
HAL Id: hal-03182546
https://hal.science/hal-03182546v1

Preprint submitted on 26 Mar 2021 (v1), last revised 24 Oct 2021 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Boundary Control for Multi-Directional Traffic on
Urban Networks

Liudmila Tumash, Carlos Canudas de Wit, Maria Laura Delle Monache

To cite this version:
Liudmila Tumash, Carlos Canudas de Wit, Maria Laura Delle Monache. Boundary Control for Multi-
Directional Traffic on Urban Networks. 2021. �hal-03182546v1�

https://hal.science/hal-03182546v1
https://hal.archives-ouvertes.fr


Boundary Control for Multi-Directional Traffic on Urban Networks

Liudmila Tumash, Carlos Canudas-de-Wit and Maria Laura Delle Monache

Abstract— This paper is devoted to the boundary control
design for traffic evolving on large-scale urban networks. The
state corresponds to the vehicle density that evolves on a
continuum two-dimensional plane. This plane represents an
urban network, whose parameters are interpolated as a function
of distance to the physical roads. The dynamics of the vehicle
density are governed by a newly developed multi-direction
traffic flow model called the NSWE-model that encompasses
a system of four coupled partial differential equations (PDEs).
Each of these PDEs describes the density evolution in one of the
four cardinal directions: North, South, West and East. For this
model we design a control applied at the network’s upstream
boundary to drive a multi-directional congested traffic state
to a desired equilibrium state. We analyse the class of desired
states the system can be driven to. Finally, the result is validated
numerically using the real network of Grenoble downtown.

I. Introduction
Ever growing urban areas face the problem of trans-

portation efficiency drop during rush hours. This problem
triggers challenges for researchers to develop realistic traffic
models able to predict congestion formation, as well as to
suggest efficient control measures able to improve the overall
traffic throughput. The first attempts to model traffic on a
macroscopic scale were made by Lighthill and Whitgham [3]
and Richards [4] by introducing the kinematic wave theory.
The LWR-model is a first-order hyperbolic PDE based on
the conservation of vehicles that describes the propagation
of traffic on one road as a fluid. Its key assumption is the
existence of a concave relation between traffic flow and
density known as Fundamental Diagram (FD).

The LWR framework was extended to networks with the
introduction of intersection modelling in [10]. However, if
a network consists of thousands of links and junctions, the
computational cost of solving a Riemann problem at every
intersection may become too high [9]. Thus, it was necessary
to develop macroscopic approaches for traffic modelling.
Using data from microsimulations, [6] revealed the existence
of a relation between flow and density on a city level. This
relation was then confirmed in a real experiment due to data
collection from Yokohama, Japan [12], [11]. The discovery
of macroscopic fundamental diagram (MFD) allowed to
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describe traffic as a change rate in the number of cars per
zone, see [22] for a review on several MFD-based models.
The MFD-based approach is easy in use, this makes it
popular for traffic control design such as perimeter control
[14], robust control [16], etc. However, only homogeneously
congested areas may have a well-defined MFD. Otherwise
this area must be repartitioned based on the traffic state
[15], what makes MFD framework tedious in case of rapidly
changing traffic conditions. Moreover, MFD approach also
does not capture the particular shape of congestions, see [23].

As an alternative to MFD, one can also use two-
dimensional continuum models to describe traffic in urban
networks. Thus, [19] introduced an extension of the classical
LWR-model to two dimensions with space-dependent FD
that incorporate network infrastructure parameters. A general
method to calculate steady-states in 2D-LWR was presented
in [23], while [24] elaborated a boundary controller for
congested traffic that was further extended to traffic being in
any (mixed) regime in [25]. Another continuous 2D model
presented in [13] uses the solution of the Eikonal equation
to determine the direction of traffic motion.

The aforementioned references consider traffic flow that
has only one direction of motion. The first attempt to include
multiple directions in 2D continuum models was made only
several years ago, when [18] deployed dynamic user-optimal
principle for the path choice. The drawback of this model
is that the traffic density may become unbounded. There
exist also other works [21], [20] proposing 2D multi-layer
models with bounded densities. However, these models are
not necessarily hyperbolic and they do not include mixing
between layers. Our recent work [26] fixes both of these
aspects introducing a multi-directional model, in which the
state evolves in four cardinal directions: North, South, West
and East (NSWE-model). These density layers interact with
each other meaning that cars might change their original
direction of movement. The information about the traffic flow
direction is obtained from the turning ratios at intersections.

In this paper we design a boundary control for the NSWE-
model that drives an initially congested state to the best
possible desired equilibrium corresponding to congestion
minimization, which equivalently means throughput maxi-
mization of the network. Our main contribution is an exten-
sive analysis of possible desired space-varying profiles that
the system can achieve, which is far from being trivial for
multi-directional traffic systems. Moreover, we use Lyapunov
methods to show the exponential convergence to the desired
state.



II. NSWE TrafficModel

We use the NSWE-model introduced in [26] to predict
a multi-directional traffic flow evolution on a given large-
scale urban network. The propagation of traffic is described
in terms of vehicle density ρ = (ρN ,ρS ,ρW ,ρE)T defined
on a bounded continuum 2D plane ∀(x,y) ∈ Ω as a four-
dimensional vector containing information about the density
evolution in North (N), South (S), West (W) and East (E)
directions. This plane Ω is a rectangular domain bounded by
xmin, xmax, ymin and ymax that represents an urban network,
whose road parameters are interpolated everywhere in the
domain as a function of the distance to these roads. Thus, the
NSWE-model describes the evolution of ρ(x,y, t) : Ω×R+→

R+ by the following system of partial differential equations:

∂ρN

∂t
=

1
L

(
ψin

N −ψ
out
N

)
−
∂(cNψN )

∂x
−
∂(sNψN )

∂y
,

∂ρS

∂t
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1
L

(
ψin

S −ψ
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S
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∂(cSψS )
∂x
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∂(sSψS )
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1
L
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∂(cWψW )

∂x
−
∂(sWψW )

∂y
,

∂ρE

∂t
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1
L

(
ψin

E −ψ
out
E

)
−
∂(cEψE)
∂x

−
∂(sEψE)
∂y

.

(1)

The flow function ψ(x,y,ρ) is a four-dimensional vector
ψ = (ψN ,ψS ,ψW ,ψE)T . Each of its elements is obtained from
the fundamental diagram (FD). Let us consider the North
direction to simplify the definitions. Then, ψN(x,y,ρN) :
Ω×R+→ R+ is a concave function that achieves its unique
maximum ψmax

N (x,y) ∀(x,y) ∈ Ω (capacity) at the critical
density ρc

N(x,y), and the minimum is achieved at ψN(x,y,0) =

ψN(x,y,ρmax
N ) = 0 with ρmax

N (x,y) being the space-dependent
traffic jam density of the North direction. Vehicles move
freely to the North with a positive kinematic wave speed
vN(x,y) if the density in this direction is below the criti-
cal value, i.e., the free-flow regime occurs for ρN(x,y) ∈
[0,ρc

N(x,y)] ∀(x,y) ∈Ω. Otherwise vehicles move in the con-
gested regime with a negative kinematic wave speed ωN(x,y)
if ρN(x,y) ∈ (ρc

N(x,y),ρmax
N (x,y)] ∀(x,y) ∈Ω. In general, traffic

flow in other directions ψS , ψW , and ψE can be retrieved from
FD of the corresponding directions. Fundamental diagrams
can have different shapes, see [17] for a review. In this work
we use the most simple fundamental diagram that has a
triangular shape suggested by [7], see Fig. 1.

In (1), ψin(x,y,ρ)−ψout(x,y,ρ) is the net flow on a road:
ψin

N −ψ
out
N

ψin
S −ψ

out
S

ψin
W −ψ

out
W

ψin
E −ψ

out
E

 =


ψS N +ψWN +ψEN −ψNS −ψNW −ψNE
ψNS +ψWS +ψES −ψS N −ψS W −ψS E
ψNW +ψS W +ψEW −ψWN −ψWS −ψWE
ψNE +ψS E +ψWE −ψEN −ψES −ψEW

 .
Thereby, each of the partial flows from one cardinal direction
to another is a function of the corresponding demand and
supply functions, e.g., flow of cars that were going to the
South and then turned to the North ψS N(x,y,ρS ,ρN) is a
function of the demand from the South DS and the supply
of the North S N :

ψS N = min(αS N DS (ρS ),βS NS N(ρN)), (2)

ρN

ψN

ρc
N

ψmax
N

0 ρmax
N

vN −ωN

Fig. 1: Triangular FD of the North direction for some (x,y) ∈
Ω: free-flow regime (area in green) and congested regime
(area in orange).

where αS N and βS N are the turning ratio from South to North
and the supply ratio of the North for the vehicles arriving
from the South, correspondingly. The demand and supply
functions in (2) take the following forms:

DS (ρS ) =

vS ρS , if 0 ≤ ρS ≤ ρ
c
S ,

ψmax
S , if ρc

S < ρS ≤ ρ
max
S ,

(3)

and

S N(ρN) =

ψmax
N , if 0 ≤ ρN ≤ ρ

c
N ,

ωN(ρmax
N −ρN), if ρc

N < ρN ≤ ρ
max
N ,

(4)

where the critical density ρc
N and the maximal flow ψmax

N are
defined ∀(x,y) ∈Ω as:

ρc
N =

ωN

vN +ωN
ρmax

N , ψmax
N =

vNωN

vN +ωN
ρmax

N ,

and throughout this work we also assume that ρc = ρmax/3
for all the directions.

We can now express the partial flow by inserting (4) and
(3) into (2) and obtain:

ψS N = min(αS NvS ρS ,αS Nψ
max
S ,βS NωN

(
ρmax

N −ρN
)
,βS Nψ

max
N ).

(5)
If cars are moving in the free-flow regime from South

to North, then (2) is resolved to the benefit of the demand
function. Otherwise, if the density of the cars going from the
South to the North is too high causing the congested regime,
then (2) equals to the supply of the North.

In [26] the NSWE-model was originally derived to de-
scribe the density propagation in the vicinity of some inter-
section in a unique way. It was then extended to the network
formulation when intersection parameters were defined ev-
erywhere in the continuum plane Ω through interpolation
(details are given below). Thus, if we imagine that model
(1) is valid in the vicinity of some intersection located at
(x,y) with nout outgoing roads each having length l j for
j ∈ [1, ...,nout], then L(x,y) in (1) should be interpreted as
the mean length of outgoing roads of this intersection, and



it was chosen such that the number of cars is conserved:

L =

nout∑
j=1
ρmax

j l j

nout∑
j=1
ρmax

j

.

Finally, variables cN , cS , cW , cE and sN , sS , sW , sE from
system (1) describe the general orientation of outgoing roads,
e.g., consider North:

cN =

nout∑
j=1

pN
θ j

cosθ jψ
max
j

nout∑
j=1

pN
θ j
ψmax

j

, sN =

nout∑
j=1

pN
θ j

sinθ jψ
max
j

nout∑
j=1

pN
θ j
ψmax

j

,

where pN
θ j
∈ [0,1] is a coefficient indicating the orientation of

road j with respect to the North direction (1 means that road
j is pointing exactly to the North, 0 means that the angle is
larger than π/2 with the North direction).

It was shown in [26] that the flow in any direction, e.g.
ψN , can be simplified to the minimum between the demand
DN and supply S N functions of this direction, i.e.,

ψN = min(DN(ρN),S N(ρN)), (6)

if we assume that the network is well-designed in terms of
maximal flows, e.g. consider flow from South to West:

αS Nψ
max
N = βS Nψ

max
S .

This assumption means that vehicles moving to the South at
maximum capacity continue moving at maximum capacity
after they turn to the North at an intersection.

The urban network, on which we model traffic propaga-
tion, is always given as a set of physical roads and intersec-
tions with given speed limits and the number of lanes. How-
ever, the NSWE-model (1) being continuous requires that all
the intersection and FD parameters are defined ∀(x,y) ∈ Ω.
We achieve that by applying interpolation methods. First,
we define the maximal density ρmax by placing every 6m
a vehicle on every road. We assume that each such vehicle
contributes to the global density with a Gaussian kernel with
standard deviation 50m centred at its position ∀(x,y) ∈ Ω

(see [19]). Further, we project all the intersection and FD
parameters α, β, L, cosθ, sinθ, ρmax and the parameters
of fundamental diagram v and ω into NSWE-formulation
using network’s geometric properties. In [26] it is extensively
described how to project the intersection and FD parameters
into NSWE-formulation using projection coefficients pN , pS ,
pW , pE . Then, we interpolate all these variables using Inverse
Distance Weighting, e.g., for the average road length we get

L(x,y) =

∑N
k=1 L(xk,yk)e−η

√
(x−xk)2+(y−yk)2∑N

k=1 e−η
√

(x−xk)2+(y−yk)2
, ∀(x,y) ∈Ω (7)

where N is the number of intersections in the network, and η
is the interpolation parameter used to denote the sensitivity
to the distance from the real roads. If we want to follow the
global trend of the flow motion, we choose η to be small,
otherwise we choose larger values of η in order to follow
the underlying network topology, see [19].

III. Problem Statement

In the following we will state the control problem of driv-
ing congested traffic to some desired space-varying profile.
This desired state corresponds to congestion minimization
under the constraint that supply values at the boundaries are
proportional to the maximal density (details are given below).

A. Congested Traffic

In a congested system the minimum in equation (6) is
always resolved to the benefit of supply, and traffic operates
at or above its critical density, which in turn implies for (5)
that

ψS N = βS NωN
(
ρmax

N −ρN
)
, ∀(x,y) ∈Ω.

Using this expression and fixing ρ0(x,y) ∀(x,y) ∈ Ω as an
initial condition, we can now introduce the following Initial
Boundary Value Problem from the NSWE-model (1) that
describes the congested traffic flow dynamics on a compact
domain Ω with Γ ∈Ω being its boundary:

∂ρ

∂t
=

1
L

(I−B)W
(
ρmax −ρ

)
−
∂[C W (ρmax −ρ)]

∂x

−
∂[S W (ρmax −ρ)]

∂y
,

ρ(x,y, t) = u(x,y, t), ∀(x,y) ∈ Γout

ρ(x,y,0) = ρ0(x,y),

(8)

where Γout ⊂ Γ is a set of boundary points (x,y) associated
with the domain’s exit:

Γout = (ymax,ymin, xmin, xmax)T .

The state of (8) is controlled at the upstream boundary Γout
by specifying the control vector u = (uN ,uS ,uW ,uE)T .

Finally, C, S , W and B in (8) are all 4×4 matrices such
that C and S are diagonal matrices, W is a positive-definite
diagonal matrix, and B is a nonnegative matrix:

C =


cN 0 0 0
0 cS 0 0
0 0 cW 0
0 0 0 cE

 , S =


sN 0 0 0
0 sS 0 0
0 0 sW 0
0 0 0 sE

 ,

W =


ωN 0 0 0
0 ωS 0 0
0 0 ωW 0
0 0 0 ωE

 , B =


βNN βNS βNW βNE
βS N βS S βS W βS E
βWN βWS βWW βWE
βEN βES βEW βEE

 .
B. Desired Equilibrium

Let us define the error of the state from the desired space-
varying equilibrium ρd(x,y) ∀(x,y) ∈Ω as:

ρ̃(x,y, t) = ρ(x,y, t)−ρd(x,y).

To simplify the mathematical analysis, we restrict our study
to desired profiles having values only in the congested
regime, i.e., ρd(x,y) > ρc(x,y) ∀(x,y) ∈Ω.



The time derivatives of state and error coincide, which in
combination with (8) results into

∂ρ̃

∂t
=

1
L

(I−B)W
(
ρmax −ρd − ρ̃

)
−
∂[C W (ρmax −ρd − ρ̃)]

∂x

−
∂[S W (ρmax −ρd − ρ̃)]

∂y
.

(9)
Let us now write the dynamics for the desired density:

∂ρd

∂t
= 0 =

1
L

(I−B)W
(
ρmax −ρd

)
−
∂[C W (ρmax −ρd)]

∂x

−
∂[S W (ρmax −ρd)]

∂y
.

(10)

If we subtract (10) from (9), we also obtain the error term
dynamics:

∂ρ̃

∂t
=

1
L

(B− I)Wρ̃+
∂[C Wρ̃]
∂x

+
∂[S Wρ̃]
∂y

. (11)

In this work our goal is to find a desired density distribu-
tion that corresponds to congestion minimization, and then
to design a boundary control that stabilizes the density to
that desired equilibrium. Thereby, the desired density profile
must remain in the congested regime, i.e. ρd(x,y) > ρc(x,y)
∀(x,y) ∈ Ω, and its values at the boundaries should be
proportional to the maximal densities at the corresponding
boundary coordinates, i.e., ∃γ ∈ [1/3,1] such that

ρd(x,y) = γρmax(x,y), ∀(x,y) ∈ Γout. (12)

The range of constant γ is related to the requirement for ρd to
stay in the congested regime, since with γ = 1/3 the desired
state equals the critical density ρc (recall that we have chosen
ρc = 1/3ρmax). Thus, we need to determine constant γ that
provides congestion minimization given (12).

Problem 1. Find the desired space-dependent density
ρd(x,y) ∀(x,y) ∈Ω that minimizes congestion under the con-
straints that ρd(x,y) ≥ ρc(x,y) ∀(x,y) ∈ Ω and that boundary
values are proportional to the maximal densities (12).

Remark 1. Minimizing congestion means finding ρd(x,y) ≥
ρc(x,y) ∀(x,y) ∈Ω for which min(ρd −ρ

c) is achieved.

Remark 2. Physically, a proportional relation of the density
values at the boundaries to the corresponding maximal densi-
ties (12) implies that boundaries are filled in a homogeneous
way, i.e., supply at the boundaries is nearly the same. This
might be useful in a situation when vehicles concentrated
in a city center want to leave it simultaneously, e.g., when
vehicles return back home from their offices.

In order to find a desired profile satisfying Problem 1,
we need to solve a PDE (10) that describes its structural
dependence on (x,y). For this we need to introduce a change
of variables ρ̂(x,y) ∀(x,y) ∈Ω as

ρ̂(x,y) = ρmax(x,y)−ρd(x,y), (13)

which being inserted into (10), yields

1
L

(I−B)Wρ̂ =
∂[C Wρ̂]
∂x

+
∂[S Wρ̂]
∂y

. (14)

We compute the desired state ρd ∀(x,y) ∈ Ω by performing
the following steps:

1) Step 1: Set the desired density values at the upstream
boundaries Γout equal to the corresponding critical values,
i.e., pick up the lowest γ = 1/3, which leads to

ρ̂(x,y) =
2
3
ρmax(x,y), ∀(x,y) ∈ Γout.

2) Step 2: Discretize the plane corresponding to Grenoble
network (x,y) ∈ Ω of the size M = 1.4km (as in Fig. 2) into
3600 equal cells (Nx = 60 in x dimension and Ny = 60 in
y dimension). Thereby, each cell is now described by an
index pair (i, j), where i = [1, ...,Nx] and j = [1, ...,Ny]. The
discretization steps ∆x and ∆y can be found as

∆x =
M
Nx

and ∆y =
M
Ny
.

3) Step 3: Discretize the PDE system given by (14). For
convenience we consider the North direction, and then the
same steps should be done for the remaining directions. In
accordance with the upwind scheme [1] used to provide the
correct direction of information propagation in a flow field,
the discretization scheme of cNωN ρ̂N and sNωN ρ̂N depends
on the signs of cN and sN , i.e. ∀(i, j) ∈ [1, ...,Nx]× [1, ...,Ny]:

cN,i, j > 0 :
cN,i+1, jωN,i+1, jρ̂N,i+1, j− cN,i, jωN,i, jρ̂N,i, j

∆x
,

cN,i, j < 0 :
cN,i, jωN,i, jρ̂N,i, j− cN,i−1, jωN,i−1, jρ̂N,i−1, j

∆x
.

The same can be written for sN and for y-direction, for which
we fix i and vary j.

We also define 4×4 diagonal matrices Qx, Qy, Rx and Ry
as

cN,i, j > 0 :

QxNN,i, j =
cN,i+1, jωN,i+1, j

∆x
, RxNN,i, j = 0,

else :

QxNN,i, j = 0, RxNN,i, j = −
cN,i−1, jωN,i−1, j

∆x
,

and the same can be written for sN and y-direction with
varying j and fixed i.

4) Step 4: Define also a 4×4 matrix P as:

Pi, j =
1

Li, j
(Bi, j− I)Wi j−

|Ci, j|Wi, j

∆x
−
|S i, j|Wi, j

∆y
.

Using the definition of matrices P, Qx, Qy, Rx and Ry, we
can now write the PDE system for ρ̂ given by (14) in a
discretized form that reads ∀(i, j) ∈ [1, ...,Nx]× [1, ...,Ny]:

Pi, jρ̂i, j + Qxi, jρ̂i+1, j + Qyi, jρ̂i, j+1

+ Rxi, jρ̂i−1, j + Ryi, jρ̂i, j−1 = 0.
(15)

Notice that ρ̂0, j, ρ̂Nx+1, j, ρ̂i,0, ρ̂i,Ny+1 take the values from the
boundary conditions.



5) Step 5: System (15) is solved using the Alternating
Direction Implicit method (dimensional splitting, see [2]).
At each iteration first x and then y steps are performed. At
each x step the terms ρ̂i, j−1 and ρ̂i, j+1 take fixed values from
the previous iteration, while ρ̂i−1, j and ρ̂i+1, j are fixed for
each y step. At x step our system (15) is solved for every
j by the block tridiagonal matrix algorithm, while at y step
this algorithm is applied for every column i.

6) Step 6: Since system (15) is linear, αρ̂ is also a solution
to this system for some α ∈ [0,1]. Let us now come back to
the desired state ρd that we can get from (13):

ρd = ρmax −αρ̂.

By choosing α = 0 we obtain ρd = ρmax, while by choosing
α = 1 we achieve ρd = ρc at the boundaries, (see step
1 and use ρc = 1/3ρmax). This implies that by taking an
intermediate value of α we guarantee the congested regime
at the boundaries. Let us calculate α∗ that provides for the
desired state ρd to be as close as possible to ρc while staying
in the congested regime, for which in general we can write:

ρd

ρc ≥ 1⇒
ρmax −αρ̂

1/3ρmax ≥ 1⇒ 3−3α
ρ̂

ρmax ≥ 1

⇒ α ≤
2
3
ρmax

ρ̂
, ∀(x,y) ∈Ω.

It follows from the discussion above that the optimal state is
achieved if ∃(x∗,y∗), for which

α∗ = min
(x,y)∈Ω

r∈{N,S ,W,E}

2
3
ρmax

r (x,y)
ρ̂r(x,y)

. (16)

To get an expression for the desired profile at the bound-
aries ρd(x,y) ∀(x,y) ∈ Γout, we express ρd from (13) and set
it equal to (12), which yields

ρmax −αρ̂ = γρmax. (17)

We take the boundary value of ρ̂ from step 1, insert it into
(17), and we finally obtain

ρd =

(
1−

2
3
α∗

)
ρmax⇒ γ∗ = 1−

2
3
α∗. (18)

IV. Boundary Control Design
The aim of this section is to design a boundary control

such that the density achieves the desired profile obtained in
the previous section (18). This is formalized as follows.

Problem 2. Find a boundary controller such that a congested
density from system (8) converges to the desired space-
varying density ρd(x,y) given by (18) ∀(x,y) ∈Ω as t→∞.

In order to prove the convergence to the desired profile,
we have to assume that the main direction of the density
transportation coincides with the cardinal direction, which
for example holds for a Manhattan grid type of traffic
networks.

Assumption 1. The matrices C and S from (8) are constant
in space, e.g., they can be defined as:

cN = 0, cS = 0, cW = −1, cE = 1,
sN = 1, sS = −1, sW = 0, sE = 0.

(19)

In general, the further analysis requires these variables to
be just constant in space, but we choose (19) for simplicity.
We also make an assumption on supply coefficients:

Assumption 2. Supply coefficient matrix B is constant in
space, which in turn implies that every intersection has the
same turning ratio pattern.

Theorem 1. Under Assumptions 1 and 2, let the boundary
controller be defined as

u(x,y) =


ρd,N(x,ymax)
ρd,S (x,ymin)
ρd,W (xmin,y)
ρd,E(xmax,y)

 , ∀(x,y) ∈ Γout, (20)

then ∃K,k > 0 such that

‖ρ(t)−ρd‖
2
L2 6 e−ktK ‖ρ(0)−ρd‖

2
L2 ,

i.e., the state ρ(x,y, t) exponentially converges to the desired
equilibrium ρd(x,y) ∀(x,y) ∈Ω as t→∞.

Remark 3. Although for the simplicity of the proof we
assumed a regular Manhattan grid structure (Assumptions 1
and 2), control (20) can be applied to a more general network,
as we will show on a numerical example for which we take
the network of Grenoble downtown.

Proof of Theorem 1. Let us first analyse matrix B− I. Its
non-diagonal elements are positive and its diagonal elements
are negative. Moreover, B− I has one eigenvalue equal to zero
and all others are negative, see Appendix I. Therefore, B− I
is a negative singular M-matrix with one zero eigenvalue.
Thus, there exists a positive-definite diagonal 4×4 matrix D
such that

D(B− I) + (BT − I)D 6 0. (21)

Let us also introduce a diagonal 4× 4 matrix composed
by exponential functions as follows:

E =


ey 0 0 0
0 e−y 0 0
0 0 e−x 0
0 0 0 ex

 .
We define the following Lyapunov function candidate:

V =

xmax∫
xmin

ymax∫
ymin

ρ̃T WDEρ̃dydx =

xmax∫
xmin

ymax∫
ymin

(ρ̃2
NωN DNey

+ ρ̃2
SωS DS e−y + ρ̃2

WωW DWe−x + ρ̃2
EωE DEex) dydx,

(22)

where DN ...DE are the diagonal elements of matrix D.
The function (22) is obviously positive-definite, since

matrix WDE > 0. Let us now take its time derivative, which
yields

V̇ =

xmax∫
xmin

ymax∫
ymin

2
∂ρ̃T

∂t
WDEρ̃dydx, (23)



where the error dynamics ∂ρ̃/∂t should be taken from (11),
which allows us to further expand (23) as:

V̇ =

xmax∫
xmin

ymax∫
ymin

1
L

(Wρ̃)T
(
DE(B− I) + (BT − I)DE

)
Wρ̃dydx

+ 2

xmax∫
xmin

ymax∫
ymin

(Wρ̃)T DE
(
∂[C Wρ̃]
∂x

+
∂[S Wρ̃]
∂y

)
dydx.

(24)
Let us now denote the first term of (24) as V̇1 and the second
terms as V̇2. The term V̇1 is negative due to (21) and the fact
that matrix E is non-negative, i.e.,

V̇1 =

xmax∫
xmin

ymax∫
ymin

1
L

(Wρ̃)T
(
DE(B− I) + (BT − I)DE

)
Wρ̃dydx < 0.

We further consider V̇2 by inserting the values of matrices
C and S from assumption (19):

V̇2 = 2

xmax∫
xmin

ymax∫
ymin

(
ωE ρ̃E DEex ∂(ωE ρ̃E)

∂x
−ωW ρ̃W DWe−x ∂(ωW ρ̃W )

∂x

+ωN ρ̃N DNey ∂(ωN ρ̃N)
∂y

−ωS ρ̃S DS e−y ∂(ωS ρ̃S )
∂y

)
dydx.

This expression is then integrated by parts, which yields:

V̇2 =

ymax∫
ymin

[
e−x(

√
DWωW ρ̃W )2 − ex(

√
DEωE ρ̃E)2

]
x=xmin

dy

+

ymax∫
ymin

[
ex(

√
DEωE ρ̃E)2 − e−x(

√
DWωW ρ̃W )2

]
x=xmax

dy

+

xmax∫
xmin

[
e−y(

√
DSωS ρ̃S )2 − ey(

√
DNωN ρ̃N )2

]
y=ymin

dx

+

xmax∫
xmin

[
ey(

√
DNωN ρ̃N )2 − e−y(

√
DSωS ρ̃S )2

]
y=ymax

dx

−

xmax∫
xmin

ymax∫
ymin

(
exDE(ωE ρ̃E)2 + e−xDW (ωW ρ̃W )2

+ eyDN (ωN ρ̃N )2 + e−yDS (ωS ρ̃S )2
)
dydx.

(25)

By setting ∀t ∈ R+

ρ̃N(x,ymax, t) = 0, ρ̃S (x,ymin, t) = 0, ∀x ∈ [xmin, xmax],
ρ̃W (xmin,y, t) = 0, ρ̃E(xmax,y, t) = 0, ∀y ∈ [ymin,ymax],

(26)
one ensures that the first four integrals in (25) go to zero.

The last term in (25) can be bounded as follows
xmax∫

xmin

ymax∫
ymin

(
exDE(ωE ρ̃E)2 + e−xDW (ωW ρ̃W )2

+ eyDN(ωN ρ̃N)2 + e−yDS (ωS ρ̃S )2
)
dydx

≤ − min
(x,y)∈Ω

r∈{N,S ,W,E}

ωr(x,y)

xmax∫
xmin

ymax∫
ymin

(
exDEωE ρ̃

2
E

+ e−xDWωW ρ̃
2
W + eyDNωN ρ̃

2
N + e−yDSωS ρ̃

2
S

)
dydx,

(27)

where we have used the fact that the kinematic wave speed
is positive by definition, i.e., ω > 0.

The integral on the right hand side of (27) coincides with
the Lyapunov function (22). This means that by inserting
(26) into (25) and also by using the bound from (27), we
can write:

V̇ = V̇1 + V̇2 ≤ V̇2 ≤ −kV,

where k ∈ R+ is a positive constant

k = min
(x,y)∈Ω

r∈{N,S ,W,E}

ωr(x,y).

One can also prove that the state ρ̃ converges to zero in L2
norm exponentially. Indeed, note that V defines an equivalent
norm on the density space:

m‖ρ̃‖2L2 6 V 6 M ‖ρ̃‖2L2

with
m = min

(x,y)∈Ω
r∈{N,S ,W,E}

ωr(x,y)DrEr(x,y),

M = max
(x,y)∈Ω

r∈{N,S ,W,E}

ωr(x,y)DrEr(x,y).

By exponential convergence of Lyapunov functions we have

V(t) 6 e−ktV(0),

therefore
‖ρ̃(t)‖2L2 6 e−kt M

m
‖ρ̃(0)‖2L2 .

�

Remark 4. Assumption 2 on space-independent B can be
relaxed, if it is possible to find such a matrix D that satisfies
inequality (21) and whose elements DE(y) and DW (y) may
depend on y, while DN(x) and DS (x) may depend on x.

V. Numerical Example

Finally, we demonstrate how a boundary control given by
(20) works in practice using Grenoble downtown with a total
surface of around 1.4km as a network. We use the classical
Godunov scheme [5] for the numerical simulation of system
(8) under control (20) with a fully congested initial state

ρ0(x,y) = ρmax(x,y), ∀(x,y) ∈Ω.

As interpolation parameter in (7) we take η = 5, which
is a relatively low value implying that we want to follow
the global trend of motion. On Fig. 2a) we depict the



Fig. 2: Boundary control in Grenoble downtown: a) initial
congested state ρ0, b) desired equilibrium ρd; controlled state
at: c) t = 5mn, d) t = 20mn, e) t = 50mn; d) S S IM between
the state and the desired density as a function of time.

fully congested state (initial condition) to be controlled,
and on Fig. 2b) we depict the desired profile ρd obtained
by following all the steps in Section III. Recall that the
desired state corresponds to the congestion minimization (see
Problem 1), and the coefficient α∗ from (17) is α∗ = 0.51.
Further, we show the impact of boundary control on our
state after t = 5min on Fig. 2c), t = 20min on Fig. 2d) and
t = 50min on Fig. 2e). We can see that the state at t = 50min
visually resembles the desired state from Fig. 2b).

We deploy the Structural Similarity Index (SSIM) [8] to
enable a quantitative comparison between the controlled state
on Fig. 2c) - e) and the desired state on Fig. 2b). Thus, the
SSIM index between density distributions ρ and ρd can be
computed as

S S IM(ρ,ρd) =
(2µ1µ2 + c) (2σ12 + c)(
µ2

1 +µ2
2 + c

) (
σ2

1 +σ2
2 + c

) , (28)

where µ1 and µ2 are the mean values, σ1 and σ2 are the
standard deviations, while σ12 is the correlation coefficient
between the density distributions ρ and ρd. Finally, c > 0
in (28) is a small constant that is added to avoid that the

denominator becomes zero (here we take c = 1 ·10−13).
This index is a perception-based metric used to detect

structural changes. The range of SSIM is [−1,1], where
S S IM = 1 means that two images are identical and S S IM =

−1 indicates that the second image is inverse of the first.
To refine the computations, we also divide the network of
Grenoble into 9 equal zones, i.e., Nzones = 9. The SSIM index
is then calculated for every zone of the domain, and then its
mean value S S IM is computed as:

S S IM(ρ,ρd) =
1

Nzones

Nzones∑
l=1

S S IM(l). (29)

The result is shown on Fig. 2f), where the SSIM index
converges to 1 indicating that the state converges to the
desired profile.

VI. Conclusions
We investigated the multi-directional NSWE model from

the control perspective. In particular, we analysed the class
of desired equilibria that must satisfy a certain system of
PDEs. We have posed and solved the problem of finding an
equilibrium state that provides congestion minimization in a
network, under the constraint that its range must remain in
the congested regime. The desired state was assumed to be
proportional to the maximal densities at the boundaries. Fur-
ther, we proved the exponential convergence of a congested
state to this desired equilibrium using Lyapunov methods.
Finally, we used the real network of Grenoble downtown to
produce a numerical example that stays in a good agreement
with the theoretical result. Thereby, at each time step we
have calculated the structural similarity index to show the
convergence of our density distribution to the desired one.

An appealing direction for future studies might be finding
equilibria that admit mixed traffic regimes. Another possible
extension may include elaborating boundary control with the
constraint that the activation boundary is a set of points on
real roads rather than a continuous line.

Appendix I
Eigenvalues of matrix β− I

Let us now analyse eigenvalues of matrix B− I from (8).
To simplify the notations, we introduce B̄ = B− I:

B̄ =


βNN −1 βNS βNW βNE
βS N βS S −1 βS W βS E
βWN βWS βWW −1 βWE
βEN βES βEW βEE −1

 (30)

By Gershgorin circle theorem, every eigenvalue of B̄ lies
within at least one of the Gershgorin discs d(b̄ii,Ri), where
d is a closed disc centered at b̄ii with radius Ri =

∑
j,i
|b̄ ji|.

Consider the first row of matrix B̄ given by (30). The
Gershgorin disc is centred at βNN − 1 and its radius is
R1 = βNS + βNW + βNE = 1 − βNN . The remaining rows of
matrix B̄ can be analysed in exactly the same way. Due to
the Gershgorin theorem, in general, every result looks similar
to:

|λ− (βNN −1)| ≤ (1−βNN),



which implies that Reλ(B̄) ≤ 0 ∀λ(B̄) and if Reλ(B̄) = 0, then
λ(B̄) = 0.

Let us consider λ(B̄) = 0 with x being the corresponding
eigenvector:

xT B̄ = 0 = xTλ(B̄).

Using the definition of matrix B̄, we further get

xT (B− I) = 0⇒ xT B = xT .

Thus, it follows that x is also the eigenvector of matrix B
associated with the eigenvalue λ(B) = 1.

Note that matrix B is a positive matrix, i.e., βi j > 0 for
1 ≤ i, j ≤ 4 (assume we have no zero turning ratios). Then by
Perron-Frobenius theorem λ(B) = 1 is a Perron root (since
all columns of B sum to 1), and thus it is a simple root.
It follows that all the eigenvalues of matrix B̄ = (B− I) are
strictly negative and only one eigenvalue is zero.
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