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ABSTRACT

Distributed Denial of Service (DDoS) attacks are still among the most dangerous attacks on the Inter-
net. With the advance of methods for detecting and mitigating these attacks, crackers have improved
their skills in creating new DDoS attack types with the aim of mimicking normal traffic behaviour
therefore becoming silently powerful. Among these advanced DDoS attack types, the so-called low-
rate DoS attacks aim at keeping a low level of network traffic. In this paper, we study one of these
techniques, called Reduction of Quality (RoQ) attack. To investigate the detection of this type of at-
tack, we evaluate and compare the use of four machine learning algorithms: Multi-Layer Perceptron
(MLP) neural network with backpropagation, K-Nearest Neighbors (K-NN), Support Vector Machine
(SVM) and Multinomial Naive Bayes (MNB). We also propose an approach for detecting this kind of
attack based on three methods: Fuzzy Logic (FL), MLP and Euclidean Distance (ED). We evaluate
and compare the approach based on FL, MLP and ED to the above machine learning algorithms using
both emulated and real traffic traces. We show that among the four Machine Learning algorithms, the
best classification results are obtained with MLP, which, for emulated traffic, leads to a F1-score of
98.04% for attack traffic and 99.30% for legitimate traffic, while, for real traffic, it leads to a F1-score
of 99.87% for attack traffic and 99.95% for legitimate traffic. Regarding the approach using FL, MLP
and EC, for classification of emulated traffic, we obtained a F1-score of 98.80% for attack traffic and
99.60% for legitimate traffic, while, for real traffic, we obtained a F1-score of 100% for attack traffic
and 100% for legitimate traffic. However, the better performance of the approach based on FL, MLP
and ED is obtained at the cost of larger execution time, since MLP required 0.74 ms and 0.87ms for
classification of the emulated and real traffic datasets, respectively, where as the approach using FL,
MLP and ED required 11’46" and 46’48" to classify the emulated and real traffic datasets, respectively.

1. Introduction
Internet services and online applications have been the

target of numerous types of attacks over the years. Among
them, DoS (Denial of Service) / DDoS (Distributed Denial
of Service) attacksmay stop or degrade the services provided
to customers, sometimes causing serious financial costs and
reputation damage for many online businesses [1–6]. DoS
attacks had the initial goal of consuming resources from a
system or application, sending a huge amount of poorly for-
matted data traffic from one single computer towards the vic-
tims [7–10]. A classic example of this type of attack is the
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Ping of Death [11]. With the rise of effective defense tech-
niques against this type of attack, the attackers have rede-
fined it into DDoSwhich is capable of blocking the resources
of the target machine such as the connection link [12], ap-
plications [13, 14] and/or hardware resources [15]. DDoS
attacks aim at making the old one-to-one attack into a new
and more elaborate many-to-one attack, recruiting as many
infected computers as possible and creating a botnet (robot
network) in order to send a huge amount of data traffic to-
wards the target machine. Some examples of this type of
attack include SYN flood attack, Smurf attack, UDP (User
Datagram Protocol) flood attack, DNS flood attack (see e.g.,
[10, 16, 17]).

In a DDoS attack, the attacker conducts the entire pro-
cess via handler computers, which through a secure channel
such as IRC (Internet Relay Chat) manages the zombie com-
puters that generate the traffic towards the victim in order to
compromise its services. Despite DoS/DDoS attacks being
a plague to Internet for more than two decades, in 2009 sev-
eral massive DDoS attacks were carried out in order to dis-
rupt network services of popular websites such as Facebook,
Live Journal, Twitter, and Amazon [18]. Since then, the
topic of DDoS has been an intense field of research, where
new approaches for detection, mitigation, prevention or de-
fense have been proposed, following the evolution of DDoS
attack mechanisms (see e.g. surveys [10, 16, 18–23]) and/or
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Figure 1: Classification of DDoS attacks.

new application domains such as mobile/wireless [24, 25],
Internet of Things [26], Software-defined networks (SDN)
[27, 28], cloud [21, 22] or fog computing [29, 30]. Never-
theless, DDoS attacks have continued to increase and to be
successful causing service interruptions that lead to huge fi-
nancial losses, as was the case of the Dyn attack which took
place on October 21, 2016 and was initiated by a DNS ope-
rator bringing down major websites including PayPal, Ama-
zon, Airbnb, Visa, The New York Times, Netflix, GitHub,
Reddit, Twitter, Spotify, the Guardian, and CNN [31–33].
Other recent high impact attacks include the attack to Dream
Host (Hosting Provider) on August 24, 2017 [34], the attack
on the UK National Lottery on September 30, 2017 [34], the
attack on the Electroneum cryptocurrency startup, just be-
fore it launched its mobile mining app on November 2, 2017
[34], the GitHub attack in 2018, which remains the largest
DDoS attack of all times, reaching heights when it started
at a rate of 1.3Tbps and sent packets at a rate of 126.9 mil-
lion PPS [33], or the recent attack on the Wikipedia website
on September 6, 2019, that paralyzed its site in Europe and
some parts of theMiddle East [35]. According to a recent re-
port from Neustar Research, major DDoS attacks increased
967% in the first quarter of 2019 compared to the first quarter
of 2018 [36], and according to the latest figures of Kasper-
sky, the number of detected DDoS attacks jumped 18% year-
on-year in the second quarter [37].

In order to escape detection, a new kind of DDoS attacks
has emerged with the aim of mimicking the legitimate traf-
fic behaviour of users of the service. This kind of attack may
not cause a service shutdown, but may decrease the quality
of the offered service. As a result, DDoS attacks may be
classified into two attack types: Traditional Distributed De-
nial of Service (TDDoS) attacks, which include the classic
DDoS attacks, and Advanced Distributed Denial of Service
(ADDoS) attacks, which include the new stealthy generation
of DDoS attacks. Advanced DDoS attacks may be classi-
fied as low-rate DoS/DDoS (also known as LDoS) attacks

or as slow DoS/DDoS attacks. Low-rate DoS/DDoS attacks
include Reduction of Quality (RoQ) attacks [38–40] at the
network layer, Shrew attack [41–43] and the New-Shrew at-
tack [44] at the transport layer, and LoRDAS attack (Low-
Rate DoS attacks against Application Servers) [45, 46] at the
application layer.

Slow DoS/DDoS attacks are confined to the applica-
tion layer and include the following application-specific at-
tacks: Slowloris (Slow HTTP GET) [47–49], FTP DoS at-
tacks [50], Slow Rate HTTP/2 DoS attacks [14], SlowHTTP
POST also known as RUDY (R-U-Dead-Yet) [47], Slow
Read attack [51, 52], and SlowDrop attack [53]. These at-
tacks have the same format characteristics, but explore diffe-
rent vulnerabilities. Recently, a few DoS attacks have been
reported with the characteristic of being independent of the
target application layer protocol, which include SlowReq
[50, 54], Slowcomm [55] and Slow Next [50, 56]. An
overview of the classification of these DoS/DDoS attacks is
proposed in Figure 1.

This paper focus on the detection of RoQ attacks by
using two different approaches based on machine learning
algorithms. The first approach consists in the separate use
of some machine learning algorithms to detect the RoQ at-
tacks, namely Multi-layer Perceptron (MLP) neural network
with backpropagation, K-Nearest Neighbors (K-NN), Sup-
port Vector Machine (SVM) and Multinomial Naive Bayes
(MNB). These four algorithms have been widely investi-
gated for detecting high-rate DDoS attacks, e, g. MLP used
in [57–59], K-NN used in [57, 59, 60], SVM used in [58–61]
and MNB used in [62–64]. The second approach consists
in the joint use of a combination of three distinct methods:
Fuzzy Loggic (FL), MLP and the Euclidean Distance (ED).

The remaining part of this paper is organized as fol-
lows. Section 2 explains how a RoQ attack is performed
and Section 3 reviews the related work about detection of
RoQ attacks. Section 4 addresses the proposed approaches
for the detection of RoQ attacks. Section 5 describes the ex-
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perimental environments used for the detection of RoQ at-
tacks and Section 6 discusses the obtained results. Section 7
presents our conclusions.

2. RoQ Attack
The LDoS (Low-rate Denial of Service) attack aims at

reducing the quality of service provided by the target to the
point where data transfer rate drops to zero. However the
most important characteristic that distinguishes this kind of
attack from other DDoS attacks is that, in order to achieve its
goal, it does not require a huge amount of data to stop the ser-
vices running in the target machine. This kind of attack sim-
ply sends a quantity of traffic equal to or slightly higher than
the bandwidth of the target so that detecting mechanisms do
not realize that the ongoing undetected attack causes damage
to applications’ connections. TheRoQ attack seeks to reduce
the QoS (Quality of Service) of the target services regardless
of the transport protocol used by those services [38, 65].
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Figure 2: Schematic representation of the RoQ attack format,
where t is the burst length, R is the burst rate and T is the
time of the attack period (adapted from [66] and [67]).

The RoQ attack has a signature that consists of sending a
pulse of data packets bigger than or equal to the victim band-
width in a ON-OFF square wave format so that when it is in
ON time the aim is to fill the router queue, sending high traf-
fic rates on longer timescales, forcing the router to drop the
legitimate packets passing through it [38, 67] as depicted in
Figure 2. This event can cause end system protocols (e.g.,
TCP) to adapt their sending rates, trying to stabilize the fair
sharing network. The OFF time period allows the router to
recover from the network traffic shockwave, passing the data
packets stuck in the queue through it. Thus allowing applica-
tions to continue transmitting data but at a low level, causing
a poor QoS of the applications.

3. Related Work
This section provides an overview of the use of machine

learning algorithms and fuzzy logic for detection of DDoS
attacks. It shows the reduced number of works devoted to the
detection of advanced DDoS attacks, due to the difficulty in
their detection. This section also provides a brief description
and a comparative analysis of methods already published for
detection of RoQ DDoS attacks.

3.1. Use of Machine Learning Algorithms and
Fuzzy Logic for Detection of DDoS Attacks

Soft computing methods (e.g., machine learning, fuzzy
logic, evolutionary computation, probabilistic deduction)
have been mostly used to detect traditional high-rate DDoS
attacks. Khalaf et al. survey in [18] the use of artificial in-
telligence and statistical approaches for detection of and de-
fense against high-rate DDoS attacks, namely Bayesian net-
works, fuzzy logic, genetic algorithms, K-NN, neural net-
works, software agents and support vector machines. Re-
cently, Hosseini and Azizi in [57] have used naive Bayes,
random forests, decision trees, multilayer perceptron (MLP),
and K-NN for detecting high-rate DDoS. Sreeram and Vup-
pala in [68] have used machine learning metrics and a bio-
inspired bat algorithm for HTTP flood attack detection, Meti
et al. in [58] have used machine learning algorithms (Sup-
port Vector Machine and Neural Network) for detection of
high-rate DDoS attacks in SDNs, and Mohammed et al.
have proposed in [69] a machine learning-based collabora-
tive DDoS mitigation mechanism for SDNs. Alrehan and
Alhaidari have reviewed in [70] the use of machine lear-
ning techniques to detect DDoS attacks on Vehicular Ad
hoc NETworks (VANETs), Wani et al. have reported in
[61] the use of machine learning algorithms (Support Vec-
tor Machine, Naive Bayes, and Random Forest) to detect
high-rate DDoS attacks on a cloud environment, Hou et al.
have reported in [71] the detection of high-rate DDos attacks
through NetFlow analysis using Random Forest, and Aamir
and Zaidi in [60] have used K-NN, Support Vector Machine
and Random Forest algorithms for high-rate DDoS classifi-
cation.

Fuzzy logic has also been used for detection of high-
rate DDoS attacks. Balarengadurai and Saraswathi in [72]
have used fuzzy logic for detection of exhaustion attacks
over IEEE 802.15.4 MAC Layer, Rodrìguez et al. have re-
ported in [73] a dynamic DDoS mitigation scheme based
on TTL field and fuzzy logic, Mondal et al. in [74] have
used fuzzy logic for detection of DDoS in cloud compu-
ting environments, and Alsirhani et al. have proposed in
[75] a DDoS detection system using a set of classification al-
gorithms (Naive Bayes, Decision Tree (Entropy), Decision
Tree (Gini), and Random Forest) controlled by a fuzzy logic
system in Apache Spark.

To the best of our knowledge, only a few works have
addressed the application of machine learning algorithms for
detecting low-rate DDoS attacks. In [13], Singh and De have
employed a Multilayer Perceptron with a Genetic Algorithm
(MLP-GA) for the detection of Slowloris attacks and in [76]
Bhuyan and Elmroth have used a generalized total variation
metric to detect Shrew attacks. As far as we know, no work
has been reported about the use of fuzzy logic for detection
of low-rate DDoS attacks.

3.2. Previous Methods for Detection of RoQ
Attacks

This subsection provides a brief description of published
methods for detection of RoQ DDoS attacks, as well as
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Table 1
Comparison among related works and this article.

Works Testbed AQM Network Mechanisms Traffic Attack Performance
Environment Testbed Type Protocol Software

Ren et al. (2007) [77] Simulated Absent Wireless To monitor the threshold of TCP and UDP Absent Effective
three MAC layer signals

Guirguis et al. (2007) [78] Simulated and Absent Ethernet Absent Absent Absent Absent
Real

Guirguis et al. (2007) [79] Real Absent Ethernet Dynamically adapt Absent Absent Effective
� value in admission

controller’s equation

Chen and Hwang (2007) [80] Simulated Droptail Ethernet Flow-level spectral TCP and UDP Absent Effectively rescue
analysis with 99% legitimate
sequential hypothesis TCP flows
testing

Shevtekar and Ansari (2008) [67] Simulated RED-PD Ethernet Router-based approach TCP and UDP Absent Absent

Chen et al. (2008) [81] Simulated and Absent Wireless Absent Absent Absent Absent
Real

Arunmozhi and Simulated Absent Wireless Flow Monitoring Absent Absent Achieves higher
Venkataramani (2010) [82] throughput and

packet delivery ratio

Gulati and Dhaliwal (2013) [83] Simulated Absent Wireless Flow Monitoring Absent Absent Reduce packet loss
Table (FMT) and improves throughput

Wen et al. (2014) [39] Simulated and Absent Ethernet Wavelet multiresolution TCP, ICMP and absent High accuracy
Real analysis method with UDP and high efficiency

autocorrelation analysis

Gang et al (2017) [40] Simulated Absent Wireless Hamilton-path Absent Absent Reduce evidently
-based scheme packet loss

Hongsong et al. (2019) [65] Simulated Absent Wireless Hilbert-Huang Transform TCP AOMDV Highly efficient
(HHT) with Ensemble with RREQ
empirical mode
decomposition (EEMD)
and Correlated coefficient
method

This article (2020) Emulated and Droptail Ethernet Machine learning TCP and UDP M-RoQ See section 6
Real algorithms, Fuzzy logic

and Euclidean distance

their comparative analysis presented in Table 1. This table
also puts in evidence how different test-bed components and
communication medium characteristics are taken into ac-
count by each work and this paper. In this table, the Test-bed
Type field represents environments in which attack and de-
tection systems are tested. The Test-bed AQM represents the
techniques that align the packets arriving at the router, some
techniques being more efficient than others to perform this
job. The DetectionMechanism field represents methods that
detect and/or respond to an attack. The Protocol field repre-
sents the protocol used by the traffic of legitimate clients and
attackers. The Attack Software field represents tools that can
launch RoQ attacks. Finally, the Performance field repre-
sents how the detection mechanisms were effective to detect
the attacks. As we can see, this paper has a more complete
environment than previous works for testing the whole pro-
cess of the system.

In order to avoid the loss of quality of voice and video
traffic in a MANET (Mobile Ad-hoc Network) by RoQ at-
tack, Ren et al. in [77] have created two defense mecha-
nisms. The first one detects attacks by monitoring the fre-
quency and the retransmission of packets in the MAC layer
and the second one responds to the attack by marking the
packets with the congestion bit, notifying the emitters. The
obtained results show that the higher the amount of attack
traffic flows, the greater the delay and the loss of the traffic
quality.

To evaluate the RoQ attack against dynamic load balan-
cers, Guirguis et al. in [78] have employed the RoQ attack
power metric in order to observe the feedback delay, the re-

sources managed and the average variance in the features in
the attack moments, damaging the performance of the entire
network. Their results have shown that an attack can cause
serious damage against load balancers and they have shown
how future defense mechanisms can be created.

Guirguis et al. in [79] have implemented the admission
ratio’s � parameter value to be dynamically adaptive in the
equation:

�ni =
1
N
+ �

N
∑

j=1
(qji−1 − q

n
i−1) (1)

In this way, the load balancers can react faster to the changes
of the traffic, keeping the services available. The same hap-
pens to the admission controllers’ K parameter. The results
have shown an increased efficiency against the attack. To
avoid the servers to be overwhelmed by RoQ attacks, Chen
and Hwang in [80] have created a novel defense mecha-
nism by combining the flow-level spectral analysis (which
can segregate normal TCP flows from malicious flows) with
sequential hypothesis testing. Their results have shown that
this new detection system can effectively rescue 99% of the
legitimate TCP flows under RoQ attacks.

Shevtekar and Ansari in [67] have addressed the detec-
tion of the RoQ attack in two phases. The first detection
phase is initialized by the sudden increase of the packets in
the queue. Subsequently, the time difference between con-
secutive arrivals of the packets of each stream is checked; if
it is too short, a packet load count is made and if this value is
greater than the threshold, the attack is detected. After detec-
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tion, packets marked as attack packets are discarded. Their
results have shown an effective countermeasure approach for
RoQ attack and Low-rate DoS attack.

A novel RoQ attack model was proposed by Chen et al.
in [81] with the aim of jamming the MAC layer at a special
moment, which can repeatedly block TCP ACK transition
and degrade wireless TCP throughput. Their results have
shown that jamming at the MAC layer can be launched in
an actual wireless network, becoming a potential threat to
wireless networks around the world.

To stop RoQ attacks on MANETs, Arunmozhi and
Venkataramani in [82] have proposed a flow monitoring
(FMON) scheme that employs a MAC layer-based detec-
tion scheme based on the frequency and retransmission of
RTS/CTS and data, as well as a response based on ECN
marking. The performance of FMON has been compared to
SWAN and SPA-ARA protocols. Their results have shown
that FMON outperforms the other two schemes.

To detect RoQ attacks, Gulati and Dhaliwal in [83] have
proposed the election of a computer to be the attack monitor.
After that, the traffic is monitored and if there is a sudden
increase of traffic in a short period of time above a certain
threshold, all the nodes connected to that flow will be added
to a list of suspects. In the Attack Monitor, the node will be
added to a list called checking table if it appears countless
times. This table is then sent to all nodes in the network that
have verified that their traffic is above the threshold during a
certain period of time. If it is positive, the node is added to
the attacker table, otherwise it is removed from the checking
table. All nodes in the attacker table will have their traffic
blocked. Their results have shown that is possible to reduce
packet loss and improve throughput.

Wen et al. in [39] have combined anomaly detection with
misuse detection to detect potential anomalies through the
use of wavelet multi-resolution analysis and auto-correlation
analysis. The obtained experimental results show that RoQ
attacks were detected accurately with both low false positive
and low false negative rates.

Gang et al. in [40] have presented performance tests
among MIPv4 (Mobile Internet Protocol version 4), MIPv6
(Mobile Internet Protocol version 6) and FMIPv6 (Fast Mo-
bile Internet Protocol version 6) against RoQ attacks with
and without solution. The solution was to use a Hamilton-
path-based scheme to decrease the packet loss of the traffic
nodes. In the scenario without the proposed solution, the
mobile protocol suffers more damage than in the scenario
with the proposed solution. Their results have shown that
the Hamilton-path-based scheme can decrease packet loss
and delay in overlay networks.

Hongsong et al. in [65] have created a novel detec-
tion method based on the union of the Hilbert-Huang Trans-
form (HHT)with Ensemble EmpiricalModeDecomposition
(EEMD) and the Correlated Coefficient Method. This mix
of methods aims at eliminating possible problems related
to the signal generated by the attack traffic such as mode
mixing and false components. To generate the RoQ attack
traffic, the Ad hoc On-demand Multi-path Distance Vector

(AOMDV) was used with flood Route REQuest (RREQ)
messages. Their results have shown a highly efficient de-
tection of the attacks.

4. Proposed Methods for Detecting RoQ
Attacks
This section identifies the set of three features to be

jointly used by each classifier and describes two different
approaches for detection of RoQ DDoS attacks. The first
approach, described in subsection 4.2, consists on the sepa-
rate use of four machine learning algorithms. The second
approach consists on the use of a combination of three dis-
tinct methods: FL, MLP and ED. This second approach is
described in subsection 4.3.

4.1. Classification Features
Given a set of candidate features, the problem of fea-

ture selection consists on the selection of a feature or a sub-
set of features that performs the best under some classifica-
tion algorithms. This process can reduce not only the cost
of recognition by reducing the number of features, but also
provide a better classification accuracy due to finite dataset
size effects [84]. Although the feature selection process is
useful when we have a large number of features [85–87], it
also may impose severe restrictions for real-time operation.
Therefore, in this paper, we followed an heuristic approach
of manually selecting features that lead to good classification
performance without compromising real-time operation, as
followed in other approaches, such as in [13, 88] where the
authors used the number of packets for detecting DDoS at-
tacks, [43, 89–92] where the authors used entropy for DDoS
attack detection, [93] where the authors used average inter-
arrival time in a defence mechanism against TCP SYN flood
DDoS attack, or [94] where the authors used a combination
of entropy, number of packets and average inter-arrival time
for detection of encrypted peer-to-peer traffic.

We consider three features for classification purposes:
number of packets, entropy and average of inter-arrival time.
Since, in our preliminary research study, each of these three
features used individually led to poor classification results,
except entropy, which for some cases led to good classifica-
tion results as we can see in Section 6.3, we explore in this
paper the joint use of these three features for RoQ attack de-
tection.

The number of packets in a given flow is chosen as a
feature because the amount of data flows may grow substan-
tially even in a low-rate DoS attack.

The entropy measures the degree of uncertainty infor-
mation associated with a random variable [95]. The more
uncertain the result of a random experiment is, the more in-
formation is obtained by observing its occurrence. In this
work, we evaluate the entropy of the quintet consisting of
source IP address, source port, destination IP address, des-
tination Port and transport protocol (TCP and UDP) for the
network traffic. Therefore, the higher the randomness of the
source IP address and the source port fields the greater the
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entropy and conversely, the more constant the source IP ad-
dress and the source port fields, the smaller the entropy. The
entropyH is given by [95]:

H = −
n
∑

i=1
pilogpi (2)

where pi is the probability of each quintet element occurring
in the time window under evaluation of the traffic trace and
n is the total number of packets in the time window of the
trace. If the flow does not have source neither destination
port fields in the quintet, it is only composed of source and
destination IP addresses and protocol in a given timewindow
of the trace.

The third feature, the average of inter-arrival time of pa-
ckets is selected because in flood attacks the packets do not
wait in a queue to be sent by the network card. Instead, they
are sent as quickly as possible, which result in packets with
smaller RTT (Round Trip Time) than legitimate packets.

These three features are computed as follows. For a cer-
tain traffic trace, we apply a sliding time window with length
ΔT over the time in the Time Stamp field of the trace in the
tshark tool. In this work, ΔT assumes a default value of 1 s.
At the beginning, for a sliding time window with length of 1
s, we evaluate these three features for all packets in the first
second of the traffic trace. Therefore, we count the number
of packets within the first second of the trace, we evaluate
the entropy as described above for the packets within the first
second of the dataset, and we evaluate the average of inter-
arrival times of packets within the first second in the trace.
Then, we slide the time window 1 s forward, and evaluate the
number of packets, entropy and average of inter-arrival times
for the packets within the second second (sliding time win-
dow with length of 1 s) of the trace. This process is repeated
by sliding the time window with length ΔT until it reaches
the end of the dataset. The last time window may have a
length smaller than ΔT because the length of the traces usu-
ally is not a multiple of ΔT.

Using the above procedure, for a given traffic trace, we
obtain, for all time windows with length ΔT, the values of
the three features for the packets within each time window
of the traffic trace. The set of these three features for all time
windows of the trace is named traffic dataset. For perfor-
mance assessment purposes of the classifiers, besides the va-
lues of the three features for each time window, we also have
the information about the traffic (legitimate or attack) per
time window to serve as ground-truth, having this informa-
tion been obtained during the construction of the traffic trace
in a controlled environment. The classification approaches
described along next subsections uses the traffic dataset to
classify the traffic.

4.2. Machine Learning Algorithms and Their
Settings

The following machine learning algorithms are conside-
red in this work to investigate the detection of RoQ attacks:
Multi-layer Perceptron (MLP) neural network with backpro-

pagation, K-Nearest Neighbors (K-NN), Support VectorMa-
chine (SVM) and Multinomial Naive Bayes (MNB).

Table 2
Machine learning algorithms and their settings.

Algorithm Settings
K-NN n_neighbors=5, weights=uniform,

algorithm=auto, leaf_size=30, p=2,
metric=minkowski, metric_params=None,
n_jobs=None

MLP activation=relu, alpha=1e-05, batch_size=auto,
beta_1=0.9, beta_2=0.999, early_stopping=False,
epsilon=1e-08, hidden_layer_sizes=(5, 2),
learning_rate=constant, learning_rate_init=0.001,
max_iter=200, momentum=0.9,
nesterovs_momentum=True,
power_t=0.5, random_state=1, shuffle=True,
solver=’lbfgs’, tol=0.0001, validation_fraction=0.1,
verbose=False, warm_start=False

SVM kernel=rbf, degree=3, gamma=auto,
coef0=0.0, tol=0.001, C=1.0, epsilon=0.1,
shrinking=True, cache_size=200, verbose=False,
max_iter=-1

MNB alpha=1.0, fit_prior=True, class_prior=None

These four algorithms are separately used to classify In-
ternet traffic as legitimate traffic or attack traffic, jointly with
three features evaluated for each traffic dataset. The imple-
mentation of these four algorithms at scikit-learn [96] has
been used with their default configurations. The four algo-
rithms and their settings used in this work are summarized
in Table 2. The training dataset, with the values of the three
features per time window for the training trace described in
Section 5, has been used for the training phase of these al-
gorithms.

4.3. Approach Based on Fuzzy Logic, MLP and
Euclidean Distance

This approach is based on a combination of three me-
thods: FL, MLP and ED. Fuzzy logic was introduced by
Zadeh in 1965 [97]. It is a mathematical theory applied to
vague concepts that admit intermediate logical values bet-
ween false and true (0 or 1) in regard to elements belonging
to a certain set with a certain pertinence degree, giving a
mathematical treatment to subjective linguistic terms.

FUZZY KNOWLEDGE BASEINPUT

FUZZIFIER INFERENCE DEFUZZIFIER

OUTPUT

RULE BASE

Figure 3: Schematic representation of fuzzy expert system
(adapted from [74]).

In order to explain how a fuzzy expert system works, we
divide it into five main parts, as illustrated in Figure 3. The
first part is the input, which receives the numerical data in
which the system relies on to make decisions. The second
part is the fuzzification, which transforms the input data into
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fuzzy information. The third part is the fuzzy inferencemod-
ule, which includes the knowledge base and the logical de-
cision maker. The fourth part is the defuzzification which
transforms the fuzzy inference system output into numerical
information presented at the output of the system.
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Figure 4: Pertinence function for the features Number of pa-
ckets, Entropy and Average of inter-arrival time (ms).

The fuzzification is the process of normalizing the in-
put data through pertinence functions, turning quantitative
values into qualitative values such as "very low", "low",
"medium", "high", "very high" in the universe of discourse
of a certain input variable. Therefore, the normalized datum
(pertinence degree) can belong to more than one linguistic
term, i. e., sometimes the same input datum can be classi-
fied, for example, as "low" and "medium" at the same time.

The inference module constructs rules that are presented
in the form "if ... then", describing the action to be taken
in response to several fuzzy normalized data outputs. It has
the objective of creating a knowledge base of rules to help
in the decision making, in order to obtain an accurate final
result. Finally, the defuzzification process of the output data
of the inference module is performed by one of the available
defuzification methods to be chosen, such as first of maxima,
center of area, middle of maxima and others.

In this work, the fuzzy system is configured using three

linguistic terms, namely "low", "medium" and "high", for
each of the features number of packets, entropy and average
inter-arrival time. The pertinence function chosen to nor-
malize the data values is trapezoidal for all features as de-
picted in Figure 4. The range of values selected for the lin-
guistic terms in the universe of discourse for each variable
is based on the values of the features (number of packets,
entropy and average inter-arrival time) evaluated from the
datasets. Therefore, the lowest values of the features are for
"low" term, the highest values are for "high" term and the
average of these values are for the "medium" term.

The trapezoidal function to normalize data is given by
[74]:

�(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

x−a
b−a , if a ⩽ x < b,
1, if b ⩽ x < c,

d−x
d−c , if c ⩽ x < d,

0, otherwise.

(3)

where �(x) is the normalized data, x is the data extracted
from the datasets and a, b, c and d are the values referring to
the data on x axis belonging to highest and lowest pertinence
degree. After fuzzification, the values of the pertinence de-
gree generated in each input variable are passed to the set of
fuzzy rules. This is formed by 27 rules, which must cover
all possible situations of the behaviour of the fuzzy system,
as we can see in Figure 5. In all of the rules, the Mamdani
inference model [98] is applied, in which the logical opera-
tor “AND” is used over the antecedents of each rule, being
the lowest value chosen as a consequent among the values of
the pertinence degree of the triggered rule.

Página 1

THEN

LOW MEDIUM HIGH LOW MEDIUM HIGH LOW MEDIUM HIGH
1 X X X ATTACK
2 X X X ATTACK
3 X X X LEGITIMATE
4 X X X ATTACK
5 X X X ATTACK
6 X X X LEGITIMATE
7 X X X ATTACK
8 X X X ATTACK
9 X X X LEGITIMATE
10 X X X ATTACK
11 X X X LEGITIMATE
12 X X X LEGITIMATE
13 X X X ATTACK
14 X X X ATTACK
15 X X X LEGITIMATE
16 X X X ATTACK
17 X X X LEGITIMATE
18 X X X LEGITIMATE
19 X X X LEGITIMATE
20 X X X LEGITIMATE
21 X X X LEGITIMATE
22 X X X ATTACK
23 X X X LEGITIMATE
24 X X X LEGITIMATE
25 X X X ATTACK
26 X X X LEGITIMATE
27 X X X LEGITIMATE

IF
NUMBER OF PACKETS ENTROPY AVERAGE OF INTER-ARRIVAL TIME

CLASSIFICATION
RULE

Figure 5: Set of base rules of the inference module.

At the end, the defuzzification module starts after all the
rules were triggered by the inference module. In order to
transform the values of the pertinence degree, selected as
consequent by the inference module, into an accurate output
of numerical values, it is necessary to deffuzify them. For
this, the middle of maxima method is used, because it is one
of the most used in fuzzy expert systems. In this way, based
on the generated results, the system can classify the type of
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traffic flow. The middle of maxima X* is given by [74]:

X∗ =
∑

(maximum value ∗ pertinence degree)
∑

pertinence degree
(4)

This method aims to identify the maximum value to which
belongs the output value of each rule of the inference mod-
ule, that is, the maximum value of the central point of
each linguistic variable of the defuzzification model. Af-
ter performing the defuzzification, the corresponding output
is classified according to the linguistic terms "legitimate" or
"attack" in the universe of discourse for the traffic type (le-
gitimate or attack). If the output is smaller or equal than
4.0, the traffic is classified as "legitimate", otherwise, if the
output is larger or equal than 6.0, it is classified as "attack".
Figure 6 illustrates this concept.
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Figure 6: Defuzzified values of traffic type as legitimate or
attack.

After the classification of the traffic in the trace using
the FL approach, the MLP algorithm is used, as described in
the previous subsection, for a new classification of the traffic
in the same trace. Among the four machine learning algo-
rithms, the MLP algorithm has been chosen due to its better
performance results presented in Table 9 on subsection 6.3.

Both results of the traffic trace classification, for each
time window with length ΔT, obtained with FL and MLP
approaches are compared. If they are equal, this is the final
result of the classification. If they are different, an additional
step is performed, which consists in using the ED to obtain
the minimum distance between each values of the number of
packets and entropy, that lead to different classifications by
the two approaches, and all values of the number of packets
and entropy in the training dataset. Therefore, we obtain a
classification using the ED for the number of packets and
another classification for the entropy, since the values of the
number of packets and entropy in the training dataset cor-
respond to known traffic previously identified as legitimate
or attack. The ED between the value pk (k=0, ..., s, s being
an integer smaller than m) of a feature (number of packets
or entropy) that leads to different classifications by FL and
MLP in the dataset under evaluation and each of the values
of the feature pi (i=1, ..., m, where m is the number of values
of the feature in the training dataset) is given by:

D(pk, qi) =
√

(pk − qi)2. (5)

Finally, the classification of the number of packets and
the classification of the entropy using the ED is compared to
the classifications obtained with the fuzzy logic and neural
network approaches. Since we have now four classifications,
if the number of classifications of attack type is greater than
the classifications as legitimate type, then the final result is
an attack and vice versa.

BEGIN

ΔT > 1s ?
NO

YES

EXTRACT NUMBER OF PACKETS

COLLECT DATA 
FROM TRACE

EXTRACT ENTROPY

EXTRACT AVARAGE 
INTER-ARRIVAL TIME

NEW DETECTION 
APPROACH (FUZZY LOGIC 
+ NEURAL NETWORK + 
EUCLIDEAN DISTANCE)

ATTACK TRAFFIC

LEGITIMATE TRAFFIC

WARNING TRAFFIC

END OF FILE ?

NO

YES
END

SAVE TO FILE (DATASET)

ΔT = ΔT + 1ms  

ΔT = 0 

BLOCK

IS THERE SIMILAR 
CHARACTERISTICS 
BETWEEN BOTH 
TRAFFICS?

BLOCK
YES

NO

Figure 7: Flowchart of the classifier for detection of RoQ at-
tacks.

If the two classifications obtained with ED for the num-
ber of packets and the entropy are different, then, in the set
of four classifications, we have two classifications as attack
and two classifications as legitimate, leading to a final result
that is considered as a warning. After that, the traffic pa-
ckets leading to warning alerts are analysed and compared
with the blocked attack traffic packets. If both sets of traffic
packets have similar characteristics in terms of the high va-
lues of entropy (entropy higher than 9.0), the warning traffic
will be blocked. Otherwise, traffic packets leading to warn-
ing alerts are forwarded to the destination. The Figure 7 il-
lustrates the whole classification process for detecting RoQ
attacks using the approach based on FL, MLP and ED of
two features (number of packets and entropy in a given time
window of the trace).

TRAFFIC CLASSIFICATION 
DIFFERENCE (FUZZY LOGIC –
NEURAL NETWORK)

TRAFFIC FEATURES

FUZZY LOGIC

NEURAL NETWORK

NUMBER OF PACKETS

ENTROPY

EUCLIDEAN DISTANCE

EUCLIDEAN DISTANCE

TRAFFIC CLASSIFICATION 

TRAFFIC CLASSIFICATION 

ATTACK > 
LEGITIMATE ?

NO

YES

LEGITIMATE > 
ATTACK ?

WARNING 
TRAFFIC

ATTACK 
TRAFFIC

LEGITIMATE 
TRAFFIC

YES

NO

NEW DETECTION APPROACH (FUZZY LOGIC + NEURAL NETWORK + EUCLIDEAN DISTANCE)

TRAFFIC CLASSIFICATION 

TRAFFIC CLASSIFICATION 

Figure 8: Flowchart of the classification module using FL, MLP
and ED approaches.

The additional step required when the classifications ob-
tained with FL and MLP are different is performed by the
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Attack traffic

Legitimate traffic

Figure 9: Features in the (a) Emulated, (b) Real and (c) Training datasets for a time window with length ΔT=1 s.

module Traffic Classification Module detailed in Figure 8.

5. Test Environment
This section addresses traffic traces and datasets used for

classification as well as the emulated and real scenarios used
to obtain the traffic traces.

5.1. Traffic Traces and Datasets
Four Internet traffic traces are considered in this work.

Two traces are used for evaluation purposes and were ob-
tained in the emulated and real environments, as described
in the next subsections. The trace obtained in the emulated
environment has a size of 194.8MB and the trace obtained
in the real environment has a size of 11.3GB. For each of
these two traces, a dataset is built with the values of the
three features (number of packets, entropy and average of
inter-arrival time) for each time window with length ΔT, as
described in section 4.1. The values of the three features for
each in these two datasets are shown in Figure 9 (a) and (b).
As can be seen, the number of packets and entropy are large
for attack traffic and small for legitimate traffic, whereas the
average inter-arrival time is smaller for attack traffic than for

legitimate traffic.
The other two traces are the CAIDA [99] traffic trace,

with a size of 427.6 MB used by Xiang et al. in [100] and a
webserver traffic trace obtained at Instituto Federal de Edu-
cação, Ciência e Tecnologia do Tocantins (IFTO), consis-
ting only of legitimate traffic with a size of 142.6 MB. Using
firstly the CAIDA trace followed by the IFTO trace, we build
only one dataset, called training dataset, which is used for the
training phase of the machine learning algorithms described
in previous section. Figure 9 (c) shows the values of the three
features in the training dataset.

5.2. Emulated environment
In this scenario, we used the equipment and software

listed in Table 3 with the intent of reproducing an environ-
ment close to the real one. The software chosen to reproduce
the testbedwas netkit [101] since it emulates the components
of real machines and the Linux operating system with many
of its features. The whole process is automated andmanaged
by shell scripts developed using the netcat tools for connect-
ing all virtual computers. To produce the emulated trace, the
attack traffic is sent by the M-RoQ attack software and the
legitimate traffic is generated by curl-loader [102]. Tcpdump
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and tshark [103] are used to collect the traffic data.

Table 3
Software and hardware specification for emulated testbed.

Computer host software
Linux Ubuntu - version 16.04 LTS - Xenial Xerus
Netkit-ng Core - version 3.0.4

Filesystem - version 7.0
Kernel - version 3.2
Linux - version 3.2.54-netkit-ng-K3.2

Computer host hardware
Desktop Memory - 3GB

Hard disk - 100GB
Netkit software
Hping3 version 3.0.0-alpha-2
Shell bash version 4.2.37
Netcat (nc6) version 1.0
IPTraf version 3.0.0
TCPDUMP version 4.3.0
Tshark version 1.12.1
Slowhttptest version 1.7
Apache2 version 2.4.33
Curl-loader version 0.56
Netkit hardware
Legitimate clients memory - 100MB
Attackers memory - 128MB
Routers 1-2 memory - 100MB
Border router memory - 256MB
Victim memory - 512MB

The process illustrated in Figure 10 uses nine computers
and ten routers to simulate a real Internet environment. To
produce the trace, the legitimate client computers, Client 1
and Client 2, generate HTTP traffic while Client 3 generates
FTP traffic, both using curl-loader. The Manager machine
starts and stops the entire process. The attacking computers
use the attack period of time (T) set to 1 s. The curl-loader
is used to generate legitimate traffic in order to simulate the
real traffic data of the Internet to test the link capacity of the
server. The computers of Client 1 and Client 2 are confi-
gured to simulate 50 machines, each generating HTTP traf-
fic. The computer of Client 3 is configured to simulate 20
machines generating FTP traffic, making a total of 120 ma-
chines transmitting traffic. The attack traffic consists of UDP
packets each having a size of 1024 kbytes. The attack target
computer is a Web server running Apache software.

BEGIN

SEND 0 TO START 
THE CLIENT'S FLOW

T > 180s ?

T = T + 1s  

SEND 0 TO START THE 
ROUTER'S COLLECTING

T > 60s ?

T = T + 1s  

NO

T > 20 minutes ?

YES

NO

SEND 1 TO STOP ALL THE
MACHINE’S PROCEEDING

END

YES

START 3 CLIENTS

START 10 ROUTERS

STARTS THE VICTIM

STARTS THE MANAGER

STARTS NETKIT

CLIENT1 SIMULATES 
50 HTTP MACHINES

CLIENT2 SIMULATES 
50 HTTP MACHINES

CLIENT3 SIMULATES 
20 FTP MACHINES

START 4 ATTACKING 
MACHINES SIMULATING ‘N’ 
COMPUTERS 

NO

YES

SEND 0 TO START THE 
ATTACKER'S PROCEEDING

START THE 
ATTACKER'S FLOW

T = T + 1s  

Figure 10: Flowchart to produce the trace in the emulated
environment.

Netkit by default starts the emulated machines with 32
MB of memory, but we set the amount of memory for

each emulated machine as summarized in Table 3 in order
to support other software that may be installed later, such
as gcc, IPTraf and scripts created for this purpose. The
target computer and the border router have more memory
than the others because they spend more resources collec-
ting data and processing all flows. The attacking machines
have slightly more memory, because the M-RoQ software
increases the memory usage for performing the RoQ attack.

5.3. Real environment
This scenario is implemented at IFTO, which has a very

broad network structure, using the equipment and software
listed in Table 4.

Table 4
Software and hardware specification for real testbed.

Software
Linux Ubuntu version 16.04 LTS - Xenial Xerus
Hping3 version 3.0.0-alpha-2
Shell bash version 4.3.48
Netcat version 1.105-7ubuntu1
IPTraf version 3.0.0
TCPDUMP version 4.9.0
Tshark version 2.2.6
Slowhttptest version 1.7
Apache2 version 2.4.33
Curl-loader version 0.56
Cisco 2801 IOS version 15.0
Hardware
Desktop Memory - 8GB

Hard disk - 1TB
Router Cisco 2801 series Memory - 128MB

FLASH memory - 32MB

The network structure contains several routers among
the classrooms, allowing data traffic from different locations
thus mimicking the real Internet traffic. This environment
has the same software suite used in the emulated environ-
ment with some additions and it is composed of five compu-
ters, one server and three Cisco routers.

BEGIN

START 2 CLIENTS

STARTS THE 
BORDER ROUTER

STARTS THE VICTIM

STARTS THE MANAGER

CLIENT1 SIMULATES 
100 HTTP MACHINES

CLIENT2 SIMULATES 
20 FTP MACHINES

START 3 ATTACKING 
MACHINES SIMULATING ‘N’ 
COMPUTERS 

SEND 0 TO START 
THE CLIENT'S FLOW

T > 180s ?

T = T + 1s  

SEND 0 TO START THE 
ROUTER'S COLLECTING

T > 60s ?

T = T + 1s  

NO

YES

NO

YES

SEND 0 TO START THE 
ATTACKER'S PROCEEDING

START THE 
ATTACKER'S FLOW

T > 20 minutes ?
NO

SEND 1 TO STOP ALL THE
MACHINE’S PROCEEDING

END

YES

T = T + 1s  

Figure 11: Flowchart to produce the traffic trace in the real
environment.

The process illustrated in Figure 11 simulates a real In-
ternet environment in a real testbed, where the legitimate
Client 1 computer generates HTTP traffic while Client 2
generates FTP traffic, both using curl-loader. The attacking
computers also used M-RoQ attack software with T=1 s.
Thus, the legitimate computer Client 1 was configured to
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simulate 100 machines generating HTTP traffic each and
Client 2 was configured to simulate 20 machines, each one
generating FTP traffic.

5.4. M-RoQ software
We developed M-RoQ (Manipulated-RoQ) attack soft-

ware to generate RoQ-like attacks.

Attackers

Victim

Legitimate client

R1 R2 BORDER

Simulated Internet link

10 Mb/s link

1.5 Mb/s link

Download total time

Drop packets

Figure 12: M-RoQ software testbed.

To illustrate its operation, the scenario depicted in Fi-
gure 12 was implemented in an emulated environment using
netkit software and is composed of 10 virtual Linux compu-
ters, of which five emulate one zombie machine each, gene-
rating an attack traffic towards the target (victim) represented
by the computers marked in red color.

The process begins at the end customer machine. First of
all, the attacking machine, the BORDER router and the vic-
tim computer start a server socket that wait for the signal of
the client running on the legitimate client machine to initiate
their activities. The server socket on the attacking machines
will execute the RoQ attack using the Hping3 program after
receiving the signal. Since Hping3 is a DDoS attack tool, it
tries to completely stop the services of the victim. Thus, we
developed a software in C language that manipulates Hping3
in a RoQ attack fashion. M-RoQ software consists of the
Algorithm 1, that we made available online in [104]. The
M-RoQ uses the Linux timeout command to create the ON
time traffic and the usleep function to generate the OFF time
period (which is the time gap between the former shockwave
traffic attack and the next one). The attack flow is composite
of UDP (-2 option) messages with spoofed random source
IP addresses mimicking the public Internet IP.

Algorithm 1: M-RoQ software
time=0;
while time < 60 do

system(′′timeout 0.3 ℎping3 −−rand−source
−−flood −2 <dst IP> −p <dst PORT>
−d 1024 &′′);
usleep(700 ∗ 1000);
time + +;

end
system(′′killall −9 ℎping3′′);

The server socket in the BORDER router collects the to-
tal amount of dropped packets as well as the flows arriving

on it by using the tcpdump tool. In the victim, the server
socket starts the IPTraf which measures the TCP throughput.
Finally, the end customer (legitimate client) client socket sig-
nals all machines and runs a shell script which collects the
total download time of the FTP. All the information collected
during the experiments with the attack scenario is compared
to the experiments without the attack scenario to verify if the
M-RoQ software is working as described and if the QoS of
the victim services has been reduced.

6. Results and Discussion
In this section, we present the results related to all sce-

narios in two distinct environments as well as the M-RoQ
software.

6.1. Performance Metrics
To evaluate the performance of the classifiers, we use

precision, recall, F1-score and confusion matrix table me-
trics, which are defined as follow [105]:

Precision = TP
TP + FP

, (6)

Recall = TP
TP + FN

, (7)

F1−score = 2 × Precision × Recall
P recision + Recall

. (8)

where TP (True Positive) is the number of sample cases clas-
sified correctly, i.e., classifying attack traffic as an attack.
The TN (True Negative) is the number of sample cases clas-
sified correctly, i.e., classifying legitimate traffic as legiti-
mate. The FP (False Positive) is the number of positive sam-
ple cases incorrectly classified, i. e., classifying attack traf-
fic as legitimate traffic and finally, FN (False Negative) is
the number of negative sample cases incorrectly classified,
i. e., classifying legitimate traffic as an attack. The F1-score
metric is the harmonic mean between precision and recall.
Since this measure is an average, it gives a more accurate
view of the efficiency of the classifier than merely precision
or recall. Therefore, these metrics are used for evaluating the
performance of the proposed approaches to classify the ad-
vanced attacks considered in this work. The confusion ma-
trix is a table that is often used to describe the performance
of a classification model on a set of test data for which the
true values are known. It allows the visualization of the clas-
sifier performance.

6.2. Impact of RoQ Attack Period on Quality of
Service

In this subsection, we investigate the impact of the attack
period on the quality of service (QoS) of the target (victim)
using the M-RoQ software. Therefore, we define three sce-
narios with different attack periods T and one scenario with-
out attack. Since a RoQ attack does not have the same attack
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Figure 13: QoS parameters as a function of the number of experiments with and without RoQ attacks for attack periods of T=1
s, T=2 s, and T=3 s.

characteristic than a Shrew attack, i. e., it does not have to try
to identify the RTO (Retransmission TimeOut) of the TCP
flow, we use three different attack periods with T=1 s, T=2 s,
and T=3 s, in order to investigate their impact on the reduc-
tion of the QoS of the victim. For each attack scenario, we
consider a set of 100 experiments which consists in running
100 times the M-RoQ software plus 100 downloads of a file.
For the scenario without attack, the set of 100 experiments
consists only in 100 downloads of a file.

Table 5
QoS parameters with and without RoQ attacks for attack pe-
riods of T=1 s, T=2 s, and T=3 s. D. Time: Download time.
T=1 s Mean Max Min Standard Margin Confidence

Deviation of error Interval
Throughput (kb/s) 27.65 52.57 7.81 7.77 0.12 27.53 to 27.77
Delay (ms) 34.14 107.6 16.92 11.55 0.17 34.01 to 34.35
Jitter (ms) 63.08 124.91 33.84 13.66 0.16 62.91 to 63.24
Drop 3198.20 9676 240 1839.61 1.09 3197.11 to 3199.29
D. Time (s) 136.37 432 64 48.40 0.40 135.97 to 136.77
T=2 s Mean Max Min Standard Margin Confidence

Deviation of error Interval
Throughput (kb/s) 79.39 110.72 54.10 9.02 0.10 79.30 to 79.49
Delay (ms) 12.16 17.39 8.75 1.34 0.02 12.14 to 12.18
Jitter (ms) 24.21 31.30 17.50 2.46 0.04 24.18 to 24.25
Drop 572.39 1628 30 331.79 0.97 571.42 to 573.36
D. Time (s) 42.52 60 31 4.68 0.06 42.46 to 42.58
T=3 s Mean Max Min Standard Margin Confidence

Deviation of error Interval
Throughput (kb/s) 113.89 124.88 94.53 7.28 0.07 113.83 to 113.96
Delay (ms) 8.53 10.24 7.52 0.60 0.01 8.52 to 8.54
Jitter (ms) 17.03 20.48 15.04 1.16 0.02 17.02 to 17.05
Drop 396.08 1807 2 306.92 1.21 394.87 to 397.29
D. Time (s) 29.39 36 27 2.08 0.03 29.36 to 29.42
Without Mean Max Min Standard Margin Confidence
attack Deviation of error Interval
Throughput (kb/s) 176.61 187.88 168.11 3.03 0.02 176.59 to 176.63
Delay (ms) 5.57 5.78 5.46 0.15 0 5.57 to 5.58
Jitter (ms) 11.15 11.55 10.93 0.29 0.01 11.14 to 11.15
Drop 0 0 0 0 0 0
D. Time (s) 18.92 20 18 0.31 0.01 18.91 to 18.93

For each collected parameter, we present the mean, the

maximum, the minimum, the standard deviation and the
margin of error values based on a confidence interval of 95%
as summarized in Table 5. The results depicted in Figure 13
show that the QoS of the victim is compromised for the three
attack time periods. As can be seen in this figure, all the
graphics with purple color have the best QoS for the appli-
cations because there is no attack traffic, while the QoS for
the other colors are decreasing as the period of time T de-
creases. The attack with T=1 s leads to the larger reduction
of the QoS because it is the shortest period of time before the
next shockwave traffic flood. Thus, the longer the period of
time before the next shockwave traffic flood, the faster will
be the recovery of the end system protocols in adapting their
sending rates.

Additionally, the TCP protocol is more impacted in the
experiment with T=1 s because when it tries to recover from
the packet loss after the RTO, it will more quickly face ano-
ther shockwave traffic flood forcing it to use a new RTO.

6.3. Performance of the Classification Approaches
This section provides an evaluation of the classification

approaches for the traffic traces obtained in emulated and
real environments. In Tables 6, 7 and 8, we provide the eva-
luation of the four machine learning algorithms using each
feature separately: number of packets, average inter-arrival
time and entropy, respectively.

In Table 9, we provide the evaluation of the machine le-
arning algorithms using the three features, i.e. number of
packets, entropy and average of inter-arrival times, and in
Table 10, we provide the results of the evaluation of the pro-
posed approach based on FL, MLP and ED.
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Table 6
Results of the performance evaluation of the four machine learning algorithms using number
of packets for emulated and real traces.

Algorithm Traffic Precision Recall F1-score Confusion matrix

[

TP FN
FP TN

]

Em
ul
at
ed

K-NN
attack 100.00% 88.46% 93.88%

attack legitimate
attack 115 15

legitimate 0 357legitimate 95.97% 100.00% 97.94%

SVM
attack 100.00% 2.31% 4.51%

attack legitimate
attack 3 127

legitimate 0 357legitimate 73.76% 100.00% 84.90%

MNB
attack 26.69% 100.00% 42.14%

attack legitimate
attack 130 0

legitimate 357 0legitimate 0% 0% 0%

MLP
attack 26.69% 100.00% 42.14%

attack legitimate
attack 130 0

legitimate 357 0legitimate 0% 0% 0%

R
ea
l

K-NN
attack 100.00% 99.16% 99.58%

attack legitimate
attack 1179 10

legitimate 0 2777legitimate 99.64% 100.00% 99.82%

SVM
attack 100.00% 0.17% 0.34%

attack legitimate
attack 2 1187

legitimate 0 2777legitimate 70.06% 100.00% 82.39%

MNB
attack 29.98% 100.00% 46.13%

attack legitimate
attack 1187 0

legitimate 2777 0legitimate 0% 0% 0%

MLP
attack 29.98% 100.00% 46.13%

attack legitimate
attack 1187 0

legitimate 2777 0legitimate 0% 0% 0%

Table 7
Results of the performance evaluation of the four machine learning algorithms using average
inter-arrival time for emulated and real traces.

Algorithm Traffic Precision Recall F1-score Confusion matrix

[

TP FN
FP TN

]

Em
ul
at
ed

K-NN
attack 36.21% 96.92% 52.72%

attack legitimate
attack 126 4

legitimate 222 135legitimate 97.12% 37.82% 54.44%

SVM
attack 26.69% 100% 42.14%

attack legitimate
attack 130 0

legitimate 357 0legitimate 0% 0% 0%

MNB
attack 26.69% 100.00% 42.14%

attack legitimate
attack 130 0

legitimate 357 0legitimate 0% 0% 0%

MLP
attack 26.69% 100.00% 42.14%

attack legitimate
attack 130 0

legitimate 357 0legitimate 0% 0% 0%

R
ea
l

K-NN
attack 36.72% 99.33% 53.62%

attack legitimate
attack 1181 8

legitimate 2035 742legitimate 98.93% 26.72% 42.08%

SVM
attack 29.98% 100.00% 46.13%

attack legitimate
attack 1189 0

legitimate 2777 0legitimate 0% 0% 0%

MNB
attack 29.98% 100.00% 46.13%

attack legitimate
attack 1187 0

legitimate 2777 0legitimate 0% 0% 0%

MLP
attack 29.98% 100.00% 46.13%

attack legitimate
attack 1187 0

legitimate 2777 0legitimate 0% 0% 0%

As can be seen in Tables 6, 7, 8 and 9, the choice of the
features can deeply impact the performance of the classifica-
tion. As we can see in Tables 6, 7 and 8, the separate use of
each of the three features leads to poor classification results.
This is due to the fact that the features have values that are, at
some points, very close to each other, causing the algorithm
to incorrectly classify the data for that feature. In this case,
the classifier with the joint use of the three features leads to
a better performance for detecting attacks than the classifier

with one feature. This can also be seen in the confusion ma-
trix column in Tables 6, 7, 8 and 9, where the amount of FP
and FN in Tables 6, 7 and 8 is larger than the amount of FP
and FN in Table 9.

As we can see in Table 9, the results of the classification
for emulated traffic show that precision ranges from 94.53%
(MNB) to 100% (MLP, K-NN, SVM) for attack traffic and
from 94.69% (SVM) to 98.62% (MLP) for legitimate traffic
and recall ranges from 84.62% (SVM) to 96.15% (MLP) for
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Table 8
Results of the performance evaluation of the four machine learning algorithms using entropy
for emulated and real traces.

Algorithm Traffic Precision Recall F1-score Confusion matrix

[

TP FN
FP TN

]

Em
ul
at
ed

K-NN
attack 56.03% 100.00% 71.82%

attack legitimate
attack 130 0

legitimate 102 255legitimate 100.00% 71.43% 83.33%

SVM
attack 48.50% 99.23% 65.15%

attack legitimate
attack 129 1

legitimate 137 220legitimate 99.55% 61.62% 76.12%

MNB
attack 26.69% 100.00% 42.14%

attack legitimate
attack 130 0

legitimate 357 0legitimate 0% 0% 0%

MLP
attack 26.69% 100.00% 42.14%

attack legitimate
attack 130 0

legitimate 357 0legitimate 0% 0% 0%

R
ea
l

K-NN
attack 46.83% 100.00% 63.79%

attack legitimate
attack 1189 0

legitimate 1350 1427legitimate 100.00% 51.39% 67.89%

SVM
attack 8.88% 12.20% 10.28%

attack legitimate
attack 145 1044

legitimate 1488 1289legitimate 55.25% 46.42% 50.45%

MNB
attack 29.98% 100.00% 46.13%

attack legitimate
attack 1187 0

legitimate 2777 0legitimate 0% 0% 0%

MLP
attack 29.98% 100.00% 46.13%

attack legitimate
attack 1187 0

legitimate 2777 0legitimate 0% 0% 0%

Table 9
Results of the performance evaluation of the four machine learning algorithms using three
features for emulated and real traces.

Algorithm Traffic Precision Recall F1-score Confusion matrix

[

TP FN
FP TN

]

Em
ul
at
ed

MLP
attack 100.00% 96.15% 98.04%

attack legitimate
attack 125 5

legitimate 0 357legitimate 98.62% 100.00% 99.30%

K-NN
attack 100.00% 88.46% 93.88%

attack legitimate
attack 115 15

legitimate 0 357legitimate 95.97% 100.00% 97.94%

SVM
attack 100.00% 84.62% 91.67%

attack legitimate
attack 110 20

legitimate 0 357legitimate 94.69% 100.00% 97.28%

MNB
attack 94.53% 93.08% 93.80%

attack legitimate
attack 121 9

legitimate 7 350legitimate 97.49% 98.04% 97.77%

R
ea
l

MLP
attack 100.00% 99.75% 99.87%

attack legitimate
attack 1186 3

legitimate 0 2777legitimate 99.89% 100.00% 99.95%

K-NN
attack 100.00% 99.16% 99.58%

attack legitimate
attack 1179 10

legitimate 0 2777legitimate 99.64% 100.00% 99.82%

SVM
attack 100.00% 98.99% 99.49%

attack legitimate
attack 1177 12

legitimate 0 2777legitimate 99.57% 100.00% 99.78%

MNB
attack 92.85% 99.41% 96.02%

attack legitimate
attack 1182 7

legitimate 91 2686legitimate 99.74% 96.72% 98.21%

Table 10
Results of the performance evaluation of the proposed approach based on FL, MLP and
ED for emulated and real traces.

Algorithm Traffic Precision Recall F1-score Confusion matrix

[

TP FN
FP TN

]

Em
ul
at
ed

FL, MLP and ED
attack 100.00% 97.70% 98.80%

attack legitimate
attack 114 3

legitimate 0 357legitimate 99.20% 100.00% 99.60%

R
ea
l

FL, MLP and ED
attack 100.00% 100.00% 100.00%

attack legitimate
attack 1187 0

legitimate 0 2762legitimate 100.00% 100.00% 100.00%
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attack traffic and from 98.04% (MNB) to 99.30% (MLP, K-
NN, SVM) for legitimate traffic. The results of the classifica-
tion for real traffic show that precision ranges from 92.36%
(MNB) to 100% (MLP, K-NN, SVM) for attack traffic and
from 99.57% (SVM) to 99.89% (MLP) for legitimate traf-
fic and recall ranges from 98.99% (SVM) to 99.75% (MLP)
for attack traffic and from 96.72% (MNB) to 100% (MLP,
K-NN, SVM) for legitimate traffic.

We also show in Table 9 that F1-score ranges from
91.67% (SVM) to 98.04% (MLP) for attack traffic and
from 97.28% (SVM) to 99.30% (MLP) for legitimate traffic,
while, for real traffic, F1-score ranges from 96.02% (MNB)
to 99.87% (MLP) for attack traffic and from 98.21% (MNB)
to 99.95% (MLP) for legitimate traffic. According to Table
9, MLP leads to a slightly better performance than the other
three machine learning algorithms under study.

Table 11
Warning alerts.

Em
ul
at
ed

Attributes/Values Euclidean distance Fuzzy logic MLP
classification classification classification

Number of packets - 422 normal attack normalEntropy - 8.72 attack

Number of packets - 464 normal attack normalEntropy - 8.84 attack

R
ea
l

Number of packets - 461 normal attack normalentropy - 8.84 attack

Number of packets - 390 normal attack normalentropy - 8.60 attack

Number of packets - 348 normal attack normalEntropy - 8.43 attack

Number of packets - 453 normal attack normalEntropy - 8.82 attack

Number of packets - 325 normal attack normalEntropy - 8.34 attack

Number of packets - 321 normal attack normalEntropy - 8.32 attack

Number of packets - 482 normal attack normalEntropy - 8.91 attack

Number of packetss - 350 normal attack normalEntropy - 8.45 attack

Number of packets - 437 normal attack normalEntropy - 8.76 attack

Number of packets - 502 normal attack normalEntropy - 8.97 attack

Number of packets - 513 normal attack normalEntropy - 8.99 attack

Number of packets - 322 normal attack normalEntropy - 8.33 attack

Number of packets - 399 normal attack normalEntropy - 8.64 attack

Number of packets - 538 normal attack normalEntropy - 9.06 attack

Number of packets - 461 normal attack normalEntropy - 8.84 attack

Number of packets - 386 normal attack normalEntropy - 8.59 attack

Number of packets - 336 normal attack normalEntropy - 8.39 attack

Number of packets - 540 normal attack normalEntropy - 9.07 attack

Table 10 shows the results of the performance evalua-
tion for the proposed approach based on FL, MLP and ED.
As we can see, it leads to a better performance than the four
machine learning algorithms as shown in Table 9 due to the

fact that the warning traffic classification leads to a decrease
of false negative and false positive rates. This can be ob-
served in Table 11. The traffic marked as warning has the
feature Number of packets smaller than 1000 packets, which
is not considered as an attack, but it has a large value for the
entropy, which can be considered as an attack. Therefore,
this abnormality can degrade the performance of the classi-
fier. This abnormality can be caused by two factors. The first
factor occurs when we apply the sliding time window with
length of 1 second over the traffic trace and the last packets
of an attack are included in the beginning of a time window,
being composedmostly by legitimate traffic, which may lead
to an increase of the entropy in that time window due to the
presence of some packets of the attack. The second factor
can occur when an attack is in its final phase, where the at-
tack power is weaker and the last malicious packets may be
included in a time window composed mostly by legitimate
traffic, which may lead to an increase of the entropy in that
time window.

As we can see in Table 10, when using the approach
based on FL, MLP and ED, for classification of emulated
traffic, we obtained a precision of 100% for attack traffic
and 99.20% for legitimate traffic, a recall of 97.70% for at-
tack traffic and 100% for legitimate traffic, and a F1-score
of 98.80% for attack traffic and 99.60% for legitimate traf-
fic, while, for real traffic, we obtained a a precision of 100%
for attack traffic and 100% for legitimate traffic, a recall of
100% for attack traffic and 100% for legitimate traffic and a
F1-score of 100% for attack traffic and 100% for legitimate
traffic.

6.4. Resource Usage
The computational resources used by the four machine

learning algorithms and the approach based on FL,MLP and
ED were collected by a computer running the GNU/Linux
operating system Ubuntu version 19.04 (Disco Dingo), with
8 GB of RAM, a 64-bit AMD Phenom II X4 925 processor
with 4 cores and 1 thread per core.

Table 12
Computational resource usage.
Algorithm Emulated dataset Real dataset
K-NN CPU: 122% CPU: 119%

RAM: 0.76MB RAM: 0.77MB
Execution time: 0.67 miliseconds Execution time: 0.79 miliseconds

MLP CPU: 117% CPU: 116%
RAM: 0.76MB RAM: 0.77MB
Execution time: 0.74 miliseconds Execution time: 0.87 miliseconds

SVM CPU: 117% CPU: 117%
RAM: 0.77MB RAM: 0.76MB
Execution time: 0.66 miliseconds Execution time: 0.79 miliseconds

MNB CPU: 120% CPU: 118%
RAM: 0.77MB RAM: 0.70MB
Execution time: 0.66 miliseconds Execution time: 0.74 miliseconds

FL, MLP and ED CPU: 125% CPU: 125%
RAM: 6.6MB RAM: 5.79MB
Execution time: 11:46.49 minutes Execution time: 46:48.44 minutes

Table 12 shows the resource usage by each classifica-
tion approach. CPU consumption and execution times were
collected through the GNU/Linux command /usr/bin/time.
RAMusage was collected using the psrecord [106] software.
Since CPU consumption is larger than 100% it means that at
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least 2 cores were used to classify the whole dataset. As can
be seen in this table, the better performance of the proposed
approach based on FL, MLP and ED has a cost in terms of
the usage of computational resources: it requires 6.6MB and
5.79 MB of RAM for the emulated and real traffic datasets,
respectively, while machine learning algorithms require less
or equal to 0.77MB of RAM for both datasets and it requires
11:46.49 minutes and 46:48.44 minutes to finish the classifi-
cation for the emulated and real traffic datasets, respectively,
while machine learning algorithms require less than 0.9 ms
for both datasets. Nevertheless, the code used for imple-
menting the approach based on FL, MLP and ED was not
optimized, being this task left for further work.

7. Conclusion
In this paper, we evaluated and compared four machine

learning algorithms for the detection of RoQ attacks: MLP,
K-NN, SVMandMNB.We also proposed an approach based
on a combination of three methods, FL,MLP and ED, for the
detection of RoQ attacks. We evaluated these approaches
using emulated and real traffic traces. To build the traffic
traces, we created an emulated environment and a real envi-
ronment and developed an attack tool to generate the attacks,
called M-RoQ. We showed that the use of three features,
namely number of packets, entropy and average inter-arrival
time, leads to a better classification of the four machine lear-
ning algorithms than using only the entropy as a feature. We
showed that, among the four machine learning algorithms,
MLP leads to the best classification results on the detection
of RoQ attacks and that the approach based on FL, MLP and
ED outperforms MLP at the cost of a larger execution time.
For future work, we plan to explore other machine learning
algorithms and compare the results with other approaches.
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