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Introduction

Over the decades, the struggle over energy resources has not stopped. Now, it is universally accepted that fossil fuels are finite, and with the passage of time it will be exhausted. Since it is a matter of time, scientists turned into finding new energy resources. Known as one of the world's most abundant sources of renewable energy, ocean energy became an innovative solution for new energy challenges. Taking into consideration the huge amount of energy carried by ocean waves across the sea, many different techniques for converting wave energy to electric power have been investigated. However, generated as a result of wind blowing over the ocean surface, ocean energy is the most concentrated form of renewable energy on earth, also it is more predictable and consistent than wind or solar energy. Due to the difficulty and complexity of water waves problems, mathematicians, physicists and oceanographers get to find new asymptotic models with the same accuracy as the original ones, like Green-Naghdi and Boussinessq systems. Thence, the definition of consistency serves mathematicians in the resolution of these models, by deriving consistent equations. One of these non linear equations is KdV equation, that is the subject of concentrated study to understand the physical phenomena of oceanography. Korteweg and his student de Vries derived their non linear wave equation to describe the shallow water waves that Russell had observed in 1834. The most renowned KdV equation is (see [START_REF] Korteweg | On the change of form of long waves advancing in a rectangular canal and on a new type of long stationary waves[END_REF][START_REF] Israwi | Scalar models for water-waves problem: applications to breaking wave[END_REF][START_REF] Israwi | Approximate conservation laws in the KdV equation Physics Letters A[END_REF][START_REF] Israwi | R Talhouk Local well-posedness of a nonlinear KdV-type equation[END_REF][START_REF] Israwi | An explicit solution with correctos for the Green-Naghdi equations[END_REF][START_REF] Haidar | Existence of a regular solution for 1D Green-Naghdi equations with surface tension at a large time instant[END_REF][START_REF] Khorbatly | Derivation and well-posedness of the extended Green-Naghdi equations for flat bottoms with surface tension[END_REF]):

u t + u x + 3 2 εuu x + µ 6 u xxx = 0 1
that was originally derived for flat bottom. What attracted the focus of scientists in this equation, was its integrability property, and thus its solitons (solitary waves) solutions. Since the derivation of the equation mentioned before, several methods have been used to derive new extended KdV equations, with different ocean conditions and properties. General derivations of this equation were justified with bottom, and with non constant coefficients, with topography (called KdVtop equation) [START_REF] Dingemans | Water waves propogation over uneven bottoms[END_REF][START_REF] Korteweg | On the change of form of long waves advancing in a rectangular canal and on a new type of long stationary waves[END_REF]. A formal derivation of KdV equation was provided using Whitham method, in the presence of surface tension [START_REF] Haidar | Derivation and solutions of the KdV equation and the Boussinesq system in the presence of surface tension[END_REF], all these previous works were done up to O(µ 2 ). Also, using some physical principles, an extended KdV equation was formally derived up to O(µ 3 ) [START_REF] Rozmej | Superposition solutions to the extended KdV equations for water surface waves[END_REF]. In the paper at hand, we deal with an irrotational, incompressible, inviscid fluid with a free surface, and constant density, acted on only by gravity. Knowing that a is the amplitude of the wave, λ is the wave-length of the wave, h 0 is the reference depth, denote by

Ω t = {(x, z) ∈ R × R; -h 0 + b < z < ζ} ,
the domain of the fluid for each time t where the surface of the fluid is a graph parametrized by ζ and its bottom is parametrized by -h 0 +b. Consider the following 1D Boussinesq extended system of equations of order O(µ 3 ), with flat bottom:

(1)

{ ∂ t ζ + [(1 + εζ) u] x = 0 u t + ζ x + εuu x = µ 3 u xxt -µε [ 1 2 u 2 x + 1 3 uu xx ] x + µ 2 45 ∂ 2 x (u xxt ) where u is the fluid velocity, ζ is the surface elevation, µ = h 0 2
λ 2 and ε = a h 0 are the shallowness and nonlinearity parameters respectively. Recall that the KdV scaling is ε = O(µ), with 0 < ε ≤ 1 and 0 < µ ≪ 1. The organization of this paper is as follows: in the second section, a derivation of the extended KdV equation will be done, in the first subsection 2.1, we will derive rigorously an extended KdV equation on the velocity u. In the second subsection 2.2, a rigorous mathematical derivation of extended KdV equation on the surface elevation ζ will be provided, and hence a rigorous verification of this imposed equation in [START_REF] Rozmej | Superposition solutions to the extended KdV equations for water surface waves[END_REF]. The aim of this paper is to give a rigorous mathematical derivation of the extended KdV equations, up to O(µ 3 ). Concerning the methodolgy, after the examination of some previous works, we will proceed as in [START_REF] Constantin | The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations[END_REF], so we will use the definition of consistency to provide these rigorous derivations, which guarantee the relevance of these equations with (1), and serve in the construction of approximate solutions of Boussinesq equations.

Derivation of new extended KdV equation

The main goal of this section is to find extended KdV equation on velocity and on surface elevation. First of all we need some notation to this end we set the following remark.

Remark 1. For the sake of simplicity, we denote by O(σ) any family of functions

(f σ ) such that 1 σ f σ remains bounded in L ∞ ([0, T * ], H r (R)) for all σ ∈ [0, 1

], (and for possibly different values of r). The same notation is also used for real numbers, e.g ε = O(µ), but this should not yield any confusion.

The new derived KdV equation on the velocity will be:

u t + u x + 3 2 εuu x + µ 6 u xxx + µε [ 5 12 uu xxx + 41 24 u x u xx ] + 19 360 µ 2 ∂ 2 x (u xxx ) = O(µ 3 ) (2) 
And one on the surface elevation will be:

ζ t + ζ x + 3 2 εζζ x - 3 8 ε 2 ζ 2 ζ x + µ 6 ζ xxt + µε [ 5 12 ζζ xx + 23 24 ζ 2 x ] + 19 360 µ 2 ∂ 2 x (ζ xxx ) = O(µ 3 ) (3) 
2.1. Equation on the velocity. In order to get (2), we will introduce the following equation on u

u t + u x + 3 2 εuu x + µαu xxx = µε [βuu xxx + γu x u xx ] + µ 2 δ∂ 2 x (u xxx ) (4)
where α, β, γ, δ are parameters in R. Next, we need to find the values of parameters mentioned above, that will be done in three steps.

• Step1: From (4) we get:

u x = -u t - 3 2 εuu x -µαu xxx + O(ε, µ) u xxx = -u xxt - 3 2 ε∂ 2 x (uu x ) -µα∂ 2 x (u xxx ) + O(ε, µ)
Substitute the expression of u xxx in (4) to get:

u t + u x + 3 2 εuu x -µαu xxt -µε [ 3α 2 u 2 x + 3α 2 uu xx ] x -µ 2 ∂ 2 x (u xxx ) = µε [βuu xxx + γu x u xx ] + µ 2 δ∂ 2 x (u xxx ) + O(µ 3 ) But βuu xxx + γu x u xx = βuu xxx + βu x u xx -βu x u xx + γu x u xx = β(uu xx ) x - β 2 (u 2 x ) x + γ 2 (u 2 x ) x = [ βu x u xx + γ -β 2 u 2 x ] x Then u t + u x + 3 2 εuu x -µαu xxt = µε [( 3α 2 + β ) uu xx + ( 3α + γ -β 2 ) u 2 x ] x + µ 2 ( α 2 + δ ) ∂ 2 x (u xxx ) + O(µ 3 ) One can get (5) u t + u x + 3 2 εuu x -µαu xxt = µε [ auu xx + bu 2 x ] x + µ 2 c∂ 2 x (u xxx ) + O(µ 3 )
where

a = 3α 2 + β; b = 3α + γ -β 2 ; c = δ + α 2 .
To find another equation on a, b, c and α we need to use the equations of (1).

In the next step, the second equation of (1) we will be used.

• Step2:

Let v be a smooth enough function such that ζ = u + εv. Then (1) 2 becomes

u t + u x + (εv) x + εuu x = µ 3 u xxt -µε [ 1 2 u 2 x + 1 3 uu xx ] x + µ 2 45 ∂ 2 x (u xxt )
We know from (5) that

u t + u x + 3 2 εuu x -µαu xxt -µε [ auu xx + bu 2 x ] x -µ 2 c∂ 2 x (u xxx ) = O(µ 3 ) Then (εv) x + u t + u x + 3 2 εuu x -µαu xxt -µε [ auu xx + bu 2 x ] x -µ 2 c∂ 2 x (u xxx ) = u t + u x + (εv) x + εuu x + ε 2 uu x -µαu xxt -µε [ auu xx + bu 2 x ] x -µ 2 c∂ 2 x (u xxx ) So we can deduce up to O(µ 3 ) (εv) x = ε 2 uu x + µ ( 1 3 -α ) u xxt -µε [( a + 1 3 
)

uu xx + ( b + 1 2 ) u 2 x ] x -µ 2 ( 1 45 + c ) ∂ 2 x (u xxx ) + O(µ 3 ) Hence εv = ε 4 u 2 + µ ( 1 3 -α ) u xt -µε [( a + 1 3 
)

uu xx + ( b + 1 2 ) u 2 x ] -µ 2 ( 1 45 + c ) ∂ x (u xxx ) (6) 
Now, we will use the first equation of (1).

• Step3: Put ζ = u + εv in (1) 1 that is u t + u x + 2εuu x + (εv) t + ε 2 (uv) x = 0
From (5) we have

u t = -u x + O(ε, µ) u xt = -u xx + O(ε, µ) (7)
Multiply ( 6) by εu, derive with respect to x and use [START_REF] Israwi | An explicit solution with correctos for the Green-Naghdi equations[END_REF] to get

ε 2 uv = ε 2 4 u 3 + µε ( 1 3 -α ) uu xt + O(µ 3 ) ε 2 (uv) x = 3 4 ε 2 u 2 u x + µε ( 1 3 -α ) (uu xt ) x + O(µ 3 ) = 3 4 ε 2 u 2 u x -µε ( 1 3 -α ) (uu xx ) x + O(µ 3 )
Next, deriving [START_REF] Israwi | R Talhouk Local well-posedness of a nonlinear KdV-type equation[END_REF] with respect to t one can get

(εv) t = ε 2 uu t + µ ( 1 3 -α ) u xtt -µε [( a + 1 3 
)

uu xx + ( b + 1 2 ) u 2 x ] t -µ 2 ( 1 45 + c ) ∂ 2 xt (u xxx ) + O(µ 3 )
From ( 5) we get

u t = -u x - 3 2 εuu x + µαu xxt + O(ε, µ) u xtt = -u xxt - 3 2 ε∂ xt (uu x ) + µα∂ xt (u xxt ) + O(ε, µ) u xxt = -u xxx - 3 2 ε∂ xx (uu x ) + µα∂ 2 x (u xxt ) + O(ε, µ) Remark that ∂ xt (u xxt ) = ∂ 2 x (u xxx ) + O(ε, µ) ∂ xt (u xxx ) = -∂ 2 x (u xxx ) + O(ε, µ)
Also we have

∂ 2 xt (uu x ) = -∂ x (u t u x + uu xt ) = -∂ x (u 2 x + uu xx ) = -∂ 2 x (uu x ) + O(ε, µ)
Then

u xtt = -u xxt + 3 2 ε [ u 2 x + uu xx ] x + µα∂ 2 x (u xxx ) + O(ε, µ)
Gathering all the computations done above one can get

(εv) t = - ε 2 uu x - 3 4 ε 2 u 2 u x + µε α 2 uu xxt -µ ( 1 3 -α ) u xxt + µε 3 2 ( 1 3 -α ) [ u 2 x + uu xx ] x + µ 2 α ( 1 3 -α ) ∂ 2 x (u xxx ) + µε [( a + 1 3 
)

uu xx + ( b + 1 2 ) u 2 x ] x + µ 2 ( 1 45 + c ) ∂ 2 x (u xxx ) + O(µ 3 ) But µε α 2 uu xxt = -µε α 2 uu xxx + O(µ 3 ) = -µε α 2 [ uu xx - 1 2 u 2 x ] x + O(µ 3 ) So (εv) t = - ε 2 uu x - 3 4 ε 2 u 2 u x -µ ( 1 3 -α ) u xxt + µε [( a -2α + 5 6 
)

uu xx + ( 1 + b - 5α 4 
) u 2 x ] x + µ 2 ( α ( 1 3 -α ) + c + 1 45 ) ∂ 2 x (u xxx ) + O(µ 3 )
Substitute ε 2 (uv) x and (εv) t in (1) 1 to get

u t + u x + 3 2 εuu x + µ ( α - 1 3 
)

u xxt = µε [( α -a - 1 2 
)

uu xx + ( -1 -b + 5α 4 ) u 2 x ] x + µ 2 ( -α ( 1 3 -α ) -c - 1 45 
) ∂ 2 x (u xxx ) + O(µ 3 ) (8)
Compare the equations ( 5) and ( 8) to deduce

α = 1 6 ; a = - 1 6 ; b = - 19 48 ; c = - 1 40 .
Doing some calculations one can get

β = - 5 12 ; γ = - 41 24 ; δ = - 19 360 .

Equation on the surface elevation.

In this subsection, we are going to derive the extended KdV equation on the surface elevation ζ as a rigorous verification of a previous work [START_REF] Rozmej | Superposition solutions to the extended KdV equations for water surface waves[END_REF], where it was imposed formally. For this purpose, let us introduce the following equation

ζ t + ζ x + 3 2 εζζ x - 3 8 ε 2 ζ 2 ζ x + µαζ xxx = µε [βζζ xxx + γζ x ζ xx ] + µ 2 δ∂ 2 x (ζ xxx ) + O(µ 3 ) (9)
where α, β, γ, δ are parameters in R, and will be determined next.

• Step1:

From ( 9) one can get

ζ x = -ζ t - 3 2 εζζ x + 3 8 ε 2 ζ 2 ζ x -µαζ xxx + O(ε, µ) ζ xxx = -ζ xxt - 3 2 ε∂ 2 x (ζζ x ) + 3 8 ε 2 ∂ 2 x (ζ 2 ζ x ) -µα∂ 2 x (ζ xxx ) + O(ε, µ) Substitute ζ xxx in (9) to get ζ t + ζ x + 3 2 εζζ x - 3 8 ε 2 ζ 2 ζ x -µαζ xxt - 3 2 αµε∂ 2 x (ζζ x ) -µ 2 α 2 ∂ 2 x (ζ xxx ) = µε [βζζ xxx + γζ x ζ xx ] + µ 2 δ∂ 2 x (ζ xxx ) + O(µ 3 ) Use the fact that βζζ xxx + γζ x ζ xx = [ βζζ xxx + γ -β 2 ζ 2 x ] x
To get the following equation

ζ t + ζ x + 3 2 εζζ x - 3 8 ε 2 ζ 2 ζ x -µαζ xxt = µε [ aζζ xx + bζ 2 x ] x + µ 2 c∂ 2 x (ζ xxx ) + O(µ 3 ) (10) 
where

a = 3α 2 + β; b = 3α + γ -β 2 ; c = δ + α 2 . • Step2: Let w be a smooth enough function such that u = ζ + εw. Compute (1 + εζ)u = (1 + εζ)(ζ + εw) = ζ + εζ 2 + (1 + εζ)(εw)
Then the first equation of (1) gives

ζ t + ζ x + 2εζζ x + [(1 + εζ)(εw)] x = 0 Use (10) to compute [(1 + εζ)(εw)] x + ζ t + ζ x + 3 2 εζζ x - 3 8 ε 2 ζ 2 ζ x -µαζ xxt -µε [ aζζ xx + bζ 2 x ] x -µ 2 c∂ 2 x (ζ xxx ) = ζ t + ζ x + 2εζζ x + [(1 + εζ)(εw)] x - ε 2 ζζ x - 3 8 ε 2 ζ 2 ζ x -µαζ xxt -µε [ aζζ xx + bζ 2 x ] x -µ 2 c∂ 2 x (ζ xxx ) + O(µ 3 ) Then [(1 + εζ)(εw)] x = - ε 2 ζζ x - 3 8 ε 2 ζ 2 ζ x -µαζ xxt -µε [ aζζ xx + bζ 2 x ] x -µ 2 c∂ 2 x (ζ xxx ) + O(µ 3 ) Hence (11) (1 + εζ)(εw) = - ε 4 ζ 2 - 1 8 ε 2 ζ 3 -µαζ xt -µε [ aζζ xx + bζ 2 x ] -µ 2 c∂ x (ζ xxx )
• Step3: Here we will use the second equation of (1). Since we need to keep the terms ζ t and ζ x , and since the latter derived term is (1 + εζ)(εw) and not εw, we will multiply the second equation of ( 1) by (1 + εζ). Hence, one can get

(1 + εζ)u t + ζ x + εζζ x + (1 + εζ)εuu x = µ 3 ζ xxt + µ 3 (εw) xxt + µε 3 ζζ xxt -µε [ 1 2 u 2 x + 1 3 uu xx ] x + µ 2 45 ∂ 2 x (ζ xxt ) + O(µ 3 ) (12) 
For the right hand side of (12):

µ 3 (εw) = - µε 12 ζ 2 -µ 2 α 3 ζ xt + O(µ 3 ) µ 3 (εw) xxt = - µε 12 ∂ xxt (ζ 2 ) -µ 2 α 3 ∂ xxt (ζ xt ) + O(µ 3 )
Recall that [START_REF] Korteweg | On the change of form of long waves advancing in a rectangular canal and on a new type of long stationary waves[END_REF] gives:

ζ t = -ζ x + O(ε, µ) ζ xtt = -ζ xxt + O(ε, µ) Also ∂ xxt (ζ xt ) = ∂ 2 x (ζ xxx ) + O(ε, µ) Therefore µ 3 (εw) xxt = µε 6 [ ζ 2 x + ζζ xx ] x -µ 2 α 3 ∂ 2 x (ζ xxx ) + O(µ 3 )
Now, use

ζ xxt = -ζ xxx + O(ε, µ) to get µε 3 ζζ xxt = - µε 3 ζζ xxx + O(µ 3 ) = - µε 3 [ ζζ xx - 1 2 ζ 2 x ] x + O(µ 3 )
Obviously, one gets µε

[ 1 2 u 2 x + 1 3 uu xx ] x = µε [ 1 2 ζ 2 x + 1 3 ζζ xx ] x + O(µ 3 )
Using the identity

∂ 2 x (ζ xxt ) = -∂ 2 x (ζ xxx ) + O(ε, µ) one can deduces µ 2 45 ∂ 2 x (ζ xxt ) = - µ 2 45 ∂ 2 x (ζ xxx ) + O(µ 3 )
Gathering all the informations found above in the right hand side of [START_REF] Bona | Long wave approximations for water waves[END_REF] we get

µ 3 ζ xxt + µ 3 (εw) xxt + µε 3 ζζ xxt -µε [ 1 2 u 2 x + 1 3 uu xx ] x + µ 2 45 ∂ 2 x (ζ xxt ) = µ 3 ζ xxt -µε [ 1 2 ζζ xx + 1 6 ζ 2 x ] x -µ 2 ( α 3 + 1 45 
) ∂ 2 x (ζ xxx ) + O(µ 3 ) (13) 
For the left hand side of [START_REF] Bona | Long wave approximations for water waves[END_REF]:

εuu x = εζζ x + [(εw)(εζ)] x + O(µ 3 ) (1 + εζ)(εuu x ) = εζζ x + [(εw)(εζ)] x + ε 2 ζ 2 ζ x + O(µ 3 )
We have

(εw)(εζ) = - ε 2 4 ζ 3 -µεαζζ xt + O(µ 3 ) [(εw)(εζ)] x = - 3ε 2 4 ζ 2 ζ x -µεα(ζζ xt ) x + O(µ 3 ) = - 3ε 2 4 ζ 2 ζ x + µεα(ζζ xx ) x + O(µ 3 ) (1 + εζ)(εuu x ) = εζζ x + ε 2 4 ζ 2 ζ x + µεα(ζζ xx ) x + O(µ 3 ) Next, (1 + εζ)u t = (1 + εζ)(ζ t + (εw) t ) = ζ t + (εw) t + εζζ t + ε 2 ζw t = ζ t + εζζ t + [(1 + εζ)(εw)] t -ε 2 ζ t w = ζ t + εζζ t + [(1 + εζ)(εw)] t + ε 2 ζ x w + O(µ 3 )
Multiply [START_REF] Dingemans | Water waves propogation over uneven bottoms[END_REF] by εζ x to get

ε 2 ζ x w = - ε 2 4 ζ 2 ζ x -µεα(ζ x ζ xt ) + O(µ 3 ) = - ε 2 4 ζ 2 ζ x + µε α 2 [ ζ 2 x ] x + O(µ 3 ) Also εζζ t + [(1 + εζ)(εw)] t = ε 2 ζζ t - 3 8 ε 2 ζ 2 ζ t -µαζ xtt -µε [ aζζ xx + bζ 2 x ] t -µ 2 c∂ xt (ζ xxx ) + O(µ 3 )
Recall that

ζ t = -ζ x - 3 2 εζζ x + µαζ xxt + O(ε, µ) To compute ∂ xt (ζ xxx ) = -∂ 2 x (ζ xxx ) + O(ε, µ) ∂ xt (ζ xxt ) = ∂ 2 x (ζ xxx ) + O(ε, µ) ∂ xt (ζζ x ) = ∂ t [ζ 2 x + ζζ xx ] = - [ ζ 2 x + ζζ xx ] x + O(ε, µ) And ζ xtt = -ζ xxt - 3 2 ε∂ xt (ζζ x ) + µα∂ xt (ζ xxt ) + O(ε, µ) = -ζ xxt + 3 2 ε [ ζ 2 x + ζζ xx ] x + µα∂ 2 x (ζ xxx ) + O(ε, µ) Therefore εζζ t + [(1 + εζ)(εw)] t = - ε 2 ζζ x - 3 8 ε 2 ζ 2 ζ x + µαζ xxt + µε α 2 ζζ xxt -µε [ 3α 2 ζ 2 x + 3α 2 ζζ xx ] x + µε [ aζζ xx + bζ 2 x ] x + µ 2 (c -α 2 )∂ 2 x (ζ xxx ) + O(µ 3 ) Hence (1 + εζ)u t + ζ x + εζζ x + (1 + εζ)εuu x = ζ t + ζ x + 3 2 εζζ x - 3 8 ε 2 ζ 2 ζ x + µαζ xxt + µε [ (a -α) ζζ xx + ( b - 3α 4 
) ζ 2 x ] x + µ 2 ( c -α 2 ) ∂ 2 x (ζ xxx ) + O(µ 3 ) (14) 
Eventually, gathering ( 14) and ( 13) we get the equation

ζ t + ζ x + 3 2 εζζ x - 3 8 ε 2 ζ 2 ζ x + µ ( α - 1 3 
)

ζ xxt = µε [( α -a - 1 2 
) ζζ xx + ( 3α 4 -b - 1 6 
) ζ 2 x ] x + µ 2 ( α 2 -c - α 3 - 1 45 
) ∂ 2 x (ζ xxx ) + O(µ 3 ) (15) 
Comparing [START_REF] Korteweg | On the change of form of long waves advancing in a rectangular canal and on a new type of long stationary waves[END_REF] and ( 15 

Conclusion

The ocean energy sector is all about innovation and has been evidence of some notable progress. Many studies in this domain have been done, and many questions have given insight into new studies. After providing a rigorous derivation of KdV equation on u, and a rigorous verification of one on ζ, for flat bottom, new lights have been casted on some future researches, the extended KdV equation on the velocity could be derived with the presence of surface tension effect, this study could be done using the pseudo-differential operator theory. Also, we can solve this equation explicitly using sine-cosine method on a bounded space domain, or a numerical framework could be done using the finite element method. Finally, we would study its well-posedness employing the modified-energy method.
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