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Abstract  
 
SLM (Selective Laser Melting) is the most widespread additive manufacturing technique of metal part. The desired part is elaborated through local melting 
of a raw metal powder bed by means of laser. In industrial machines, galvanometer motors achieve the laser beam deflection and focus control tasks. This 
paper proposes a H-infinity controller synthesis which improves the system accuracy and robustness towards physical features. Compared to a 
conventional control scheme, results obtained with the H-infinity controller implemented in an open architecture test bench consisting of a 2-axis laser 
deflection system showed improved accuracy performance while operation rapidity is optimized. 
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Introduction 

Selective Laser Melting (SLM, also referred to as LBM: Laser 
Beam Melting) is the most common process for Additive 
Manufacturing (AM) of metal parts in modern industrial machines. 
Current performances of AM machines enabled AM processes for 
production of small series with the attendant technological 
challenges constantly growing in both industry and academia [1]. 
The performance of the SLM process chain hinges on five major 
points of interest [2]: ‘Equipment’, ‘Material’, ‘Production’, ’Batch’, 
‘Part Finishing’. Certain physical aspects of metal powder melting 
remain lesser known, and a current research trend is oriented 
towards modelling these physical phenomena [3]. The work 
presented in this paper deals with the mechanical actuators 
control of the production machine. 

In the ‘Equipment’ category, the main actuator element for SLM 
machines is the three-axis deflection and focus control system 
(Figure 1).  The control strategy of the galvanometer motor which 
drives each axis of the actuator is addressed here. 
 

 
Figure 1. Three-axis actuator for SLM machines. 

 
The galvanometer motor is mostly used in a closed-loop control 

framework [4]. The controller structure is synthetized so as to 
meet the precision and rapidity requirements of the operation. 

Control strategies of the galvanometer motor have been 
extensively studied in the automatic control field, as an example of 
high precision system. The reference [5] proposes a general 
framework in which the synthesis of the controller can be divided 
into four main points of interest towards the improvement of the 
closed-loop dynamics: ‘Feedforward/ Command Shaping’, 
‘Feedback Control’, ‘Modeling/Identification’ and ‘Optimization/ 
Auto tuning’. The most-encountered conventional structures in 
industry are Proportional-Integral-Derivative (PID)-based 
controllers [4]. State of the art works supply a large panel of 
advanced controller schemes that tackle specific problems such as 
residual vibration suppression by initial value compensation 
techniques [6], disturbance rejection through enhancement of the 
controller with an observer [7] or online closed-loop dynamics 
enhancement with adaptive control strategies [8]. 

In this paper, we propose an H-infinity robust controller [9] 
structure synthesis based on the desired closed-loop behavior of 
the galvanometer system. Compared to the dynamics 
enhancement techniques mentioned above, the H-infinity 
controller synthesis takes into account multiple synthesis 
objectives all at once (stability, rapidity, precision and torsional 
bending modes rejection). Moreover, H-infinity robust controllers 
have already been extensively used in industry for mechanical 
servo systems [10]. Performance achieved with actuator axes 
driven with PID-based conventional structures and the newly 
introduced H-infinity structures are compared in this work within 
the framework of an experimental marking job. It is shown that the 
operation precision is improved with H-infinity structures driving 
the actuator axes when operation rapidity is optimized. An open 
architecture test bench is developed with a conventional control 
structure, following the H-infinity synthesis technique is applied to 
the control of galvanometers. 

The open-architecture test bench  

Experiments are carried out on a 2-axis open architecture test 
bench as presented in Figure 2. The setup, designed to reproduce 
the real behavior of a commercial system, consists of a 2-axis 
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commercial galvanometer scanner system (motor and mirror) 
along with its control card. The addition of an external control card 
allows for an open-architecture framework, providing 
implementation of proposed control structures. Developed control 
strategies are implemented in Matlab/Simulink® in a PC 
workstation connected to the test bench by means of a dSpace 
interface board. 

 

 
Figure 2. Open-architecture galvanometer test bench. 

 

For the SLM process of additive manufacturing, limited speed 
variations are inherent to the technique. In fact, the laser scanning 
setup is never used to its full mechanical capability. Conventional 
scanning speeds are around 2m.s-1 but the scan heads can 
mechanically move 10 to 20 times faster. This limitation avoids 
unwanted discontinuity of the local melting phenomenon on the 
powder bed. Consequently, linear descriptions of the mechanical 
parts of the actuator remain relevant since the standard operating 
conditions in actual machines continue to be subject to such 
scanning speed limitations. Therefore in the following, control 
techniques commonly applied to linear systems are used for the 
galvanometers. 

 
Control structures are synthetized on the basis of a galvanometer 

model proposed in a previous work [11]. This model includes 
advanced torsion modes and friction models as illustrated in 
Figure 3. The input of the model is the voltage signal 𝑈 and the 
angular position 𝜃 is the output. Its equivalent transfer function is 
denoted in the Figure 3 as 𝑮𝒂(𝑠), s being the Laplace variable. 

 
 

 
Figure 3. Galvanometer motor model. 

 
 

The galvanometer parameters from Figure 3 are described in 
Table 1 with their numerical values for both axes: 

 
 
 
 

Parameter [unit] Description 𝑥 value 𝑦 value 

𝑅 [Ohm] Internal resistance 2.74 2.57 

𝐿 [H] Coiling inductance 2.24 × 10−4 2.17 × 10−4 

𝐾𝑡 [V.s.rad-1] 

or [N.m.A-1] 

Value of the back-
EMF constant or the 
torque constant 

9.3 × 10−5 1.15 × 10−4 

𝐵 [N.m.s.rad-1] 
Viscous friction 
coefficient 

10−9 10−9 

𝐽 [kg.m2] 
Motor and load 
inertia 

1.4 × 10−11 1.53 × 10−11 

𝑇𝑃 [N.m]  

𝑇𝐶 [N.m] 

Enhanced friction 
model parameters 

3.13 × 10−6 
0.5 × 10−6 

4.15 × 10−6 
0.9 × 10−6 

𝐾𝑟𝑒𝑠 [rad.s-1.A-1] 

𝜉𝑟𝑒𝑠[.] 
𝜔𝑟𝑒𝑠 [rad.s-1] 

First resonance mode 
parameters of the 
motor-load link 

0.002 
0.005 

5.31 × 104 

0.0027 
0.005 

4.69 × 104 

Table 1. Galvanometers 𝑥 and 𝑦 model parameters. 

 
A first conventional PID-based control structure is 

implemented initially for each of the two axes (𝑥 and 𝑦) to replicate 
the commercial system behavior, which is considered as a black-
box system. The chosen structure is presented in Figure 4. 

 

 
Figure 4. Conventional control structure of an axis. 

 
The conventional structure consists of a three-loop feedback 

cascade controller: Proportional Integral controllers for the motor 
current and the motor rotation speed loops (respectively Ci(s) and 
Cω(s)) and a Proportional Derivative controller (Cθ(s)) for the 
angular position loop. Feedforward actions are introduced for the 
motor current and the motor rotation speed to optimize the 
system accuracy. The angular position reference 𝜃𝑟𝑒𝑓  is limited in 

velocity, acceleration and jerk with a pre-filter. The filtering 
technique is based on the design of FIR (Finite Impulse Response) 
filters for planning minimum-time trajectories under speed, 
acceleration and jerk constraints as detailed in [12]. Tuning of the 
conventional control structure is achieved to provide a closed-loop 
bandwidth of 1.2 kHz for both galvanometers. 

 
As a validation step, the positioning dynamics of the 

conventional control structure are compared, in the case of the 𝑥 
axis, to the commercial scanner system behavior. Figure 5 gives the 
angular responses to a velocity-limited multi-step reference which 
covers a maximum range of the angular capability of the 
galvanometer. The figure shows that the commercial system 
behavior can be reproduced in an accurate manner within the 
elaborated open-architecture test bench. The maximum angular 
difference between the commercial and the conventional structure 
responses is as small as 0.35deg, which is a reasonable value. 



 
Figure 5. Experimental comparison of angular position responses of the 

commercial system and the conventional control structure and difference 
between these signals. 

 
The H-infinity controller synthesis technique is presented below 

with its application to the galvanometers. 
 

H-infinity controller synthesis 

The main benefit of H-infinity controllers is the possibility to 
keep precision indicators degradation as low as possible while 
increasing system rapidity. As a matter of fact, H-infinity controller 
synthesis techniques allow simultaneous consideration of multiple 
control objectives which impact stability, rapidity and precision of 
the system. 

H-infinity controller synthesis strategy [9] consists of the 
feedback controller 𝐾(𝑠) synthesis for a given system plant 𝑃(𝑠), 
as depicted in Figure 6 as the ‘standard’ form for the controller 
synthesis. 

 
 

Figure 6. Standard problem form. 

 
The closed-loop system can be rewritten as follows with the four 

transfer functions that constitute 𝑃(𝑠) between the reference 
input signals 𝒘, the command signals 𝒖, the monitored signals 𝒆 
and the measurements 𝒛: 

 

(
𝒆(𝑠)
𝒛(𝑠)

) = 𝑃(𝑠) (
𝒘(𝑠)
𝒖(𝑠)

) = (
𝑃𝒆𝒘(𝑠) 𝑃𝒆𝒖(𝑠)
𝑃𝒛𝒘(𝑠) 𝑃𝒛𝒖(𝑠)

) (
𝒘(𝑠)
𝒖(𝑠)

) (1) 

 
The transfer function between 𝒆 and 𝒘 is as follows:  
 

𝒆(𝑠) = (𝑃𝒆𝒘(𝑠) + 𝑃𝒆𝒖(𝑠)𝐾(𝑠)(𝐼 − 𝑃𝒛𝒖(𝑠)𝐾(𝑠))
−1
𝑃𝒛𝒘(𝑠))𝒘(𝑠)

= 𝑭𝑙(𝑃(𝑠), 𝐾(𝑠)) 𝒘(𝑠)
 

 (2) 
 

𝑭𝑙(𝑃(𝑠), 𝐾(𝑠)) is called the LFT (Linear Fractional 

Transformation) of the closed-loop system and the main objective 
of the H-infinity controller synthesis technique (also referred as 
the ‘standard problem formulation’) is defined for 𝑃(𝑠) and a given 
scalar 𝛾 and consists in finding 𝐾(𝑠) which stabilizes the closed-
loop system while ensuring 

 

‖𝑭𝑙(𝑃(𝑠), 𝐾(𝑠)) ‖∞ < 𝛾 (3) 

 

The H-infinity (𝐻∞) norm ‖𝑋(𝑠)‖∞ of a given system 𝑋(𝑠) is 
defined for a set of pulsations 𝜔 as: 

 

‖𝑋(𝑠)‖∞ ∶= sup
𝜔∈ℝ

�̅�(𝑋(𝑗𝜔))   (4) 

 

where �̅� depicts the highest singular value of the system. 
Consider a system 𝑋(𝑠) represented as a transfer functions matrix, 
with 𝑝 and 𝑚 as the respective dimensions of the input and the 
output vectors. The singular values �̅�𝑖  for 𝑖 = 1 to min(𝑝,𝑚)  are 
defined as the square roots of the eigenvalues 𝜆𝑖  of the 
multiplication of the transfer matrix with its conjugate transpose: 

 

𝜎𝑖(𝑋(𝑗𝜔)) ∶= √𝜆𝑖(𝑋(𝑗𝜔)𝑋(−𝑗𝜔)
𝑇) (5) 

 

For the univariate case, the H-infinity norm depicts the highest 
values of the system gain module. The H-infinity controller 
synthesis technique consists mainly in shaping the gain modules of 
the LFT, therefore the gain modules of the four transfer functions 
of 𝑃(𝑠) as seen in the expression (2).  

To find a solution to the standard problem, hence 𝛾 and 𝐾(𝑠), the 
Glover-Doyle algorithm [13] is the most commonly used method. 
It is sometimes referred to as the ‘Riccati equations method’. A 
state-space representation of 𝑃(𝑠) is derived from (1) such as: 

 

(

�̇�(𝑡)

𝑒(𝑡)
𝑧(𝑡)

) = (

𝐴 𝐵𝑤 𝐵𝑢
𝐶𝑒 𝐷𝑒𝑤 𝐷𝑒𝑢
𝐶𝑧 𝐷𝑧𝑤 𝐷𝑧𝑢

)(

𝑥(𝑡)

𝑤(𝑡)
𝑢(𝑡)

) (6) 

 

with 𝑥 ∈ ℝ𝑛, 𝑤 ∈ ℝ𝑛𝑤 , 𝑢 ∈ ℝ𝑛𝑢, 𝑒 ∈ ℝ𝑛𝑒 , 𝑧 ∈ ℝ𝑛𝑧 

 

Let 𝑃 = 𝑃𝑇 (⋅𝑇 notation is for matrix transpose) and 𝑄 = 𝑄𝑇 be 
two matrices with the same dimension as 𝐴 from (6) and  

 

𝑋 = 𝑅𝑖𝑐 (
𝐴 −𝑃
−𝑄 −𝐴𝑇

) (7) 

 

the solution to the Riccati equation: 

 

𝑋𝐴 + 𝐴𝑇𝑋 − 𝑋𝑇𝑃𝑋 + 𝑄 = 0 (8) 

 

such that all eigenvalues of 𝐴 − 𝑃𝑋 have a strictly negative real 
part. 

 

The feasibility of the standard problem is defined by the following 
five conditions:  

i. 𝐻∞ = (
𝐴 𝛾−2𝐵𝑤𝐵𝑤

𝑇 − 𝐵𝑢𝐵𝑢
𝑇

−𝐶𝑒
𝑇𝐶𝑒 −𝐴𝑇

) does not have any imaginary 

eigenvalue 
ii. There exists a matrix 𝑋∞ = 𝑅𝑖𝑐(𝐻∞), a definite positive matrix (a 

matrix which has only positive eigenvalues) 

iii. 𝐽∞ = (
𝐴𝑇 𝛾−2𝐶𝑒

𝑇𝐶𝑒 − 𝐶𝑧
𝑇𝐶𝑧

−𝐵𝑤𝐵𝑤
𝑇 −𝐴

) does not have any imaginary 

eigenvalue 
iv. There exists a matrix 𝑌∞ = 𝑅𝑖𝑐(𝐽∞), a definite positive matrix 
v. 𝜌(𝑋∞𝑌∞) < 𝛾

2 where 𝜌(𝑋∞𝑌∞) depicts the module of the highest 
eigenvalue of the matrix 𝑋∞𝑌∞ 

 



Under these feasibility conditions, the solution to the standard 
problem gives the controller 𝐾(𝑠) stabilizing 𝑃(𝑠) and fulfilling (3) 
such as: 

 

𝐾(𝑠) = 𝑭𝑙(𝐾𝑎(𝑠), Φ(s)) (9) 

 

where Φ(𝑠) is an arbitrary transfer functions matrix of                      
𝑛𝑢 × 𝑛𝑧 dimension and of 𝐻∞ norm lower than 𝛾 and 𝐾𝑎(𝑠) is 
represented in the state-space form: 

 

(

�̇�𝑎(𝑡)

𝑢(𝑡)
𝑢𝑎(𝑡)

) = (
�̂�∞ 𝑍∞𝑌∞𝐶𝑧

𝑇 𝑍∞𝐵𝑢
−𝐵𝑢

𝑇𝑋∞ 0 𝐼𝑛𝑢
−𝐶𝑧 𝐼𝑛𝑧 0

)(

𝑥𝑎(𝑡)

𝑧(𝑡)
𝑧𝑎(𝑡)

)  (10) 

 

where 

�̂�∞ = 𝐴 + 𝛾
−2𝐵𝑤𝐵𝑤

𝑇𝑋∞ − 𝐵𝑢𝐵𝑢
𝑇𝑋∞ − 𝑍∞𝑌∞𝐶𝑧

𝑇𝐶𝑧  

𝑍∞ = (𝐼𝑛 − 𝛾
−2𝑌∞𝑋∞)

−1  

𝐼𝑛 is the identity matrix of dimension 𝑛 

 

The ‘central controller’ is defined for the particular case        
Φ(s) ≡ 0 which state-space representation is as follows: 

 

(
�̇�𝑐(𝑡)
𝑢(𝑡)

) = (
�̂�∞ 𝑍∞𝑌∞𝐶𝑧

𝑇

−𝐵𝑢
𝑇𝑋∞ 0

) (
𝑥𝑐(𝑡)

𝑧(𝑡)
)  (11) 

 

The resolution of the standard problem uses the five feasibility 
conditions i to v to approach the optimal value of 𝛾 by dichotomy. 
The central controller is computed thereafter from the equations 
(9) to (11). 

 

The H-infinity controller synthesis technique has to be applied to 
a chosen synthesis model which is selected in the galvanometer 
case as the galvanometer system along with the current controller 
in order to keep the current response dynamics of the 
conventional structure. The resulting synthesis model 𝑮(𝑠) is 
presented in Figure 7. The friction model has been intentionally 
omitted due to the discontinuity aspect of the ‘sign’ function. 

 

 
Figure 7. Galvanometer model with current controller considered for the 

H-infinity synthesis technique. 

 

It is common to apply weighting filters on the signals of the 
resulting closed-loop system in the scope of the H-infinity 
controller synthesis technique [9] in order to allow for additional 
tuning parameters for the procedure. These filters are applied to 
the signals of the resulting closed-loop system. Three filters are 
usually introduced for the error difference signal (𝜀 = 𝜃𝑟𝑒𝑓 − 𝜃), 

the command signal (𝑢 = 𝑖𝑟𝑒𝑓 in the galvanometer case) and an 

additional disturbance entry 𝑏 considered on the command signal. 
The resulting system plant 𝑃(𝑠) for the standard form along with 
the weighting filters is illustrated in Figure 8. 

 

Figure 8. Closed-loop structure for the H-infinity synthesis technique. 
 

The disturbance signal 𝑏 on the command signal is considered as 
the output of the filter 𝑊3(𝑠) which has an input signal 𝑑. 𝜀 and 𝑢 
are the inputs of the 𝑊1(𝑠) and 𝑊2(𝑠) filters respectively. The 
weighting filters are chosen to be first order filters to minimize the 
complexity of the resulting plant 𝑃(𝑠). The parametrization of 
these filters is as follows: 

𝑊𝑗(𝑠) = (
𝑎𝑗𝑠+𝑏𝑗

𝑐𝑗𝑠+𝑑𝑗
)
−1

  (12) 

The four parameters of each filter are chosen according to the 
corresponding closed-loop transfer functions that are impacted. 
These transfer functions are introduced below.  

With the new form of 𝑃(𝑠) from Figure 8, the derived output 

vector can be written as 𝒆 = (
𝑒1
𝑒2
), the input as 𝒘 = (

𝜃𝑟𝑒𝑓
𝑑
) and the 

resulting LFT for the standard form is as: 

 

{
 
 

 
 𝑭𝑙(𝑃(𝑠), 𝐾(𝑠)) ∶= (

𝑊1(𝑠)𝑆(𝑠) −𝑊1(𝑠)𝑆(𝑠)𝐺(𝑠)𝑊3(𝑠)

𝑊2(𝑠)𝐾(𝑠)𝑆(𝑠) −𝑊2(𝑠)𝑇(𝑠)𝑊3(𝑠)
)

𝑆(𝑠) =  (1 + 𝐺(𝑠)𝐾(𝑠))
−1

𝑇(𝑠) = 1 − 𝑆(𝑠)

 

                  (13) 

The inequality (3) then becomes: 

 

‖
𝑊1(𝑠)𝑆(𝑠) −𝑊1(𝑠)𝑆(𝑠)𝐺(𝑠)𝑊3(𝑠)

𝑊2(𝑠)𝐾(𝑠)𝑆(𝑠) −𝑊2(𝑠)𝑇(𝑠)𝑊3(𝑠)
‖
∞

< 𝛾            (14) 

 

A property of the H-infinity norm [9] states that if the H-infinity 
norm of a transfer function matrix admits an upper bound, all of its 
elements admit the same bound. (14) is therefore equivalent to:  

 

{
  
 

  
 
‖𝑊1(𝑠)𝑆(𝑠)‖∞ < 𝛾 ⇔ ∀𝜔 ∈ R |𝑆(𝑗𝜔)| <

𝛾

|𝑊1(𝑗𝜔)|

‖𝑊2(𝑠)𝐾(𝑠)𝑆(𝑠)‖∞ < 𝛾 ⇔ ∀𝜔 ∈ R |𝐾(𝑗𝜔)𝑆(𝑗𝜔)| <
𝛾

|𝑊2(𝑗𝜔)|

‖𝑊1(𝑠)𝑆(𝑠)𝐺(𝑠)𝑊3(𝑠)‖∞ < 𝛾 ⇔ ∀𝜔 ∈ R |𝑆(𝑗𝜔)𝐺(𝑗𝜔)| <
𝛾

|𝑊1(𝑗𝜔)𝑊3(𝑗𝜔)|

‖𝑊2(𝑠)𝑇(𝑠)𝑊3(𝑠)‖∞ < 𝛾 ⇔ ∀𝜔 ∈ R |𝑇(𝑗𝜔)| <
𝛾

|𝑊2(𝑗𝜔)𝑊3(𝑗𝜔)|

 

 (15) 
 

The inequalities (15) explicitly show that the transfer functions 
𝑆(𝑠),  𝐾(𝑠)𝑆(𝑠),   𝑆(𝑠)𝐺(𝑠) and 𝑇(𝑠) of the resulting closed-loop 
system can be adjusted by means of parametrization of the 
weighting filters  𝑊1(𝑠), 𝑊2(𝑠) and 𝑊3(𝑠), thus the choice of the 
four parameters 𝑎𝑗 , 𝑏𝑗 , 𝑐𝑗  and 𝑑𝑗  in (12) for each filter. 𝑊1(𝑠) is the 

most important of the three filters, because it allows for adjusting 
the rapidity (bandwidth), the precision and the stability of the 
resulting closed-loop system. Additionally, the tuning of 𝑊2(𝑠) and 
𝑊3(𝑠) allows for adjusting high frequency noise rejection and 
robustness to neglected system dynamics. As an illustration, the 



filters’ parameters used for both axes 𝑥 and 𝑦 are given in Table 
below. The parameters are chosen in order to reproduce the 
rapidity of the conventional control structure with a closed-loop 
bandwidth of 1.2 kHz. 

 

Parameter Value    

𝑎1 1.001    

𝑏1 0.1342  𝑎3 13.47 

𝑐1 1  𝑏3 1962 

𝑑1 134.2  𝑐3 14.97 

𝑎2 5.499  d3 130.8 

𝑏2 2.463 × 107    

𝑐2 54.99    

𝑑2 4.477 × 105    

Table 2. Weighting filters parameters values for H-infinity controller 
synthesis. 

 

Once the weighting filters are chosen, the corresponding H-
infinity controller 𝐾(𝑠) is computed by the aforementioned Glover-
Doyle algorithm. 

In the same way that the current controller has been retained 
from the conventional control structure, the feedforward action for 
the current is also maintained in the final galvanometer axis 
structure in order to keep the achieved precision. The resulting 
structure of a single axis of the 2-axis scanner system is depicted in 
Figure 9 where 𝐾(𝑠) is the H-infinity controller computed with the 
Glover-Doyle algorithm.  

 
Figure 9. Axis control structure with H-infinity controller. 

 

The H-infinity controller axis control structure is compared first 
in terms of frequency responses to the conventional structure of 
Figure 4. For illustration purposes, the closed-loop angular 

position 
𝜃

𝜃𝑟𝑒𝑓
 response and the sensitivity function 𝑆 (as defined in 

(13)) are compared in Figure 10 for the 𝑥 axis galvanometer. 
 

 
 

 
Figure 10. Frequency responses comparison between conventional and 

H-infinity controller structures. 

 

The following numerical values are derived from Figure 10, their 
meanings are described shortly after Table 3: 

 

Performance indicators 
Conventional 
structure 

H-infinity 
structure 

Bandwidth* 1.2kHz 1.2kHz 
First resonance 
attenuation** 

0.65dB -11.22dB 

Sensitivity function 
maximum magnitude*** 

23.91dB 3.09dB 

 Table 3. Frequency responses parameters comparison between 
conventional and H-infinity controller structures. 

 
* The bandwidth of the closed-loop system defines its 

rapidity, this parameter is tuned to be of the same value 
for the two structures for comparison purposes 

** The first resonance attenuation in the closed-loop 
frequency response impacts the stability of the system, it 
should be as low as possible 

*** The maximum value of the sensitivity function also 
impacts the stability of the system and should be as low 
as possible 

 
As a second comparison, the angular responses of the two 

controller structures to an angular step from -2deg to +2deg are 
presented in Figure 11 for the 𝑥 axis galvanometer: 

 
Figure 11. Time responses comparison of the controller structures to a 

step signal. 

 
Angular responses characteristics from Figure 11 are given in the 
Table 4 below: 
 

Response 
characteristics 

Conventional 
structure 

H-infinity structure 

Settling time to 2% 
error from final value 

11ms 9.5ms 

Maximum overshoot 4.53% 0% 

Table 4. Step responses characteristics comparison  
 

The most significant result from Table 4 is the maximum overshoot 
of the responses which is eliminated for the H-infinity structure, 
meaning that the closed-loop response in this case is more stable 
than that of the conventional control structure. The settling time to 
2% error from the final value is also 0.15ms smaller for the H-
infinity structure, the angular positioning rapidity is therefore 
improved. 
 

As a final illustration for the positioning performance achieved 
with the H-infinity controller, the experimental time domain 
responses to the multi-step reference input of Figure 5 are 



compared for the two structures in terms of the error difference 
between the reference signal and the responses. Results are 
presented in Figure 12. 

 
 

 
Figure 12. Experimental error signals comparison for the velocity-limited 

multi-step reference. 
 
 

It is shown that the error difference signal values are mostly 
smaller in the case of the H-infinity controller structure. Maximum 
error signal values go up to 0.5deg for the conventional structure 
while it does not exceed 0.15deg for the H-infinity structure. 
 

Achievable precision improvement with the H-infinity controller 
structure is presented below in the context of an experimental SLM 
job example with optimized scanning speed.  

 

Results on a marking job with optimized scanning speed on 
the 2-axis experimental test bench 

A SLM marking job is performed with different operation speed 
settings on the open architecture test bench in the case of axes 
driven by the conventional and the H-infinity control structures. 
The job consists in the realization of 100 cubes whose side length 
is equal to 10mm as illustrated in Figure 13.   

 
Figure 13. SLM job of 100 cubes. 

 
 

Results are given for the realization of a single cross-section 
(layer) of the job in the (𝑥, 𝑦) plane, the 𝑧 dimension can be taken 
into account with the value of the layer thickness of the SLM 
operation.  

 
Work plane values (𝑥, 𝑦) and galvanometer angular values 

(𝜃𝑥, 𝜃𝑦) are related by means of the so-called ‘Geometrical models’ 

of the 2-axis system. The simplest expression of those models [14] 
are deployed in this work for illustration purposes in the (𝑥, 𝑦) 
coordinates. The parametrization of the 2-axis system for the 
geometrical models expression is presented in Figure 14.  

 

 

Figure 14. Parametrization of the 2-axis scanning system [15] 
 
The expressions of the direct and the inverse models, 

respectively, which derive from Figure 14, are given as follows:  
 

{
𝑥 = (

𝐷

cos(2𝜃𝑦)
+ 𝑒) tan(2𝜃𝑥)

𝑦 = 𝐷 tan(2𝜃𝑦)
 (16) 

 

{
𝜃𝑥 =

1

2
tan−1 (

𝑥

√𝑦2+𝐷2+𝑒
)

𝜃𝑦 =
1

2
tan−1 (

𝑦

𝐷
)

 (17) 

 
𝑒 is the distance between the two mirrors and 𝐷 is the distance 
between the second galvanometer mirror and the marking plane. 

As stated earlier, marking results are given for a single layer 
cross-section of the original job of Figure 13. Therefore, cubes 
marking is equivalent to filled squares marking. A traditional 
technique to mark a filled square is presented in Figure 15.  

 
Figure 15. Scanning sequence at the single square level. 

 

The scanning sequence of the filled square consists in two 
concentric contour and a 45degree-oriented hatch pattern.  

* mark operations are defined when laser power is ‘on’ 

** jump operations are defined when laser power is ‘off’ 

 

The scanning sequence at the layer level is presented in          
Figure 16. The first square to mark is at the bottom right of the 
work plane and the last one is at the top left. Jump operations as 
illustrated in Figure 16 are executed when going from a filled 
square to another. 

 

 
Figure 16. Scanning sequence at the layer level. 

 



Two sets of scanning speed parameters are considered and 
implemented on the open architecture 2-axis test bench: 

 A ‘default’ setting of scanning speeds issued from an 
industrial scanning head: 
o Contours marking speed: 1500mm/s 
o Hatch marking speed: 1000mm/s 
o Inner to outer contour jump: 4500mm/s 
o Outer contour to hatch, short and long jumps: 6000mm/s 

 
 A ‘harmonized’ setting of scanning speeds adjusted to 

optimize the overall scanning speed therefore the scanning 
operation duration: 
o All mark operations: 1500mm/s 
o All jump operations: 6000mm/s 

 

The operation speed harmonization is proposed in order to 
measure the time gain achievement along with the precision 
performance between the two scanning speed settings for the two 
types of galvanometers control structure: conventional and                        
H-infinity. 

 

Marking operation precision is quantified in comparison with 
the desired filled squares (references) in terms of contouring error 
for the contours marking and of a defined filling ratio for the hatch 
pattern marking. Contouring error, defined as the smallest 
distance at each point of the actual trajectory to the reference 
trajectory is illustrated in Figure 17. The ‘linear interpolation’ 
method in [16] is used for the results that will be presented.  

 
Figure 17. Contouring error illustration. 

 

The desired filled square surface is discretized into smaller 
squares with side length equal to the laser spot diameter (chosen 
by default from the industrial scanning head to 70µm). A small 
discrete square is tagged ‘filled’ when the laser trajectory has got 
points located inside of it. The filling ratio for hatch marking is 
illustrated in Figure 18 and is defined as the ratio between the 
number of filled discrete squares and the total number of discrete 
squares for the desired surface.  

 

 
Figure 18. Filling ratio illustration. 

 

The two scanning speed settings are implemented 
experimentally on the open architecture test-bench for axes with 

conventional and H-infinity control structures. For a single layer of 
the marking job, for the default speed settings, measured 
operation duration is 118.014 seconds whereas for the 
harmonized setting it is 87.714 seconds. There is consequently a 
26% gain in terms of operation time. For precision performance, 
results are summarized in the following Table 5 where contouring 
errors and filling ratios are presented. For the contouring errors, 
three thresholds of precision values are given to illustrate the 
evolution of the results. The values of the table correspond to the 
proportion of laser trajectory points on the entire job that achieve 
contouring error values fulfilling the given conditions.  

 

  Default speed setting 
Harmonized speed 

setting 

  
Conventional 

control 
H-infinity 

control 
Conventional 

control 
H-infinity 

control 

C
o

n
to

u
ri

n
g 

er
ro

r 

<100μm 37.85% 85.65% 47.56% 84.2% 

<200μm 90.55% 95.68% 91.9% 94.35% 

<300μm 96.59% 98.33% 96.9% 96.97% 

Filling ratio 68.47% 70.11% 54.28% 56.41% 

Operation 
duration 

118.014 seconds 87.714 seconds 

Table 5. Marking job precision performance summary. 

 

The overall resulting filling ratio values are relatively low and 
can be improved by choosing the laser spot diameter value 
according to the test bench parameters (the sampling period value 
in the dSpace interface board in particular).  The default laser spot 
diameter value of 70𝜇m corresponding to the Table 5 results can 
be increased, however, these results are given for a relative 
comparison between the experimental results of the two control 
structures. 

It is shown in Table 5 that precision performance for axes driven 
by H-infinity controller structure is always greater than the 
performance of axes with conventional control structures. The 
precision of contour marking is highly improved for example in 
terms of the proportion of trajectory points that present a 
contouring error less than 100µm. Both structures minimize 
performance loss from the first speed settings to the second. In 
terms of filling ratio, the performance achieved with H-infinity 
control structures remains greater by about 2%. 

Conclusions 

This paper presented the achievable benefits of an H-infinity 
controller structure for the control of the galvanometer motor, 
which is the main actuator of SLM machines for AM. In comparison 
to conventional PID-based control, results obtained on an open 
architecture experimental test bench show that this advanced 
controller increases the system precision performance while 
operation speed is optimized. Additive manufacturing ‘Key 
Performance Indicators’ (KPI) such as part porosity and melt pool 
characteristics depend mostly on one main process parameter: the 
scanning speed [17] whilst operation precision is often neglected. 
The study carried out in this paper emphasizes the combined effect 
of operation rapidity and precision on KPIs.  

To illustrate this, three indicators are defined from Table 5: 
- a precision indicator with a value in [0, 1] : which is the mean 

value of the four percentage values from each column of 
Table 5 

- a scanning time indicator with a value in [1, +∞[ : which is 
calculated by dividing the maximum recorded scanning 



time on all the trials (here equals to 118.014seconds) by the 
current scanning time 

- an overall indicator with a value in [0, +∞[ and calculated 
with the formula:  
 

𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 = 𝛼 ⋅ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 + 
(1 − 𝛼) ⋅ 𝑠𝑐𝑎𝑛𝑛𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 

 
𝛼 is chosen in [0, 1] as a weighting factor for putting focus whether 
on the precision or the scanning time indicator (in particular, 𝛼 =
0.5 puts the same weight  on both). Results are presented in     
Figure 19. 

 

 
Figure 19. Process parameters performance indicators. 

 
Higher values of the indicators means higher performance of the 
positioning system thus higher impacts on KPIs. Figure 19 shows 
the combined impact of the precision and scanning time indicators 
and the quantification of the performance enhancement achieved 
with the H-infinity control structure. 

 
Further research perspectives might consider the thermal aspect 

of SLM operation in order to investigate the influence of the 
optimized speed settings on the laser spot shape and the local 
melting pool on the powder bed, which has a major impact on the 
mechanical properties of the final part.  
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