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Cloud Field Identification for Earth Radiation Budget Studies. Part II: Cloud Field
Classification for the ScaRaB Radiometer

C. J. STUBENRAUCH, G. SEZE, N. A. ScoTtT, A. CHEDIN, M. DESBOIS, AND R. S. KANDEL
Laboratoire de Météorologie Dynamique du CNRS, Ecole Polytechnique, Palaiseau, France
(Manuscript received 9 February 1995, in final form 22 August 1995)

ABSTRACT

Gaining a better understanding of the influence of clouds on the earth’s energy budget requires a cloud
classification that takes into account cloud height, thickness, and cloud cover. The radiometer ScaRaB (scanner
for radiation balance), which was launched in January 1994, has two narrowband channels (0.5--0.7 and 10.5-
12.5 pm) in addition to the two broadband channels (0.2—4 and 0.2-50 pm) necessary for earth radiation budget
(ERB) measurements in order to improve cloud detection. Most automatic cloud classifications were developed
with measurements of very good spatial resolution (200 m to 5 km). Earth radiation budget experiments (ERBE),
on the other hand, work at a spatial resolution of about 50 km (at nadir), and therefore a cloud field classification
adapted to this scale must be investigated. For this study, ScaRaB measurements are simulated by collocated
Advanced Very High Resolution Radiometer (AVHRR ) ERBE data. The best-suited variables for a global cloud
classification are chosen using as a reference cloud types determined 'by an operationally working threshold
algorithm applied to AVHRR measurements at a reduced spatial resolution of 4 km over the North Atlantic.
Cloud field types are then classified by an algorithm based on the dynamic clustering method. More recently,
the authors have carried out a global cloud field identification using cloud parameters extracted by the 31 (im-
proved initialization inversion) algorithm, from High-Resolution Infrared Sounder (HIRS ) —Microwave Sound-
ing Unit (MSU) data. This enables the authors first to determine mean values of the variables best suited for
cloud field classification and then to use a maximum-likelihood method for the classification. The authors find
that a classification of cloud fields is still possible at a spatial resolution of ERB mecasurements. Roughly, one
can distinguish three cloud heights and two effective cloud amounts (combination of cloud emissivity and cloud
cover). However, only by combining flux measurements (ERBE) with cloud field classifications from sounding
instruments (HIRS/MSU) can differences in radiative behavior of specific cloud fields be evaluated accurately.

1. Introduction tion budget satellite) and on the polar-orbiting satellites

NOAA-9 and NOAA-10, provided measurements of the
earth radiation budget (ERB ). From these data, Harrison
et al. (1990) evaluated the annual global mean CRFC as
—17 W m™2, corresponding to an overall cooling effect
of clouds. Most global circulation models (GCMs) yield
the same qualitative conclusion, but the actual value of
the CRFC varies widely (Cess et al. 1990), depending
on how the clouds are represented in these models.

As a tool of GCM validation, cloud-induced radia-
tive flux change has the advantage of distinguishing
radiative effects of clouds from those of the clear at-
mosphere temperature and humidity distributions.
Thus, it was shown (Cess et al. 1990) that much (but
not all) of the range of climate sensitivity of different
GCMs can be linked to differences in cloud radiative
feedback in these models. However, even with *‘tun-
ing,”” the success of GCMs in representing cloud dis-
tribution in the present climate depends very much
upon cloud type; in particular, many GCMs still have
difficulties in correctly simulating boundary layer

Clouds have an important impact on the energy budget
of the earth in two ways: 1) by limiting the absorption of
solar radiation (increasing the albedo), which has a cool-
ing effect, and 2) by partially preventing the earth-emitted
thermal longwave radiation from escaping to space,
which has a heating effect. The net effect on the energy
budget depends upon the height, type, and location of the
clouds. The influence of clouds on the present climate
may be described by the term *‘cloud radiative forcing”’
(Coakley and Baldwin 1984; Charlock and Ramanathan
1985) or more correctly ‘‘cloud-induced radiative flux
change’’ (CRFC), which is defined as the difference be-
tween the mean flux of a region and the mean flux under
clear sky of the same region. From 1984 to 1990, the
Earth Radiation Budget Experiment (ERBE) mission, a
series of scanning and wide-field-of-view radiometers on
the intermediate inclination satellite ERBS (earth radia-
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clouds (e.g., Slingo and Slingo 1991). It is therefore
desirable to refine the concept of cloud-induced radia-
tive flux change by distinguishing different cloud field

Unauthenticated | Downloaded 03/27/21 06:20 AM UTC



MARCH 1996

classes according to height, type, and coverage in order
to compare in more detail the radiative effects of the
different cloud types (e.g., stratiform versus convec-
tive) as they are parameterized in GCMs. Of course on
the observational side, where the usual CRFC requires
only the discrimination of cloud-free areas, such dif-
ferentiation requires characterization of the different
cloud fields together with discrimination of the corre-
sponding radiative fluxes. Nethertheless, such a refine-
ment is needed in order to examine the cloud radiative
effects on the large-scale dynamics in the models. Fur-
thermore, improved evaluation of cloud-radiation feed-
back in the models is possible only by improving each
and every cloud parameterization and not by tuning a
parameter in which the different classes are mixed.

The ERBE cloud scene identification (Wielicki and
Green 1989) is based on a maximum-likelihood method
using shortwave (SW) and longwave (LW) broadband
radiances during the day and LW measurements alone
during night. This identification yields four classes of
cloud cover: clear sky (<5%), partly cloudy (5%-
50%), mostly cloudy (50%-95%), and overcast
(>95%), without distinction of cloud height and type. A
more detailed cloud classification can be obtained only
by combining ERBE data with additional measurements.

Narrowband visible (VIS) and infrared (IR) atmo-
spheric window radiance measurements should improve
cloud identification, since these radiances are relatively
insensitive to atmospheric absorption/emission and hence
give a better contrast between clouds and surface. For this
reason, the radiometer ScaRaB (scanner for radiation bal-
ance) (Monge et al. 1991) has been developed with two
narrowband channels (VIS 0.5-0.7 ym, IR 10.5-12.5
pm) in addition to the two broadband channels (total 0.2—
50 um, SW 0.2—4 pm) needed for ERB determination.
Similarly, the CERES (Clouds and the Earth’s Radiant
Energy System) radiometer (Barkstrom 1990) has been
designed with one auxiliary channel (812 pm) in the IR
atmospheric window.

Optimal cloud classification requires a relatively fine
spatial resolution. This would imply treating a huge
amount of data, especially if one wants to study the
whole globe. There have been several studies on cloud
detection and classification based on different methods:
threshold algorithm (Rossow et al. 1985; Kriebel and
Saunders 1988; Derrien et al. 1990; Stowe et al. 1991;
Rossow and Garder 1993), dynamic clustering (Seze
and Desbois 1987), spatial and temporal coherence
(Coakley and Bretherton 1982), maximum likelihood
(Berger 1992), etc. Howeyver, all these algorithms were
developed for a spatial resolution of about 10 km or
finer, with most of them over limited geographical
regions. Another approach takes into account infor-
mation of a wider spectral range with good spectral
resolution (up to 24 channels) but on a coarser spatial
resolution of about 100 km, as in the case of HIRS
(High Resolution Infrared Sounder)-MSU (Micro-
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wave Sounding Unit) measurements (Wahiche et al.
1986; Susskind et al. 1987; Wylie and Menzel 1989).
The present analysis treats cloud field classification
at a spatial resolution of about 50 km (at nadir),
which is provided by some of the instruments used for
ERB studies. After a description of the data in section
2, the Advanced Very High Resolution Radiometer
(AVHRR) cloud detection and cloud-type determina-
tion over the North Atlantic and extension to AVHRR
cloud field types at ERBE resolution are described in
section 3. In section 4, the properties of these different
cloud field types are analyzed. After having chosen the
most significant measurable quantities for cloud field
classification, cloud field types are determined by the
dynamical clustering method in section 5. Since the
thresholds of the AVHRR cloud detection and classi-
fication have to be adapted for each geographic region,
we use in section 6 for further reference another cloud
field classification, obtained from HIRS-MSU data by
applying the improved 3I (improved initialization in-
version) cloud algorithm (Stubenrauch et al. 1996).
This cloud field classification can be applied on a global
scale. Section 7 presents the analysis of cloud influence
on outgoing LW fluxes for the different cloud field
types. In section 8, the mean values of the chosen vari-
ables for cloud field classification are shown for 11 31
cloud field types over the North Atlantic and the trop-
ical Atlantic. Using these mean values of the different
31 cloud fields as initial values of cloud cluster kernels
leads to a ScaRaB cloud field identification based on a
maximum-likelihood estimate (MLE) method. Clus-
tering methods or MLE methods are more appropriate
at this coarse resolution than are threshold methods.
Conclusions and outlook are presented in section 9.

2. Data

The various channels of the three ERB instruments
and of the instruments used for cloud classification in
this analysis are listed in Table 1.

For this study, ERBE S8 data (Barkstrom et al.
1989) were first combined (Stubenrauch 1993) with
simultaneous measurements from the AVHRR instru-
ment in the (global area coverage) format. In this for-
mat, the spatial resolution is degraded to 4 km, because
four AVHRR pixels of 1-km resolution are averaged,
and only every fourth scan line is taken. These collo-
cated AVHRR-ERBE data 1) simulate ScaRaB data
and 2) provide more detailed information inside an
ERBE pixel, given that about 150 GAC pixels are in-
cluded in an ERBE pixel.

Data were analyzed in a North Atlantic region extend-
ing from 40°W to 10°E and from 25° to 65°N and in a
tropical Atlantic region extending from 50°W to the
Greenwich meridian and from 15°S to 25°N over six days
in January 1986 and April, July, and October 1985. These
data come from the National Aeronautics and Space Ad-
ministration (NASA) ERBE V5 validation dataset, which
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TaBLE 1. Channel description of ERB instruments and of
instruments used for cloud classification.

Earth radiation budget instruments

ERBE channels ScaRaB channels CERES channels

1VIS  05-0.7 um
SW  0.2-5um 25W  02-4 um SW  03-5um
TOT  0.2-50 pm 3TOT  0.2-50 ym TOT  0.3-200 um
Lw 5-50 pm 4IR 10.5-12.5 pm IR 8-12 pm
Cloud classification

Instrument Channel Wavelength Description Peak level
HIRS 1 15.00 pm 30 hPa
HIRS 2 14.70 pm 15 ym 60 hPa
HIRS 3 14.50 pm CO, band 100 hPa
HIRS 4 14.20 pym 400 hPa
HIRS 5 14.00 gm 600 hPa
HIRS 6 13.70 pm (+H,0) 800 hPa
HIRS 7 13.40 pum (+H,0) 900 hPa
AVHRR 5 11.4-12.4 ym

AVHRR 4 10.3-11.3 pm Window Surface
HIRS 8 11.10 um

HIRS 9 9.70 ym Ozone 25 hPa
HIRS 10 8.30 um 900 hPa
HIRS 11 7.30 um H,O band 700 hPa
HIRS 12 6.70 um 500 hPa
HIRS 13 4.57 pm 1000 hPa
HIRS 14 4.52 ym 43 um 950 hPa
HIRS 15 4.46 pm CO; band 700 hPa
HIRS 16 4.40 pm (+N0O) 400 hPa
HIRS 17 4.24 ym 5 hPa
HIRS 18 4.00 pm

HIRS 19 3.70 pm Window Surface
AVHRR 3 3.6-3.9 um

HIRS 20 0.70 ym

AVHRR 2 0.7-1.0 pm Visible Cloud
AVHRR i 0.6-0.7 gm

MSU 1 5.96 mm Window Surface
MSU 2 5.58 mm 700 hPa
MSU 3 5.46 mm 0, 300 hPa
MSU 4 5.18 mm 90 hPa

is a set of ERBE, AVHRR, and HIRS obtained simulta-
neously aboard NOAA-9 for different geographical
regions. This dataset was distributed to ERBE science
team members upon request. The measured radiances of
AVHRR data were transformed into brightness temper-
atures using NOAA-9 calibration factors. An additional
nonlinearity correction had to be applied, which is shown
in tables for NOAA-9 data (Derrien 1991).

Up to this point, our efforts have been concentrated
on nighttime measurements, because it is particularly
during night that the ERBE -algorithm—using a single
variable (LW) —has to be improved.

For two night passes in July 1985 and two in January
1986, the AVHRR-ERBE data were collocated with
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HIRS-MSU data at a resolution of 100 km X 100 km
boxes (Stubenrauch 1993), the latter including the re-
sults of the temperature inversion and cloud parameter
determination by the 3I algorithm. The HIRS radiom-
eter measured 19 IR radiances and 1 visible radiance
at a spatial resolution of 18 km at nadir, whereas four
microwave radiances are measured by the MSU instru-
ment at a spatial resolution of about 100 km at nadir.

3. AVHRR cloud detection and classification

Below, we describe cloud detection and cloud-type
classification at the scale of GAC pixels. Cloud field
types are then defined at the scale of ERBE pixels, tak-
ing into account AVHRR cloud type as well as GAC
cloud coverage over an ERBE pixel.

a. Cloud detection at GAC resolution

We followed the general lines of the threshold algo-
rithm initially developed for 1-km resolution AVHRR
data by Derrien et al. (1993). These thresholds were cho-
sen for the AVHRR data available at the receiving station
of Lannion, France, that is, for an area covering the North
Atlantic and Europe. This algorithm works operationally
on NOAA-11 data, but other thresholds have to be devel-
oped for other geographical regions.

During night, radiance measurements at 3.7 pm
(channel 3), 11 gm (channel 4), and 12 ym (channel
5) are used. A succession of four tests, based on IR
brightness temperature and emissivity differences at
these wavelengths, leads to the determination of
whether a pixel is clear or cloudy.

If a cloud is present, the IR brightness temperature
of the pixel should be lower than the 1000-hPa tem-
perature obtained by an analysis of the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF)
at 0000 UTC of the same day (Bengtsson 1991). These
temperatures are available on a grid of 2.5° X 2.5° spa-
tial resolution, and during night they are close to the
sea surface air temperature. The AVHRR IR brightness
temperature was corrected for limb darkening due to
atmospheric absorption. This angular correction was
parameterized as a function of viewing zenith angle and
pseudoabsorptance (Stubenrauch et al. 1993, their sec-
tion 4) using the LOWTRANT7 radiative transfer model
(Kneizys et al. 1988).

The brightness temperature of low opaque clouds
containing water droplets appears higher at 11 ym than
at 3.7 pm. If their optical thickness is not too high, ice
clouds can be distinguished from water clouds, because
the emissivity of ice is higher at 11 gm than at 12 gm,
which leads to a higher 11-um brightness temperature.
The emissivity of water, however, does not change
much between 11 and 12 pm. Henceforth, ‘‘cirrus
clouds’’ will mean ice clouds that are not as thick as
cumulonimbus (Rossow and Schiffer 1991). Table 2
summarizes the cloud detection tests, and only one is
needed to raise the cloudy flag.
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TasLE 2. AVHRR cloud detection over ocean during night.

1. RST [T(11 gm), T(12 pm), cosf] < T(1000 hPa) — 3 K
2. T(11 pm) — 7(3.7 um) > 15K

3. T(3.7 pm) — T(12 pm) > 3 K for T(11 um) > 243 K
4. T(11 pm) — T(12 pm) > Thr[T(11 pm), 6]

Retrieved surface temperature: RST = c¢y(a) + ¢,(@)T(11 pm)
+ x(@)T(12 pm); ¢y, ¢, and ¢, are given in tables for North Atlantic
profiles (Llewellyn-Jones et al. 1984) and have been fitted as a func-
tion of the airmass @ = 1/cosf: ¢, = —12.08(a — 1.30)* + 0.57, ¢,
= —0.71(a — 1.67)* + 2.99, ¢, = 0.76(c — 1.65)> — 1.98.

Temperature and viewing zenith angle dependent 7(11 pm) — 7(12
pm) threshold: Thr[7(11 pm), 8] = (0.6 + 0.28656 + 0.0382 max|[0,
T(11 pm) — 264 K], for T(11 pm) < 298 K; (1.9 + 0.2865 0) for
7(11 pm) > 298 K.

b. Cloud-type determination at GAC resolution

Cloudy GAC pixels are classified according to cloud
height by using 7(11 pm), as shown in Table 3. Cirrus
clouds are identified by a positive T(11 pgm) — T(12
pm) difference. Low opaque clouds are separated from
cloud edges by a positive 7(11 um) — T(3.7 pm) dif-
ference.

In the original algorithm (Derrien et al. 1993), the
difference 7(3.7 pm) — T(12 um) was used to distin-
guish between opaque and semitransparent clouds, but
since this variable depends on both semitransparence
and cloud height, the T(11 pm) — 7(12 pm) difference
seems to be more appropriate, as can be seen in Fig. 1.

¢. Toward a cloud field identification at ERBE
resolution

By considering both cloud type and cloud cover, one
can extend the nine AVHRR cloud types (Table 3)
toward 18 AVHRR cloud fields at ERBE resolution: 9
overcast cloud fields (GAC pixel cloud coverage
greater than 80%) and 9 partly cloudy fields (coverage
less than 80%). However, in the studied regions, one
observes that only clouds of low height appear partly
cloudy, whereas high and midlevel clouds appear
mostly overcast. Therefore, only 14 cloud fields are
treated. An ERBE pixel is assigned to one of those
fields by 1) its GAC cloud cover and 2) the AVHRR
cloud type with highest occurrence inside the ERBE
pixel.

Furthermore, for better distinction of clear sky from
partly cloudy scenes at the ERBE pixel scale, we con-
sider the T(11 pm) variance of all GAC pixels inside
the whole ERBE pixel: clear sky is identified when the
GAC cloud cover over an ERBE pixel is less than 5%
and the T(11 um) variance is less than 2°. The spatial
coherence test initially used on 3 X 3 AVHRR pixels
to detect heterogeneous, and thus cloudy, regions is less
significant on GAC data.

An AVHRR near-infrared region (NIR) (3.7 um)
image of the meteorological situation on January 1986
is presented in Fig. 2. West of Great Britain, one can
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see a high opaque overcast cloud field surrounded by
cirrus clouds and overcast low clouds in the south with
partly cloudy low clouds in the east. A cumulus field
is located east of Great Britain. Figure 3a shows the
cloud cover obtained by the maximum likelihood es-
timation from the ERBE data. The cloud cover obtained
from the GAC pixels (Fig. 3b) is more structured than
that obtained directly from ERBE pixels. This is due
to the better spatial resolution and to additional spectral
information available in AVHRR data. ERBE detects
the perturbation zones well but has difficulties in de-
tecting low clouds and clear scenes during night. The
AVHRR cloud type with the highest occurrence inside
an ERBE pixel is presented in Fig. 3c, which strongly
agrees with the cloud types seen in the AVHRR image.

Further comparisons of AVHRR cloud types with 31
cloud fields obtained by HIRS/MSU measurements are
discussed in section 6 (see also Stubenrauch et al. 1996,
their section 4).

4. Investigating variables for cloud field
classification in comparison to AVHRR cloud
fields

In this section, the behavior of various measurable
quantities is studied for the 14 AVHRR cloud fields in
order to choose the most appropriate for cloud field
classification with ScaRaB.

¢ The IR brightness temperature is often used for
cloud detection and cloud height determination. Figure
4a represents the IR brightness temperature Ty as it is
measured by ScaRaB [the mean of 7(11 pm) and T(12
pm) over an ERBE pixel] as a function of latitude for
clear-sky situations. It can be seen that Tiz depends
strongly on the latitude. This is also the case for partly
cloudy fields (not shown in Fig. 4). To find a variable
independent of latitude, we introduce the surface air
temperature 7,, which can be obtained from the sur-
face elevation z,, the ECMWF geopotential height at
1000 hPa, and the air temperatures at 1000, 850, and
700 hPa as follows:

-7
Dsurt = 1000 €Xp [ - MO—-}'PE—)‘]

8150 m

(psurf — 850 hPa)
150 hPa

(1000 hPa — pyu¢)
150 hPa ’

(psurf — 700 hPa)
150 hPa

(850 hPa — pg,¢)
150 hPa ’

700 hPa < p..; < 850 hPa.

Tourr = T1000hpa

+ Tgsonpa Psut > 850 hPa

Tyt = Tssonpa

+ T700 hpa

()
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TaBLE 3. AVHRR cloud classification during night due to height and opacity.

Cloud opacity

Cloud height (1 pm) —

T(12 gm) < Thr[T(11 pm), 6]

T(11 pm) — T(12 gm) > The(T(11 pm), 8]

711 pym) < 243 K Cumolonimbus
243 K < T(11 pm) < 257 K
257 K < T(11 pm) < 267 K
267 K < T(11 pm) T(11 pm) — 7(3.7 pm)

> 1.5 K stratus

Altostratus, altocumulus

Cumulus, stratocumulus

T(11 pm) —
< 1.5 K cloud edges

Cold cirrus
Medium cirrus
Thin cirrus

7(3.7 ym) Warm cirrus

In Fig. 4b we study the difference Tijg — Ty, as a
function of latitude. Since T\x — T+ shows a flat be-
havior, it seems to be a better variable for cloud field
classification. The scattering of about 5 K may be ex-
plained by the different spatial resolutions of the data
(about 50 km for T}z and 250 km for T,;).

¢ Many cloudy scenes, such as partly cloudy or high
cloud scenes, are more heterogeneous in temperature
than clear-sky regions (Rossow and Garder 1993). A
measure of this heterogeneity can be the IR temperature
variance around a pixel. Figure 5 shows the spatial res-
olution effect on the IR temperature variance. Figure
5a shows o3.3cac, the T(11 pm) variance of a GAC'
pixel and its eight nearest neighbors for the nine
AVHRR cloud types, and Fig. 5b shows o3x3grpe, the
IR temperature variance of one ERBE pixel and its
eight nearest neighbors. In both figures the average val-
ues are shown with their standard deviations. About
50 000 data points at ERBE resolution are used for the
analysis. For the individual cloud types, the number of
data points varies from 1200 to 10 000. It should be
noticed that even given ERBE pixels at a scale of 3
X 3 the information on heterogeneity is not lost, be-
cause the horizontal extent of many cloud fields is of
the order of 50—100 km. Overcast stratus clouds and
clear sky show a very small IR temperature variance.
The IR temperature variance is slightly more enhanced
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FiG. 1. Distinction between cirrus clouds (open dots) and opaque
clouds (plain dots). A two-dimensional plot of (a) 7(3.7 um) — T(12
pm) and T(11 pm) for the nine classified AVHRR cloud types in
Table 3 and (b) T(11 pm) — T(12 pm) and 7(11 um) for the nine
classified AVHRR cloud types in Table 3.

for cirrus clouds than for opaque clouds, because cirrus
clouds vary more in optical thickness.

The IR temperature variance is smaller for a broken
low-level cloud field than for a high-level cloud field
with the same brokenness, because the contrast
between cloud and surface is smaller. To obtain a
cloud-height-independent variable, one has to mini-
mize the temperature dependency of o3x3grgg. This
was achieved by using the quantity 0.017 In(1
+ 03xaere ), Shown in Fig. Sc.

Some cloud detecting algorithms use the directly
measured IR radiance instead of the IR temperature,
because the radiance distinguishes slightly more be-
tween different warm scenes than does the temperature.
However, when using IR radiance, one has to find sur-
face radiances as a reference, which is more compli-
cated. A scaling for the IR radiance variance must still
be used, because the slightly higher sensitivity for
warm scenes only partly makes up for the scaling.

e AVHRR takes advantage of different emissivities
of ice and water clouds between the 12-um region and
the 11-pum region. Figure 6 shows the averaged 7'(11
pm) — T(12 um) difference with its variance for the
14 AVHRR cloud field types at ERBE resolution. A
significant separation of cirrus clouds from opaque
ones among the 9 overcast AVHRR cloud field types
is still observed. This leads to the conclusion that one
can detect cirrus clouds well even at ERBE resolution.
While the magnitude of this separation (1.5 K) may
seem small, it is larger than the 7(11 ym) — T(12 pym)
variance within the cloud types and does not depend
on the calibration of the 7(11 pm) and 7(12 um) chan-
nels. The four partially covered AVHRR cloud fields
are more difficult to distinguish.

¢ If one wants to study different cloud radiative ef-
fects with the ScaRaB radiometer, other variables that
could separate the cirrus from opaque clouds must be
investigated, since ScaRaB does not measure the 7(11
pm) — T(12 pm) difference. In earth radiation budget
experiments the broadband LW radiance is measured.
One can try to combine this information with the nar-
rowband IR radiance to define a new variable and study
its behavior for the different cloud classes.

Inside the IR window, only a small amount of radi-
ation is absorbed by the atmosphere, essentially by the
water vapor continuum. Thus, from the IR brightness
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FiG. 2. AVHRR 3.7-um image of a meteorological situation over the North Atlantic,
0330 UTC 4 January 1986, with a longitude—latitude grid of 4° resolution.
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FiG. 3. Satellite data analysis of sitnation in Fig. 1: (a) ERBE cloud cover; (b) GAC cloud cover; (c) AVHRR cloud type; (d) clustering
cloud fields, Tjg ~ Tous and 0.01T In(1 + 03xarar); (€) clustering cloud fields, Ty — Ty, 0.017k In(l + Oaxserpr)> and T(11 pm) — T(12
um); and (f) clustering cloud fields, Ty — Ty, 0.017 15 In(1 + 0353pre), and A™% — 4™ The clustering cloud fields are identified by the
most frequent AVHRR cloud type within the class. Cb, cumulonimbus; Ci, cirrus; As, Alto; midlevel; Cum, cumulus; Str, stratus; ed, edges.
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FiG. 4. (a) Tig and (b) Tig — T, as functions of latitude
for clear sky, July 1985 and January 1986.

temperature Tir, one can calculate the emitted broad-
band LW radiance for the case of no atmospheric ab-
sorption. The ‘‘atmospheric pseudoabsorptance’ has
been defined in Stubenrauch et al. (1993) as the nor-
malized difference between the broadband LW radi-
ance, assuming no absorption, and the measured LW
radiance L y:

LLW
100 pm ’
f B(TR)dM

S pm

Ameas = 1 —_ (2)

where B is the Planck function.

Note that this term has also been called a ‘‘normal-
ized greenhouse effect’” (Raval and Ramanathan 1989)
in a different context. This quantity is sensitive to the
IR brightness temperature and the viewing zenith an-
gle, as can be seen in Fig. 7, which shows A as a func-
tion of IR brightness temperature (related to emission
height) for different viewing zenith angles calculated
with a radiative transfer model (Kneizys et al. 1988)
for a midlatitude winter model atmosphere. These cal-
culations have been made only for homogeneous
‘‘black’” emitting surfaces. To eliminate the tempera-
ture correlation, we subtract from the measured and
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angular corrected A ™ the pseudoabsorptance A ™ at
temperature Ty, found by the model for opaque clouds,
which we have parameterized as

96.88 + 0.44T g,
for midlatitude winter (3)
—98.30 + 0.44T},

for midlatitude summer and Tropics.

A model —

4

The new variable A™* — A™! should indicate the
difference between homogeneous opaque clouds and
the measured scene. Indeed, Fig. 8 shows a slight in-
crease of the average A™* — A™* for cirrus clouds
compared to the value for opaque clouds with the same
IR temperature, but the distributions are very broad, as
the standard deviations indicate. The small difference
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FiG. 5. Spatial resolution effect on temperature variance: (a) av-
erage o;xicac With its standard deviation for 9 AVHRR cloud classes,
(b) average 03x3rpe With its standard deviation for 14 AVHRR cloud
fields, and (c) average 0.017 In(1 + o3x3erpe) With its standard
deviation for 14 AVHRR cloud fields.
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between opaque and cirrus clouds may come from the
fact that T\ describes the ‘‘radiative’’ height of clouds,
so the semitransparency of the (in Tiz) cirrus clouds
that appear warmer is taken into account. Therefore,
A™™ differs from A™*' only due to the larger hetero-
geneity of cirrus.

5. Dynamic clustering method

This clustering method (Diday and Simon 1980)
was initially adapted to Meteosat data (Seze and Des-
bois 1987). First the n variables to be used are defined
and then the data are clustered in the n-dimensional
space of these variables, each cluster corresponding to
a cloud class. To compensate for the different ranges
of the variables, different weights are used for each

_ variable. More precisely, in our case, if (x) is the mean
value and o, is the variance of the variable x, it is scaled
to (x — (x))/o,.

Six nights per month correspond to about 25 000
ocean pixels at ERBE resolution. In the first step, one
randomly chooses NF points out of the studied data
sample and assigns them to N different classes, each
containing F pixels representing the kernels of the
class. To use most of the data points, we have chosen
N =75 and F = 300. Then, the remaining data points
are assigned to the class with the nearest center of grav-
ity (according to Euclidean distance in the variable
space), taking into account the variance of the kernel.
Thus, for each remaining point, one calculates D = X(x
— {Xeme1))* + O eme for all classes and assigns the point
to the class corresponding to the minimal D. The cen-
ters of gravity and variances of the classes are then
recalculated, now using all the points.

In the next step, the new kernels are determined by
taking F nearest points to the centers of gravity. Then
centers of gravity and variances are calculated for these
new kernels. One continues the iterations until the dis-
tance between the centers of gravity of a class and the
corresponding kernel remains constant.

FiG. 7. Atmospheric pseudoabsorptance A as a function of Ty for
opaque homogeneous clouds, calculated by the radiative transfer
model LOWTRANT7 for zenith viewing angles 6 between 0° and 70°.

Once the clear-sky regions are eliminated by the
AVHRR threshold test (section 3a), we apply the dy-
namic clustering method only to cloudy scenes for
cloud field classification. We hope to distinguish cloud
classes with different height, opacity, and cloud cover.
For comparison, we use three different sets of variables
in the dynamic clustering method:

1) T\ — Tyur and 0.01T 1R (1 + 03x3er8E),

2) T Ty, 001TR(1 + o3x3eree) and
T(11 ym) — T(12 pum), and

3) T Ty, 001TR(1 + o0o3x3eree) and

A meas __ A model

In January, the clustering yields 14-16 classes.
When two classes are very close, a new kernel is de-
fined by merging these two classes and reapplying the
dynamical clustering. Eventually, 10 cloud field classes
have been determined by using two variables, whereas
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FiG. 8. Average A™* — A™*! and its standard
deviation for 14 AVHRR cloud fields.
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FiG. 9. Characteristics of clustering cloud fields: (a) 10 cloud fields with Tjx — Tir and 0.017 In(l + Oaxapxer) clustering; (b) 12

cloud fields with Tijx —
0.01Tig In(1 + Gaxarsr), and A™* — A™! clustering.

we are left with 12 cloud field classes when three vari-
ables are used.

Figures 3d-f show the three different cloud-field-
type maps resulting from the clustering method for the
meteorological situation of 4 January 1986. Classes 1
to 10 or 12 are colored from gray (cold) to orange
(warm). To give these classes names, we identify each
class by the most frequent AVHRR cloud type inside
the class. Several classes are a mixture of two or more

Tor» 0.01T g In(1 + 03xseree), and T(11 um) — T(12 pm) clustering; and (c) 12 cloud fields with Tz —

Tsurf»

AVHRR cloud types. In another column of the picture
legends, an indication of the Tz heterogeneity is given
(from analysis of Fig. 9): the symbol ‘-’ denotes
homogeneity and ‘‘/’’ denotes heterogeneity. After a
first look at these maps, it seems that all sets of vari-
ables give good results.

To study more quantitatively the difference between
these cloud fields, we consider their mean physical
characteristics, such as T\x — T, 0017 In(1
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+ o3seree ), GAC cloud cover, AVHRR determined
cirrus amount {by 7(11 gm) — T(12 pm)], and HIRS/
MSU cloud-top pressure (see next section). The av-
eraged quantities with their standard deviations are
shown for each cloud field type in Fig. 9, separately for
each of the three clusterings.

One observes that by using only two variables, the
resulting 10 cloud fields correspond to 5 IR tempera-
tures, each divided into 2 classes of different homo-
geneity. Six cloud fields (1-6) are overcast and 4 are
mostly cloudy (cloud cover varying between 55% and
70%). Five cloud field classes (3—7) with IR temper-
atures between —35° and —10°C have more cirrus
clouds (around 50%) than the others, but the distri-
butions are very wide, leading to the concluston that a
class assigned as cirrus can often be misclassified. By
looking at the cloud top pressure one can distinguish 7
cloud fields with high clouds (1-7), 2 with midlevel
clouds, and 1 with low-level clouds (8).

By using as a third variable, the 7(11 pym) — T(12
pm) difference, one improves the separation between
opaque and cirrus clouds, as can be seen in the cirrus
amount diagram of the second row in Fig. 9. Again, 5
cloud classes are mostly cirrus (3, 4, 6, 7, and 10), but
this time cirrus amount varies from 50% to 90%. Half
of the classes are overcast (1—6) and the others vary
from 45% to 85%. The cloud-top pressures of these
classes reveal 6 high cloud (1-4, 6, 7), 3 mid-high

.cloud (5, 10, 11), 2 midlevel cloud (9 and 12), and 1
low-level cloud class (8).

The third set of variables leads again to 12 classes,
in which cirrus and opaque clouds are much less sep-
arated than with the second set of variables. The cloud
fields are divided into 5 overcast fields (1-5) and 7
partly cloudy fields (between 55% and 85%). Six clas-
ses contain mostly cirrus (3—7 and 9) varying between
45% and 60%. As with the second set of variables, this
cloud field classification is largely structured according
to cloud height: 7 high cloud (1-7), 2 mid-high cloud
(9 and 12), 2 midlevel (8 and 11), and 1 low cloud
(10) fields. However, the large error bars for midlevel
cloud fields imply a possible misidentification for these
fields.

6. Cloud parameters from HIRS-MSU data with 31
algorithm: Comparison with AVHRR cloud types

To study other geographical regions in which the
AVHRR cloud classification that was successfully ap-
plied over the North Atlantic does not work, we inves-
tigate a cloud field classification obtained from HIRS -
MSU sounder data.

The 3I algorithm was developed to determine at-
mospheric temperature, water vapor profiles, and cloud
and surface properties (Chedin et al. 1985; Chedin and
Scott 1985). This algorithm is based on the archival of
a huge dataset of atmospheric profiles (TIGR: ther-
modynamic initial guess retrieval) from a global set of
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radiosonde measurements (Escobar 1993). It is also
based on radiative transfer calculations simulating
clear-sky and cloudy radiances of the 19 HIRS infrared
channels and the 4 MSU channels (Scott and Chedin
1981). Clear-sky and cloudy regions are detected at
HIRS resolution by a succession of seven (eight)
threshold tests at night (day) (Wahiche et al. 1986).
This detection relies very much upon the simultaneous
use of the HIRS and the MSU channels, the latter of
which probes through the clouds. Then the data are
merged into 100 km X 100 km boxes. Temperature
inversion and cloud parameter determination are per-
formed at this resolution.

For cloud parameter determination, the radiances of
four channels in the 15-um CO, band and one channel
in the 11-ym window channel are used. Cloud-top pres-
sure and effective cloud amount are determined by
comparing the measured radiances to calculated cloudy
and clear-sky radiances at 23 pressure levels for the
retrieved atmospheric conditions. A detailed descrip-
tion of the cloud detection algorithm and the recently
improved cloud parameter determination can be found
in Stubenrauch et al. (1996).

The 3I cloud field classification considers high
opaque, cirrus, thin cirrus, midlevel, and low clouds.
Each of these cloud types can appear overcast or partly
cloudy, leading to 10 different cloud fields. In addition,
a partly cloudy cumulus field is defined, with clouds of
smaller spatial scale than those of the low-level partly
cloudy field.

Three variables govern the classification.

1) Cloud height is given in terms of cloud-top pres-
sure p.q and the associated cloud-top temperature T,.
The cloud height thresholds have been defined accord-
ing to the International Satellite Cloud Climatology
Project (ISCCP) standard (Rossow and Schiffer
1991): pag < 440 hPa for high clouds and p,y > 680
hPa for low clouds. The cloud-top pressure is con-
verted, with the help of the atmospheric profile, to a
cloud-top temperature indicating the ‘‘real’’ height of
the cloud. The measured 11-pm brightness tempera-
ture, on the other hand, indicates the ‘‘radiative’’ height
of the cloud.

2) Cloud opacity is then correlated to the difference
of calculated cloud-top temperature and 11-um bright-
ness temperature 7T,y — T(11 pm), since semitranspar-
ent cirrus clouds appear warmer at 11 ym than opaque
clouds at the same altitude. By the same token, when
opaque and semitransparent clouds have the same
brightness temperature at 11 pm, the semitransparent
clouds are higher. The effective cloud amount alone is
not sufficient to distinguish between high opaque and
cirrus clouds, because it contains only combined infor-
mation on cloud thickness and cloud cover.

3) Overcast cloud fields are distinguished from
partly covered cloud fields by the effective cloud
amount Ne .
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The thresholds for this cloud field classification were
determined (Stubenrauch et al. 1996) by studying these
three variables for the AVHRR cloud fields.

Figures 10a,b represent cloud type and cloud cover
as obtained by the 31 algorithm at 100-km resolution
for the meteorological situation shown in Fig. 2. In
spite of the coarser resolution, strong agreement is seen
with the IR image of Fig. 2 as well as with the AVHRR
classification in Fig. 3. Pixels characterized as edges by
AVHRR, which appear frequently, are even more pre-
cisely identified by the 3I classification as midlevel or
low-level clouds. In addition, the region between the
high opaque clouds and the low-level overcast cloud
field, which was identified as having overcast edges by
AVHRR, seems to be more clearly determined as partly
cloudy by the 3I classification. Since different atmo-
spheric and surface conditions are taken into account
in the 31 algorithm, this algorithm and cloud field clas-
sification can be applied over the whole globe.

7. Cloud influence on outgoing LW fluxes

In the following, we study the emitted LW flux Fjy,
as a function of cloud-top temperature T4 for different
cloud fields. The emitted LW flux is measured by ERBE,
whereas the cloud-top temperature is determined by the
31 algorithm. Figure 11a shows F}y as a function of T
for the nine overcast AVHRR cloud fields. [ This figure
differs slightly from Fig. 6a in Stubenrauch et al.
(1996), because here overcast AVHRR cloud fields are
defined with a cloud cover higher than 80%, whereas
Stubenrauch et al. (1996) had a more strict definition of
higher than 90%.] The broken line represents the theo-
retically emitted LW flux corrected for the absorption of
the atmosphere [0;T* — A(Tr)FLw]. While the out-
going LW flux is well represented by the theoretical
curve for high, midlevel, and low opaque clouds at a
given cloud-top temperature, the emitted LW flux is
higher for partially covering cloud types such as cu-
mulus, edges, and especially the different cirrus clouds.
The dataset reveals clearly that cirrus clouds have a
smaller warming effect than high opaque or even mid-
level opaque clouds during night.

Figure 11b shows F\y as a function of cloud field
temperature T} for the 11 3I cloud fields. Cloud-
top temperature and cloud field temperature are the
same for overcast cloud fields. In the case of partial
cloud cover, the scene is better described by the
cloud field temperature, which is higher than the
cloud-top temperature (because part of the earth’s
surface appears). Since the cloud top and surface ra-
diances add up linearly when weighted by the (ap-
parent) cloud cover, the cloud field temperature can
be calculated from the 3I cloud-top temperature T,
ECMWEF surface temperature T, [Eq. (1)], and
GAC cloud cover (cov) as

Thaa = [covT g + (1 —cov)Ti1"*.  (5)
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Fic. 10. Satellite data analysis of situation in Fig. 2: (a) 31 cloud
type, (b) 31 cloud cover, and (c) 3I cloud field type.
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Fic. 11. Emitted LW flux as function of cloud top or cloud field
temperature: (a) for 9 overcast AVHRR threshold cloud fields, (b)
for 11 31 cloud field types, and (c) for 12 ScaRaB dynamic clustering
cloud field types.

The emitted LW flux can then be described by the theo-
retical emitted LW flux for opaque clouds, including
the partly cloudy ones within 10 W m~2. Again, one
can observe that the emerging LW flux is higher above
cirrus cloud fields than it is above opaque, high, and
midlevel cloud fields, because of the partial transmis-
sion of earth-emitted LW radiation. It should be noted
that the cloud field temperature contains the cloud
cover, whereas the scene temperature [defined in Stu-
benrauch et al. (1996), Eq. (4)] contains the effective
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cloud amount. When the effective cloud amount is in-
cluded, the emitted LW flux can be described by one
theoretical expression for all cloud fields, whereas the
theoretical expression works only for opaque clouds
when the cloud cover is included in the pixel tem-
perature.

In Fig. 1lc, one can see Fiyw as a function of Tj.y
for the 12 cloud fields obtained from the clustering
method using the ScaRaB variables [T\x — Ty,
OOIT}R(I + U3X3ERBE) and A™* — AmOdCI]. While one
can easily see from the AVHRR cloud field types and
the 3I cloud field types that semitransparent cirrus
clouds have a smaller heating effect than high opaque
clouds during night, there is much less distinction be-
tween the different ScaRaB cloud field types. In par-
ticular, the cloud field temperature is determined badly
(large error bars) for several cloud field classes, im-
plying the possibility of poorly defined or misidentified
classes.

From Fig. 11 we conclude that if one wants to study
cloud radiative effects in detail, one should use collo-
cated sounding ERB or imager ERB data. On the other
hand, one could define some cloud field types with
ScaRaB data in order to get an initial impression of the
cloud situation over the globe. For this purpose, distri-
butions of the best-suited variables for a ScaRaB cloud
field classification, as determined in section 4, are stud-
ied in the next section for the different 3I cloud field

types.

8. Investigating another cloud field classification
method in comparison to 3I cloud fields

By using the dynamical clustering method, one can
detect different cloud fields without any a priori knowl-
edge, although it is difficult to assign names to the clus-
tering cloud field types. On the other hand, the 3I cloud
field classification can serve as a reference on a global
scale for a cloud field classification using ScaRaB data.
Then one can determine the mean values of the three
quaﬂtities T]R d T5urf, OOIT]R 11'1(1 + d3><3ERBE)a and
Ames — A™% for the 11 31 cloud fields and use these
as the kernel mean values for the clustering method. In
this case, when the kernels of the classes are determined
in advance, the clustering method reduces to an MLE
method. Here, kernels have to be found for different
seasons and geographical regions.

The average values and standard deviations of the
quantities Tjg — Ty, and 0.017 g In(1 + O3x3eree) are
represented as a two-dimensional plot in Fig. 12a for
the 11 3I cloud field types. To study the change of mean
values with season and geographical region, we look
at four means for each 3I cloud field type: July and
January over the North Atlantic and the tropical Atlan-
tic. Since these variables overlap between several cloud
fields, it is certainly not possible to detect as many as
11 different cloud field types with the ScaRaB instru-
ment. Examination of Fig. 12b (in which averaged val-
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FiG. 12. Characteristics of 31 cloud fields, in July and January in
the North Atlantic and tropical Atlantic (a) averaged Tir — T and
0.017g In(1 + o3x3krer) With variances for 11 3I cloud field types,
and (b) averaged Tip — Ty and A™* — A™ with variances for 11
31 cloud field types.

ues of Tijgp — T and A™™ — A™! are plotted with
their standard deviations) for the 11 31 cloud field types
again shows that A™* — A™%! should enhance the dis-
tinction between cloud field classes, even when the dis-
tribution of this variable is much broader and depen-
dent upon season and region. These two diagrams help
us to determine different kernel mean values of the
three variables in order to distinguish between several
cloud field classes.

We conclude that during nighttime it should be pos-
sible to discriminate between about seven cloud field
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types using ScaRaB LW and IR window measurements
alone. After chosing seven kernel mean values of the
three variables in Fig. 12, a simple MLE algorithm is
applied to the North Atlantic data. These cloud field
types { with their corresponding kernels in Tig — Ty,
0.01T\x In(1 + o3x3erpe), and A™® — A™%'] are high
opaque overcast ( —45°C, 5°C, —4%), cirrus overcast
(—35°C, 6°C, 0%), midlevel overcast (—25°C, 5°C,
—2.5%), high partly cloudy (—20°C, 5.5°C, —1%),
midlevel partly cloudy (—10°C, 4°C, —1%), low over-
cast (—8°C, 1.5°C, —3%), and low partly cloudy
(—=5°C, 2.5°C, —2%).

The ScaRaB cloud field map, shown in Fig. 13,
shows an encouraging result. From this map it is clear
that with ScaRaB data alone it is possible to give a
rough description of the meteorological situation. How-
ever, the outgoing LW flux distributions of these dif-
ferent cloud field types are much too broad for differ-
ences between opaque and semitransparent cloud fields
to be distinguished. (Fig. 14).

9. Summary and conclusions

At the coarse spatial resolution of ERB observations,
it is still possible to identify cloud fields according to
cloud height, opacity, and cloud cover, but only by us-
ing sounding data, which has good spectral resolution.
Three cloud heights, three opacities, and two cloud
covers (overcast and partly cloudy) can be distin-
guished. Hence, by combining ERB broadband radi-
ance measurements from ERB experiments (such as
ERBE, ScaRaB, or later on CERES) with cloud field
classification from sounding instruments (such as the
31 cloud algorithm applied on HIRS/MSU), one can
distinguish the cloud-induced radiative flux change of
different cloud field types. It is very interesting to com-
pare these cloud-induced flux changes to those calcu-
lated in general circulation model climate simulations.

low
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601
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overcast
midlevel
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high
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overcast 40

cirrus
overcast

high opaq
overcast

FiG. 13. Satellite data analysis of situation in Fig. 2: 7
ScaRaB MLE cloud field types.
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FiG. 14. Emitted LW flux as a function of cloud field temperature
for seven ScaRaB MLE cloud field types: hgh opaq, high opaque
overcast; cirrus, cirrus overcast; Ciedg: high partly cloudy; mid, mid-
level overcast; Cum, midlevel partly cloudy; low p.c., low partly
cloudy; low ov, low overcast.

In this study we simulated ScaRaB data by collocat-
ing broadband ERBE measurements with narrowband
AVHRR measurements. It was shown that with
ScaRaB data alone one could define roughly about
seven cloud field types during nighttime (high opaque
overcast, cirrus overcast, midlevel overcast, high partly
cloudy, midlevel partly cloudy, low overcast, and low
partly cloudy), yielding an initial impression of the
cloud situation over the globe and allowing the calcu-
lation of SW angular corrections for these different
cloud fields. From the variables available during night,
the difference between IR window brightness temper-
ature and surface air temperature Tijx — T, and the
scaled IR temperature variance 0.017g In(1 + o0343)
over nine ScaRaB pixels is the best suited for global
cloud field identification. A third variable combining
narrowband and broadband LW measurements A ™
— A™* could slightly enhance the distinction between
high opaque and semitransparent cirrus clouds, but this
variable creates large uncertainties. With the dynamic
clustering method one can still identify about 11 cloud
field types, but these are much less distinct than the 31
or AVHRR cloud field types. This method seems to
give better results than a maximum-likelihood estimate
in which a certain number of predefined mean values
for the kernels is used, but the resulting cloud field
classes are much more difficult to interpret. By com-
paring these variables for the 3I cloud field types over
different seasons and geographical regions (separately
for land and ocean), it may be possible to establish a
library with means and variances for about seven
ScaRaB cloud field types during night. For the deter-
mination of the means it is important to analyze a large
number of cases. Then, a maximum likelihood estimate
method could be applied, which has the advantage over
the dynamic clustering method that the cloud field
types are the same for all seasons and regions and hence
easier to interpret. ‘

JOURNAL OF APPLIED METEOROLOGY

* VOLUME 35

Acknowledgments. We thank M. Derrien and A.
Marsouin for fruitful discussions, and also W. B. Ros-
sow for his interesting comments. We also appreciate
the very valuable comments from three anonymous re-
viewers that helped us to shape and improve this article.
This work was supported in part by the Commission of
European Communities in the context of the European
Cloud-Radiation Experiment.

REFERENCES

Barkstrom, B. R., 1990: Earth radiation budget measurements: Pre-
ERBE, ERBE and CERES, SPIE Proc. 12999 Long-Term Mon-
itoring of the Earth’s Radiation Budget, Orlando, FL, SPIE, 52—
60.

——, E. F. Harrison, G. L. Smith, R. Green, J. Kibler, R. Cess, and
the ERBE Science Team, 1989: Earth Radiation Budget Exper-
iment (ERBE) archival and April 1985 results. Bull. Amer. Me-
teor. Soc., 70, 1254-1262.

Baum, B. A., R. F. Arduini, B. A. Wielicki, P. Minnis, and S.-C.
Tsay, 1994: Multilevel cloud retrieval using multispectral HIRS
and AVHRR data: Nighttime oceanic results. J. Geophys. Res.,
99(D3), 5499-5514.

Bengtsson, L., 1991: Advances and prospects in numerical weather
prediction. Quart. J. Roy. Meteor. Soc., 117(501), 855-902.

Berger, F., 1992: The influence of high clouds on climate. Proc.
Central Symp. on Int. Space Year Conf., Munich, Germany, ESA
SP-341, 105-109.

Cess, R. D., and Coauthors, 1990: Intercomparison and interpretation
of climate feedback processes in 19 atmospheric general circu-
lation models. J. Geophys. Res., 95(D10), 16 601-16 615.

Charlock, T. P., and V. Ramanathan, 1985: The albedo field and
cloud radiative forcing produced by a general circulation model
with internally cloud optics. J. Atmos. Sci., 42, 1408-1429.

Chedin, A., and N. A. Scott, 1985: Initialization of the radiative trans-
fer equation inversion problem from a pattern recognition type
approach: Application to the satellites of the TIROS-N series.
Advances in Remote Sensing Retrieval Methods, A. Deepak,
495-515.

—, N. A. Scott, C. Wahiche, and P. Moulinier, 1985: The im-
proved initialized inversion method: A high resolution physical
method for temperature retrievals from Tiros-N series. J. Cli-
mate Appl. Meteor., 24, 124—143.

Coakley, J. A., Jr., and F. P. Bretherton, 1982: Cloud cover from high
resolution scanner data: Detecting and allowing for partially

filled fields of view. J. Geophys. Res., 87, 4917-4932.

, and D. G. Baldwin, 1984: Towards the objective analysis of

clouds from satellite imagery data. J. Climate Appl. Meteor., 23,

1065-1099.

Derrien, M., B. Farki, L. Harang, H. Le Gléau, A. Noyalet, D. Pochie,
and A. Sairouni, 1993: Automatic cloud detection applied to

NOAA-II AVHRR imagery. Remote Sens. Environ., 46, 246—
267.

Diday, E., and J. C. Simon, 1980: Clustering analysis. Digital Pattern
Recognition, K. S. Fu, Ed., Springer Verlag, 47-94.

Escobar, J., 1993: Base de données pour restitution de parameétres
atmosphériques a 1’échelle globale, Etude sur I’inversion par
réseaux de neurones de données des sondeurs verticaux atmos-
phériques satellitaires présents et a venir, Ph.D. dissertation,
Univ. Pierre et Marie Curie, 167 pp. [Available from LMD,
Ecole Polytechnique, 91128 Palaiseau cedex, France].

Harrison, E. F., P. Minnis, B. R. Barkstrom, V. Ramanathan, R. D.
Cess, and G. G. Gibson, 1990: Seasonal variation of cloud ra-
diative forcing derived from the Earth Radiation Budget Exper-
iment. J. Geophys. Res., 95(D11), 18 687—18 703.

Kneizys, F. X., E. P. Shettle, L. W. Abrieu, J. H. Chetwynd, G. P.
Anderson, W. O. Gallery, J. E. A. Selby, and S. A. Clough,
1988: Users Guide to LOWTRAN7, AFGL-TR-88-0177.
[Available from AFGL (OPI), Hanscom AFB, MA.]

Unauthenticated | Downloaded 03/27/21 06:20 AM UTC



MARCH 1996

Kriebel, K. T., and R. W. Saunders, 1988: An improved method for
detecting clear sky and cloudy radiances from AVHRR data.
Int. J. Remote Sens., 9, 123—-150.

Llewellyn-Jones, D. T., P. J. Minnett, R. W. Saunders, and A. M.
Zavody, 1984: Satellite multichannel infrared measurements of
sea surface temperature of the N.E. Atlantic Ocean using
AVHRR/2. Quart. J. Roy. Meteor. Soc., 110, 613-631.

Monge, J. L., R. S. Kandel, L. A. Pakhomov, and V. 1. Adasko, 1991:
ScaRaB earth radiation budget scanning radiometer. Metrolo-
gia, 28, 261-264.

Ockert-Bell, M. E., and D. L. Hartmann, 1992: The effect of cloud

type on earth’s energy balance: Results for selected regions. J.
Climate, 5, 1157-1171.

Prabhakara, C., R. S. Fraser, G. Dalu, C. Wu Man-Li, and R. J. Cur-
ran, 1988: Thin cirrus clouds: Seasonal distribution over oceans
deduced from Nimbus-4 IRIS. J. Appl. Meteor., 27, 379-399.

Raval, A., and V. Ramanathan, 1989: Observational determination
of the Greenhouse Effect. Nature, 342, 758-761.

Rossow, W. B., and R. A. Schiffer, 1991: ISCCP cloud data products.
Bull. Amer. Meteor. Soc., 72, 1-20.

-——— and L. C. Garder, 1993: Cloud detection using satellite mea-
surements of infrared and visible radiances for ISCCP. J. Cli-
mate, 6, 2341-2369.

——, and Coauthors, 1985: ISCCP cloud algorithm intercomparison.
J. Climate Appl. Meteor., 24, 877-903.

Scott, N. A., and A. Chedin, 1981: A fast line-by-line method for
atmospheric absorption computations: The automized atmo-
spheric absorption atlas. J. Appl. Meteor., 20, 802—-812.

Seéze, G., and M. Desbois, 1987: Cloud cover analysis from satellite
imagery using spatial and temporal characteristics of the data.
J. Climate Appl. Meteor., 26, 287-303.

STUBENRAUCH ET AL.

443

Slingo, A., and J. M. Slingo, 1991: Response of the National Center
for Atmospheric Research Community Climate Model to im-
provements in the representation of clouds. J. Geophys. Res.,
96(8), 15341-15337.

Stowe, L. L., E. P. McClain, R. Carey, P. Pellegrino, G. G. Gutman,
P. Davis, C. Long, S. Hart, 1991: Global distribution of cloud
cover derived from NOAA/AVHRR operational satellite data.
Adv. Space Res., 11, 351-354.

Stubenrauch, C., 1993: Co-location of AVHRR, ERBE and HIRS/
MSU data. Internal Note no 185, Laboratoire de Météorologie
Dynamique, 9 pp. [Available from LMD, Ecole Polytechnique,
91128 Palaiseau, Cedex, France. ]

——, J.-Ph. Duvel, and R. S. Kandel, 1993: Determination of long-
wave anisotropic emission factors from combined broad- and
narrowband radiance measurements. J. Appl. Meteor., 32, 848—
856.

——, N. A. Scott, and A. Chedin, 1996: Cloud field identification
for earth radiation budget studies. Part I: Cloud field classifi-
cation using HIRS-MSU sounder measurements. J. Appl. Me-
teor., 35, 416-427.

Susskind, J., D. Reuter, and M. T. Chahine, 1987: Cloud fields re-
trieved from analysis of HIRS2/MSU sounding data. J. Geo-
phys. Res., 92(D4), 4035-4050.

Wahiche, C., N. A. Scott, and A. Chedin, 1986: Cloud detection and
cloud parameters retrieval from the satellites of the TIROS-N
Series. Ann. Geophys., 4B, 207-222.

Wielicki, B. A., and R. N. Green, 1989: Cloud identification for
ERBE radiative flux retrieval. J. Appl. Meteor., 28, 1133—
1146.

Wylie, D. P., and W. P. Menzel, 1989: Two years of cloud cover
statistics using VAS. J. Climate, 2, 380-392.

Unauthenticated | Downloaded 03/27/21 06:20 AM UTC



