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predictions about their operational progress in the next period.
In this context, data-driven predictions and machine learning
techniques could enhance airport processes [4], since these
techniques are able to show hidden interdependencies in the
complex airport system. The speed and extent, with which data
is shared, have massively increased over the last years and
Airport Council International (ACI) Europe emphasizes the
need for the digitization of aerodromes to provide a seamless
transport and a resilient air transportation system [5].

Local stakeholders (ANSPs, airports, ground handlers, air-
lines) differ in terms of size, strategy, status, constraints, and
business models. A reliable implementation have to address
these distinctions appropriately, which involves various levels
of collaboration and information sharing, considering the indi-
vidual benefits of each stakeholder. Furthermore, imbalances
between different stakeholders by means of costs and benefits
have to be compensated (airlines often benefit most with
small contribution efforts) [6]. A list of stakeholders and the
corresponding provided information is given as follows [7]:

• Air Navigation Service Provider: estimated arrival and
departure times, times based on planning, data provided
by handling agent, runway in use and runway capacity

• Apron Control: landing times, in- and off- block times,
start-up approval, take-off times;

• Airport Operator: stand and gate allocation, environ-
mental information, reduction in airport capacity and in
runway availability, aircraft movement data;

• Ground Handler: changes in turnaround times, target off-
block time updates, planning data, possible deicing;

• Airline: flight plans, flight priorities, aircraft registrations
and types.

The implementation of A-CDM is characterized by exten-
sive negotiations between stakeholders, need for an enhanced
sensor system for operational data, efficient data handling
and sharing, and establishment of new procedures. At the
same time, concerns are raised that shared data (information)
will not only be used for A-CDM, but also for the evalua-
tion of competitor’s business structure. Beside the complex
data/information sharing tasks, the estimated costs for a full
A-CDM implementation is about 2.5 Me, with annual mainte-
nance costs of 150 ke [2], which seems only to be reasonable
for major airports [8]. However, the data and information shar-
ing in the whole air traffic network (including small/medium-
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I. INTRODUCTION

The concept of establishing operational milestones for each
aircraft movement is one core element for the airport collabo-
rative decision making (A-CDM) [1]. These milestones should
provide a common situational awareness for all stakeholders
to jointly solve performance challenges at the airport, e.g.
increasing punctuality during the day of operations. In this
context, A-CDM is expected to improve efficiency o f both
airports and air transportation network, such as shortening of
taxi times (−7%), decreasing fuel burn (−7.7%) and reducing
delay caused by air traffic fl ow ma nagement (− 10.3%) [2].
In Europe, A-CDM will be implemented as part of the
European Air Traffic M anagement M aster P lan w ithin the
Single European Sky (SES) initiative [3].

Naturally, the air transportation system is both a competitive
and collaborative environment, where stakeholders have to
optimize their economic benefits c onsidering v arious restric-
tions. By giving airport stakeholders access to data from
different sources, airports will be able to make more accurate



sized airports) is a key element for a seamless and efficient
transport. To significantly reduce costs for implementation
and annual maintenance, we suggest to use publicly available
ADS-B (automatic dependent surveillance – broadcast) data or
to properly install receivers at the airport (coverage depends
on available line of sight).

Furthermore, the obligation to equip aircraft with a
transponder will begin in Europe in June 2020 [9], [10] and in
the US almost all airspaces will be reserved only for appropri-
ately equipped aircraft from January 2020 [11]. It is expected
that current surveillance systems will be extended with ADS-B
and future ground stations will be fully based on this technol-
ogy, which is significantly cheaper to install and to operate.
Due to the simple requirements on the receivers, ADS-B has
contributed to the development of online services that display
the current air traffic in real time with worldwide receiver
networks (depending on the local coverage), such as The
OpenSky Network [12] or Flightradar24 (flightradar24.com).
This technology also offers a solution for monitoring re-
mote areas and flights over the oceans with space-based
ADS-B [13]. Furthermore, the equipment of ground vehicles at
aerodromes should enable a more comprehensive monitoring
of the traffic situation on the corresponding movement areas
at the apron [14].

A. State of the art

In the context of aviation, several methods from the field
of artificial intelligence are used to cluster [15]–[18], detect
anomalies [19]–[22] and predict aircraft trajectories [23]–
[25], develop dynamic airspace designs [26], [27], analyse
runway and apron operations [21], [28]–[30], determine airport
performance including the impact of local weather events [31],
[32], and for airport terminal operations (turnaround) [33].
More initiatives to leverage ADS-B open data in order to
improve the state of the art are already commonplace, esp.
in the field of aircraft modelling [34], [35].

We consequently follow a research agenda for a data-
driven management of airport operations: (a) concept of a
performance-based, integrated airport management [36], (b)
analysis of operational scenarios to mitigate impacts of capac-
ity restrictions [37], (c) systematic analysis of correlations be-
tween airport performance and weather conditions at European
airports [38], (d) data-driven models to forecast operational
delays using neural networks [31], [32], and (e) forecast of
specific parts of aircraft ground trajectory [28].

B. Focus and structure of the document

We used a data-driven airport management concept to derive
operational milestones from ADS-B messages of arriving and
departing aircraft [29], [30]. This approach allows to monitor
the operational performance as a mandatory step to enable
extended prediction capabilities, which will be focused our
next research. We use Zurich airport as an example in this
contribution to show that our monitoring approach could easily
to be rolled out to any other airport environments without
major drawbacks in the data processing.

After the introduction of the collaborative decision mak-
ing in the airport environment, we provide in Section II a
brief insight into the A-CDM concept. A tailored operational
milestone concept (A-CDM lite) is proposed with an adapted
and reduced number of milestones, all accessible from ADS-B
data. In Section III we focus on the data processing in place as
a proof of concept and provide an operational representation
of the underlying airport operational environment. Thereafter,
we show in Section IV examples of applications based on our
A-CDM lite concept using a month of aircraft movement data
at Zurich airport. Our contribution closes with discussion and
conclusion.

II. THE A-CDM CONCEPT

The A-CDM concept consists of 16 milestones along the
aircraft trajectory at the airport. Recommended milestones
(MS) [1] are: flight plan activation, estimated off block time
(look ahead time of two hours before arrival), take-off from
outstation, local radar update, aircraft on final approach,
landing, in-block, target start-up approval, off-block, and take
off. The most important aircraft-related control parameter is
the target off-block time (TOBT), which is driven by aircraft
ground operations (turnaround) [39]–[41]. In particular, the
progress of passenger boarding (landside operation) could
mainly affect the overall operational performance [33], [42].
Thus, the aircraft take-off time is impacted by both airside and
landside operations at the airport. An important connection
exists between TOBT (provided by ground handling), target
start-up approval time (TSAT) at the gate and target take-
off time (TTOT) at the runway (Figure 1). The TTOT also
covers tactical decision of the air traffic flow and capacity
management.

Figure 1. Calculation of Target Start-up Approval Time (TSAT) under
consideration of operational milestones w.r.t. aircraft movements [43].

We extract the milestones from the aircraft status updates
included in the ADS-B messages. Since these messages con-
tain no information about operational estimated and targeted
timestamps or information about ground handling operations,
the initial milestone approach has to be adapted (A-CDM
lite, see [29], [30]). The tailored milestone-based approach
of A-CDM lite is based on the following relevant data from
the ADS-B messages:

• transponder unique identifiers (to be related to tail number
and aircraft type) and callsigns;

• timestamps (set by the receiver);
• positional information: latitude and longitude (◦, 5 digit

precision), altitude (ft, with steps of 25ft);



Figure 2. Tailored A-CDM milestones emphasizing airborne view (left) and airport surface view (right) of a sample aircraft movement. The arrival/ departure
view shows aircraft enters the arrival sequencing and metering area (ASMA), is on final approach and leaves ASMA. On the surface, the aircraft passes the
following milestones: actual landing time (ALDT), leaving runway at exit point, actual in/off-block time (AIBT, AOBT), aircraft ready time (ARDT), entering
runway, actual take off time (ATOT).

• velocity information: ground speed (kts), track angle (◦)
and vertical speed (ft/min).

We assign unique flight identifiers for convenience based
on heuristics combining transponder identifier, callsigns and
timestamps labelling collected data. In the future, we plan
to use identifiers assigned to flight plan information with
related in- and off-block times. In accordance with the com-
mon A-CDM milestone approach, an operational (time-based)
aircraft trajectory will be described by the following numbered
10 timestamps exemplified on Figure 2: (1) aircraft entering
the Arrival Sequencing and Metering Area (ASMA, the area
within 40 nm radius around the airport, cf. [44]), (2) on final
approach [29], (3) actual landing time (ALDT), (4) leaving
runway at exit point, (5) actual in block time (AIBT), (6)
aircraft ready time (ARDT), (7) actual off-block time (AOBT),
(8) entering runway, (9) actual take-off time (ATOT), and (10)
leaving ASMA.

Each milestone is extracted from ADS-B data. Milestones
(1) and (10) are triggered when the aircraft enters (respectively
exits) a 40 nm radius around the airport. Milestone (2) is set
when the aircraft comes below an altitude of 2500 ft above
the airport ground [29]. Milestones (3), (4), (8) and (9) are
based on geometrical constraints related to the corresponding
runways. Milestone (5) is defined as the last recorded times-
tamp before the aircraft stops moving at the gate. Conversely,
milestone (6) is set when the aircraft transponder starts to
emit ADS-B messages at the gate/ apron position and (7) is set
when the aircraft yields a groundspeed above a given threshold
(typically 20 kts). Additionally, milestones (3) and (9) will be
identified and verified by positional information (altitude) and
velocity information (vertical speed) received from the ADS-B

messages. Issues related to imprecision when dealing with
message types or vertical speed references for determining the
touchdown position [21] do not seem problematic for detecting
take-offs.

III. DATA PROCESSING

The framework presented in this paper heavily relies on the
availability of data related to aircraft trajectories and filed flight
plans. Trajectories stem from the OpenSky Network [12],
a network of Mode S receivers feeding data made openly
available for research purposes. In order to validate the quality
of the computed estimations for the milestones, a comparison
has been performed based on history records of automatically
filed flight plans, through Eurocontrol web services, accessed
with a PREOPS license.

A. ADS-B data

ADS-B is a cooperative surveillance technology, which
provides situational awareness in the air traffic management
system. Aircraft determine their position via satellite, inertial
and radio navigation and periodically emit it (roughly one
sample per second) with other relevant parameters to ground
stations and other equipped aircraft. Signals are broadcast at
1090 MHz: a decent ADS-B receiver antenna can receive
messages from cruising aircraft located up to 400 km far away,
while the range is much lower for aircraft flying in low altitude
or on ground.

The collected data used for this study contains a month
of ADS-B data collected during October 2019, tagged by the
OpenSky Network as flying from or to Zurich airport (LSZH).
This airport was chosen for the good coverage offered by
the network with about seven receivers in line of sight with



Figure 3. Receivers around Zurich area feeding the OpenSky Network.

the apron (Figure 3) and consistently feeding data of ground
trajectories to the network. Recorded data contains timestamps
(added on the receiver side, with many receivers equipped
with a GPS nanosecond precision clock), transponder unique
24-bit identifiers (icao24), space-filled 8 character callsigns,
latitude, longitude (in degrees, 5 digit precision), altitude (in
ft, w.r.t. standard atmosphere), ground speeds (in kts), true
track angle (in degrees), vertical speed (in kts). Based on
sensors located on the landing gear, different messages with
similar information are sent when the aircraft is on the ground,
resulting in a boolean flag in the OpenSky records.

Aircraft compute their position within uncertainty margins
(navigation accuracy) according to actual sensor sources (such
as global navigation satellite system, inertial navigation sys-
tem, or radio navigation) and broadcast their position via
ADS-B. The information about the uncertainties are not pro-
vided decoded in the OpenSky Network database but could
be processed [45] from the raw messages on an as-need basis.
However, we kept the uncertainty analysis out of the scope
of this paper and chose to manually filter irrelevant data (see
Section III-B) as part of the pre-processing step.

As a matter of fact, there are a limitations inherent to the
quality of data received:

• reception of trajectories on ground is only possible when
active receiving antennas are in line of sight with all
taxiing aircraft. This can be made possible with antennas
conveniently installed at airports;

• positions of aircraft are computed with embedded inertial
systems if satellites are out of sight. This can lead to
trajectories not matching the apron structure until the
GPS signal is properly caught. Cross-validation with
other sources of information (ground radars, signals from
other antennas processed for multilateration) is a way to
mitigate this issue.

B. Preprocessing of data

We use the declarative pre-processing grammar of the
Python traffic [46] library to describe the pre-processing
steps applied to our dataset of trajectories. For instance, the
following pre-processing was used for all landing trajectories:
raw_dataset
# select aircraft landing and remove local usage
.query("destination != origin and destination == 'LSZH'")
# trim trajectories within 40 nm radius of the airport
.distance(airport.point).query("distance < 40")
# each trajectory must cross the runways (quality criterion)
.intersects(airport.runways)
# only keep trajectories with more than five minutes of data
.longer_than("5 minutes")
# compute cumulative distance, compute additional groundspeed
# (useful to mitigate missing groundspeed data)
.cumulative_distance(True)
# cascade of median filters
.filter()
# [custom function]
# trim the trajectories after aircraft stop moving for a while
.pipe(trim_parking)
# [custom function]
# keep trajectories with enough points during taxi
.pipe(enough_points_when_taxi)
# [end] evaluate the preprocessing
.eval()

Trajectories collected in the original dataset require specific
pre-processing to address several commonly known issues
stated above in order to select only trajectories with enough
quality in terms of accuracy (the tracks should fit the apron)
and precision (a trajectory should consist of enough samples
during taxi). Invalid trajectories in our original dataset include:

• ground trajectories computed only from the inertial sys-
tems before catching GPS signal (Fig. 4.a)).

• ground trajectories with not enough samples to fully
represent the aircraft position at all times (Fig. 4.b)).

Figure 4. Invalid trajectories detected in the dataset addressing the loss of
GPS signal (position changes derived from measures of aircraft acceleration)
and missing data points.

C. Data quality assessment

The quality of the data has been assessed and compared with
data present in Eurocontrol web services, with a preops access.
Data available include a flight identifier, callsign, icao24,
origin airport, destination airport, estimated off-block time,



take-off time, and landing time. The aircraft taxi time is also
available at the Eurocontrol web services (in theory) but the
recorded information are mostly irrelevant, since these data
are average values.

The preops access has limitations in data, so cannot be
considered as ground truth. Not only do stakeholders not
update their information on a regular basis and with significant
precision, but also flight plans which are filed manually (about
10 % of all flights) are not available. Over the recorded span
from October 5th to 31st, 6,315 flights have been seen both
on ADS-B and Eurocontrol records, 2,295 flights were only
seen on Eurocontrol records and were not sending any ADS-B
information, also local receivers recorded Mode S data from
these aircraft, which include callsign, squawk code and alti-
tude, but no positional information. Conversely, 1,299 flights
had ADS-B records but no track available on Eurocontrol
records (manually filed flight plans).

Figure 5 plots the difference in seconds between the
recorded landing time (rounded to the closest minute) in
Eurocontrol database and the estimation of our third milestone
ALDT (actual landing time). Considering a precision of 60
seconds in the Eurocontrol database, the distribution of errors
validates the estimation of this particular milestone using
both aircraft emitted ADS-B messages and our A-CDM lite
approach.

Figure 5. Difference (absolute), in seconds, between (automatically) recorded
landing time in Eurocontrol database and our ALDT (actual landing time)
milestone.

Figure 6 plots the distribution of taxi times, rather short
on average in Zurich airport. A more detailed distribution is
analysed in depth in Section IV. The distribution exhibited
on Figure 6 is more striking for the 1500+ flights with
positional data no longer recorded after the runway exit. This is
possibly related with a receiver having this part of the airport
apron in line of sight being offline at these moments. For
the best mitigation measure the authors can think of, is to
convince airports of the benefits of our data-driven A-CDM
lite approach and convince them to have (multiple) receivers
on-site feeding the network.

Figure 6. Distribution of aircraft taxi times in seconds, from runway exit to
last recorded position.

D. Data compression – simplification

Aircraft trajectories are a list of status changes, which are
often contains a linear path elements, interrupted by changes
in both altitude and direction. Thus, the recorded data contains
several data points with no additional information, which
could be deleted. This compression process results in a data
reduction of approx. 80% [29]. If at later stage a higher
resolution of the trajectory could be create a linear resampling.
Nevertheless, the compression has to assure that particular
points of interests will be part of the compressed (simplified)
trajectory. The application of the Ramer–Douglas–Peucker
(RDP) algorithm [47] shows an appropriate behaviour, when
the aircraft trajectory is divided into a ground and an aerial
part. For both parts different values for precision (maximum
distance between simplified and original trajectory) are taken
to decide if a status update will add new information (add to
the simplified list) or could be described by linear combination
of two other status changes (not to be considered further). As
Figure 7 exhibits, setting the distance to 100 m and 25 m
reduces the initial number of positions from 67 to 7 and 13,
respectively.

Figure 7. Compression of exemplary ground trajectory of arriving aircraft at
Zurich airport landing on runway 14: operational milestones and maximum
distance between origin and simplified trajectory using a maximum distance
(precision) of 25 m (left) and 100 m (right).



Since the average position error is about 21 m, identified
during radar verification [48], a distance of 25 m was finally
implemented for ground operations. In particular, ground
operations exhibits the need of an additional parameter to
be included in the simplification/compression process: aircraft
speed. For that reason, Figure 8 (top) exhibits the deficiencies
in reproducing aircraft speed, when only considering the air-
craft location. An additional consideration of the aircraft speed
changes with a threshold of 4 m · s−1 increases the number of
trajectory positions to 23, see Figure 8 (below). Finally, we
propose a trajectory compression with the following setting
for location (latitude, longitude), altitude and speed profiles
for the RDP algorithm on the ground (in the air): 25 m (resp.
200 m), 0 m (resp. 30 m), 4 m · s−1 (resp. 10 m · s−1).

Figure 8. Speed changes during ground operations are not sufficiently
covered by using location-based simplification algorithms only.

As Figure 7 and 8 show, the RDP algorithm works as an
edge/corner detector, identifying deflection points at the apron.
This behavior identifies operational hotspots [30], by means
of areas, which are of particular interests to apron controllers.
Often detected hotspots in a similar timeframe are precursors
for bottlenecks (like waiting queues at runway access) and
could be used as a starting point for operational optimizations.
Furthermore, these corners could also be used to identify
operational milestones, such as landing or take-off time.

IV. ANALYSIS OF AIRPORT OPERATIONAL ENVIRONMENT

In this section, we show four examples of application
of the derived milestone concept: (A) aircraft inbound flow
into Zurich airport, (B) clustering of ground trajectories, and
determination of (C) runway occupancy and (D) taxi times.
These examples emphasize the most relevant parameters,
which heavily affect airport performance. Inbound trajectories
determine landing times and are part of the airport arrival man-
agement to ensure an efficient use of runway capacity. After
the aircraft landed, the runway occupancy time determine the
further use of this particular runway, and dependent operations
at other runways, for arrival and departure procedures [28].

After the aircraft leaves the runway and enters the taxiway
system, interactions with all active aircraft and ground vehicles
determine the (variable) taxi time (VTT) of the actual aircraft
as well as the times of all other affected aircraft (Fig. 1,
Sec. II). Beside the common concept of data sharing and
the introduced milestone approach, A-CDM also addresses
the determination of variable taxi times. Instead of using
default pre-defined values for aircraft taxiing as reflected in
operational databases, the calculation of VTT and finally the
provision of taxi time forecasts will enable an optimize use of
the apron/taxi capacities.

A. Flows into airport

The specific ASMA transit time depends on the direction
of the incoming traffic flow. Therefore, Eurocontrol suggest to
divide this circular area around the airport (radius of 40NM)
into angular sectors by entry bearings [44], depending on
the distribution of the inbound traffic. As Figure 9 exhibits,
the consideration of bearings as single input will not reflect
the nature of arrival procedures. Thus, arrival management
systems allow a continuous optimisation of arrival traffic
sequences using appropriate tactical intervention by air traffic
controllers to maximise the airport capacity.

Trajectory clustering in terminal manoeuvring areas [18],
[49] is a powerful tool to analyse the inbound traffic to an
airport. Figure 9 displays few trajectories from four different
clusters of aircraft coming from the North of the airfield.

Figure 9. Clustering among northbound arrival flows at Zurich airport.

Clustering yields different flows according to the amount
of scheduling work: the first cluster gathers trajectories flying
directly to catch the signal of the instrument landing system
(ILS) on runway 14. The second cluster shows a very slight
level of sequencing, the third cluster reflects a low level of
disruption with tromboning into final approach while the last



one shows a higher level of disruption, with an ASMA transit
time 2.5 times longer than in smooth configuration.

Given characteristic demand/flow constellations, runway
operational concepts, and weather conditions, specific arrival
procedures will be applied by air traffic controllers. Thus,
the determination of both unimpeded and additional ASMA
transit times have to consider the operational situation at the
airport and an optimal queuing of aircraft needed to enable
maximum utilization of airport capacity. Analyses about air-
port congestion and traffic in Terminal Manoeuvring Areas
(TMA) show a big discrepancy in specific ASMA transit
times, namely the actual time spent by a flight between its
last entry in the cylinder (entry-time at 40 NM upstream) and
the actual landing time (Figure 10). An efficient prediction
of the configuration and disruption mode at the airport can
improve the prediction of ASMA transit times according to
the violin plots on Figure 10.

Figure 10. Analysis of ASMA transit times before landing.

B. Runway occupancy time

Figure 11 shows an exemplary analysis of the runway
occupancy time of runway 14 (northern runway, landing in
southerly direction), indicating the use of different runway
exits. After landing, aircraft should leave the runway in a
fast way, since following aircraft are only allowed to use a
cleared runway. In times of high intense runway operations
or to cover uncertainties in the actual landing time (ALDT),
safety will be assured by introducing spacing buffers to prevent
separation infringements. The size of these buffers affect the
airport capacity and mainly depends on individual controller
experiences, mix of aircraft types (wake turbulence category
[50]), type of operations (arrival, departure), and weather
conditions [38].

C. Ground trajectories

Clustering of ground trajectories is a challenging task
because of the difficulty to find a proper distance function
between them. Moreover, after resampling trajectories to
enough samples to grasp the structure of the traffic, vectors
of very high dimensions will be passed to the clustering
algorithm and the curse of dimensionality will hit. A common

Figure 11. Distribution of runway occupancy times at runway 14 (upper north
runway), measured as time between aircraft landing time and time when the
aircraft is leaving the runway.

workaround is to project highly dimensional samples into a
lower dimensional space and to perform clustering in this
new space. A wide variety of techniques are available to
compute relevant projections into a lower dimensional space,
like Principal Component Analysis (PCA), autoencoders or t-
SNE [51]. Fig. 12 plots a small subset of the clusters resulting
from a DBSCAN [52] clustering on the two dimensional
space where t-SNE projected the trajectories, consisting of
50 samples of latitudes, longitudes and ground speeds. The
clusters reflect various typical ground trajectories followed by
aircraft after landing.

Figure 12. A subset of the clustered aircraft ground trajectories detected
using positional features provided by ADS-B data.

D. Taxi times

Taxi time is a major contributor to airport performance. The
whole taxi system needs to be efficiently managed to drive
aircraft seamlessly to and from the runway. Zurich airport
consists of a set of dependent and crossing runways, which
is normally accompanied with corresponding waiting areas to
allow safe runway crossings (see Fig. 13).

According to the airport and runway layout, it is expected
that different average taxi times and deviations exist. As
Fig. 14 exhibits, the operating runway significantly impacts
the aircraft taxi time. In this context, runway 28 (red line) is
mostly used in evening hours (from 21:30 h during weekdays)



Figure 13. Density map of aircraft positions at Zurich airport with aircraft
ground speed = 0.

when the traffic demand (and flow) is significantly lower than
over the day. If runway 14 is used for aircraft arrival, the taxi
times indicate a bi-modal distribution (blue line).

Figure 14. Distribution of taxi times for trajectories with enough points
during taxi, and splitted according to the runway in use (14 - landing from
north (left runway), 28 - landing from east, or 34 - landing from south (left
runway)).

For the calculation of variable taxi times (VTT), the po-
sitions of the ground trajectories could be further processed
and clustered. As mentioned, the applied RDP algorithm
detect non-linear changes in aircraft location and speed, which
are also associated with intersections within the runway/taxi
system. These positions are clustered with a Kernel Density
Estimation approach (DENCLUE algorithm [53]), where the
positions are assigned to clusters by hill climbing. This clus-
tering process results in a representation of operational hot
spots [30], which will be the basis for a graph representation
of the apron network. Finally, this graph will be used for VTT
prediction in our follow up research.

V. DISCUSSION AND CONCLUSION

The analysis of available ADS-B data at Zurich airport,
which currently offers a decent coverage on ground shows in-
teresting patterns in taxiing and correlations found with traffic
density that, are consistent with what we would expect from
the way airports are usually operated. This proof of concept
for our tailored milestones concept shows promising results
with regards to the analysis of the operational performance at
the airport. Thus, we are confident that an implementation of
A-CDM lite will provide an appropriate performance-based
airport management, when ADS-B becomes mandatory in
2020. The use of ADS-B is convenient as it is very cost-
effective: the installation of a decent decoding installation
nearby airports costs less than 1,000 e(with most basic
receivers, costs going down to 20 e), making replication and
validation of positions by multilateration an option to address
spoofing attacks.

This study only analyses the airside trajectory part with open
sources for aircraft movement data, which validates part of
the concept. Future works will include the incorporation of
flight plan and operational history data accessible through Eu-
rocontrol B2B services, for a further validation of the concept
and for improving the predictive power of our approach. The
inclusion of more sources of data to address possible causes
of disruptions (such as weather [31], [32], [38]) and specific
operational behaviours at the airport will also be considered.

We introduced a tailored approach of the A-CDM milestone
concept (A-CDM lite), which contains of ten operational mile-
stones along the aircraft trajectory. These milestones can be
fully derived from public available ADS-B messages emitted
by arriving and departing aircraft. In particular, taking the
first received message from a departing aircraft (crew activates
the ADS-B transponder) as ’aircraft ready’ milestone, seems
to be a promising approach to predict the aircraft off block
time. Our contribution addresses four important elements of
the airport management: arrival flows, runway occupancy,
ground trajectories and taxi times. We provide first analysis
of the airport operational performance using data analytics
techniques and machine learning approaches.

The benefits of A-CDM lite implementation are threefold:
(1) awareness of local, actual airport operations, (2) knowledge
about the performance of connected airports (analysing their
local operations), and (3) provide milestone data from A-CDM
lite to the network manager to improve the performance of
air traffic system. A full implementation of A-CDM is cost-
intensive and not preferred by small/medium airports.

Our A-CDM lite concept shows that the use of ADS-B
data allows to derive a set of milestones to manage an airport
with performance targets. We expect that our A-CDM lite will
convince airport operators to implement the reduced milestone
concept and significantly boost the availability of local data for
an improved management of the whole traffic system. Our next
research will include the stepwise prediction of operational
milestones to provide target times for operations and the test
implementation within an operative airport environment.
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