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Respondent-driven sampling on sparse Erdös-Rényi graphs

Anthony Cousien∗, Jean-Stéphane Dhersin†, Viet Chi Tran‡, Thi Phuong Thuy Vo§

June 7, 2021

Abstract

We study the exploration of an Erdös-Rényi random graph by a respondent-driven sampling
method, where discovered vertices reveal their neighbours. Some of them receive coupons to reveal in
their turn their own neighbourhood. This leads to the study of a Markov chain on the random graph
that we study. For sparse Erdös-Rényi graphs of large sizes, this process correctly renormalized
converges to the solution of a deterministic curve, solution of a system of ODEs absorbed on the
abscissa axis. The associated fluctuation process is also studied, providing a functional central limit
theorem, with a Gaussian limiting process. Simulations and numerical computation illustrate the
study.
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(ANR-10-LABX-58). The authors would like to thank the working group previously involved in the devel-
opment of the model for HCV transmission among PWID: Sylvie Deuffic-Burban, Marie Jauffret-Roustide
and Yazdan Yazdanpanah.

1 Introduction

Discovering the topology of social networks for hard to reach populations like people who inject drugs
(PWID) or men who have sex with men (MSM) may be of primary importance for modeling the spread of
diseases such as AIDS or HCV in view of public health issues for instance. We refer to [15, 2, 7, 29, 28] for
AIDS or to [9, 8, 20] for HCV, for example. To achieve this in cases where the populations are hidden, it
is possible to use respondent-driven sampling methods, where respondents recruit their peers [17, 19, 25].
These methods are commonly used in epidemiological or sociological survey to recruit hard to reach
populations: the interviewees (or ego) are asked about their contacts (alters), where the term “contact”
depends on the study population (injection partners for PWID, sexual partners for MSM ...) and some
among the latter are recruited for further interviews. In one of the variant, Respondent Driven Sampling
(RDS, see [19, 34, 16, 18, 23, 10]), an initial set of individuals are recruited in the population (with
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possible rules) and each of them is given a certain number of coupons. The coupons are distributed by
recruited individuals to their contacts. The latter come to take an interview and receive in turn coupons
to distribute etc. The information of who recruited whom is kept, which, in combination with the knowl-
edge of the degree of each individual, allows to re-weight the obtained sample to compensate for the fact
that the sample was not collected in a completely random way. A tree connecting egos and their alters
can be produced from the coupons. Additionally, it is also possible to investigate for the contacts between
alters - which is a less reliable information since obtained from the ego and not the alters themselves.
This provides a network that is not necessarily a tree, with cycles, triangles etc. For PWID populations
in Melbourne, Rolls et al. [30, 31] have carried such studies to describe the network of PWID who in-
ject together. The results and the impacts from a health care point of view on Hepatitis C transmission
and treatment as prevention are then studied. A similar study on French data is currently in progress [14].

We consider here a population of fixed size N that is structured by a social static random network
G = (V,E), where the set V of vertices represents the individuals in the population and E ⊂ V 2 is the
set of non-oriented edges i.e. the set of couple of vertices that are in contact. Although the graph is
non-oriented, the two vertices of an edge play different roles as the RDS process spreads on the graph.
At the beginning, there is one individual chosen and interviewed. He or she names their contacts and
then receives a maximum of c coupons, depending on the number of their contacts and the number of the
remaining coupons to be distributed. Distributing coupons allows to control the growth of the number
of people that are to be interviewed. If the degree D of the individual is larger than c, c coupons are
distributed uniformly at random to c people among these D contacts. But when D < c, only D coupons
are distributed. We assume here that there is no restriction on the total number of coupons. In the
classical RDS, the interviewee chooses among their contacts c people (who have not yet participated
to the study) to whom the coupons are distributed. When the latter come with the coupons, they are
in turn interviewed. Each person returning a coupon receives some money, as well as the person who
distributed the coupons and depending on how many of the coupons he or she distributed were returned.
To the RDS we can associate a random graph where we attach to each vertex the contacts to whom they
have distributed coupons. This tree is embedded into the graph that we would like to explore and which
is unknown. Additionally, we have some edges obtained from the direct exploration of the interviewees’
neighborhood. This enrich the tree defined by the coupon into a subgraph (not necessarily a tree any
more) of the graph of interest. Here we do not consider the information obtained from an interviewee
between their alters.

RDS exploration process We would like first to investigate the proportion of the whole graph dis-
covered by the RDS process. Thus, let us first define the RDS process describing the exploration of the
graph. We sum up the exploration process by considering only sizes of –partially– explored components.
We thus introduce the process:

Xn = (An, Bn) ∈ {0, . . . N}2, n ∈ N. (1)

The discrete time n is the number of interviews completed, An corresponds to the number of individuals
that have received coupons but that have not been interviewed yet, Bn to the number of individuals cited
in interviews but who have not been given any coupon. We set X0 = (A0, B0): A0 > 1 individual is
recruited randomly in the population and we assume that the random graph is unknown at the beginning
of the study. The random network is progressively discovered when the RDS process explores it. At time
n ∈ N, the number of unexplored vertices is N − (n+An +Bn).

Let us describe the dynamics of X = (Xn)n∈N. At the time n + 1, if An > 0, one individual among
these An people with coupons is interviewed and is given a maximum of c coupons that he/she would
distributed to his/her contacts. If An = 0, then either the process stops, or a new individual is chosen
from the unexplored population and recruited, no coupon is distributed, and we continue the survey. In
this case, the process stops at n = N , when all vertices in the population have been explored. Thus,
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Step 0 Step 1

Step 2 Step 3

off-mode node (who has been interviewed)

active node (who has coupon but has not been interviewed yet)

explored but still inactive node (who has been named but did not receive coupons)

Figure 1: Description of how the chain-referral sampling works. In our model, the random network and
the RDS are constructed simultaneously. For example at step 3, an edge between two vertices who are
already known at step 2 is revealed.

An+1 =An − 1{An≥1} + Yn+1 ∧ c, (2)

Bn+1 =Bn +Hn+1 − (Hn+1 +Kn+1) ∧ c

where Yn+1 is the number of new neighbors of the (n+ 1)th-individual interviewed; Hn+1 is the number
of the (n + 1)th-interviewee’s new neighbors, who were not mentioned before, and Kn+1 is the number
of the (n+ 1)th-interviewee’s new neighbors, who are chosen amongst the individuals that we knew but
do not have any coupon. Of course, Yn+1 = Hn+1 +Kn+1. At this point, we can see that the transitions
of the process (Xn)n∈N depend heavily on the graph structure: this will determine the distributions of
the random variables Yn+1, Hn+1 and Kn+1 and their dependencies with the variables corresponding to
past interviews (indices n, n− 1..., 0).

Case of Erdös-Rényi graphs If the graph that we explore is an Erdös-Rényi graph [5, 11], then the
process (Xn)n∈N become a Markov process. In this first chapter, we carefully study this simple case
and consider an Erdös-Rényi graph in the supercritical regime, where each pair of vertices is connected
independently from the other with a given probability λ/N , with λ > 1.

In this case, we have, conditionally to An−1 and Bn−1 at step n, that
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Yn
(d)
=Bin

(
N − n−An−1,

λ

N

)
(3)

Hn
(d)
=Bin

(
N − n−An−1 −Bn−1,

λ

N

)
(4)

Kn
(d)
=Bin

(
Bn−1,

λ

N

)
. (5)

As we can notice in the presentation of the RDS process (Xn)n∈N, the exploration of the Erdös-Rényi
random graph is done by visiting it with non-intersecting branching random walks. This idea is not new
(see e.g. [6, 12, 27]).

Plan of the paper In Section 2, we show that the process (Xn)n∈N is a Markov chain and provide
some computation for the time at which the number of coupons distributed touches zero, meaning that
the RDS process has stopped and should be restarted with another seed. In Section 3, the limit of the
process (Xn)n∈N, correctly renormalized, is studied. We show that the rescaled process converges to the
unique solution on [0, 1] of a system of ordinary differential equations. The fluctuations associated with
this convergence are established in Section 4.
This work is part of the PhD thesis of Vo Thi Phuong Thuy [33]. The law of large numbers (Theorem 2)
can be seen as a particular case of the result of one of her other paper [32] where the considered graph
is a Stochastic Block Model (see e.g. [1]). In the present work, the result is stated more clearly in this
simplified setting (Erdös-Rényi graphs being seen as Stochastic Block Models with a single class) and is
completed with the computation of the fluctuations (Section 4). We also considered the computation of
several quantities of interest in Section 2.2 using the properties of Markov chains.

Notation: In all the paper, we consider for the sake of simplicity that the space Rd is equipped with
the L1-norm denoted by ‖.‖: for all x = (x1, . . . , xd) ∈ Rd, ‖x‖ =

∑d
i=1 |xi|.

2 Study of the discrete-time RDS process on an Erdös-Rényi
graph

2.1 Markov property and state space

When the graph underlying the RDS process is an Erdös-Rényi graph, the RDS process (Xn)n∈N becomes
an inhomogeneous Markov process thanks to the identities (3). It is then possible to compute the
transitions of this process that depend on the time n ∈ {0, . . . N}.

Proposition 1. Let us consider the Erdös-Rényi random graph on {1, . . . N} with probability of connec-
tion λ/N between each pair of distinct vertices. Consider the random process X = (Xn)n∈{0,...N} defined
in (1)-(3). Let Fn := σ({Xi, i ≤ n}) be the canonical filtration associated with the process (Xn)n∈{0,...N}.
The process (Xn)n∈{0,...N} is an inhomogeneous Markov chain with the following transition probabilities:
P(Xn = (a′, b′) | Xn−1 = (a, b)) = Pn((a, b), (a′, b′)).

Pn((a, b), (a′, b′)) =
∑
(h,k)

(
b

k

)(
N − n− a− b

h

)
ph+k(1− p)N−n−a−h−k, (6)

where the sum is ranging over (h, k) such that a′ = a− 1a≥1 + (h+ k) ∧ c and b′ = b+ h− (h+ k) ∧ c.

Proof. For n < N , we compute P(Xn+1 = (a′, b′) | Fn) using (2) and (3). The fact that this probability
depends only on Xn shows the Markov property and provides the transition probability (6).
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Of course, An, Bn ∈ {0, . . . N} but there are more constraints on the components of the process (Xn).
First, the number of coupons in the population plus the number of interviewed individuals cannot be
greater than the size of the population N , implying that:

An + n ≤ N ⇔ An ≤ N − n. (7)

Also, assume that at time m ≥ 0, Xm = (`, k). Then, the number of coupons distributed in the population
can not increase of more than c− 1 at each step and can not decrease of more than 1. Thus,

`− (n−m) ≤ An ≤ `+ (n−m)× (c− 1). (8)

Thus, the points (n,An), for n ≥ m, belong to the grey area on Fig. 2. Let us denote by S this grey
region defined by (7) and (8).

S =

{
(n, a) ∈ {m, ..., N}×{0, ..., N−`}

∣∣ max{`−(n−m), 0} ≤ a ≤ min{`+(n−m)×(c−1), N−n}
}
. (9)

n

An

m

`

An = (n−m)(c− 1) + `

An = `− (n−m)

N

An = N − n

n0

Figure 2: Grey area S: Set of states susceptible to be reach from the process (An) started at time m with Am = `,

as defined by the constraints (7) and (8). The process (An) can be stopped upon touching the abscissa axis, which

corresponds to the state when the interviews stop because there is no coupons in population any more. The chain

conditioned on touching the abscissa axis at (n0, 0) can not cross the dashed line, which is an additional constraint

on the state space.

2.2 Stopping events of the RDS process

We now investigate the first time τ when Aτ = 0, i.e. the time at which the RDS process stops if we do
not add another seed because there is no more coupon in the population. Let us define by

τ := inf{n ≥ 0, An = 0} (10)
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the first time where the RDS process touches the abcissa axis. This stopping time corresponds to the
size of the population that we can reach without additional seed other than the initial ones.
Our process evolves in a finite population of size N , and we have seen that the process An ≤ N − n.
Thus, τ ≤ N < +∞ almost surely.

For (n0,m, `) ∈ N3, let us define the probability that the RDS process without additional seed stops
after having seen n vertices and discovered n0 other existing potential vertices:

un0
(m, `) = P

(
τ = n0 | Am = `

)
. (11)

By potential theory, un0(., .) : S 7→ [0, 1] is the smallest solution of the system which, thanks to the
previous remarks on the state space of the process, involves only a finite number of equations:

un0
(n0, 0) = 1, ∀n 6= n0, un0

(n, 0) = 0, (12)

un0
(n, a) =

∑
a′ | (n+1,a′)∈S

Pn
(
a, a′

)
un0

(n+ 1, a′), n ≤ n0 − 1, 1 ≤ a ≤ N, (13)

where Pn(a, a′) = P
(
An+1 = a′ | An = a

)
In fact, the support of un0 is strictly included in Sn0 defined

as follows, when n0 < N :

Sn0 =

{
(n, a) ∈ {m, ..., N}×{0, ..., N−`}

∣∣ max{`−(n−m), 0} ≤ a ≤ min{`+(n−m)×(c−1), n0−n}
}

(14)
since the maximal number of interviewed individuals (and hence of distributed coupons) is n0 on the
event of interest (see dashed line in Fig. 2).

For Erdös-Rényi graphs with connection probability λ/N , we have more precisely:

Pn(a, a′) =


(
N−(n+1)−a

k

)(
λ
N

)k(
1− λ

N

)N−(n+1)−a−k
if − 1 ≤ a′ − a = k − 1 < c− 1

1−
∑c−1
k=0

[(
N−(n+1)−a

k

)(
λ
N

)k(
1− λ

N

)N−(n+1)−a−k]
if a′ − a = c− 1

0 otherwise

Let us define for n ≥ 0:

U(n)
n0

:=



un0
(n, 1)
...

un0
(n, a)
...

un0
(n, n0)

 (15)

and P
(n)
n0 the n0 × n0 matrix with entries (Pn(a, a′); 1 ≤ a, a′ ≤ n0). Then, for n < n0 − 1, the solution

of the system (13) can be solved recursively with the boundary conditions (12) and:

U(n)
n0

= P(n)
n0

U(n+1)
n0

.

We can compute solve the above equations, as represented in Fig. 3.
Starting from 1 coupon at time 0, we can also compute the probabilities that P(τ > n0 | A0 = 1) as

seen in Fig. 4

3 Limit of the normalized RDS process

In this section, we consider the RDS process stopped at the time τN0 defined for every N ∈ N∗ as

τN0 := inf{t > 0, ANt = 0}. (16)
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Figure 3: Left: Numerical computation of un0(n, a) = P(τ = n0 | An = a), with n0 = 50 and for a and n varying

between 0 and 50. Right: Numerical computation of the probability P(τ > n0 | An = a), with n0 = 50. We can

see that if a ≥ n then, this probability is equal to 1. We can use these numerical results for n = 0: this provides

the probability, given the number of seeds, to reach a sample of size at least n0.
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0.0
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n0

P(τ
>n

0|A
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4
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Figure 4: Numerical computation of the probability P(τ > n0 | A0 = 1) of obtaining a sample of size at least n0

starting from 1 coupon at time 0 (ordinate), with c varying from 1 to 10 (colours) and n0 varying between 1 and

100 (abscissa).

This time corresponds to the proportion of population explored by the RDS.

For an integer N ≥ 1, let us consider the following renormalization XN = (AN , BN ) of the process
X:

XN
t =

(
ANt , B

N
t

)
:=

1

N
XbNtc =

(
AbNtc

N
,
BbNtc

N

)
∈ [0, 1]2, t ∈ [0, 1]. (17)

Notice that XN is constant by part and jumps at the times tn = n/N for n ∈ {1, . . . , N + 1}. Thus the
process XN belongs to the space D([0, 1], [0, 1]2) of càdlàg processes from [0, 1] to [0, 1]2 embedded with
the Skorokhod topology [4, 22]. Define the filtration associated to XN as (FNt )t∈[0,1] = (FbNtc)t∈[0,1].
We aim to study the limit of the normalized process XN = (AN , BN ) when N tends to infinity.

Assumption 1. Let a0, b0 ∈ [0, 1] with a0 > 0 and b0 = 0. We assume that the sequence XN
0 = 1

NX0

converges in probability to the vector x0 = (a0, b0) as N tends to infinity.
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Theorem 2. Under the assumption 1, when N tends to infinity, the sequence of processes XN =
(AN , BN ) converges in distribution in D([0, 1], [0, 1]2) to a deterministic path x = (a, b) ∈ C([0, 1], [0, 1]2),
which is the unique solution of the following system of ordinary differential equations

xt = x0 +

∫ t

0

f(s, xs)ds, (18)

where f(t, xt) = (f1(t, xt), f2(t, xt)) has the explicit formula:

f1(t, xt) = f1(t, at, bt) = c−
c−1∑
k=0

(c− k)pk(t+ at)− 1at>0 (19)

f2(t, xt) = f2(t, at, bt) = (1− t− at − bt)λ+

c−1∑
k=0

(c− k)pk(t+ at)− c, (20)

with

pk(z) :=
λk(1− z)k

k!
e−λ(1−z), k ∈ {0, ..., c}, (21)

and c is the maximum value of coupons distributed at each time step.

Remark 3. Since the limiting process x ∈ C([0, 1], [0, 1]2) is deterministic, the convergence in distribution
of Theorem 2 is in fact a convergence in probability. The limiting shape is illustrated in Fig. 5.
It can be seen graphically that after the time t0 = inf{t > 0, |at| = 0}, the solution of the ODE remains
constant (see Prop 12) and that this time is approximated by τN0 = inf{t > 0, ANt = 0}. This time
corresponds to the proportion of population explored by the RDS. We have simulated the RDS on the
graph of size N = 1000, λ = 2 and for various values of c: c = 1, 2, 3, 4, and have computed τN0 . We
obtain the approximated values of t0 in the table below:

c 1 2 3 4 5 6
t0 0.426 0.775 0.818 0.827 0.829 0.829

The proof of Theorem 2 follows the steps below. First, we enounce a semi-martingale decomposition
for (XN )N≥1 that allows us to prove the tightness of the sequence (XN )N≥1 by using Aldous-Rebolledo
criteria (Section 3.1). Then, we identify the equation satisfied by the limiting values of (XN )N≥1 (Section
3.2), and show that the latter has a unique solution (Section 3.3). A difficulty lies in the fact that when
at touches zero, the solution stops and remains constant. Indeed, the solution of (18) describes how the
number of coupons distributed in the population evolves. When at = 0, this gives the size of the cluster
reached by the RDS without the introduction of additional seeds.

As explained, the proof of Theorem 2 relies on the Doob’s decomposition of (XN )N≥1 as follows.

Lemma 4. The process XN , for N ∈ N∗, admits the following Doob decomposition: XN
t = XN

0 + ∆N
t +

MN
t , or in the vectorial form (

XN,1

XN,2

)
=

(
AN0
BN0

)
+

(
∆N,1

∆N,2

)
+

(
MN,1

MN,2

)
. (22)

The predictable process ∆N is:(
∆N,1
t

∆N,2
t

)
=

1

N

bNtc∑
n=1

(
E[Yn ∧ c | Fn−1]− 1An−1≥1

E[Hn − Yn ∧ c | Fn−1]

)
(23)

The square integrable centered martingale MN has quadratic variation process 〈MN 〉 given as follows:

〈MN 〉t =
1

N2

bNtc∑
n=1

(
Var

(
Yn ∧ c | Fn−1

)
Cov

(
Yn ∧ c,Hn − Yn ∧ c

)
Cov

(
Yn ∧ c,Hn − Yn ∧ c

)
Var

(
Hn − Yn ∧ c | Fn−1

) ) . (24)
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Figure 5: Simulations of the process (AN , BN ) (red/green lines) compared to solution (a, b) of the ODE’s system

(dashed lines) for the graph of size N = 1000, the value of λ is fixed: λ = 2 and various values of c: c = 1, 2, 3, 4.

Notice that the quantities in (23) and (24) can be computed as functions of ANtn−1
= An−1/N and

BNtn−1
= Bn−1/N for n ∈ {1, ..., N} with the results of the following lemma:

Lemma 5. We have the following expressions for the expectations and variances appearing in (23) and
(24).
(i) For the moments of Yn:

E[Yn ∧ c | Fn−1] = c−
c−1∑
k=0

(c− k)P(Yn = k|Fn−1) (25)

E
[
(Yn ∧ c)2

∣∣Fn−1] = c2 +

c∑
k=0

(k2 − c2)P(Yn = k|Fn−1); (26)

where

P(Yn = k|Fn−1) =
(N −Ntn−1 −NANtn−1

− 1)!

(N −Ntn−1 −NANtn−1
− 1− k)!Nk

λk

k!

×
(

1− λ

N

)N(1−tn−1−AN
tn−1

)(
1− λ

N

)−k−1
. (27)
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(ii) For the moments of Hn:

E[Hn|Fn−1] = λ
(

1− tn −ANtn−1
−BNtn−1

)
(28)

Var(Hn|Fn−1) = λ
(

1− tn −ANtn−1
−BNtn−1

)(
1− λ

N

)
. (29)

(iii) And for the cross moments:

E[Hn(Yn ∧ c)|Fn−1]

=

(
1−

BNtn−1

1− tn −ANtn−1

)[
c∑

k=0

(k2 − ck)P(Yn = k|Fn−1) + cλ
(

1− tn −ANtn−1

)]
. (30)

Proof of Lemma 5. Most of the computation comes straightforward from (3). For the conditional expec-
tation of Yn ∧ c, we have:

E[Yn ∧ c|Fn−1] =

c∑
k=0

kP(Yn = k|Fn−1) + cP(Yn > c|Fn−1)

=

c∑
k=0

kP(Yn = k|Fn−1) + c
(
1− P(Yn ≤ c|Fn−1)

)
=c−

c∑
k=0

(c− k)P(Yn = k|Fn−1),

where

P(Yn = k|Fn−1) =

(
N −Ntn −NANtn − 1

k

)( λ
N

)k(
1− λ

N

)N−Ntn−NAN
tn
−1−k

=
(N −Ntn −NANtn − 1)!

(N −Ntn −NANtn − 1− k)!k!

( λ
N

)k(
1− λ

N

)N−Ntn−NAN
tn
−1−k

,

which yields (27).
Let us detail the proof of (30).

E[Hn(Yn ∧ c)|Fn−1] =

N−n−An−1∑
k=0

(k ∧ c)E(Hn|Yn = k)P(Yn = k|Fn−1)

=
N − n−An−1 −Bn−1

N − n−An−1

 c∑
k=0

k2P(Yn = k|Fn−1) +

N−n−An−1∑
k=c+1

ckP(Yn = k|Fn−1)


=

(
1− Bn−1

N − n−An−1

)[ c∑
k=0

(k2 − ck)P(Yn = k|Fn−1) + cE[Yn|Fn−1]

]

=

(
1− Bn−1

N − n−An−1

)[ c∑
k=0

(k2 − ck)P(Yn = k|Fn−1) + cλ

(
1− n

N
− An−1

N

)]
. (31)

With the expressions obtained in Lemma 5, we can now prove Lemma 4.
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Proof of Lemma 4. Since the components of XN take their values in [0, 1], the process XN is clearly
square integrable. It is classical to write XN

t as

XN
t = XN

0 +
1

N

bNtc∑
n=1

(Xn −Xn−1)

= XN
0 +

1

N

bNtc∑
n=1

E[Xn −Xn−1|Fn−1]

+
1

N

bNtc∑
n=1

(Xn −Xn−1 − E[Xn −Xn−1|Fn−1]).

Let us call ∆N
t the second term in the right hand side, and MN

t the third term. We will prove that ∆N

is an FNt -predictable finite variation process and that MN is a square integrable martingale.

Let us first consider (∆N
t )0≤t≤1. For each n ∈ {1, ..., N}, E[Xn − Xn−1|Fn−1] is Fn−1-measurable.

Hence, ∆N
t is FbNtc−1-measurable. The total variation of ∆N is:

V (∆N
t ) =

bNtc∑
n=1

‖∆N
tn −∆N

tn−1
‖

=
1

N

bNtc∑
n=1

|E[An −An−1 | Fn−1]|+ |E[Bn −Bn−1 | Fn−1]|

≤ (2c+ λ)t < +∞,

by using (2), as Yn ∧ c ≤ c and E[Hn | Fn−1] ≤ λ.

Furthermore, using (2), we have that for the first component:

An −An−1 = Yn ∧ c− 1{An−1≥1}, Bn −Bn−1 = Hn − Yn ∧ c,

and we can recover the expression (23) of ∆N announced in the lemma with the results of Lemma 5.

Let us now show that (MN
t )0≤t≤1 is a bounded FNt -martingale and let us compute its quadratic in-

tegration process. For every t ∈ [0, 1], MN
t is FNt -measurable and bounded and hence square integrable:

|MN
t | =

∣∣XN
t −XN

0 −∆N
t

∣∣ ≤ 2 + (2c+ λ)t ≤ 2 + 2c+ λ < +∞.

For all s < t,

E[MN
t |FNs ] = E

 1

N

bNtc∑
n=bNsc+1

(Xn −Xn−1 − E[Xn −Xn−1|Fn−1])

∣∣∣∣FbNsc]


+ E

 1

N

bNsc∑
n=1

(Xn −Xn−1 − E[Xn −Xn−1|Fn−1])

∣∣∣∣FbNsc


=
1

N

bNsc∑
n=1

(Xn −Xn−1 − E[Xn −Xn−1|Fn−1]) = MN
s .

Then MN
t is an (FNt )-martingale.
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Let us denote X1
n = An and X2

n = Bn. The quadratic variation process is defined as:

〈MN 〉t =

[
〈MN,1,MN,1〉t 〈MN,1,MN,2〉t
〈MN,2,MN,1〉t 〈MN,2,MN,2〉t

]
, (32)

where for k, ` ∈ {1, 2},

〈MN,k,MN,`〉t =
1

N2

bNtc∑
n=1

{
E
[
(Xk

n −Xk
n−1)(X`

n −X`
n−1)

∣∣Fn−1]
− E

[
(Xk

n −Xk
n−1)|Fn−1

]
E
[
(X`

n −X`
n−1)|Fn−1

]}
. (33)

Using (2), we have:

〈MN,1〉t =
1

N2

bNtc∑
n=1

E
[
(An −An−1 − E[An −An−1|Fn−1])

2 ∣∣Fn−1]

=
1

N2

bNtc∑
n=1

Var(Yn ∧ c|Fn−1) ≤ c2

N
. (34)

Proceeding similarly for the other terms, we obtain

〈MN,2〉t =
1

N2

bNtc∑
n=1

Var(Hn − Yn ∧ c|Fn−1) ≤ λ

N
,

〈MN,1,MN,2〉t =
1

N2

bNtc∑
n=1

Cov(Yn ∧ c,Hn − Yn ∧ c | Fn−1) ≤ c
√
λ

N
. (35)

This finishes the proof of the Lemma.

3.1 Tightness of the renormalized process

Lemma 6. The sequence (XN )N≥1 is tight in D([0, 1], [0, 1]2).

Proof. The proof of tightness is based on the classical criterion of Aldous-Rebolledo ([24, Theorem 2.3.2]
and its Corollary 2.3.3). For this we have to check that finite distributions are tight, and control the modu-
lus of continuity of the sequence of finite variation parts and of quadratic variation of the martingale parts.

For each t ∈ [0, 1], |ANt |+ |BNt | ≤ 2, implying that (ANt , B
N
t ) is tight for every t ∈ [0, 1].

Let 0 ≤ s, t ≤ 1,

‖∆N
t −∆N

s ‖ = |∆N,1
t −∆N,1

s |+ |∆
N,2
t −∆N,2

s |

≤ 1

N

bNtc∑
n=bNsc+1

(|E [An −An−1|Fn−1]|+ |E [Bn −Bn−1|Fn−1]|)

≤ (2c+ λ)|t− s|.

Thus, for each positive ε and η, there exists δ0 =
εη

2c+ λ
such that for all 0 < δ < δ0,

P

 sup
|t−s|≤δ
0≤s,t≤1

∥∥∆N
t −∆N

s

∥∥ > η

 ≤ 1

η
E

 sup
|t−s|≤δ
0≤s,t≤1

∥∥∆N
t −∆N

s

∥∥
 ≤ (2c+ λ)δ

η
≤ ε, ∀N ≥ 1. (36)
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By Aldous criterion, this provides the tightness of (∆N )N∈N.
Similarly, for the quadratic variations of the martingale parts, using (34) and (35), we have for all

0 ≤ s < t ≤ 1,

∣∣〈MN,1〉t − 〈MN,1〉s
∣∣ =

1

N2

bNtc∑
n=bNsc+1

Var
(
Yn ∧ c

∣∣Fn−1) ≤ c2

N
|t− s|;

∣∣〈MN,2〉t − 〈MN,2〉s
∣∣ =

1

N2

bNtc∑
n=bNsc+1

Var
(
Hn − Yn ∧ c

∣∣Fn−1)
≤ 2(λ+ c2)

N
|t− s|;

∣∣〈MN,1,MN,2〉t − 〈MN,1,MN,2〉s
∣∣ ≤ 1

N2

bNtc∑
n=bNsc+1

(Var(Yn ∧ c|Fn−1))
1/2

× (Var(Hn − Yn ∧ c|Fn−1))
1/2

≤ c(
√
λ+ c)

N
|t− s|.

Thus, using the matrix norm on M2×2(R) associated with ‖.‖1 on R2,

sup
|t−s|≤δ
0≤s,t≤1

‖〈MN 〉t − 〈MN 〉s‖ ≤ sup
|t−s|≤δ
0≤s,t≤1

(∣∣〈MN,1〉t − 〈MN,1〉s
∣∣+
∣∣〈MN,2〉t − 〈MN,2〉s

∣∣
+ 2
∣∣〈MN,1,MN,2〉t − 〈MN,1,MN,2〉s

∣∣)
≤ c2 + 4(λ+ c2) + c(

√
λ+ c)

N
δ. (37)

Consequently, for any ε > 0, η > 0, choose δ such that
c2 + 4(λ+ c2) + c(

√
λ+ c)

ηN
δ < ε, we have

P

 sup
|t−s|<δ
0≤s,t≤1

‖〈MN 〉t − 〈MN 〉s‖ > η

 < ε, ∀N ≥ 1,

which implies that 〈MN 〉 is also tight. This achieves the proof of the Lemma.

3.2 Identification of the limiting values

Since (XN )N≥1 is tight, there exists a subsequence (`N )N≥1 in N such that (X`N )N≥1 = (A`N , B`N )N≥1
converges in distribution in D([0, 1], [0, 1]2) to a limiting value (ā, b̄) ∈ D([0, 1], [0, 1]2) (e.g. [3]). In the
whole section, we will denote this sequence again by (XN )N≥1 = (AN , BN )N≥1. We now want to identify
that limiting value.

3.2.1 Convergence of the martingale and predictable process

Proposition 7. The sequence of martingales (MN )N≥1 converges uniformly to 0 in probability when
N →∞.
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Proof. With a computation similar the one leading to (37), we get

‖〈M〉t‖ ≤ |〈MN,1〉t|+ |〈MN,2〉t|+ 2|〈MN,1〉t|1/2|〈MN,2〉t|1/2 ≤
(6c2 + 4λ)t

N
(38)

By Doob’s inequality,

E[ sup
t∈[0,1]

‖MN
t ‖2] ≤ 4E[‖〈M〉1‖] ≤ 4

6c2 + 4λ

N
.

For every ε > 0,

lim
N→∞

P

(
sup
t∈[0,1]

‖MN
t ‖2 > ε

)
≤ lim
N→∞

1

ε
E[ sup
t∈[0,1]

‖MN
t ‖2] ≤ lim

N→∞

4(6c2 + 4λ)

εN
= 0.

The remaining work is figuring out the limit of finite variation part ∆N . Recall the function f defined
in (19)-(20).

Proposition 8. There exists a constant C = C(λ, c) > 0 such that for all N ≥ 1,

sup
t∈[0,1]

∥∥∥∆N
t −

1

N

bNtc∑
n=1

f

(
n− 1

N
,
An−1
N

,
Bn−1
N

)∥∥∥ ≤ C

N
(39)

Proof. Recall the equations for ∆N in (23) and (27). Using (28), we have that:

∥∥∥∆N
t −

1

N

bNtc∑
n=1

f
(n− 1

N
,
An−1
N

,
Bn−1
N

)∥∥∥
≤
∣∣∣ 1

N

bNtc∑
n=1

(
c−

c∑
k=0

(c− k)P
(
Yn = k | Fn−1

)
− 1An−1≥1

)
−
(
c−

c∑
k=0

(c− k)pk
(n− 1

N
+
An−1
N

)
− 1An−1

N >0

)∣∣∣
+
∣∣∣ 1

N

bNtc∑
n=1

(
E[Hn | Fn−1] +

c∑
k=0

(c− k)P
(
Yn = k | Fn−1

)
− c
)

−
(
λ
(
1− n− 1

N
− An−1

N
− Bn−1

N

)
−

c∑
k=0

(c− k)pk
(n− 1

N
+
An−1
N

))∣∣∣
≤ 2

N

bNtc∑
n=1

c∑
k=0

(c− k)

∣∣∣∣P(Yn = k | Fn−1
)
− pk

(
n− 1

N
+
An−1
N

)∣∣∣∣ . (40)

We are thus led to consider more carefully the difference between P(Yn = k | Fn−1) and pk(tn−1 +ANtn−1
).

We have

(N −Ntn−1 −NANtn−1
− 1)!

(N −Ntn−1 −NANtn−1
− 1− k)!Nk

= (1− tn−1 −ANtn−1
− 1

N
)(1− tn−1 −ANtn−1

− 2

N
) · · · (1− tn−1 −ANtn−1

− k

N
)

= Qk(1− tn−1 −ANtn−1
),
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where for k ≤ c,

Qk(x) =

k∏
n=1

(x− xn) =

k∑
j=0

(−1)k−jek−jx
j

is a polynomial of degree k, with the notation xn = n/N , e0 = 1, ej =
∑

1≤i1<...<ij≤k xi1 ...xij ,1 ≤ j ≤ k.
Since

|Qk(x)− xk| =

∣∣∣∣∣∣
k−1∑
j=0

(−1)k−jek−jx
j

∣∣∣∣∣∣ ≤
k−1∑
j=0

|ek−j ||xj | ≤
k−1∑
j=0

( (k − 1)

N

)k−j
|xj |,

this yields:

∣∣∣∣ (N −Nti −NANti − 1)!

(N −Nti −NANti − k − 1)!Nk
− (1− ti −ANti )k

∣∣∣∣
≤
k−1∑
j=0

(
k − 1

N

)k−j
≤
∑k
`=1(k − 1)`

N
. (41)

Secondly, we upper bound the difference between (1−λ/N)
N(1−tn−1−AN

tn−1
)

and exp(−λ(1−tn−1−ANtn−1
)).

Using a Taylor expansion, we obtain that:

(
1− λ

N

)N(1−tn−1−AN
tn−1

)

= exp
(
N(1− tn−1 −ANtn−1

) log
(

1− λ

N

))
= exp

(
N(1− tn−1 −ANtn−1

) log
(

1− λ

N

))
= e
−λ(1−tn−1−AN

tn−1
)
exp

(
−
( λ2

2N
+ rN

)
(1− tn−1 −ANtn−1

)
)

where there exists some constant C = C(λ) > 0 such that 0 ≤ rN < C/N3. Using that for x > 0,
1− x < e−x < 1, we obtain that for some constant C0 = C0(λ),

0 ≤ e−λ(1−tn−A
N
tn

) −
(

1− λ

N

)N(1−tn−AN
tn

)

≤ C0

N
. (42)

Lastly, there exists a constant C1 = C1(c, λ) ≥ 0 such that

1 ≤
(

1− λ

N

)−(k+1)

≤ 1 +
C1

N
. (43)

Gathering (27), (41), (42) and (43), there thus exists a constant C2 = C2(c, λ) such that∣∣∣P(Yn = k|Fn−1)− pk(tn−1 +ANtn−1
)
∣∣∣ ≤ C2(λ, c)

N
. (44)

As a result, from (40) and (44) we have for some constant C = C(λ, c) ≥ 0

∥∥∥∆N
t −

1

N

bNtc∑
n=1

f
(n− 1

N
,
An−1
N

,
Bn−1
N

)∥∥∥ ≤ C(λ, c)

N
.

This proves the proposition.
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3.2.2 Equations satisfied by the limiting values

First, let us start with a useful lemma.

Lemma 9. The limiting value (ā, b̄) is continuous.

Proof. The jumps of the component AN are uniformly bounded by c/N . However the component BN

may have jumps of order 1. To obtain the result, we will use the Proposition 3.26(iii) in [13] and prove
that these big jumps tend to zero in probability when N → +∞. We will use (3). The random variables
Hn, for n ∈ {1, . . . N} do not have the same distribution, but we can couple them with i.i.d. dominating

random variables H̃n ; Bin(N,λ/N). Then, for ε > 0,

P
(

sup
t∈[0,1]

|BNt −BNt− | > ε
)
≤P
(

sup
n∈{1,...N}

|Hn| > Nε
)

≤P
(

sup
n∈{1,...N}

|H̃n| > Nε
)

= 1− P
(

sup
n∈{1,...N}

|H̃n| ≤ Nε
)

=1− P
(
|H̃1| ≤ εN

)N
= 1−

(
1− P

(
|H̃1| > εN

))N
=1−

(
1− P

(
H̃1 − λ > εN − λ

))N
. (45)

By Hoeffding’s inequality,

P
(
H̃1 − λ ≥ εN − λ

)
≤ exp

(
−2(εN − λ)2

N

)
= exp

(
−2ε2N + 4ελ− 2ελ2

N

)
≤ exp

(
−2ε2N + 4ελ

)
.

The right hand side of (45) is less or equal to

1−

(
1− exp

(
− 2ε2N + 4ελ

))N
= 1− exp

(
N ln

(
1− e−2ε

2N+4ελ
))

.

Thus,

lim
N→+∞

P
(

sup
t∈[0,1]

|BNt −BNt− | > ε
)
≤ lim
N→+∞

(
1− exp

(
N ln

(
1− e−2ε

2N+4ελ
)))

= 0.

With the above results, we can now identify the equations satisfied by the limiting values of (XN ),
and we will prove in the rest of this section that

Proposition 10. The limiting values of (XN )N≥1 are solutions of (18).

A difficulty in the proof comes from the change of the dynamics when the component AN touches
zero. Because of the indicator in (19), f1 is not continuous when its second argument touches zero. We
separate the proof into several steps.

Step 1: Recall the stopping time τN0 defined in (16). This time corresponds to the proportion of the
graph discovered by the RDS when starting from the initial seeds at time 0 and without introduction of
new coupons (see Remark 3). Also, we define for the limiting value:

t0 := inf{t ∈ [0, 1] : at = 0}. (46)

Lemma 11. We have that
lim

N→+∞
P(τN0 ≥ t0) = 1. (47)
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Proof of Lemma 11. For ε > 0, let
τNε := inf{t > 0, ANt ≤ ε} (48)

and
tε := inf{t > 0, at ≤ ε}. (49)

Because AN is càdlàg and a is continuous, inft∈[0,1] at ≤ lim
N→∞

inft∈[0,1]A
N
t∧τN

ε
. Then for any 0 < ε < ε′,

by Fatou’s lemma:

1 = P( inf
t∈[0,tε′ ]

ANt > ε) ≤ P( lim
N→∞

inf
t∈[0,tε′ ]

ANt∧τN
ε
> ε) = lim

N→∞
P(τNε > tε′).

Let ε′ → 0, we have

lim
N→∞

P(τN0 ≥ t0) = 1. (50)

Step 2: we now prove that on [0, t0), (ā, b̄) satisfies the ODEs (18). From (22), Propositions 7 and 8, we
obtain that the process

(
Xt −

1

N

bNtc∑
n=1

f

(
n− 1

N
,ANn−1

N

, BNn−1
N

)
, t ∈ [0, 1]

)
converges uniformly to zero when N → +∞. A difficulty is that f is discontinuous when A(N) touches
zero, but this happen with large probability after time t0 when N → +∞ (see Lemma 11). Hence, by
continuity, for t < t0: ( 1

N

bNtc∑
n=1

f
(n− 1

N
,ANn−1

N

, BNn−1
N

)
, t ∈ [0, 1]

)
converges uniformly to the process (∫ t

0

f(s, ās, b̄s)ds, t ∈ [0, 1]
)
.

We deduce from this that the limiting value of (XN )N≥1, (ā, b̄) is necessarily solution of (18) on [0, t0).

In the sequel, we denote by (a, b) the solution of (18) and will prove that (ā, b̄) = (a, b).

Step 3: We now study the time t0 at which the first component a of the solution of (18) touches zero.
We first prove that:

Proposition 12. For all t ≥ t0, we have at = 0.

Before proving the proposition, let us start with a lemma.

Lemma 13. Denote

φ(z) := c−
c−1∑
k=0

(c− k)
[λ(1− z)]k

k!
e−λ(1−z), c ≥ 2, λ > 1. (51)

Then there exists a unique z0 ∈ [0, 1] such that φ(z0) = 1 and z0 > 1− 1/λ.
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Proof. For all z ∈ [0, 1],

φ′(z) = −cλe−λ(1−z) + λ

c−1∑
k=1

(c− k)
(λ(1− z))k−1

(k − 1)!
e−λ(1−z)

−λ
∑c−1
k=1(c− k)

(λ(1− z))k

k!
e−λ(1−z)

= λe−λ(1−z)

[
−c+

c−2∑
k=0

(c− k − 1)
(λ(1− z))k

k!
−
c−1∑
k=1

(c− k)
(λ(1− z))k

k!

]

= λe−λ(1−z)

[
−1−

c−2∑
k=1

(λ(1− z))k

k!
− (λ(1− z))c−1

(c− 1)!

]
< 0,

which gives that φ is decreasing. Furthermore, we have φ(1 − 1/λ) > 1 for c ≥ 2 and φ(1) = 0. So the
equation φ(z) = 1 has unique root, denoted by z0 ∈ (1− 1/λ, 1).

Proof of Proposition 12. For c = 1, (19)-(20) gives that

da

dt
= 1− p0(t+ a)− 1a>0 =

{
−e−λ(1−t−a) < 0 if a > 0

1− e−λ(1−t) > 0 if a = 0.

Recall also that for all t ∈ [0, 1], at + t ∈ [0, 1] since it corresponds to the proportion of individuals who
have received a coupon (already interviewed or not). The right hand side of (19)-(20) has a discontinuity
on the abscissa axis that implies that the solution stays at 0 after t0. Notice that this was expected since
when c = 1, {0, 1} is an absorbing state for the Markov process (AN )N≥1.

Let us now consider the case c > 1. We have then that

da

dt
= φ(a+ t)− 1a>0,

where

φ(z) := c−
c−1∑
k=0

(c− k)pk(z) = c−
c−1∑
k=0

(c− k)
λk(1− z)k

k!
e−λ(1−z). (52)

By Lemma 13, φ is a positive function on (0, 1) and there exists a unique zc ∈ (1 − 1/λ, 1) such that
φ(zc) = 1. For all t such that 0 < t < t0, we have

d(at + t)

dt
= φ(a+ t)− 1 + 1 = φ(at + t) > 0.

It implies that t 7→ t+ at is a strictly increasing function on [0, t0] and thus

a0 < t+ at < t0, ∀t ∈ (0, t0).

If zc > t0, then 1 = φ(zc) < φ(t0) < φ(t + at) for all t ∈ (0, t0). It follows that dat
dt > 0. Hence, at

is strictly increasing in the interval (0, t0). Notice that t + at is continuous function on [0, 1], and since
t+ at is strictly increasing, we deduce that 0 < a0 < at0 = 0, which is impossible.
If zc < a0 < t0, then 1 = φ(zc) > φ(t+at) for all t such that t+at > zc. And thus dat

dt = φ(t+at)−1 < 0
whenever t+ at > zc and at > 0.
If zc ∈ [a0, t0], then there exists a unique tc ∈ [0, t0] such that tc+atc = zc. It follows that there is a value
tc in the interval [0, t0] such that φ(tc + atc) = 1. Then φ(t+ at) > 1 for all t ∈ (0, tc) and φ(t+ at) < 1
for t ∈ (tc, 1). Thus,

dat
dt

> 0 when t ∈ (0, tc) and
dat
dt

< 0 when t ∈ {t > tc : at > 0}.
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After the time t0, there is again a discontinuity in the vector field (t, a) 7→ φ(t+ at)− 1a>0 which is
directed toward negative ordinates when a > 0 and positive ordinate when a < 0. This implies that the
solution of the dynamical system stays at 0 after time t0.

Step 2, Prop 12 and Lemma 11 ensure that (XN )N≥1 converges uniformly to (ā, b̄) on [0; t0).

Step 4: We now precise the result of Lemma 11 by showing that τN0 converges to t0 in probability. This
results from Lemma 11 and:

Lemma 14. For all σ > 0,
lim

N→+∞
P(τN0 ≤ t0 + σ) = 1. (53)

Proof. Let σ > 0 and δ > 0 be small positive numbers,

lim
N→∞

P(τN0 > t0 + σ) = lim
N→∞

P
(

inf
t≤t0+σ

ANt > 0
)

= lim
N→∞

P
(

inf
t≤t0+σ

ANt > 0 | ANt0 ≤ δ
)
P
(
ANt0 ≤ δ

)
≤ lim
N→∞

P
(
ANt0+σ > 0 | ANt0 ≤ δ

)
,

since ANt0 converges to at0 = 0 in probability, in the second line. Using Lemma 4,

ANt0+σ −A
N
t0 =

1

N

∑
n: t0≤ n

N≤t0+σ

(
E
(
Yn ∧ c | Fn−1

)
− 1
)

+MN,1
t0+σ −M

N,1
t0 .

For n such that t0 ≤ n
N ≤ t0 + σ, there exists ε > 0 such that

E
(
Yn ∧ c | Fn−1

)
− 1 < −ε,

since E
(
Yn ∧ c | Fn−1

)
− 1 = φ

(
n−1
N + An−1

N

)
− 1 + o

(
1
N

)
and since φ(t) − 1 < 0 for all t ≥ tc, where

tc ∈ [0, t0] is defined in the proof of Lemma 11. Thus,

P
(
ANt0+σ > 0 | ANt0 ≤ δ

)
≤ P

(
MN,1
t0+σ −M

N,1
t0 + δ − bNσc

N
ε > 0

)
= P

(
MN,1
t0+σ −M

N,1
t0 >

bNσc
N

ε− δ
)

≤ P
(
MN,1
t0+σ −M

N,1
t0 > σε− ε

N
− δ
)
.

For δ < σε, there exists N0 such that σε− δ − ε
N0

> 0. Thus, using Markov’s inequality and then using
(38), we have that for all N ≥ N0,

P
(
MN,1
t0+σ −M

N,1
t0 > σε− ε

N
− δ
)
≤

E
(∣∣∣∣〈M〉N,1t0+σ − 〈M〉

N,1
t0

∣∣∣∣)(
σε− δ − ε

N0

)2 ≤ 2(6c2 + 4λ)

N

(
σε− δ − ε

N0

)2 ,

which tends to zero when N → +∞.

Step 5: Conclusion. We have proved that XN converges uniformly to the solution (ā, b̄) of (19)-(20)
on [0, t0]. The stochastic process is frozen at the time τN0 that converges to t0 in probability. After that
time τN0 , XN remains constant by construction with ANt = 0. So, AN converges uniformly on [0, 1] to
the solution ā of (19). The continuity of the process AN yields the continuity of the process BN that
hence also converges uniformly to the solution b̄ of (20) on the whole time interval [0, 1]. This concludes
the proof of Proposition 10.
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3.3 Uniqueness of the ODE solutions

To prove Theorem 2, it remains to prove the uniqueness of the limiting value, i.e. that:

Proposition 15. The system of differential equations (19)-(20) admits a unique solution.

Proof. Suppose that (19)-(20) have two solutions (a1, b1) and (a2, b2), then for all t ∈ [0, 1],

|a1t − a2t | ≤
∫ t

0

|g(s, a1s)− g(s, a2s)|ds+

∫ t

0

∣∣∣∣1{a1s>0} − 1{a2s>0}

∣∣∣∣ds, (54)

where

g(t, at, bt) := c−
c−1∑
k=0

(c− k)pk(t+ at). (55)

In the first term of the right hand side of (54), we have

|g(s, a1s)− g(s, a2s)| ≤ |∂ag(s, ξs)||a1s − a2s|, (56)

for some real value ξs between a1s and a2s, i.e. min{a1s, a2s} ≤ ξs ≤ max{a1s, a2s}.
For the second term, we want to prove that for all t ∈ [0, 1],∫ t

0

∣∣1a1s>0 − 1a2s>0

∣∣ ds = 0. (57)

In order to do so, we first prove that all the solutions of (19) touch zero at the same point and that after
touching zero, they stay at zero. Consider the equation:

dāt
dt

= g(t, āt)− 1. (58)

Because the function (t, a) 7→ f1(t, a)− 1 is continuous with respect to t and Lipschitz with respect to a
on [0, 1], Equation (19)’ has unique solution āt for t in [0, 1]. Let us define

t̄0 := inf{t > 0 : āt = 0}.

Since the two equations (19) and (58) coincide on [0, t0 ∧ t̄0], at = āt for all t ∈ [0, t0 ∧ t̄0]. Thus, t̄0 = t0
and a1t = a2t = at for all t ≤ t0 implying that

∫ t
0

∣∣1a1s>0 − 1a2s>0

∣∣ ds = 0, for all t ≤ t0.

To conclude the proof of (57), it remains to show that a1 and a2 stay at zero after time t0. Indeed,
this fact is claimed by the Proposition 12.

Consequently, from (56) and (57), we have

|a1t − a2t | ≤
∫ t

0

|∂ag(s, ξs)||a1s − a2s|ds. (59)

And because f2(., ., b) is differentiable, we also have

|b1t − b2t | ≤
∫ t

0

max
a∈[0,1]

|∂bf2(s, a, ζs)||b1s − b2s|ds, (60)

where ζs is a value between b1s and b2s, that is min(b1s, b
2
s) ≤ ζs ≤ max(b1s, b

2
s). Applying the Gronwall’s

inequality, we obtain

|a1t − a2t |+ |b1t − b2t |

≤ (|a10 − a20|+ |b10 − b20|) exp

(∫ t

0

[
|∂af1(s, ξs)|+ max

a∈[0,1]
|∂bf2(s, a, ζs)

]
ds

)
= 0,
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for all t in [0, 1]. That means the equations (19)-(20) have at most one solution.

Every subsequence (X`N )N≥1 ⊂ (XN )N≥1 converges in distribution to a solution of the differential
equations (19)-(20). And because of the uniqueness of the solution of (19)-(20), which is proved above, we
conclude that the sequence (XN )N≥1 = (AN , BN )N≥1 converges in distribution to that unique solution.

4 The central limit theorem

When the underlying networks are supercritical Erdös-Rényi graphs: ER(N,λ/N), λ > 1, the size of
the largest and the second largest components ([11]) is approximated as |Cmax| = O(N) and |C(2)| =
O(log(N)) as N tends to infinity. The probability that one of the initial A0 individuals belongs to the
giant component converges to 1. Indeed, we can consider that our initial condition consists of the first
nodes explored until b‖x0‖Nc individuals are discovered. Each time there is no more coupon, a new seed
is chosen uniformly in the population, of which the giant component represents a proportion ζλ. Hence,
the number of seeds S until we first hit the giant component follows roughly a Geometric distribution
with parameter ζλ. Since for seeds outside the giant component, the associated exploration trees are of
size at most log(N), the number of individuals discovered before finding the giant component is of order
log(N) < b‖x0‖Nc. Under the assumption 1, there is a positive fraction of seeds belonging to the giant
component of ER(N,λ/N) with a probability converging to 1.

For the central limit theorem, we are interested in the limit of the RDS process in the giant component
of ER(N,λ/N), λ > 1. By the lemma 11, we see that the Markov process (ANt )N≥1 absorbs just after
the time t0 with probability approximately 1 as N tends to infinity. Thus, in the sequels, we work
conditionally on {τN0 ≥ t0} and all the processes are treated only in the interval [0, t0]. We hence
consider the following process, for t ∈ [0, t0]:

WN
t :=

XbNtc −N(at, bt)√
N

=
√
N(XN

t − xt), t ∈ [0, t0], N ∈ N∗. (61)

Assumption 2. Let W0 = (W 1
0 ,W

2
0 ) be a Gaussian vector: W0 ∼ N (0; Σ). Assume that WN

0 =√
N(XN

t − x0) converges in distribution to W0 as N →∞.

Theorem 16. Under Assumption 2, the process (WN )N≥1 converges in distribution in D([0, t0],R2) to
Y , which satisfies

Wt = W0 +

t∫
0

G(s, as, bs,Ws)ds+M(t, at, bt) (62)

where

G(t, a, b, w) :=

(
φ′(t+ a)w1

−λ(w1 + w2)− φ′(t+ a)w1

)
; (63)

φ(z) := c−
c−1∑
k=0

(c− k)
λk(1− z)k

k!
e−λ(1−z), (64)

and φ′(z) is the derivative with respect to z of φ; M is a zero-mean martingale with the quadratic variation

〈M(·, a·, b·)〉t :=

 t∫
0

mij(s, as, bs)ds


i,j∈{1,2}

, (65)
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in which

m11(t, a, b) :=

c∑
k=0

(c− k)2pk(t+ a)−

(
c∑

k=0

(c− k)pk(t+ a)

)2

; (66)

m22(t, a, b) := λ(1− t− a− b) + 2λ(1− t− a− b)

×

(
c(λ− 1) +

c∑
k=0

pk(t+ a)

)
+m11(t, a, b); (67)

m12(t, a, b) : = λ(1− t− a− b)

(
c(λ− 1) +

c∑
k=0

pk(t+ a)

)
−m11(t, a, b). (68)

The performance of fluctuation process
√
N(AN − a) is illustrated in Fig. 6.
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Figure 6: Fluctuation process
√
N(ANt − at), t ∈ [0; t0] for N = 1000, λ = 2 and c = 3.

The proof is divided into several steps: first, we write WN in the form of a Doob’s composition;
then we claim the tightness of the sequence (WN )N≥1 in D([0, t0],R2) by proving the tightness of both
terms: the finite variation part and the martingale; next, we identify the limiting values of the sequence
(WN )N≥1; and finally we demonstrate that all the limiting values are the same.

Recall from Lemma 4 that:

(
XN,1
t

XN,2
t

)
=

(
AN0
BN0

)
+

(
∆N,1
t

∆N,2
t

)
+

(
MN,1
t

MN,2
t

)
,

where

∆N,1
t =

1

N

bNtc∑
i=1

{
c−

c−1∑
k=0

(c− k)P(Yi = k|Fi−1)− 1

}
,

∆N,2
t =

1

N

bNtc∑
i=1

{
λ

(
1− i

N
− Ai−1

N
− Bi−1

N

)

−

(
c−

c−1∑
k=0

(c− k)P(Yi = k|Fi−1)

)}
,
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and where

〈MN 〉t =

[
〈MN,1,MN,1〉t 〈MN,1,MN,2〉t
〈MN,2,MN,1〉t 〈MN,2,MN,2〉t

]
. (69)

From the proof of Lemma 4, we recall the equation (39):

∥∥∥∆N
t −

1

N

bNtc∑
n=1

f
(n− 1

N
,
An−1
N

,
Bn−1
N

)∥∥∥ ≤ C

N
, (70)

where f is defined in (??): f(t, a, b) = (f1(t, a, b), f2(t, a, b)),

f1(t, a) := c−
c−1∑
k=0

(c− k)pk(t+ a)− 1

f2(t, a, b) := (1− t− a− b)λ+

c−1∑
k=0

(c− k)pk(t+ a)− c.

and recall the components of the quadratic variation 〈MN 〉t given by (24):

〈MN,1〉t =
1

N2

bNtc∑
n=1

Var(Yn ∧ c|Fn−1),

〈MN,1,MN,2〉t =
1

N2

bNtc∑
n=1

Cov(Yn ∧ c,Hn − Yn ∧ c | Fn−1),

〈MN,2〉t =
1

N2

bNtc∑
n=1

Var(Hn − Yn ∧ c|Fn−1).

Notice that in this section, we work conditionally on {τN0 ≥ t0} and that all processes are defined in the
time interval [0, t0], thus all the terms 1Ai−1≥1, 1 ≤ i ≤ bNt0c, 1AN

t >0, 1at>0 are replaced by 1.

For all N ∈ N∗ and for all t ∈ [0, t0], WN
t is written as:

WN
t =
√
N

(
AN0 − a0
BN0 − b0

)
+
√
N

(
∆N,1
t −

∫ t
0
f1(s, as, bs)ds

∆N,2
t −

∫ t
0
f2(s, as, bs)ds

)
+
√
N

(
MN,1
t

MN,2
t

)
=WN

0 + ∆̃N
t + M̃N

t .

We prove tightness of the process in D([0, t0],R2) and then identify the limiting values.

4.1 Tightness of the process (WN)N≥1

Proposition 17. The sequence (WN )N≥1 is tight in D([0, t0],R2).

Proof. To prove that the distributions of the semi-martingales (WN )N≥1 form a tight family, we use the
Aldous-Rebolledo criterion as in Lemma 6. To achieve this, we start with establishing some moment
estimates that will be useful.

Step 1: moment estimates

23



From (38), we have

E[‖〈M̃N 〉t‖] ≤ (6c2 + 4λ)t.

For the term ∆̃N
t :

|∆̃N,1
t | ≤

√
N

∣∣∣∣∣∣∆N,1
t − 1

N

bNtc∑
i=1

{
c−

c∑
k=0

(c− k)pk

(
i− 1

N
+
Ai−1
N

)
− 1

}∣∣∣∣∣∣
+
√
N

∣∣∣∣∣ 1

N

bNtc∑
i=1

{
c−

c∑
k=0

(c− k)pk

(
i− 1

N
+
Ai−1
N

)
− 1

}

−
bNtc∑
i=1

i/N∫
(i−1)/N

(
c−

c∑
k=0

(c− k)pk (s+ as)− 1

)
ds

∣∣∣∣∣
+
√
N

∣∣∣∣∣∣∣
t∫

bNtc/N

(
c−

c∑
k=0

(c− k)pk (s+ as)− 1

)
ds

∣∣∣∣∣∣∣ . (71)

Thanks to (70), we have that

√
N

∣∣∣∣∣∣∆N,1
t − 1

N

bNtc∑
i=1

{
c−

c∑
k=0

(c− k)pk

(
i− 1

N
+
Ai−1
N

)
− 1

}∣∣∣∣∣∣
≤
√
N

∥∥∥∥∥∥∆N
t −

1

N

bNtc∑
i=1

f

(
i− 1

N
,
Ai−1
N

,
Bi−1
N

)∥∥∥∥∥∥ ≤ C√
N
.

Because f1 is continuous and is defined in a compact set [0, 1]3, then the third term in the r.h.s. of (71)

is upper bounded by
max(t,a,b)∈[0,1]3 |f1(t,a,b)|√

N
.

For all s ∈
[
i−1
N , iN

)
,

∣∣∣∣pk(s+ as)− pk
(
i− 1

N
+
Ai−1
N

)∣∣∣∣ ≤ (∣∣∣∣s− i− 1

N

∣∣∣∣+

∣∣∣∣as −ANi−1
N

∣∣∣∣) sup
z∈[0,1]

∣∣p′k(z)
∣∣ (72)

≤
(

1

N
+

∣∣∣∣WN,1
s√
N

∣∣∣∣) sup
z∈[0,1]

∣∣p′k(z)
∣∣. (73)

The second term in the r.h.s. of (71) is bounded by

√
N

bNtc∑
i=1

c∑
k=0

(c− k)

i/N∫
(i−1)/N

∣∣∣∣pk(s+ as)− pk
(
i− 1

N
+
Ai−1
N

)∣∣∣∣ ds
≤ sup
z∈[0,1]

∣∣p′k(z)
∣∣c(c− 1)

2

(
1√
N

+

∫ t

0

|WN,1
s |ds

)
.
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Thus,

|∆̃N,1
t | ≤

C + max(t,a,b)∈[0,1]3 |f1(t, a, b)|+ supz∈[0,1]
∣∣p′k(z)

∣∣ c(c−1)
2√

N

+ sup
z∈[0,1]

∣∣p′k(z)
∣∣c(c− 1)

2

∫ t

0

|WN,1
s |ds.

Using the similar argument, we have that

|∆̃N,2
t | ≤

C + sup(t,a,b)∈[0,1]3 |f2(t, a, b)|+ supz∈[0,1]
∣∣p′k(z)

∣∣ c(c−1)
2 + λ

√
N

+

(
sup
z∈[0,1]

∣∣p′k(z)
∣∣c(c− 1)

2
+ λ

) t∫
0

|WN,1
s |ds+ λ

t∫
0

|WN,2
s |ds.

Hence,

‖∆̃N
t ‖ ≤

C ′(λ, c)√
N

+ C ′′(λ, c)

t∫
0

‖WN
s ‖ds (74)

Then for every t ∈ [0, t0],

E[‖WN
t ‖] ≤ E[‖∆̃N

t ‖] + E[‖M̃N
t ‖]

≤ (6c2 + 4λ)t+
C ′(λ, c)√

N
+ C ′′(λ, c)

t∫
0

E[‖WN
s ‖]ds.

And thus by the Grönwall’s inequality, we deduce that

sup
t∈[0,t0]

E[‖WN
t ‖] ≤ (6c2 + 4λ+ C ′(λ, c))eC

′′(λ,c) = C
′′′
, ∀N ≥ 1. (75)

Let 0 ≤ s < t ≤ t0,

E[‖WN
t −WN

s ‖] ≤
C ′(λ, c)(t− s)√

N
+ (6c2 + 4λ)(t− s) + C ′′(λ, c)

t∫
s

E[‖WN
u ‖]du,

≤ (C ′(λ, c) + 6c2 + 4λ+ C ′′(λ, c)C
′′′

)(t− s)

Then for given ε > 0, η > 0, choose δ such that δ < ηε(C ′(λ, c) + 6c2 + 4λ+ C ′′(λ, c)C
′′′

)−1,

P

 sup
|t−s|<δ
0≤s<t≤1

‖WN
t −WN

s ‖ > η

 ≤ η−1E
 sup
|t−s|<δ
0≤s<t≤1

‖WN
t −WN

s ‖

 < ε. (76)

By (75) and (76), we can conclude that (WN )N≥1 is tight in D([0, t0],R2).

Proposition 18. The martingale (M̃N )N≥1 converges in distribution to a Gaussian process (Mt)0≤t≤t0
on [0, t0].
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Proof. Keeping in mind that An−An−1 = Yn ∧ c− 1 and Bn−Bn−1 = Hn−Yn ∧ c and by (33), we have

〈M̃N,1〉t =
1

N

bNtc∑
n=1

{
E
[
(Yn ∧ c)2

∣∣Fn−1]− (E [Yn ∧ c∣∣Fn−1])2} ; (77)

〈M̃N,2〉t =
1

N

bNtc∑
n=1

{
Var(Hn|Fn−1)− 2

(
E[Hn(Yn ∧ c)|Fn−1]

− E[Hn|Fn−1]E[Yn ∧ c|Fn−1]
)}

+ 〈M̃N,1〉t; (78)

〈M̃N,1, M̃N,2〉t =
1

N

bNtc∑
n=1

{
E
[
Hn(Yn ∧ c)

∣∣Fn−1]
− E [Hn|Fn−1]E [Yn ∧ c|Fn−1]

}
− 〈M̃N,1〉t (79)

From (77), (26) and (44),

∣∣∣∣∣∣〈M̃N,1〉t −
1

N

bNtc∑
i=1

m11

(
i− 1

N
,
Ai−1
N

,
Bi−1
N

)∣∣∣∣∣∣
≤

c∑
k=0

(c− k)2
C(λ, k)

N
+

c∑
k,`=0

(
(c− k)C(λ, k)

N
+

(c− `)C(λ, `)

N

)
≤ D1(λ, c)

N
.

From (78), (29), (30) and (44),

∣∣∣∣∣∣〈M̃N,2〉t −
1

N

bNtc∑
i=1

m22

(
i− 1

N
,
Ai−1
N

,
Bi−1
N

)∣∣∣∣∣∣ ≤ D2(λ, c)

N
+
D1(λ, c)

N
,

where D2(λ, c) = λ+ 2
∑c
k=0(k2 − ck)C(λ, k) + 2cλ+ 1 +

∑c
k=0(c− k)C(λ, k) and from (79), (30),

∣∣∣∣∣∣〈M̃N,1, M̃N,2〉t −
1

N

bNtc∑
i=1

m12

(
i− 1

N
,
Ai−1
N

,
Bi−1
N

)∣∣∣∣∣∣ ≤ D3(λ, c)

N
+
D1(λ, c)

N
,

whereD3(λ, c) =
∑c
k=0(k2−ck)C(λ, k)+cλ. And since the vectorial function (mk`)1≤k,`≤2 are continuous,

then 〈M̃N 〉t converges uniformly in distribution to
t∫
0

(mk,`(s, as, bs))k,`∈{1,2}ds. By Theorem 2 in [26],

we can conclude that (MN )N≥1 converges uniformly in distribution to the Gaussian process (Mt)t∈[0,t0],

which is identified by its quadratic variation 〈M〉t =
t∫
0

(mij(s, as, bs))i,j∈{1,2}ds.

Proposition 19. The finite variation
(

∆̃N
t , t ∈ [0, t0]

)
N≥1

converges in distribution to the process (∆t, t ∈ [0, t0]),

which is the unique solution of the stochastic differential

∆t =

∫ t

0

G(s, as, bs,Ws)dt (80)
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Proof.

∆̃N
t =

√
N

∆N
t −

1

N

bNtc∑
i=1

f

(
i− 1

N
,ANi−1

N

, BNi−1
N

)
+

 1

N

bNtc∑
i=1

√
Nf

(
i− 1

N
,ANi−1

N

, BNi−1
N

)
−

t∫
0

√
Nf(s, as, bs)ds


= DN

t + ENt , (81)

where

f(t, a, b) :=


c−

c−1∑
k=0

(c− k)
λk

k!
(1− t− a)ke−λ(1−t−a) − 1

(1− t− a− b)λ− c+

c∑
k=0

(c− k)
λk

k!
(1− t− a)ke−λ(1−t−a)


=

(
f1(t, a, b)
f2(t, a, b)

)
(82)

From (70), we have

‖DN
t ‖ =

∥∥∥∥∥∥√N
∆N

t −
1

N

bNtc∑
i=1

f

(
i− 1

N
,ANi−1

N

, BNi−1
N

)∥∥∥∥∥∥ ≤ C(λ, c)√
N

.

We need to find the limit of ENt .

ENt =

bNtc∑
i=1

√
N

i
N∫

i−1
N

(
f(
i− 1

N
,ANi−1

N

, BNi−1
N

)− f(s, as, bs)

)
ds−

√
N

t∫
bNtc
N

f(s, as, bs)ds (83)

Because f is continuous function, defined in the compact set [0, 1]3, the second term in the r.h.s. of (83)

is bounded by
max(t,a,b)∈[0,1]3 ‖f(t,a,b)‖√

N
and thus converges to 0 as N →∞.

We write f as

f(t, a, b) =

(
φ(t+ a)

ψ(t+ a+ b)− φ(t+ a)

)

where φ(z) = c−
c−1∑
k=0

(c− k)
[λ(1− z)]k

k!
e−λ(1−z) and ψ(z) = λ(1− z). Then

φ

(
i− 1

N
+ANi−1

N

)
− φ(s+ as)

=φ′
(
i− 1

N
+ANi−1

N

)(
(
i− 1

N
− s) + (ANi−1

N

− as)
)

− φ′′(ξi,s)
(

(
i− 1

N
− s) + (ANi−1

N

− as)
)2

=
( i− 1

N
− s
)
φ′
(
i− 1

N
+ANi−1

N

)
+
WN,1
s√
N

φ′
(
i− 1

N
+ANi−1

N

)
−
(( i− 1

N
− s
)

+
WN,1
s√
N

)2

φ′′(ξi,s),
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where ξi,s takes the value between i−1
N +ANi−1

N

and s+as; φ
′(ξi,s) (resp. φ′′(ξi,s))) is first derivative (resp.

the second derivative) of φ at ξi,s. And

ψ

(
i− 1

N
+ANi−1

N

+BNi−1
N

)
− ψ(s+ as + bs)

= −λ
(

(
i− 1

N
− s) + (ANi−1

N

− as) + (BNi−1
N

− bs)
)

= −λ
(( i− 1

N
− s
)

+
WN,1
s√
N

+
WN,2
s√
N

)
.

So the first term in the right hand side of (83) can be written as

1

N

bNtc∑
i=1

 WN,1
i−1
N

φ′
(
i−1
N +ANi−1

N

)
−λ
(
WN,1

i−1
N

+WN,2
i−1
N

)
− φ′

(
i−1
N +ANi−1

N

)
WN,1

i−1
N



+

bNtc∑
i=1


i
N∫

i−1
N

{√
N
(
i−1
N − s

)
φ′
(
i−1
N +ANi−1

N

)}
ds

−
i
N∫

i−1
N

{√
N
(
i−1
N − s

)(
1 + φ′

(
i−1
N +ANi−1

N

))}
ds



+

bNtc∑
i=1


−

i
N∫

i−1
N

√
N

{((
i−1
N − s

)
+

WN,1
s√
N

)2
φ′′(ξi,s)

}
ds

i
N∫

i−1
N

√
N

{((
i−1
N − s

)
+

WN,1
s√
N

)2
φ′′(ξi,s)

}
ds

 (84)

Because (WN )N≥1 is tight, there exists a subsequence of (WN )N≥1, denoted again (WN )N≥1, which
converges in distribution to W = (W 1,W 2) ∈ D([0, t0],R2). The second and the third term of (84)
converge in distribution to 0 since

bNtc∑
i=1

i
N∫

i−1
N

√
N

∣∣∣∣( i− 1

N
− s
)
φ′
(
i− 1

N
+ANi−1

N

)∣∣∣∣ ds ≤ sup
z∈[0,1]

|φ′(z)|N−1/2,

and with W̃N (d)
= WN defined as in the Skorokhod’s representation Theorem, W̃N converges uniformly

almost surely to W̃
(d)
= W , we have (W̃N )N≥1 is bounded and that

bNtc∑
i=1

i
N∫

i−1
N

√
N

∣∣∣∣∣∣
(( i− 1

N
− s
)

+
W̃N,1
s√
N

)2

φ′′(ξi,s)

∣∣∣∣∣∣ ds
≤
(

sup
z∈[0,1]

|φ′′(z)|+ sup
N≥1
‖W̃N,1‖

)
N−1/2.

Then (∆̃N )N≥1 converges in distribution to a process, which satisfies equation

∆̃t =

t∫
0

(
φ′(s+ as)W

1
s

−λ(W 1
s +W 2

s )− φ′(s+ as)W
1
s

)
ds (85)
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4.2 The uniqueness of the SDEs

Since the process (WN )N≥1 defined in a closed interval: [0, t0] and tight in D([0, 1];R2), so uniqueness
of the solution of the SDE (62) is proved if the criteria in Theorem 3.1 of [21, page 178] is verified. We
need to justify that the functions G(t, wt) and σ(t, wt) = 〈M(·, w·)〉t are Lipschitz continuous, i.e. for
every N ≥ 1, there exists KN > 0 such that:

‖G(t, u)−G(t, w)‖+ ‖σ(t, u)− σ(t, w)‖ ≤ KN‖u− w‖, ∀u,w ∈ BN ,

where BN = {x : ‖x‖ ≤ N}. Indeed, this condition holds because

‖G(t, u)−G(t, w)‖ ≤
(
2 max
z∈[0,1]

|φ′(z)|+ λ
)
‖u− w‖,

and σ(t, w) does not depend on w. Hence, the pathwise uniqueness of solutions holds for the equation(62).
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