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Automatic Classification of Clouds on METEOSAT Imagery:
Application to High-Level Clouds
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Laboratoire de Météorologie Dynamique du CNRS, Ecole Polytechnique-91128 Palaiseau Cedex, France

(Manuscript received 19 August 1981, in final form 29 November 1981)

ABSTRACT

A statistical classification method based on clustering on three-dimensional histograms is applied to the
three channels of the METEOSAT imagery [Visible (VIS)-Infrared Window (IR)-Infrared Water Vapor
(WV)]. The results of this classification are studied for different cloud cover cases over tropical regions.
For high-level cloud classes, it is shown that the bidimensional histogram IR-WYV allows one to deduce the
cloud top temperature even for semi-transparent clouds.

1. Introduction

The problem of cloud classification from satellite
imagery has been studied by scientists applying dif-
ferent methods according to the purpose of the re-
search. In most operational uses, visual cloud clas-
sification (nephanalysis) is done by trained operators
from VIS and IR imagery.

Automatic methods are primarily used for cartog-
raphy of the cloud-top level, for example in ESOC
(European Space Operation Center). For cloud clas-
sification itself, methods using typical classes defined
by meteorologists have been tried, for example, in
the French Center for Spatial Meteorology. The
methods work relatively well in pure cloud cases, but
fail with intermediate classes or mixed-cloud layers.

However, for research on mesoscale meteorology
or for numerical modeling, there is a need for more
precise and entirely objective classification. This clas-
sification essentially refers to the radiative properties
of the clouds, which have a direct effect on the phys-
ics of the model, i.e., the approach of Shenk et al.
(1976), Reynolds and Vonder Haar (1977) and of
Chen et al. (1980). Two- or three-dimensional his-
tograms are extracted from the imagery, the major
problem being how to separate classes on these kinds
of diagrams. Most methods are based on the deter-
mination of thresholds in the different channels
{Shenk et al., 1976). At the European Space Op-
eration Center, which monitors METEOSAT, at
least two methods have been tried (Bowen et al.,
1979): successive separations on monodimensional
histograms and an interactive method where the op-
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erator himself chooses visually the classes on a rep-
resentation of the histogram on a TV screen.

At the international scale, it has been proposed
(Smith et al., 1981) to archive all the meteorological
imagery satellite data in the form of simplified bi-
dimensional histograms (the aim is to keep the ra-
diative information).

In all the classifications using VIS and IR window
channels only, an indeterminancy rises for semi-
transparent clouds. This indeterminancy can be over-
come by using another IR channel, e.g., the water
vapor channel (5.7-7.1 um) in the case of METEO-
SAT (Cayla, 1978; Szejwach, 1982). Note that this
channel is also taken into account by the European
Space Agency in cloud-top temperature determina-
tion.

In this paper, we propose to use both the infor-
mation of the water-vapor channel and a statistical
method of three-dimensional histogram partition to
obtain better classifications for mesoscale cases in
tropical regions. We will first describe the histogram
partition method (clustering method), then show and
discuss some examples of analyses, and finally pro-
pose an application for the determination of semi-
transparent cloud-top temperatures.

2. Clustering method

Clustering methods have the advantage of forming
natural data groupings, without a priori classifica-
tion. The classes which are found depend on the set
of data analyzed. Clusters are not limited by straight
lines or plane surfaces, as it is the case in threshold
methods. This is particularly well adapted to histo-
grams of cloud coverage, where it can be seen that
the grouping of points can hardly be attributed to
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FiG. 1. Example of a VIS-IR bidimensional histogram where classes
can be identified visually.

rectangular areas, but better to oblong shapes with
major axes not parallel to the axes of the diagram.

The method used here, the dynamic cluster method,
has been presented by Diday and Simon (1976). It
has been adapted here for the particular case of
METEOSAT, working on the three channel spectral
representation of the image segments (VIS-IR-WYV),
In other words, classes must be separated on three-
dimensional histograms. We do not use any training
set, i.e., there is no a priori classification of any of
the points of the histogram. It is well known (Bizzari,
1976; Desbois, 1978) that in simple cases two-di-
mensional histograms show (Fig. 1) that every well-
defined type of cloud can be associated with a spec-
ified spectral signature on the diagram. Although
general cases of histograms are not so simple, it can
be assumed that every kind of cloud is represented
in the spectral domain by a compact subset of the

projection of the image segment in this domain; i.e.,

all the points of the same subset are close, according
to the Euclidian distance, and all the subsets are
disjoint.

In the case of METEOSAT, the spectral domain

is three-dimensional (VIS-IR-WYV). The method can
be summarized as follows:

1) A given number N of classes is chosen.

2) A set of F points is then chosen randomly for
each class. This set is called kernel of the class.

3) For each kernel, the center of gravity and the
variance are calculated.

4) Classes are constructed: each point is affected
to the class of which the center of gravity of the
kernel is the closest. During this process, if the num-
ber of elements of one class becomes very smali, the
class is suppressed.

5) The center of gravity and the variance of the
classes are calculated again.

6) New kernels of F points are again defined.

7) A new iteration is begun from 3).

Iterations are carried out until the distance be-
tween the centers of gravity of a class and the cor-
responding kernel remains constant.

In this application to METEOSAT, the initial
number of classes was N = 15, and the number of
elements in one kernel F = 30.
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We worked essentially on image segments of 200 time. At the end of the process, each pixel of the
X 200 pixels (40 000), taking a sampling (learning original image segment was assigned to the class to
set) of only 8000 points to reduce the computation which it was the closest.

WATER VAPOR

FiG. 2. METEOSAT image of 1530 GMT 23 May 1979 in the tropical regions.
The three channels (VIS-IR-WV) are shown with a 200 X 200 pixel mesh.
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3. Examples of applications

The method was applied to METEOSAT images
in the tropical regions over Africa and the Atlantic
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F1G. 3. Mono-dimensional histograms (VIS-IR-WV)
for square BS. .
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Ocean. No correction was applied for the visible, but
only for restricted areas where the solar angle can
be taken as constant. The region studied is shown in
Fig. 2 (3 channels) for the image at 1530 GMT 23
May 1979. The squares are 200 X 200 pixels (IR
pixels of METEOSAT measure 5 km at the sub-
satellite point). Fifteen squares have been analyzed
on this particular image.

Due to the initial character of this study, we did
not study the transferability of the technique to
higher latitudes, with various sun angles; this is the
object of a further study now in progress. However,
it has already been noticed that the sun angle prob-
lem is at least partially solved by the method itself;
thus, for contiguous areas with the same kind of
cloud cover but different sun angles (near the ter-
minator), we found the same classes with a self-ad-
justment of the visible (general shift of the visible
values).

To prevent the effects of a bad initial random
choice of the kernels, three of these choices were
carried out for each of the segments studied before
the application of the algorithm. This could be
avoided easily, taking an initial choice with a priori
values corresponding to a general approximated clas-
sification; however, we tried here to test the method
for entirely automatic classification.

The algorithm is then applied to the three choices
on 8000 pixels chosen in the segment of 40 000
points. This number of 8000 points was determined
after testing which showed that 6000 points was a
limit to the satisfactory reproductibility of the clas-
sification.

Then, if there is a significant difference between
the three classifications obtained, the best is taken,
according to the number of classes and the value of
the distances between the centers of gravity of classes
and kernels (see Section 2) (the smaller the distance,
the better the choice). At this stage, generally, 5-7
classes remain. Finally, the classification is applied
on all 40 000 pixels.

As an example.we take the case of segment B5 on
Fig. 2. This is a complex case of a disturbed area in
the intertropical convergence zone, in the region of
the Ivory Coast. Figs. 3-6 give the statistical de-
scription of this image segment and the results of the
analysis (mono- and bi-dimensional histograms, rep-
resentation of the classes obtained on bi-dimensional
histograms, and the resulting classification of the
pixels on the image).

Mono-dimensional histograms (Fig. 3) differ sig-
nificantly from one another, which shows that the
information in the three channels will be useful for
the final classification. In particular, WV shows a
tri-modal distribution, whereas the IR is bi-modal.
Two peaks are also seen on the visible, but the one
corresponding to the brightest part of the picture is
much smaller than the other.
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Bi-dimensional histograms (Fig. 4) show stretched
and continuous shapes, on which only two or three
classes can be separated visually. It appears also that
WYV and IR are the most correlated channels, and
that VIS and WYV are the least correlated.

In this case, five classes have been separated by
the algorithm (Table 1): three have very small vari-
ances and correspond to very definite kinds of clouds:
class 1, big opaque convective clouds; class 4, low
clouds; class 5, ground or sea. The two other classes
show slightly greater variances and correspond (class
2) to the edges of big convective masses and (class
3) to semi-transparent high clouds (cirrus) escaping
from the anvils. If we look at the bi-dimensional his-
tograms VIS-IR for the individual classes (Fig. 5),
it can be seen that classes 1, 4 and 5 correspond
effectively to the clusters which could be identified
visually, whereas classes 2 and 3 correspond to in-
termediate regions difficult to separate visually. On
these diagrams, classes seem to recover themselves
slightly: in fact, they are separated on the 3D his-
togram, but not on its projections on 2D. On the 2D
histograms of class 5, it can also be seen that two
classes could still be separated from the VIS scale.
This separation has not been performed by the
method because the kernels of the two classes were
too close to one another.

The examination of the restituted picture (Fig. 6)
of the classes confirms this analysis; for example, low
clouds are found ahead of the squall line northwest
of the square, and on the sea at the southeastern
part. For the high clouds, it can be seen that they
end abruptly to the west of the squall line, whereas
they become more and more diffuse (semi-transpar-
ent) at the eastern end.

For segment B2, six classes are obtained (Table
2 and Fig. 7), three of them being very homogeneous:
classes 4, 5 and 6. Classes S and 6, with 44 and 32%

TABLE 1. Classification obtained for zone BS5 of Fig. 2. The table
gives the percentage of coverage of the analysis window by each
class, the center of gravity and the variance of each class. Units
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TABLE 2. As in Table ! but for zone B2.

VIS IR WV
Percent average average average
Class coverage (S.D.) (S.D.) (S.D.)
1 R 124 192 179
2 17 20
37 150 148
2 7 1 12 13
82 145 142
3 3 14 18 16
50 124 129
4 4 9 7 12
21 119 135
5 44 ; p >
26 112 107
6 32 ¢ 2 ]

coverage respectively, are two classes of sea, sepa-
rated from the variations observed on the water vapor

- channel. Class 4 represents small low clouds (cu-

mulus), or edges of bigger clouds (the pixels of this
class are probably only partially covered with low
clouds). There is only a very little amount (2%) of
high cloud tops (class 1), which explains the large
variance. Class 2 represents semi-transparent high
clouds (cirrus) (low visible value) whereas class 3
shows lower clouds with or without semi-transparent
cloud overcast (two distinct maxima can be seen in-
side this class on IR and WV, whereas VIS remains
at relatively high values). The separation has not
been performed for the same reason as for class 5
of segment BS.

For segment A6 (Table 3 and Fig. 8), six classes
are obtained: class 1 again corresponds to the tops
of high convective clouds or thick cirrus; class 2 to
thin cirrus; class 3 to middle-level clouds (note that

TABLE 3. As in Table 1 but for zone A6.

are numerical counts of the METEOSAT radiometers. VIS IR wv
Percent average average average
VIS R WV Class coverage (S.D.) (S.D.) (S.D.)
Percent average average average
Class coverage (8.D) (S.D) (S.D) 1 5 gg Z?g ! gg
100 219 218 34 162 174
! 18 15 10 14 2 7 8 14 11
56 195 191 47 147 145
2 18 13 13 15 3 > 15 15 12
28 151 162 26 119 153
3 17 9 14 13 4 12 8 10 13
54 134 129 25 89 139
4 7 16 13 16 5 2 8 8 10
18 111 132 34 65 126
5 38 8 9 19 6 45 5 9 9
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F1G. 4. Bi-dimensional histograms for square B5: IR-VIS; IR-WV; VIS-WV.

the WV value is very close to the value without
clouds); class 4 to very thin cirrus (colder WV, but
warmer IR than class 3); classes 5 and 6 are two
types of ground, separated by their IR and VIS val-
ues (due to vegetal cover differences). Note that in
this case, VIS values are smaller than for the other
segments, due to the vicinity of the terminator
(sunset).

These three examples, as are the other cases stud-
ied in this image or on other images, show that the
classes separated correspond effectively to cloud
types on the pictures. The three channels are effec-
tively useful independently for the separation of the
classes. From one segment to another, different
classes are found, according to the cloud types which
are present, but also to the extent of the cloud cover:
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F1G. 4. (Continued )

the discrimination between different low-cloud classes
is better when there are no high clouds, for example.
Morever, it is impossible to identify a class if there
is less than ~2% of cloud coverage with this class.
However, if contiguous segments are taken (Fig. 9),
it can be seen that there is no big discontinuity at
the edges of the squares: sometimes, two classes

merge from one square to the other; sometimes, a.

new class appears. This shows that the method sep-
arates the same kinds of clouds from one square to
another, depending only of the variety of clouds
which are present. Moreover, we have made the clas-
sification on larger squares (400 X 400), taking one
pixel out of two; the same principal classes are
found—classes with very small percentages of cov-
erage disappear and classes with small separations
merge. At least in tropical regions, as the variety of
clouds in 400 X 400 pixels segments are greater, it
seems that the final number of 6-7 classes obtained
by our method is a better representation of the dis-
tribution.

4. Application to the determination of semi-trans-
parent cloud-top temperature

We have seen in the various examples of Section
3 that there is always a significant percentage of
cloud coverage constituted by semi-transparent
clouds. It is very useful to determine accurately the
top temperature of this kind of cloud, since such

clouds play an important role in the radiation budget
and are often used as wind tracers for high tropo-
spheric levels. The top temperature of cirrus clouds
must be determined from the radiance in the IR
window channel, assuming an emissivity. This is
often done, rather crudely, from the visible image
(Liou, 1973; Platt ez al., 1980; Shenk and Curran,
1973). More recently, Szejwach (1980) proposed a
method using both IR and WV channels of ME-
TEOSAT. A similar kind of method has been pro-
posed by Cayla (1978) and is used in the European
Space Operation Center with fairly good success.

We have tried here to use such a method on classes
identified as semi-transparent clouds and not on a
chosen zone containing only semi-transparent clouds,
as was done in previous studies.

The example shown here (Fig. 10) is a segment
of 120 X 120 pixels containing high clouds, low
clouds and sea. The results of the dynamic clusters
method gave six classes:

1. Thick cirrus 3% of the area
2. Thinner Cirrus 6% of the area
3. Very thin cirrus 3 % of the area
4. Sea with very light haze 22% of the area
5. Low clouds 17% of the area
6. Sea 45% of the area

The cirrus has been decomposed into three classes—
those with very thick contour, and with two classes
of edges, more and more semi-transparent. The cor-
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FIG. 5. Classes obtained by the dynamic cluster method for square BS5,
represented on bi-dimensional histograms IR-VIS and IR-WV.

Unauthenticated | Downloaded 03/27/21 06:26 AM UTC



MARCH 1982

Fi1G. 6. Spatial distribution of the classes for square BS:
white = class 1, dark = class S.

responding bi-dimensional histograms are given in
Fig. 11.

On these histograms, we have superposed the curve
F(T) = (x, y) such as x = Fig(T), y = FyW(T),
where Fig and Fywy are functions which associate to
the temperature T of a blackbody a radiometric value
x in the IR channel and y in the WV channel (inverse
of the calibration function).

It has been shown by Szejwach (1982) that the
intersection between this curve and the principal axis
of the histogram gives a good approximation of the
temperature of the upper surface of the cloud. The
regression line corresponding to each class of cirrus
was calculated and drawn on Fig. 11 for each cor-
responding histogram. It can be seen that the inter-
section of the straight line with the curve F(T')
= (x, y) is nearly the same in each of the three cases.
The corresponding temperature is 226 K for class 1,
and 228 K for classes 2 and 3. These values may
appear a little warm for tropical cirrus, but this may
be due to the fact that this cirrus was taken northwest
of segment A2 on the picture (i.e., in the middle of
the Atlantic, above 20°N). This may be due also to
a relatively bad calibration of the METEOSAT ra-
diometer. The most important result is that we found
very similar cloud-top temperatures from classes giv-
ing very different radiances in the infrared, water
vapor and visible, the three channels being used to
perform the class separation. In this case, this is phys-
ically significant: the three classes are part of the
same cloud, in regions with different optical thick-
ness.

The same method was also applied to the other

DESBOIS, SEZE AND SZEIJWACH
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FiG. 7. Spatial distribution of the classes for square B2:
white = class 1, dark = class 6.

squares studied in this paper. In regions with con-
vective clouds, the first class (top of clouds) sur-
rounds the curve F(T) = (x, y), which was expected
for clouds radiating as blackbodies. The dispersion
around this curve can be attributed to—noise on the
image, specially on the water-vapor channel (the sig-
nal is weak for low temperatures and the signal-to-
noise ratio becomes significant) and a non-perfect
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F1G. 8. Spatial distribution of the classes for square A6:
white = class 1, dark = class 6.
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F1. 9. Results of the classification for (a) four adjacent squares
of 200 X 200 pixels and (b) a large square of 400 X 400 pixels
covering the same area.

alignment of the two images IR and WV (the pixels
are not covering themselves exactly, from a fraction
of a pixel). Moreover, the calibration of the ME-
TEOSAT radiometer, specially for the water vapor
channel, is not very accurate, and the curve F(T)
= (x, y) is also approximate (Roulleau er al., 1980;
Bériot et al., 1982). Nevertheless, the present method
of cloud-top temperature determination remains va-

JOURNAL OF APPLIED METEOROLOGY
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lid, as it allows correction of the apparent temper-
atures of quantities much greater than the above
determinations. In the same regions of convective
clouds, the second and sometimes third class are
semi-transparent clouds which permit application of
the method—it is generally found that the cirrus
temperature is a little above that of class 1, but there
are some cases of obviously bad determination due
to partial cloud cover underlaying the high-level
clouds; this method requires an homogeneous IR
background to work properly.

5. Conclusions

The dynamic clusters method proves to be useful
to extract objective information for cloud classifi-
cation from the three channels of METEOSAT.
However, there remains a need of in-situ data for
validation of the classifications obtained. On another
hand, the method still consumes too much computer
time for operational uses: at the present stage, it
takes 55 s on a Cyber 750 computer to perform a
classification on a square of 200 X 200 pixels, with
a sampling of 8000 pixels. If the initial choice of
kernels is done from a pre-established classification
(for example, from the classification on a preceding
image), the number of iterations decreases, and it
is also possible to reduce the sampling. Thus for 6000
points, the time becomes 13 s. Much time could still
be saved by other ways such as taking a less severe
criterion for stopping the iterations, starting from

F1G. 10. Spatial distribution of the classes for the case study
of a cirrus (120 X 120 pixels).

Unauthenticated | Downloaded 03/27/21 06:26 AM UTC



MARCH 1982

DESBOIS, SEZE AND SZEJWACH

411

a
240
Cold
200
.;':210 228
[
2
o
-t —
hr | x
g | 250 ~—
E 170 I ‘&J
T | 2
§ ] &
é I 275 E
. | —
Z 130
!
|
I
I
20 |
‘ 300
Warm i 1
80 100 140 180 220 [O‘d
wWarm WATER VAPQUR CHANNEL (Counts)
240
Cold
—~{ 200
e 210 B e e T e e - 228
2
=3
2
o -—
bt E 3
= -~ 250
g 170 ul
3 2
5 %
g g
% s m
E 130 -
z
°0
— 300
Warm 1 ) ] AN 1 | { i
Warm 60 100 140 180 220 Cold
WATER VAPOUR CHANNEL { Counts

Fi1G. 11. Determination of the cirrus top temperature for the three classes of cirrus
(see text for explanation).

much larger areas (for example, 400 X 400 pixels)
with the same initial sampling of 8000 points, or
using an array processing computer. For operational
uses, certain natural cloud classes could be found
using clustering for rather large regions and by sea-
sons. Thereafter, cloud types could be assigned au-
tomatically without clustering.

Work must be done for the adaptation of such
methods of clustering to operational uses, but they

can already be used in research studies: for example,
as the classification is based on the radiative prop-
erties of the clouds, it seems appropriate to use it for
atmospheric circulation models. Therefore, the
method is now being extended to larger areas, to
introduce the resulting analysis in the experimental
general circulation model of the Laboratoire de Mé-
téorologie Dynamique.

It is also intended to use this method for mesoscale
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F1G. 11. (Continued)

studies, especially when a network of in-situ mea-
surements is available.

As far as cirrus-top temperature determination is
concerned, the good separation of semi-transparent

clouds by the algorithm makes it possible to apply,

successfully the IR-WYV histogram method.
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