 

 

 

( 𝑦 ) 
22 ( 𝑝 ) = [ ̂ 

(2) 
12 ( 𝑝 ) − ̂ 

(1) 
12 ( 𝑝 )] 𝑛 

( 𝑦 ) 
1 𝑒 𝑒 𝑒 1 + [ ̂ 

(2) 
22 ( 𝑝 ) − ̂ 

(1) 
22 ( 𝑝 )] 𝑛 

( 𝑦 ) 
2 𝑒 𝑒 𝑒 2 

+ [ ̂ 

(2) 
32 ( 𝑝 ) − ̂ 

(1) 
32 ( 𝑝 )] 𝑛 

( 𝑦 ) 
3 𝑒 𝑒 𝑒 3 , (22b) 

 

 

 

( 𝑦 ) 
33 ( 𝑝 ) = [ ̂ 

(2) 
13 ( 𝑝 ) − ̂ 

(1) 
13 ( 𝑝 )] 𝑛 

( 𝑦 ) 
1 𝑒 𝑒 𝑒 1 + [ ̂ 

(2) 
23 ( 𝑝 ) − ̂ 

(1) 
23 ( 𝑝 )] 𝑛 

( 𝑦 ) 
2 𝑒 𝑒 𝑒 2 

+ [ ̂ 

(2) 
33 ( 𝑝 ) − ̂ 

(1) 
33 ( 𝑝 )] 𝑛 

( 𝑦 ) 
3 𝑒 𝑒 𝑒 3 , (22c) 

 

 

 

( 𝑦 ) 
23 ( 𝑝 ) = 𝑓 𝑓 𝑓 

( 𝑦 ) 
32 ( 𝑝 ) = [ ̂ 

(2) 
44 ( 𝑝 ) − ̂ 

(1) 
44 ( 𝑝 )] 𝑛 

( 𝑦 ) 
3 𝑒 𝑒 𝑒 2 + [ ̂ 

(2) 
44 ( 𝑝 ) − ̂ 

(1) 
44 ( 𝑝 )] 𝑛 

( 𝑦 ) 
2 𝑒 𝑒 𝑒 3 , 

(22d) 

 

 

 

( 𝑦 ) 
13 ( 𝑝 ) = 𝑓 𝑓 𝑓 

( 𝑦 ) 
31 ( 𝑝 ) = [ ̂ 

(2) 
55 ( 𝑝 ) − ̂ 

(1) 
55 ( 𝑝 )] 𝑛 

( 𝑦 ) 
3 𝑒 𝑒 𝑒 1 + [ ̂ 

(2) 
55 ( 𝑝 ) − ̂ 

(1) 
55 ( 𝑝 )] 𝑛 

( 𝑦 ) 
1 𝑒 𝑒 𝑒 3 , 

(22e) 

 

 

 

( 𝑦 ) 
12 ( 𝑝 ) = 𝑓 𝑓 𝑓 

( 𝑦 ) 
21 ( 𝑝 ) = [ ̂ 

(2) 
66 ( 𝑝 ) − ̂ 

(1) 
66 ( 𝑝 )] 𝑛 

( 𝑦 ) 
2 𝑒 𝑒 𝑒 1 + [ ̂ 

(2) 
66 ( 𝑝 ) − ̂ 

(1) 
66 ( 𝑝 )] 𝑛 

( 𝑦 ) 
1 𝑒 𝑒 𝑒 2 , 

(22f) 

here { 𝑒 𝑒 𝑒 𝑖 } 3 𝑖 =1 represents the standard vector basis. 

.1. Numerical approach 

At this point, it is possible to solve numerically the set of elastic-

ype local problems (20a) –(20e) in the Laplace–Carson space and then,

o compute the effective viscoelastic properties by using (17) . For this

urpose, we use the finite element software COMSOL Multiphysics®in

onjunction with LiveLink TM for Matlab ® scripting (see Cruz-González

t al., 2020b; Penta and Gerisch, 2016; Penta and Gerisch, 2017 ). Par-

icularly, once ̂ 

(∗) is known, the effective creep compliance ̂ (∗) in the

aplace–Carson space can be computed through the relationship 

̂
 

(∗) 
𝑖𝑗𝑚𝑛 

( 𝑝 ) ̂ (∗) 
𝑚𝑛𝑘𝑙 

( 𝑝 ) = 𝐼 𝑖𝑗𝑘𝑙 , (23) 

here 𝐼 𝑖𝑗𝑘𝑙 denotes the components of the fourth-order identity tensor

see Hashin, 1972 ). 

The inversion of the effective coefficients to the original time domain

s performed by employing the MATLAB’s function INVLAP (see Juraj,

020; Valsa and Bran ĉik, 1990 and referred here to as Valsa’s method.

he steps are summarized as follows, 

a) Discretize the time interval 𝑡 = [ 𝑡 1 , 𝑡 2 , ..., 𝑡 𝑁 

] 
b) For each 𝑡 𝑖 , obtain the components 𝑝 𝑗 ∶= 𝛼𝑗 ∕ 𝑡 𝑖 and 𝐵 𝑗 ∶= 𝛽𝑗 ∕ 𝑡 𝑖 for

𝑗 = 1 , ..., ( 𝑛𝑠 + 𝑛𝑑 + 1) , where 𝑛𝑠 and 𝑛𝑑 are implicit parameters, and

𝛼 and 𝛽 are defined in Valsa’s method. 

c) Calculate ̂ 

(∗) ( 𝑝 𝑗 ) and ̂ (∗) ( 𝑝 𝑗 ) for 𝑗 = 1 , ..., ( 𝑛𝑠 + 𝑛𝑑 + 1) . 
d) Use the last step of Valsa’s method to determine the effective coeffi-

cients in the time domain 

 

(∗) ( 𝑡 𝑖 ) = 

𝑛𝑠 + 𝑛𝑑+1 ∑
𝑗=1 

Re [ 𝐵 𝑗 ̂ 

(∗) ( 𝑝 𝑗 )∕ 𝑝 𝑗 ] for 𝑖 = 1 , ..., 𝑁, (24a) 

 (∗) ( 𝑡 𝑖 ) = 

𝑛𝑠 + 𝑛𝑑+1 ∑
𝑗=1 

Re [ 𝐵 𝑗 ̂ (∗) ( 𝑝 𝑗 )∕ 𝑝 𝑗 ] for 𝑖 = 1 , ..., 𝑁, (24b) 

where Re indicates the real part of a complex variable. 

Moreover, to take into account the different orientations that the

nidirectional viscoelastic composites may have, we rotate the effective

iscoelastic tensors  

(∗) and  (∗) by an angle 𝜃 and obtain  

(∗) 
𝜃

and  (∗) 
𝜃

.

n this respect, the following transformations are useful, 

 

(∗) 
𝜃

=  

(∗)  

𝑇 , (25a) 

 

(∗) = (  

−1 ) 𝑇  (∗)  

−1 , (25b) 

𝜃
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Fig. 2. Methodology sketch of AHMFE. 
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nd  𝑖𝑗 ( 𝑖, 𝑗 = 1 , 2 , 3) are the coefficients of the orthogonal rotation ten-

or (see Ramírez-Torres et al., 2018; Ting, 1996 ). 

To conclude with this section, it is worth to remark that steps (a)-

d) in the inversion process are equivalents to the stage (IV) in Cruz-

onzález et al. (2020b) . Here, we illustrate through a flowchart (see

ig. 2 ) the methodology described in (I)-(IV) of Cruz-González et al.

2020b) with more details. In the following sections, we refer to as

HMFE the semi-analytical approach proposed in the present work,

hich combines the Asymptotic Homogenisation Method (AHM) and

inite Elements (FE) simulations. 
5 
2  11  12 
2  21  22 
2  31  32  21  32 +  22  31  31  12 +  32  11  11  22 +  12  21 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. Results 

.1. Instant elastic response 

To begin with our analysis, in this section, we compute the effective

nstant elastic response of a composite with a hexagonal arrangement

f transversely, purely elastic isotropic long fibers (see Fig. 1 (b)-(iii)).

lthough the theoretical framework introduced in the previous section

olds for viscoelastic fibers as well, we focus on purely elastic fibers

or the sake of comparison of our results with alternative analytic tech-
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Fig. 3. Mesh discretizations A , B and C for the hexagonal periodic cell with 𝑉 𝑓 = 0.6. 

Table 1 

Elastic properties of the constituents. 

Materials 𝐸 𝐴 (GPa) 𝐸 𝑇 (GPa) 𝜇𝐴 (GPa) 𝜇𝑇 (GPa) 𝜈𝐴 

AS4 graphite fiber 225 15 15 7 0.20 

3501-6 epoxy 4.2 4.2 1.567 1.567 0.34 

E-glass fiber 69.0 69.0 28.28 28.28 0.22 

Boron fiber 420 420 175 175 0.20 

Aluminum 69.0 69.0 25.94 25.94 0.33 
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Table 2 

Maximum relative error (%). 

𝐴𝐻 𝑀 𝐹𝐸 → 𝐿𝐸𝐻 𝑇 𝐸 
(∗) 
𝑇 
∕ 𝐸 𝑚 𝜈

(∗) 
𝑇 

𝜇
(∗) 
𝐴 
∕ 𝜇𝑚 

glass/epoxy 0.5844 0.3969 0.0767 

graphite/epoxy 0.1971 0.1311 0.0604 

boron/aluminum 0.3476 0.2088 0.0604 

aluminum/porosity 1.4575 1.1796 0.0677 
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W  

o  
iques. In this context, the elastic limit case is reached by considering

 = 0 in Eq. (4) , which implies that  

(∗) 
𝑖𝑗𝑚𝑛 

becomes the effective stiffness

ensor. 

Here, we determine the instant elastic effective response of a

raphite/epoxy system with hexagonal architecture and different fiber

olume fractions. It is worth noticing that the following results differ

rom the ones obtained in Cruz-González et al. (2020b) since therein it

as considered a square array of inclusions in the matrix phase com-

rising isotropic constituents. The values of the parameters reported in

able 1 are obtained from Wang and Pindera (2016b) . The notation 𝐸 𝐴 

 𝐸 𝑇 ) and 𝜇𝐴 ( 𝜇𝑇 ) is used for the axial (transverse) Young’s and shear

oduli, respectively, and 𝜈𝐴 represents the axial Poisson’s ratio. 

Before we proceed with the results of the effective coefficients, we

ather information on two main features related with the computational

pproach. The solution’s convergence behavior, through three types of

esh discretization, and the execution times required for these calcula-

ions. With this purpose, we only provide the results of the computation

f the effective transverse Young’s modulus 𝐸 

(∗) 
𝑇 

since those related with

he transverse Poisson’s ratio 𝜈
(∗) 
𝑇 

and the axial shear modulus 𝜇
(∗) 
𝐴 

show

imilar characteristics. Furthermore, with regards to the analysis of the

olution’s convergence, we use the meshes A , B and C reported in Fig. 3 .

In Fig. 4 , we show the effective transverse Young’s modulus 𝐸 

(∗) 
𝑇 

,

ormalized by the corresponding matrix Young’s modulus 𝐸 𝑚 . Specifi-

ally, in Fig. 4 (a) the effective transverse Young’s modulus is computed,

or each of the meshes discretizations A , B and C , as a function of the

olume fraction 𝑉 𝑓 . Moreover, in Fig. 4 (b) we compare the results ob-

ained with the present model (AHMFE) with those produced by Wang

nd Pindera (2016b) (see Fig. 7 in Wang and Pindera, 2016b ) using

he finite-volume direct averaging micromechanics (FVDAM) theory. A

loser look at the data in Fig. 4 (b) reveals that the relative error be-

ween the solutions the present approach (AHMFE) and that in Wang

nd Pindera (2016b) (FVDAM), namely 

𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐸𝑟𝑟𝑜𝑟 ( 𝜙) ∶= 

𝜙( 𝐹𝑉 𝐷𝐴𝑀) − 𝜙( 𝐴𝐻 𝑀 𝐹𝐸) 

𝜙( 𝐹𝑉 𝐷𝐴𝑀) × 100 % , (26) 

t

6 
eaches his maximum value when the coarser mesh (Mesh A ) is consid-

red and is less than 1 . 3% . On the other hand, the relative error com-

uted with the meshes discretizations B and C is less than 0 . 2% . Then, we

an conclude that our simulations provide a good agreement with FV-

AM, and that, in this case, our results do not undergo large variations

fter subsequent mesh discretizations. 

To continue with our analysis, in Fig. 4 (c) we provide the total

xecution times needed to obtain the entire set of effective moduli in

elation to the three mesh discretizations. The simulations are set up

o take into account a finite number of fiber volume fractions ranging

rom 𝑉 𝑓 = 0 . 05 to 𝑉 𝑓 = 0 . 7 with an increment of 0.05, and they were

erformed using a machine running Windows 10 Professional 64-bit op-

rating system, with 32.0 GB RAM and Intel(R) Core(TM) i5-8350U CPU

.70GHz. As illustrated in Fig. 4 (c), the performance using the mesh C

ould be considered inefficient in terms of time, in part due to the fact

hat the mesh C is significantly finer compared to the meshes A and B .

articularly, charts (d), (e) and (f) in Fig. 4 offer more precise details

n the computing time for each volume fraction and each mesh. The

ifferences in the results are due to the fact that different volumetric

ractions modify the geometry of the periodic cell for the correspond-

ng fixed mesh. We also highlight the contrast in relation to the mean

omputing time. Taking into account both the relative errors and the

xecution times, we conclude that the mesh B is the best possible choice

or our simulations. 

Finally, to complete our analysis, in Fig. 5 , we show the numer-

cal values of the effective moduli 𝐸 

(∗) 
𝑇 

∕ 𝐸 𝑚 , 𝜈
(∗) 
𝑇 

and 𝜇
(∗) 
𝐴 
∕ 𝜇𝑚 for a

exagonal array of unidirectional long fibers and different contrasts

n the constituents. In particular, we study the pairs glass/epoxy,

oron/aluminum, aluminum/porosity and graphite/epoxy. We refer to

able 1 for the material properties of these constituents. By referring to

able 2 , in which summarize maximum relative errors, we note that

ur numerical results are in agreement with the results provided in

ang and Pindera (2016b) using the locally exact homogenization the-

ry (LEHT). As observed in Table 2 the maximum relative error is less
han 1 . 46% . 
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Fig. 4. Chart (a) shows the computation of the normalized effective Young’s modulus of a graphite/epoxy system with hexagonal architecture. Chart (b) displays 

the relative error of AHMFE in relation to FVDAM . Chart (c) shows the total computing time and the three charts (d), (e) and (f) provide the specific computing time 

for each mesh, respectively. 

Fig. 5. Calculation of the effective moduli for unidirectional composites with different contrast in the constituents and hexagonal periodic cell. The comparisons are 

performed with Fig. 9 of Wang and Pindera (2016b) . 
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.2. Viscoelastic response 

In this section, we compute the effective properties of linear vis-

oelastic composite materials. Particularly, in Section 5.2.1 we compute

he effective properties for a composite material made of isotropic con-

tituents where the viscoelastic behaviour of the matrix is described

y means of a Burger’s model. We consider a long fiber reinforce-

ent with square and hexagonal geometrical arrangements, and con-

ider the case in which Poisson’s ratio or the bulk modulus of the vis-

oelastic matrix are constants. Furthermore, in Section 5.2.2 , we deal
7 
ith transverse isotropic long fibers with different orientations and con-

ider the power-law model given in Yancey and Pindera (1990) for

he characterization of the creep compliance of the viscoelastic ma-

rix. In doing this, we obtained good agreements with both the LETH

nd experimental results. Finally, in Section 5.2.3 , we address the cal-

ulation of the effective properties for a composite made of perfectly

ligned short fibers embedded into a viscoelastic matrix with trans-

ersely isotropic behaviour. So, we show the potential of our approach

n the solution of fully three-dimensional problems involving inclusions,

hich cannot be addressed by means of analytical methods such as
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Table 3 

Maximum relative error (%) in the time interval under study. 

Constant Poissons ratio Constant bulk modulus 

AHMFE → LEHT  (∗) 22  (∗) 44  (∗) 66  (∗) 22  (∗) 44  (∗) 66 

Hexagonal cell 0.2840 0.2605 0.2622 0.2707 0.2345 0.2901 

Square cell 1.7953 0.0994 0.3588 2.2884 0.2034 0.3230 
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Table 4 

Elastic properties of the transversely isotropic T300 graphite fiber at 

room ( 22 ◦𝐶) and elevated ( 121 ◦𝐶) temperature. 

Temperature 𝐸 𝐴 (GPa) 𝐸 𝑇 (GPa) 𝜇𝐴 (GPa) 𝜈𝐴 𝜈𝑇 

22 ◦𝐶 202.82 25.30 44.12 0.443 0.05 

121 ◦𝐶 214.33 14.82 68.18 0.450 0.05 
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he LEHT. We mention that in the upcoming simulations, we employ

esh B . 

.2.1. Comparison with locally-exact homogenization theory 

In this section, we analyze the influence of the square and hexag-

nal arrangement of long fibers (see Fig. 1 ) in the calculation of the

ffective creep compliance in polymeric matrix composites. In addition,

s in Wang and Pindera (2016a) , we consider that either Poisson’s ratio

 𝜈𝑚 ) or the bulk modulus ( 𝐾 𝑚 ) of the viscoelastic matrix is constant.

his assumption is justified by the necessity of modeling the poten-

ially time-independent response of polymeric matrices under hydro-

tatic loading Wang and Pindera (2016a) . On the one hand, we take

𝑚 = 0 . 38 as the value for the matrix and therefore the time-dependent

ulk modulus is given by 𝐾 𝑚 ( 𝑡 ) = 𝐸 𝑚 ( 𝑡 )∕(3(1 − 2 𝜈𝑚 )) , where 𝐸 𝑚 ( 𝑡 ) stands

or the one-dimensional relaxation modulus. On the other hand, if we as-

ume a constant bulk modulus for the matrix, we use the equation 𝐾 𝑚 =
 0 ∕(3(1 − 2 𝜈𝑚 )) to determine its value, and then, the time-dependent

oisson’s ratio 𝜈𝑚 ( 𝑡 ) arises from the equation 𝜈𝑚 ( 𝑡 ) = 1∕2 − 𝐸 𝑚 ( 𝑡 )∕(6 𝐾 𝑚 ) .
ere, 𝐸 0 represents the instantaneous elastic relaxation modulus. 

In the following, we investigate the effective properties of

nidirectionally-reinforced glass/epoxy composites with linear isotropic

onstituents, where elastic glass fibers are embedded into a viscoelastic

olymeric matrix (see, e.g. Cavalcante and Marques, 2014; Chen et al.,

017; Cruz-González et al., 2020b; Wang and Pindera, 2016a ). Here, in

ontrast with Cavalcante and Marques, 2014; Chen et al., 2017; Cruz-

onzález et al., 2020b , we consider hexagonal periodic cells in the com-

utations. The mechanical properties of the fibers are given by Young’s

odulus 𝐸 𝑓 = 68 . 77 GPa and Poisson’s ratio 𝜈𝑓 = 0 . 21 . Furthermore, we

escribe the viscoelastic matrix by assuming the relaxation representa-

ion of the four-parameter model or Burger’s model, i.e. two Maxwell

lements set in parallel (see Mainardi and Spada (2011) for further de-

ails). Specifically, the expression of the relaxation modulus is given as

ollows, 

 𝑚 ( 𝑡 ) = 𝐺 1 exp 
( 

− 

𝑡 

𝜂𝜎, 1 

) 

+ 𝐺 2 exp 
( 

− 

𝑡 

𝜂𝜎, 2 

) 

, (27) 

here the material properties are taken from Wang and Pindera

2016a) by means of the scalar form of (23) (see Park and Kim, 1999 )

nd some algebraic transformations. The data set is reported as fol-

ows, 𝐺 1 = 1 . 12511 GPa , 𝐺 2 = 2 . 14489 GPa , 𝜂𝜎, 1 = 6999 . 34 h and 𝜂𝜎, 2 =
8 . 2551 h , where 𝐺 𝑛 ( 𝑛 = 1 , 2 ) represents the elastic modulus of the

pring and 𝜂𝜎,𝑛 is a relaxation time Mainardi and Spada (2011) . It is

orth to remark that from eq. (27) , we obtain 𝐸 0 = 𝐺 1 + 𝐺 2 . 

In Fig. 6 , we show the curves corresponding to the effective creep

ompliances  (∗) 22 ,  (∗) 44 and  (∗) 66 for constant Poissons ratio (left charts)

nd constant bulk modulus (right charts). Specifically, in Fig. 6 , we com-

are our results with those obtained in Wang and Pindera (2016a) via

he LEHT. In these comparisons, hexagonal and square arrays of fibers

re studied for a fiber volume fraction equal to 0.6. As it can be noticed,

here is a good agreement between the two approaches, which is further

videnced by the maximum relative errors provided in Table 3 . 

.2.2. Power-law model. Comparison with experiments 

In this section, we follow the analysis adopted in Wang and Pin-

era (2016a) , and compare our results with the experimental creep

easurements obtained in Yancey and Pindera (1990) for off-axis

raphite/epoxy specimens, and with the numerical results given in
8 
ang and Pindera (2016a) . In Yancey and Pindera (1990) , the authors

bserved that at 22 ◦𝐶 and 121 ◦𝐶 the T300 graphite fiber present an

lastic behavior, whereas the creep response of the 934 epoxy matrix is

tted by the power-law 

 𝑚 ( 𝑡 ) = 

1 
𝐸 0 

+ 𝐶𝑡 𝑛 , (28) 

here 𝐶 and 𝑛 are experimentally measured parameters and 𝐸 0 is the

nstantaneous elastic relaxation modulus ( Yancey and Pindera, 1990 ). 

Before proceeding, it is worth mentioning that, even though in the

resent model we do not deal with fractional viscoelasticity (we refer

he Reader to Atanackovi ć et al., 2016; Beltempo et al., 2019; Bouras

t al., 2018; Mainardi, 2010; Mainardi and Spada, 2011 and the refer-

nces therein), we find convenient to use some of the results given in

hese works for the calculation of the relaxation modulus �̂� 𝑚 ( 𝑝 ) which

s needed in our simulations. 

With this purpose, we introduce the notation 𝜇 = 𝐸 0 ∕2 , 𝜏 = 𝛽−1∕ 𝑛 ,

= 𝐸 0 𝐶 Γ(1 + 𝑛 ) and 𝛼 = 𝑛, so that Eq. (28) can be equivalently rewrit-

en as 

 𝑚 ( 𝑡 ) = 𝑆 𝑀 

( 𝑡 ) = 

1 
2 𝜇

[ 
1 + 

( 𝑡 ∕ 𝜏) 𝛼

Γ(1 + 𝛼) 

] 
, (29) 

here Γ denotes the Gamma function, 𝛼∈ ]0 , 1] , and 𝑆 𝑀 

( 𝑡 ) represents

he fractional creep compliance ( Mainardi and Spada, 2011 ). Hence,

y referring to the results obtained in Mainardi and Spada (2011) , the

ractional relaxation modulus is given by the expression 

 𝑀 

( 𝑡 ) = 2 𝜇 𝛼(−( 𝑡 ∕ 𝜏) 𝛼) , (30) 

here  𝛼 denotes the Mittag–Leffler function of order 𝛼, which is defined

y the expression ( Gorenflo et al., 2014 ) 

 𝛼(−( 𝑡 ∕ 𝜏) 𝛼) = 

∞∑
𝑝 =0 

(−1) 𝑝 
( 𝑡 ∕ 𝜏) 𝛼𝑝 

Γ(1 + 𝛼𝑝 ) 
, 0 < 𝛼 < 1 , 𝜏 > 0 , (31) 

nd for 𝛼 = 1 reduces to  𝛼((− 𝑡 ∕ 𝜏) 𝛼) = exp (−t∕τ) . We notice that, from

q. (30) and by virtue of the parameter identifications established for

btaining Eq. (29) , obtain 

 𝑚 ( 𝑡 ) = 𝐸 0  𝑛 (− 𝐸 0 𝐶Γ(1 + 𝑛 ) 𝑡 𝑛 
)
. (32) 

owever, Eq. (32) does not provide, in a direct way, an incremental

olution for the problem in the time domain. Therefore, we rely on the

xpression for the relaxation modulus �̂� 𝑚 ( 𝑝 ) , expressed with respect to

he Laplace–Carson domain, for the computation of the effective proper-

ies. Thus, by employing the results given in Mainardi and Spada (2011) ,

he Laplace–Carson transform of Eq. (30) is 

̂
 𝑀 

( 𝑝 ) = 

2 𝜇( 𝑝𝜏) 𝛼

1 + ( 𝑝𝜏) 𝛼
, (33) 

hich implies that 

̂
 𝑚 ( 𝑝 ) = 

𝐸 0 𝑝 
𝑛 

𝑝 𝑛 + 𝐸 0 𝐶Γ(1 + 𝑛 ) 
. (34) 

n this way, the Laplace–Carson transform for the relaxation modulus

an be analytically obtained in an explicit form, which highly reduces

he numerical complexity of the problem. 

In the following, we consider a composite with hexagonal arrange-

ent of long fibers where the properties of the constituents, i.e. the

lastic fibers and the viscoelastic matrix given in Wang and Pindera

2016a) are summarized in Tables 4 and 5 , respectively. 
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Fig. 6. Charts (a)-(c) show the results under 

the considerations of constant Poisson’s ratio 

while charts (d)-(f) assume constant bulk mod- 

ulus. We consider square and hexagonal ar- 

rays of fibers. Our results are compared with 

Fig. 7 of Wang and Pindera (2016a) . 

Table 5 

Material properties of the epoxy matrix at room ( 22 ◦𝐶) and el- 

evated ( 121 ◦𝐶) temperature. 

Temperature 𝐸 0 (GPa) 𝜈 𝐶 (1/(GPa ×min)) 𝑛 

22 ◦𝐶 4.51 0.311 0.0135 0.17 

121 ◦𝐶 3.36 0.317 0.0250 0.20 
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d  
Fig. 7 shows the effective creep response of the viscoelastic com-

osite material given by the coefficients  (∗) 11 and  (∗) 22 . Similarly to the

revious section, we consider the cases of constant Poisson’s ratio and

onstant bulk modulus. In addition, we analyze the influence of two dif-
9 
erent temperatures, i.e. 22 ◦𝐶 (room) and 121 ◦𝐶 (elevated). The results

orrespond to composites with fibers that are rotated 10 ◦ and 90 ◦ coun-

erclockwise about the 𝑦 2 -axis. In this case, the fiber volume fraction

f the fiber is fixed to 𝑉 𝑓 = 0 . 6 . A comparison of our results with those

btained in Wang and Pindera (2016a) using LEHT shows a good agree-

ent between both approaches. Additionally, the qualitative behavior

f the curves is very similar to the experimental data. In Table 6 , we

rovide the maximum relative errors between the results obtained via

wo methods. 

.2.3. Modeling of short fiber reinforcement 

The locally-exact homogenization theory (LEHT) is based on a two-

imensional formulation which is only capable of taking into account
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Fig. 7. Calculation of the effective creep response in viscoelastic composites with hexagonal array of transversely isotropic fiber with 10 ◦ and 90 ◦ off-axis specimens 

about the 𝑥 2 -axis. We consider two different temperatures, i.e. 22 ◦𝐶 (room) and 121 ◦𝐶 (elevated). In addition, Charts (a)-(b) shows the cases of constant Poissons 

ratio and charts (c)-(d) the constant bulk modulus. 

Table 6 

Maximum relative error (%) in the time interval under study. 

Constant Poissons ratio Constant bulk modulus 

Hexagonal cell 𝜃 = 10 ◦ 𝜃 = 90 ◦ 𝜃 = 10 ◦ 𝜃 = 90 ◦

AHMFE → LEHT  (∗) 11  (∗) 22  (∗) 11  (∗) 22 
22 ◦𝐶 0.0798 0.3287 0.0870 0.3799 

121 ◦𝐶 0.1340 0.3847 0.1781 0.1666 

AHMFE → Experiments  (∗) 11  (∗) 22  (∗) 11  (∗) 22 
22 ◦𝐶 4.2505 3.3196 4.5503 5.2098 

121 ◦𝐶 5.6338 4.7281 6.7843 1.7558 
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v  
ong cylindrical fibers (see, e.g. Chen et al., 2017 ). In this section, we

how the potential of the AHMFE approach in the modeling of viscoelas-

ic composites for three-dimensional geometrical configurations. Partic-

larly, we consider a viscoelastic composite material with square and

exagonal arrangement of perfectly aligned short fibers (see Fig. 1 (b)

ii,iv)) represented by cylindrical inclusions. In addition, we assume
10 
hat the constituents behave as those in Section 5.2.2 , that is, we con-

ider a viscoelastic matrix (934 epoxy) with power-law creep compli-

nce as given in (28) , and reinforced by transversely isotropic elastic

bers (T300 graphite). 

In this context we define the parameters 𝛾1 ∶= ℎ 1 ∕ 𝐻 1 and 𝛾2 ∶=
 2 ∕ 𝐻 2 which relate the length measurement of the fiber and the ma-

rix in the square and hexagonal periodic cell, respectively (see Fig. 8

a)). In addition, we assume the fibers to be centered in the periodic

ells. Therefore, we notice that 0 ≤ 𝛾1 , 𝛾2 ≤ 1 , where a zero value rep-

esents a homogeneous material made only with the matrix and a one

alue reproduces the case of long fibers as particular case of this ap-

roach. Moreover, as observed in Fig. 8 (a), we study counterclockwise

niform rotations of the short fibers about 𝑦 2 -axis of 0 ≤ 𝜃 < 𝜋. 

In Fig. 8 (b) and (c), we show our findings in the calculation of the

ffective moduli 𝐸 

(∗) 
1 and 𝜈

(∗) 
32 for square and hexagonal periodic cell.

n particular, we assume the room temperature ( 22 ◦𝐶) and the con-

tant bulk modulus approach discussed in the Section 5.2.2 . The fiber

olume fraction and the ratio 𝛾 are fixed to 𝑉 𝑓 = 0 . 1 and 𝛾 = 𝛾1 = 𝛾2 =
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Fig. 8. Chart (a) shows the 𝜃 counterclockwise rotation about 𝑦 2 -axis, and the square and hexagonal periodic cell for short fibers. Charts (b) and (c) show the results 

corresponding to 𝐸 

(∗) 
1 and 𝜈

(∗) 
32 . 
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∕5 , respectively. In the simulations, we consider the rotation angles

∈ {0 , 𝜋∕2} . 

. Discussion and conclusions 

In this work, we studied the effective properties of three-

imensional, non-aging viscoelastic composites reinforced with square

nd hexagonal arrangements of rotated elastic short and long fibers. We

xploited the correspondence principle by transforming the original vis-

oelastic problem into a “fictitious ” elastic one. In particular, by means

f the asymptotic homogenization technique, we studied the two-scale

roblem as a homogenized one in which the information available at

he smallest scale is encoded into the effective coefficients. The latter

ere calculated through the conception of dedicated numerical algo-

ithms combining finite elements with Valsa’s inversion method ( Valsa

nd Bran ĉik, 1990 ). 

In order to validate our results, we considered the case of instant

lastic response. We studied the solution’s convergence behavior and the

xecution time by means of three different mesh discretizations. Specifi-

ally, in our simulations, we took into account transverse isotropic long

bers in a hexagonal arrangement. In addition, we reached good agree-

ents in the comparisons against FVDAM and LEHT, and, concerning

he mesh performance, we concluded that Mesh B was the best choice

or our computations, see Fig. 3 . 

We also studied the effective properties of viscoelastic composite ma-

erials by assuming that either Poisson’s ratio or the bulk modulus of the

iscoelastic matrix can be constants. In this context, we considered the

urger’s model with isotropic constituents and compared our numerical

esults with those obtained in Wang and Pindera (2016a) when consid-

ring the locally-exact homogenization theory. We found good agree-

ents in the comparisons, with a maximum relative error less than 2 . 3%
see Table 3 ). We further compare our technique, using the power-law

epresentation given in Yancey and Pindera (1990) , with the experimen-

al results in Yancey and Pindera (1990) . We obtained the relaxation

epresentation of the power-law model in the time and Laplace–Carson
11 
omains by considering some of the results given in the context of frac-

ional viscoelasticity ( Atanackovi ć et al., 2016; Beltempo et al., 2017;

ouras et al., 2018; Mainardi, 2010; Mainardi and Spada, 2011 ). Our nu-

erical results agreed with the experimental measurements and those

n Wang and Pindera (2016a) using the LEHT. In particular, we obtain

aximum relative errors less than 6 . 8% and 0 . 4% , respectively. 

Finally, we addressed the effective properties of viscoelastic compos-

tes reinforced by perfectly aligned, transversely isotropic short fibers.

his is one of the novelties of this work. In fact, the locally-exact ho-

ogenization approach adopted in Wang and Pindera (2016a) and other

nalytical methods (for instance, using the asymptotic homogenization

ethod addressed in Rodríguez-Ramos et al. (2020) ) cannot consider

his case. Specifically, they rely on long fibers (which extend from the

op to the bottom of the cell) to obtain reduced problems formulated

n two-dimensions, which can therefore be solved analytically. For the

imulations, we introduced the parameter 𝛾 to manage the size of the

ber inside the periodic cell and we assumed different fiber orientations.

ur findings show that the orientation of the fiber at the microscale

as a direct influence in the effective behaviour of the composite at

he macroscale. As observed in the parametric study conducted for 𝜃 in

ig. 8 (b) and (c), when the rotation increases, we obtain that the val-

es of the effective moduli 𝐸 

(∗) 
1 and 𝜈

(∗) 
32 decrease. These analyses have

 positive impact on the manufacturing processes and highlight the ad-

antages of micro-mechanical models. 

We mention that one of the main limitations of this work lies in

he computation times. The forward-back passage between the time do-

ain and the Laplace–Carson domain compromises the efficiency of the

odel. In fact, in order to invert the effective coefficients via Valsa’s

ethod (see Juraj, 2020; Valsa and Bran ĉik, 1990 ), we needed to cal-

ulate 𝑛𝑠 + 𝑛𝑑 + 1 = 40 points in the Laplace–Carson space to determine

ne point in the time domain. One possible way to deal with this issue is

o perform parallel computations. In addition, we could adopt different

nversion techniques such as Zakian’s method ( Zakian, 1969 ) which re-

uces the number of points from 40 to 5 and have been used in several

orks (see, e.g., Chen et al., 2017; Wang and Pindera, 2016a ). 
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Further generalizations of the present framework include the con-

ideration of an orientation distribution for the short fibers ( Mishurova

t al., 2018; Sevostianov et al., 2016 ). Moreover, we can generalize

ur approach through the consideration of imperfect contact condi-

ions between the interface of the constituents (see Daridon et al.,

016; Escarpini Filho and Marques, 2016; Rizzoni et al., 2021; Ser-

illi et al., 2019 ). Besides, another development is related to the mod-

ling of three-dimensional viscoelastic composites materials by means

f a three scale asymptotic homogenization approach ( Cruz-González

t al., 2020a; Ramírez-Torres et al., 2019 ). In this context, the current

ethodology can address the modeling of short and long fiber reinforce-

ent in hierarchical composite materials. Another challenging exten-

ion consists in generalizing the present framework in order to take

nto account soft viscoelastic composites characterised by a nonlinear

esponse (by potentially extending the framework recently developed

n Ramírez-Torres et al. (2018) and typically found in relevant bio-

ogical and industrial applications, see, e.g. Destrade and Saccomandi

2007) ; Muliana and Rajagopal (2012) ; Parnell and De Pascalis (2019) .

inally, we would like to mention that, in view of the advantages that

he theory of Fractional Calculus ( Atanackovi ć et al., 2014 ) offer. A nat-

ral further generalization of the present work is to consider and adapt

he ideas put forward in Ramírez-Torres et al. (2021b) and in Ramírez-

orres et al. (2021a) , where problems of fractional diffusion at different

patial scales are studied. 
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