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Highlights 

- Efficacy of UAVs and emergence predictive models for weed control has been confirmed.  

- Combination of time-specific and site-specific weed control provides optimal results. 

- Use of timely prescription maps can substantially reduce herbicide use. 

 

Abstract 

Remote sensing using unmanned aerial vehicles (UAVs) for weed detection is a valuable asset in 

agriculture and is vastly used for site-specific weed control. Alongside site-specific methods, time-

specific weed control is another critical aspect of precision weed control where, by using different 

models, it is possible to determine the time of weed species emergence. In this study, site-specific 

and time-specific weed control methods were combined to explore their collective benefits for 

precision weed control. Using the AlertInf model, which is a weed emergence prediction model, the 

cumulative emergence of Sorghum halepense was calculated, following the selection of the best date 

for UAV survey when the emergence was predicted to be at 96%. The survey was executed using a 

UAV with visible range sensors, resulting in an orthophoto with a resolution of 3 cm, allowing for 

good weed detection. The orthophoto was post-processed using two separate methods: an artificial 

neural network (ANN) and the visible atmospherically resistant index (VARI) to discriminate 

between the weeds, the crop and the soil. Finally, a model was applied for the creation of prescription 

maps with different cell sizes (0.25 m2, 2 m2, and 3 m2) and with three different decision-making 

thresholds based on pixels identified as weeds (>1%, >5%, and >10%). Additionally, the potential 

savings in herbicide use were assessed using two herbicides (Equip and Titus Mais Extra) as 

examples. The results show that both classification methods have a high overall accuracy of 98.6% 

for ANN and 98.1% for VARI, with the ANN having much better results concerning user/producer 

accuracy and Cohen's Kappa value (k=83.7 ANN and k=72 VARI). The reduction percentage of the 

area to be sprayed ranged from 65.29% to 93.35% using VARI and from 42.43% to 87.82% using 

ANN. The potential reduction in herbicide use was found to be dependent on the area. For the Equip 

Ac
ce

pt
ed

 p
ap

er



herbicide, this reduction ranged from 1.32 L/ha to 0.28 L/ha for the ANN; with VARI the reduction 

in the amounts used ranged from 0.80 L/ha to 0.15 L/ha. Meanwhile, for Titus Mais Extra herbicide, 

the reduction ranged from 46.06 g/ha to 8.19 g/ha in amounts used with the ANN; with VARI the 

reduction in amounts used ranged from 27.77 g/ha to 5.32 g/ha. These preliminary results indicate 

that combining site-specific and time-specific weed control, has the potential to obtain a significant 

reduction in herbicide use with direct benefits for the environment and on-farm variable costs. Further 

field studies are needed for the validation of these results. 

 

Introduction 

Since its early beginnings, agriculture has been constantly changing and evolving, and the same trend 

continues to this day (Thrall et al., 2010). Throughout the ages, the human population has been 

cultivating plants, always searching for an economic and environmentally sustainable way to produce. 

For this purpose, different tools, equipment, and crop management practices have been created 

(Lobley and Potter, 2004; Gaillard, 2005; Paul and Nehring, 2005; Ricroch et al., 2014). Weeds, the 

unwanted plants that spontaneously emerge alongside crops, are one of the biggest constraints to crop 

production. Because of their biology and evolutionary path, they are more competitive than traditional 

crops and therefore, they have a detrimental effect on crop yield (Radosevich et al., 2007; Holt, 2013; 

Lingenfelter and Hartwig, 2013). Weeds can cause serious losses by competing for natural resources, 

but can also serve as potential hosts for a variety of harmful organisms (Radosevich et al., 2007; 

Zimdahl, 2007; Cerrudo et al., 2012). In some cases, the percentage of yield loss caused by weeds 

can reach up to 84% (Imoloame and Omolaiye, 2017). In light of the fact that the negative economic 

impact is measured in billions per year (Soltani et al., 2016), it is not surprising that significant effort 

has been placed into finding the best way to control these unwanted plants. Today, the measures used 

for weed control can mostly be grouped into two categories. Mechanical control, which involves the 

use of different tools and machines to mechanically remove and/or destroy weeds; and chemical 

control, which involves the use of different chemical formulations (herbicides), with the same aim 
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(Arriaga et al., 2017; Peruzzi et al., 2017; Zimdahl, 2018). Other important weed controlling 

techniques include also agronomic, physical and cultural weed control. For agronomic techniques it 

is important to mention crop rotation and row spacing, while physical methods may include using the 

heat for weed control such as using the flames or steam (Astatkie et al., 2007). Finally, cultural 

methods involve selecting the right variety, cultivar or hybrid that can compete with plants and maybe 

even help the weed suppression, for example growing faster and creating the canopy that can shade 

the weeds (Melander et al., 2005). Although mechanical agronomic, physical and cultural weeding 

measures can be very efficient, they are not as effective as chemical weed control methods and should 

be used as a part of a holistic approach (Mohler, 1996; Weis et al., 2008). Further on, mechanical 

measures tend to be reduced or completely removed from newer production management systems, 

such as conservation agriculture, due to negative impacts such as soil compaction and disturbance. In 

addition, these operations may raise the production costs (e.g. machine maintenance, fuel) and can 

also lengthen the times of agricultural production, considering different tillage operations that are 

necessary for the soil preparation before sowing (Raghavan et al., 1990; Idowu and Angadi, 2013; 

FAO, 2014; Arriaga et al., 2017; Hussain et al., 2018). Therefore, use of chemical control methods 

has become the dominant technique for weed control, and in cases like for example in conservation 

agriculture, it is one of the few effective means of weed control. This means that the use of herbicides 

is always on the rise, and has been on an upward trend since their introduction (FAO, 2014; Vats, 

2015; Zimdahl, 2018). The use of herbicides, however, has a number of negative effects on the 

environment brought on by leaching into soil and groundwater (Tiktak et al., 2004; Gimsing et al., 

2019). This potentially leads to soil and water contamination, putting wildlife biodiversity at risk, and 

it can also be harmful for humans (Morales et al., 2013; Hasenbein et al., 2017; Gupta, 2018; Beasley, 

2020). Herbicides can also enter the food chain via residues found on food, and may have serious 

adverse implications (Morales et al., 2013; European Food Safety Authority, 2018). Today, the 

process of creating new herbicides is very slow due to the strict protocols imposed by the international 

organizations legislations such as FAO/WHO (FAO/WHO, 2016a, 2016b), and by national and 
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supranational laws regulating production and the use of pesticides, e.g. European Parliament (2009). 

In order to reduce the negative effects that future herbicides may have (Lyon et al., 1996; Kudsk and 

Streibig, 2003). However, this has an adverse impact on traditional herbicide application, due to the 

development of weed resistance to herbicides currently in use (Heap and LeBaron, 2001; Holt, 2013; 

Sherwani et al., 2015). All things considered, the use of herbicides in agriculture needs to be reshaped 

in order to guarantee not only their effectiveness, but also the stability of agricultural production, and 

reduce environmental impact. One of the possible solutions to this problem could be the 

implementation of precision agriculture, which could enable the reduction of herbicides by applying 

them only where and when needed, thanks to the technological progress and innovative tools available 

for weed detection (Lyon et al., 1996; Zarco-Tejada et al., 2014). Current limitations to the use of 

precision weed control in the field are the identification of weeds and the associated decision support 

systems. However, among precision farming adopters, Ayerdi Gotor and colleagues (Ayerdi Gotor et 

al., 2020) have demonstrated that there is still poor use of these techniques for weeding. Given that 

weeds do not appear uniformly in space nor in time (Radosevich et al., 2007; Zimdahl, 2007; Martín 

et al., 2015; Santín-Montanyá et al., 2015), it is important to address this issue from both the spatial 

and temporal points of view (Forcella et al., 2000; Gerhards, 2013). Mapping the weeds in space has 

never been easy (Hanzlik and Gerowitt, 2016), but the development of unmanned aerial vehicles 

(UAVs) simplifies this task (Herwitz et al., 2004; Giacomo and David, 2017). For this purpose some 

additional aspects could be exploited such as 3D model (Digital Surface Model), where different 

height of weeds and crops are used to discriminate between them (Stroppiana et al., 2018). In fact, a 

number of studies worldwide have started implementing UAVs for weed mapping as a part of 

precision agriculture, with very promising results (López-Granados, 2011; Ballesteros et al., 2014; 

Hassanein and El-Sheimy, 2018; Huang et al., 2018; Lambert et al., 2018; Maes and Steppe, 2019). 

Depending on the flight altitude and the sensors used, UAVs can provide images with a resolution of 

a few centimeters or less than a centimeter, allowing for useful weed classification (Torres-Sánchez 

et al., 2013; Koot, 2014; Bareth et al., 2015; Candiago et al., 2015; Pérez-Ortiz et al., 2015). 
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Moreover, images obtained in this way can serve as a basis for further analysis of weed spatial 

distribution (Borra-Serrano et al., 2015; Pérez-Ortiz et al., 2016). Weed emergence models have 

already been developed (Myers et al., 2004; Colbach et al., 2007; Dorado et al., 2009), to identify 

correct time for an effective weed control. The introduction of such models in decision support 

programs can reduce herbicide use and weed control costs when compared with standard management 

practices (Forcella et al., 2000). These models provide the percentage of cumulated emergence 

reached every day by weed species, and this information can be used to select the best timing for 

mechanical or chemical weed control methods to achieve maximum efficacy. One of these models, 

named “AlertInf” was developed in Italy by Masin and colleagues (Masin et al., 2010). It uses the 

hydrothermal time concept (Bradford, 2002), in which the combination of soil temperature and soil 

water potential is the main factor driving germination (Masin et al., 2010, 2012, 2014). 

To our knowledge, no study (or very few studies) in the scientific literature so far have addressed the 

combination of spatial and temporal weed detection. This study aims to bridge this gap and to 

investigate the possible benefits of combining spatial and temporal approaches for precision weed 

control. In this experiment, UAVs were used to map the weeds present in a field, which were later 

identified with the help of spatial analysis software within a geographic information system (GIS). 

Afterwards, based on the weed location results, prescription maps were created to support site-

specific weed control. The main novelty of our approach was to use the AlertInf model to predict the 

cumulative emergence of weed species present in the field, providing time-specific weed control, 

thereby allowing us to define the best flight date to map the weeds. Eventually, by implementing and 

combining site-specific and time-specific weed control techniques, the possible reduction of herbicide 

use was assessed.  

 

Materials and methods 

Study site 

The experiment was conducted at the experimental farm “Lucio Toniolo” of the University of Padova 
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at Pozzoveggiani locality, within the province of Padova in the Veneto region (northeastern Italy). 

The field morphology is flat and the soil is classified as Fluvic Cambisol (FAO, 2006). The local 

climate is sub-humid with an average temperature of 12 °C and 800–850 mm of rainfall, mostly 

during the autumn and spring months, based on the data from the Regional Agency for Environmental 

Protection (ARPA). In this field, a hybrid of maize (DKC 5530) was sown on the 7th of June 2019 

with 75 cm interrow and 15 cm in-row spacing, while the previous culture was soybean Pioneer 

hybrid PR92M22, harvested on 11.10.2018. This late sowing date was due to very unfavorable 

meteorological conditions during the late spring/early summer period. Prior to sowing, different 

tillage operations, commonly employed for soil preparations, were performed. On the 9th of January 

2019 weeding was performed using a grubber, on the 26th of February 2019 53 kg N/ha was applied 

as manure, corresponding to 36 Mg/ha of raw manure, on the 4th of March 2019 false sowing was 

executed using the rotary harrow, on the 4th of June 2019 shredding was implemented using a tiller, 

and on the 5th of June 2019 a rotary harrow was used.   

 

UAV Survey  

The flight was performed with the Matrice 100 UAV, coupled with DJI X3 and DJI X5 visible sensors 

(DJI Sciences and Technologies Ltd., Shenzhen, China), on the 19th of June 2019 when maize was at 

10-11 BBCH stage. The flight was executed at a height of 35 m from the ground over an area of 1 ha, 

providing an orthophoto with a resolution of 3 cm. The orthomosaic was created with Pix4D software 

using the Gauss Boaga Monte Mario Italy Zone 1 (EPSG:3003) projected coordinate system. The 

result was an accurate orthophoto allowing a rather easy distinction between weed species and the 

surrounding elements (Figure 1). 

 

Weed classification methodologies  

Two different approaches were tested for weed classification: an artificial neural network (ANN) 

(OpenCV) using the SAGA GIS open source software (version 7.6.2), and the visible atmospherically 
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resistant index (VARI) using ArcGIS Pro software (version 2.2.0 ESRI - Environmental Systems 

Research Institute, Redlands, CA).  

The OpenCV algorithm operates by performing a backpropagation, which is one of the most widely 

used methods for training artificial neural networks for diverse purposes (Sözen et al., 2004; Murat 

and Ceylan, 2006; Elmolla et al., 2010; Turan et al., 2011). Backpropagation is an iterative process 

that consists of making a backward pass after each forward pass through the network, while making 

the relevant adjustments to the model’s parameters, namely weights and biases (Rumelhart et al., 

1986). These adjustments are performed based on the training dataset; meaning, the classification 

process is stopped when the difference between the neural network classification and the training 

dataset is minimized. From an operational point of view, this is achieved when the difference between 

two subsequent iterations is lower than a certain threshold, or the prearranged maximum number of 

iterations is reached. The algorithm requires two inputs: (1) grid (raster) data, which are represented 

by the red, green, and blue (RGB) bands of the orthophoto obtained from the drone survey; and (2) 

the vector data defining the training areas, which are the detection targets. The detection targets (or 

labeled samples) were defined by manually tracing some of the weed spots as a polygon shapefile, in 

particular 11 polygons were traced scattered across the field comprising both single weeds and group 

of weeds in cases where they emerged closely, and a single weed couldn’t be traced, the total area of 

these polygons was 2.21 m2. The parameters to be set are: (i) the number of hidden layers of the 

neural network, (ii) the number of neurons of the hidden layers, (iii) the process stopping criteria (i.e., 

the maximum number of iterations and the minimum difference between the iteration threshold), and 

(iv) the activation function and learning rate parameters. Altogether, these parameters determine the 

structure and functioning of the OpenCV ANN (OPEN CV, 2014).  

The VARI index was developed by a group of scientists at the University of Nebraska and its main 

purpose is to calculate the vegetation indices, whilst reducing the influence of atmospheric 

interference. It is based on a combination of the visible spectral bands (Formula 1) (Gitelson et al., 

2002). 
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VARI = (Green-Red)/(Green+Red-Blue)        (1) 

 

The VARI index is used for different purposes, mostly for measuring leaf area index (LAI) (Gitelson 

et al., 2003), as well as for monitoring crop health and even estimating fire hazard potential 

(Schneider et al., 2008; McKinnon and Hoff, 2017). However, in our research, the authors have not 

found references for the use of this index in weed detection. Similar to the OpenCV ANN, VARI was 

also computed on grid (raster) data, that is, RGB bands of the orthophoto obtained from the drone 

survey. The VARI index is designed to be minimally sensitive to atmospheric effects (Gitelson et al., 

2002; Schneider et al., 2008). As so, we computed it directly on the raw digital number values of the 

UAV images, i.e., without converting to reflectance. In addition, the flight conditions were constant. 

However, for further comparison the illumination conditions might be considered to test 

transferability of the method. 

In the derived raster each pixel was attributed with a VARI value ranging from -0.16 to 1.67. The 

raster was then classified into five classes using the optimization algorithm defined by Jenks. This 

algorithm minimizes the standard deviation within the single classes (i.e., the differences within each 

class) and maximizes the differences among classes, thus identifying so called "natural breaks". The 

Jenk’s algorithm is suggested to provide neutral class delineation in early spatial data mining (Murray 

and Shyy, 2000; Irigaray et al., 2007). Following, it was necessary to conduct a reclassification to 

achieve only two categories: non-weed and weeds. To this end, we identified the threshold value for 

pixels identified as weeds, by visually comparing the original ortophoto to the one with VARI values. 

Non-weed categories were the first three classes, corresponding to the interval of values -0.16 ≤ non-

weed < 0.08, while the weed categories were the last two classes, corresponding to the interval 0.081 

≤ weed ≤ 1.67. The, Reclassify (Spatial Analyst) tool integrated in ArcGIS Pro was used to reclassify 

the pixels into the two categories, non-weed and weed.  
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Accuracy assessment  

Image classification is one of the most frequently performed analysis on remote sensing data; because 

of this, classification accuracy has been widely addressed in literature (Foody, 2008). Nonetheless, 

there is still an open debate in the scientific community about the multiple accuracy methods 

developed so far. A widely established method for accuracy assessment is the confusion matrix 

(Foody, 2002), which essentially allows the comparison of classified values with reference values 

(called “field truth” or “ground truth”) by means of a contingency table (Cohen, 1960). In this study, 

the confusion matrix was computed within the SAGA GIS open source software (version 7.6.2). For 

each class, two in this case (i.e., weed and not-weed), the number of pixels is compared with the ones 

from the reference data (Story and Congalton, 1986). Reference data were produced by an expert 

classification through photointerpretation on the orthomosaic and was used for the assessment of both 

methods. The accuracy assessment based on the confusion matrix included the computation of the 

overall accuracy, the commission error (false positive rate) and the omission error (false negative 

rate), as well as Cohen’s Kappa that estimates the accuracy net of values due to chance (Congalton, 

1991).  

 

Estimation of weed emergence percentage  

From the data gathered during the ground surveys seven days after sowing, when maize was in the 

initial growing stage (9-10 BBCH scale), that included the scouting for the weed species present, it 

was determined that plant infestation in the field was composed almost exclusively of Sorghum 

halepense. In order to determine the best time for a UAV survey, an AlertInf emergence predictive 

model was used. The soil temperature and daily precipitation levels comprised the AlertInf input data. 

Both the soil temperature, at 5 cm depth, and precipitation data were obtained from the meteorological 

stations of the Regional Agency for Environmental Protection (ARPA), located near the experimental 

field. Based on the data concerning the biology of Sorghum halepense and the meteorological data, 

AlertInf produced a cumulative emergence curve, showing the percentage of seedling emergence 
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reached by the species relative to each day (Figure 2).  

 

Prescription maps  

The creation of prescription maps was a three-stage process performed with ArcGIS Pro 

ModelBuilder, integrated in the ArcGIS Pro software (Figure 3). The first stage consisted of creating 

a precision spraying grid by dividing the field into regular cells. The cell size was chosen after 

considering the fundamental factors that determine the base area coverage for a sprayer: (i) the 

spraying angle, (ii) the altitude of the boom, and (iii) the possibility of controlling a single nozzle or 

a boom section (Bajwa, 2014; Gonzalez-de-Soto et al., 2016; Kluza et al., 2019; Partel et al., 2019). 

Three different cell sizes were defined based on the technical specifications of the most common 

models of sprayers for precision spraying available in the region (TOSELLI Srl; KUHN ITALIA 

S.R.L.; LEMKEN GmbH & Co. KG). These cell sizes were: 3.00 m2, 2.00 m2, and 0.25 m2 (Figure 

4).  

The second stage comprised selecting the pixels classified as weeds in the outputs of the two weed 

classification methods (i.e., OpenCV ANN and VARI). Finally, in the third stage, each of the three 

precision spraying grids was intersected with the weed classification output to quantify weed 

infestation per cell. From here, each cell was classified (i) to be sprayed or (ii) not to be sprayed 

according to the weed infestation ratio. This classification was based on the three decision-making 

thresholds for spraying: more than 1%, more than 5%, and more than 10% of the pixels within a cell 

identified as weeds.  

 

Herbicide use assessment  

The prescription maps issued from the previous step were used to assess the potential herbicide use 

reduction for the different classification methods and decision-making scenarios. For this purpose, 

two herbicides were considered, both registered in Italy for use in maize fields and for the chemical 

control of Sorghum halepense (‘Banca dati dei prodotti fitosanitari’, 2020). The first one was Equip 
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(Foramsulfuron 2.33% = 22.5 g/L, Isoxadifen-etile 2.33% = 22.5 g/L), with a recommended dose of 

2.3 L/ha, corresponding to 53.75 € on the market, and the second one was Titus Mais Extra 

(Nicosulfuron p.a. pure 30 g, Rimsulfuron p.a. pure 15 g, Coformulants q.b. 100 g), with a 

recommended dose of 80 g/ha, corresponding to 37.50 €. The prices are indicative of the 2020 market 

price. The quantity for each of the two herbicides (liters and grams) was calculated based on the area 

to be sprayed according to prescription maps and knowledge of how much product is needed for the 

whole field area, by using simple proportions. Following the same procedure, treatment costs were 

calculated. In this way, both the reduction in the quantity of herbicides used and the related variable 

costs were obtained.  

 

Results and discussion 

Using the AlertInf model, the cumulative emergence percentage for Sorghum halepense in the 

experimental field was obtained. It was decided to carry out the survey with the UAV on the date that 

AlertInf predicted 96% of species emergence, allowing for a good mapping and efficient weed control 

operations. The date was also suitable considering meteorological parameters for the drone flight, 

phenological stage of the crop, and planned agronomical operations.  

The OpenCV ANN method outperformed the VARI method in weed classification. In particular, the 

ANN showed a commission error (false positive) for weed classification almost five times lower than 

the VARI. However, the OpenCV ANN algorithm underestimated the weed occurrence compared to 

VARI, with an omission error (false negative) of 19.4% versus 6.0%, respectively. The difference in 

commission/omission error between the two methods could also be one of the reasons to impact the 

choosing of one method over the other. From the environmentalist point of view it is probably better 

to use the OpenCV ANN that would indicate lesser use of herbicides even if it means letting some of 

the weed plants survive. From the farmers point of view however, it is probably better to use the 

VARI method, that although proposes the higher use of herbicides, it would also eliminate more 

weed, that could have a negative impact on the final yield if they are left untreated. Altogether, the 
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overall accuracy of both classification methods is very high and quite similar, with 98.6% for 

OpenCV ANN and 98.1% for VARI classification. However, Cohen’s Kappa indicated that the 

OpenCV ANN stands a greater chance at being accurate than the VARI thresholding (Table 1). 

The combination of three precision spraying grids and three spraying thresholds, produced nine 

prescription maps for each of the two orthomosaic classification methods: OpenCV ANN (Figure 5) 

and VARI (Figure 6). 

Decision-making thresholds were chosen arbitrarily, considering the format of the data used, the weed 

species present, and agronomic information available. There are different kinds of thresholds and it 

is important to choose the one that is most suitable for the data being used (Coble and Mortensen, 

1992). The most commonly used threshold is based on weed density, where the decision to spray is 

based on the number of weeds per area, which can be as low as 0.05 weeds/m2 for some weed species 

(Auld and Tisdell, 1987; Zanin et al., 1994; Sartorato et al., 1996). For Sorghum halepense, this 

threshold is one plant per square meter (Roberts and Hayes, 1989; Ghoshen et al., 1996). Due to the 

inability to effectively count plants, considering that the data is expressed in pixels, the thresholds 

have been translated into percentage of pixels that have been marked as weeds in a certain area. This 

was performed in a manner similar to that used in the study done by López-Granados and colleagues 

(López-Granados et al., 2016), where thresholds chosen ranged from 0% to 15% of the pixels marked 

as weed/m2. The three thresholds chosen are also very low because the cell sizes are either smaller or 

greater than 1 m2, which is not an isolated case (Mortensen et al., 1995; Keller et al., 2014). 

Nevertheless, it requires thoroughly considering the thresholds to use, making them also comparable 

between different prescription maps created. These maps allowed for a comparison not just between 

the different cell sizes and decision-making thresholds, but also between the two classification 

methods. The possible reduction of the area to be sprayed and the differences in the area classified 

for spraying between the two classification methods were calculated for a field 1 ha large (Table 2). 

The reduction in the area to be sprayed using the prescription maps is significant compared to 

traditional spraying, which comprises spraying the entire field. Depending on the cell size and the 
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threshold percentage for decision making, the area reduction for spraying can go from 65.29% to 

93.35% with the VARI classification, and from 42.43% to 87.82% with the OpenCV ANN 

classification. However, these data should be considered with caution, taking into account the 

classification precision, the level of infestation where, in the case of complete coverage by the weeds, 

blanket spraying might be the only option; and the potential damage that can be caused by the plants 

that could be skipped during the field treatment using this method. This may result in possible damage 

to crops caused by inadequate herbicide targeting (Hall et al., 2000; Kudsk and Streibig, 2003; Wolf, 

2009; Lottes et al., 2017).  

 It is also important to emphasize that the decision-making thresholds have been set arbitrarily by the 

authors based on their experiences, in order to observe the changes in the area to be sprayed. 

Therefore, while they could, they should not necessarily be considered as thresholds to use. The 

progress in spatial detection of weeds is also followed by the progress in technologies for precise 

herbicide application, which is one of the key points allowing the creation of prescription maps and 

the reduction in the quantity of herbicides used (Gopalapillai et al., 1999; Baillie et al., 2013; 

Gerhards, 2013; Gonzalez-de-Soto et al., 2016; Partel et al., 2019). By modeling the possible 

reduction in cost and amount of the two herbicides used, it is evident that a reduction in their use is 

dependent on the reduction of the area to be treated. Therefore, it is also highly dependent on the 

classification precision and on the precision of systems for herbicide application, translated to cells 

of prescription maps. As so, we computed the reduction in the quantity and costs comparing the two 

classification methods, whilst considering different decision-making thresholds, both for Equip 

(Table 3) and Titus Mais Extra (Table 4). In the tables the cost of effective quantity needed for 

treatment of the area proposed by the methods is shown in the columns ‘cost’, while in the columns 

‘savings’ it is shown how much money can be saved by treating only the area proposed by the methods 

compared to the cost of herbicides quantity necessary for the treatment of the whole field. 

For Equip (Table 3), it is possible to see that there are great differences in the reduction of quantity 

used and in savings, between both the classification methods and decision-making thresholds. For the 
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OpenCV ANN classification, the quantity used can go from 1.32 L/ha to 0.28 L/ha, a significant 

reduction considering that with blanket spraying, the quantity used would be 2.3 L/ha. As a 

consequence, the savings can go from 22.81 €/ha to 47.2 €/ha, again an important cost reduction 

considering that for the traditional spraying, the cost would be 53.75 €/ha. As for the VARI 

classification, the quantity used can go from 0.80 L/ha to 0.15 L/ha, which is very notable considering 

the quantity needed for traditional spaying. Moreover, the savings are also very significant for VARI, 

going from 35.09 €/ha to 50.18 €/ha. Also for Titus Mais Extra (Table 4) is possible to observe 

important differences in the reduction of the quantity of herbicides used and in the associated savings, 

between both the classification methods and decision-making thresholds. For the OpenCV ANN 

classification, the quantity used can go from 46.06 g/ha to 8.19 g/ha, a very notable reduction 

considering that for traditional spraying, the quantity used would be 80 g/ha. Meanwhile, the savings 

can go from 15.91 €/ha to 32.93 €/ha, which is also very important considering that the cost would 

be 37.5 €/ha, for traditional spraying. For VARI classification, the quantity can go from 27.77 g/ha 

to 5.32 g/ha, both much lower than the 80 g/ha required for blanket spraying. Furthermore, the savings 

are also high, ranging from 24.48 €/ha to 35.01 €/ha. All prices are indicative of the 2020 market 

value. 

It is important to note that even though there are differences in the quantity of spraying required 

between the two methodologies used and different decision-making thresholds, they each offer a 

substantial reduction in herbicide use compared to traditional spraying. Consequential cost reduction 

can also be very important, especially if the area to be treated is very large. These results are similar 

to the results from different studies done worldwide. For example, in their work, Slaughter et al. 

(1999) found that by implementing precision spraying, the area to be sprayed can be reduced from 

100% to approximately 57%, making the chemical weed control 3.7 times more efficient. 

Additionally, Hamouz et al. (2013) found that the reduction in herbicide application can increase 

from 15.6% to 100%, depending on the different methodologies and thresholds used. The authors 

also agree that a higher decision-making threshold equates to more herbicide savings. Other works, 
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such as that done by Takács-György (2008), indicate that by implementing precision weed controlling 

tactics, the reduction of herbicide usage can be substantial and so can the savings. This author also 

implies that the initial investments in precision agriculture are paid off in a few years due to the 

savings they allow. 

 

Conclusions 

Because of the herbicide traits that make them harmful to the environment and health, their 

application must be improved, and their use reduced. In this study, an innovative approach that 

combines site-specific and time-specific weed management methods is presented. As is, the method 

could improve the performance of UAV image classification for weed detection. Moreover, by 

implementing the proposed method, it is possible to reduce the amount of herbicide used, which also 

results in the reduction of agricultural production costs. Overall, the two classification approaches 

used have both positive and negative traits. On the one hand, while the OpenCV ANN produced a 

better classification than VARI, it required more training and was, therefore, more time consuming. 

On the other hand, the VARI algorithm showed some limitations in weed classification, yet it was 

much more straightforward to use and thus required much less time. As stated before, the efficacy of 

the treatment depends on the threshold for decision making and the cell size chosen. It is, therefore, 

up to the end user to decide which combination could suit his/her needs better. However, as a general 

rule for better efficacy, one should consider using lower thresholds with bigger cells, while from an 

economic perspective using higher thresholds with smaller cells could also give good results. We 

have shown that adding a temporal component to precision weed detection could be very useful for 

herbicide reduction, as it offers information about the percentage of weed emergence in time. Indeed, 

with the temporal AlertInf weed detection model, it was possible to better organize the UAV survey 

in order to map the maximum number of weeds possible according to the percentage of weed 

emergence, and the development stage of the crops. Moreover, if the correct timing for UAV surveys 

is chosen, the resulting prescription maps will then contain a majority of weed plants that could 
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possibly infest the field, thus potentially improving the spatial detection of the most relevant weed(s). 

As a consequence, given the proper use of herbicides, it might be possible to reduce not only the 

herbicide amount used, but also eliminate the need for subsequent chemical herbicide treatments. 

This could be a leap forward, considering that with the traditional weed controlling methods, the 

percentage of emerged weeds is not considered. Consequently, in some cases, after the first spraying, 

the weeds that have not yet emerged create a second flush of infestation, compelling the farmers to 

undergo a second round of herbicide treatment in order to prevent reduced crop yield. However, with 

fewer and more efficient treatments, the problem of herbicide resistance could be attenuated. 

Nevertheless, consider that the present experiment is modular and theoretical; therefore, it is 

necessary to transfer it to real situations by conducting field trials. With the field trials, it will be 

possible to understand how applicable these methods are and determine if the efficacy achieved 

corresponds to the one simulated. It would also be possible to better understand the problems that 

may occur in real-life applications and resolve them. Finally, comparing the final yield from a field 

in which precision weed control methods were applied with one in which they were not applied, 

would provide valuable insight for a cost-benefit analysis. Other than what has been mentioned 

before, further studies are required in order to be able to address different production methods, with 

more cultivated species and more weed species, in order to meet market demands. It could also be 

very useful to collaborate with the sprayer production industry in order to develop increasingly more 

precise spraying systems. Additionally, calibration of weed emergence predictive models for use in 

different parts of the world must also be performed, so that they may be able to apply the techniques 

presented in this work beyond the Veneto region. 
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Table 1. Accuracy assessment of the OpenCV ANN and VARI weed classification methods.  

 

Classification 
method Classes 

Commission error 
(false positive, 

%) 

Omission error 
(false negative, 

%) 

Overall accuracy 
(%) 

Cohen’s Kappa 
(%) 

OpenCV ANN 
Weed 11.8 19.4 

98.6 83.7 No-
weed 1.0 0.5 

      

VARI 
Weed 40.2 6.0 

98.1 72.0 No-
weed 0.2 1.8 

 
 

 

 

Table 2. Possible spraying area reduction in a field of 1 ha. 

 
VARI 

 1% infestation 5% infestation 10% infestation 
Cell 
size 

Area to be sprayed 
(ha) 

Reduction 
% 

Area to be sprayed 
(ha) 

Reduction 
% 

Area to be sprayed 
(ha) 

Reduction 
% 

0.25 m2 0.35 65.29 0.19 80.59 0.15 85.36 
2.00 m2 0.15 85.33 0.15 84.82 0.11 88.88 
3.00 m2 0.12 88.05 0.09 91.42 0.07 93.35 

OpenCV ANN 
 1% infestation 5% infestation 10% infestation 

Cell 
size 

Area to be sprayed 
(ha) 

Reduction 
% 

Area to be sprayed 
(ha) 

Reduction 
% 

Area to be sprayed 
(ha) 

Reduction 
% 

0.25 m2 0.58 42.43 0.30 69.97 0.21 78.94 
2.00 m2 0.50 49.7 0.26 73.72 0.17 83.00 
3.00 m2 0.22 77.57 0.16 84.03 0.12 87.82 
 
 

 

Table 3. Possible savings associated with various degrees of quantity reductions of herbicide (Equip). 

 

OpenCV ANN 

Cell 
size 

1% 5% 10% 
Quantity 
(L/ha) 

Cost 
(€/ha) 

Savings 
(€/ha) 

Quantity 
(L/ha) 

Cost 
(€/ha) 

Savings 
(€/ha) 

Quantity 
(L/ha) 

Cost 
(€/ha) 

Savings 
(€/ha) 

3.00 
m2 

1.32 30.94 22.81 0.69 16.14 37.61 0.48 11.32 42.43 

2.00 
m2 

1.16 27.04 26.71 0.60 14.13 39.63 0.39 9.14 44.61 

0.25 
m2 

0.52 12.06 41.70 0.37 8.58 45.17 0.28 6.55 47.2 

VARI 

Cell 
size 

1% 5% 10% 
Quantity 
(L/ha) 

Cost 
(€/ha) 

Savings 
(€/ha) 

Quantity 
(L/ha) 

Cost 
(€/ha) 

Savings 
(€/ha) 

Quantity 
(L/ha) 

Cost 
(€/ha) 

Savings 
(€/ha) 

3.00 0.80 18.66 35.09 0.45 10.43 43.32 0.34 7.87 45.88 
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m2 
2.00 
m2 

0.34 7.89 45.87 0.35 8.16 45.6 0.26 5.98 47.77 

0.25 
m2 

0.28 6.42 47.33 0.20 4.61 49.14 0.15 3.57 50.18 

 
 
 
Table 4. Possible savings associated with various degrees of quantity reductions of herbicide (Titus Mais 

Extra). 

 

OpenCV ANN 

Cell 
size 

1% 5% 10% 
Quantity 
(g/ha) 

Cost 
(€/ha) 

Savings 
(€/ha) 

Quantity 
(g/ha) 

Cost 
(€/ha) 

Savings 
(€/ha) 

Quantity 
(g/ha) 

Cost 
(€/ha) 

Savings 
(€/ha) 

3.00 m2 46.06 21.59 15.91 24.02 11.26 26.24 16.85 7.90 29.60 
2.00 m2 40.24 18.86 18.64 21.02 9.86 27.65 13.60 6.38 31.13 
0.25 m2 17.94 8.41 29.09 12.78 5.99 31.51 9.74 4.57 32.93 
 VARI 

Cell 
size 

1% 5% 10% 
Quantity 
(g/ha) 

Cost 
(€/ha) 

Savings 
(€/ha) 

Quantity 
(g/ha) 

Cost 
(€/ha) 

Savings 
(€/ha) 

Quantity 
(g/ha) 

Cost 
(€/ha) 

Savings 
(€/ha) 

3.00 m2 27.77 13.02 24.48 15.53 7.28 30.22 11.71 5.49 32.01 
2.00 m2 11.74 5.50 32.00 12.14 5.69 31.81 8.90 4.17 33.33 
0.25 m2 9.56 4.48 33.02 6.87 3.22 34.28 5.32 2.49 35.01 
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Figure 1. Sample of the orthophoto obtained (06.19.2019). 
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Figure 2. Cumulated emergence (%) of Sorghum halepense in the field in 2019, simulated by the Alertinf 

model. 
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Figure 3. Prescription map creation workflow, N is the number of inputs/outputs used/produced during the 

creation of prescription maps.  

 

 
 

Figure 4. Sample of precision spraying grid with three cell sizes: 3.00 m2 (a), 2.00 m2 (b), and 0.25 m2 (c). 
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Figure 5. Comparison of the prescription maps for the OpenCV ANN classification method. Examples for 

the 5% threshold for three cell sizes to be sprayed, namely: 3.00 m2 (a), 2.00 m2 (b), and 0.25 m2 (c). Ac
ce
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Figure 6. Comparison of the prescription maps for the VARI classification method. Examples for the 5% 

threshold for three cell sizes to be sprayed, namely: 3.00 m2 (a), 2.00 m2 (b), and 0.25 m2 (c). 
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