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Theoretical and Experimental Study for An 
Improved Cycloid Drive Model

This paper describes an experimental and theoretical approach to evaluate cycloid drive reducer efficiency. The tests are carried 
out on 7.5 kW two-disc cycloid drive with a gear ratio of 19. The torque and speed are measured on the input and output shaft. 
The efficiency is calculated based on the obtained results. The main goal of the second part of the study is to deduce equations of 
cycloid reducer in order to predict and analyze experimental results. In this way, the following points are set for the simulation: a 
working condition in which the input speed and the output load are imposed; then, the output speed is determined by the gear 
ratio, and finally, the input torque is obtained by solving the dynamic problem. A new model for cycloidal reducers is proposed. 
This model is based on kinematics and dynamics of rigid bodies and a non-linear stiffness based on contact dynamics. The 
overall elasticity effects are all condensed between the input shaft and the cycloidal disk. The proposed model allows to predict 
the efficiency for several operational conditions and offer a drastic reduction of computational costs suitable for the optimization 
process.

Keywords: multibody analysis, cycloid gearbox, cycloid drive, cycloidal reducer’s efficiency, computational mechanics, vibration
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1 Introduction

This study is performed with the support of PSA automotive in
the technical context of electric car development. Compacity, high-
speed range are important benefits of this technology. In this work,
we highlight some possible ways to optimize the efficiency of the
cycloidal drive. The cycloidal drive, through the important experi-
mentation made during the last years and the new interest in appli-
cations, shows relevant operating properties such as long and
reliable working life, large range of gear ratio in comparison with
the traditional gearboxes. If it is well designed, it displays
minimal vibrations and low noise, high overload capacity, reverse
applications as a reducer, high efficiency with increasing load and
compact design. All these reasons encourage both the experimenta-
tion and the computational work with the main purpose of finding
the pivotal features to increase the efficiency. Most research
studies aim to perform a better knowledge of cycloidal drive,
predict important factor such as efficiency and perform new
designs. Mackic et al. [1] investigate the influence of geometrical
parameters on the cycloid drive efficiency. They summarize that
the optimum choice of design parameters has a significant impact
on its efficiency. Blagojevic et al. [2] developed a model of
cycloid drive which only takes into account the friction in contact
of the cycloid disk and housing rollers, while the occurrence of fric-
tion in other locations is neglected. They notice that the appearance
of friction has a significant impact on the core strength parameter of
the cycloidal speed reducer. In another paper, Blagojevic et al. [3]
introduce a dynamic model of the cycloid drive which takes into
consideration the elastic connection with stiffness and damping
between the bodies in contact: between the input shaft and the
eccentric cam (cycloidal plate), between the housing roller and
the cycloidal plate, between the output rollers and the cycloidal
plate. The simulations show that the biggest influence on operating
condition of the cycloid drive comes from the damping and stiffness
in the contact between the cycloid gear tooth and the housing pin.
Moreover, the kinematics is inspired by Shin and Kwon [4].
These authors apply the Kennedy theorem on the cycloidal disk
in order to analyze its kinematics. Some papers develop the techno-
logical context of specific applications for cycloidal reducers:

contact analysis in Refs. [5–8], geometric assessments in Refs.
[9–12]. The present study is developed from tests of the cycloid
drive device (Sec. 2) on a test bench designed at AML (Sec. 3)
with a specific measurement methodology (Sec. 4). Then, a new
method for cycloid drive analysis is introduced with equations
deduced in order to predict and analyze experimental results
made on the same device (Sec. 5). A non-linear model based on
contact dynamics is proposed in Sec. 5 for the overall elastic
force. Simulation results are described (Sec. 6) and pointed out
regarding tests for the conclusion (Sec. 7). In accordance with pre-
vious works performed in Refs. [13,14], this article assumes that the
efficiency depends on the input torque: the architecture and the
geometry plays a major role in the reducer performance. In order
to improve the efficiency, the dynamics had to be investigated
more. As demonstrated in Ref. [15], even for complete rigid
bodies (without any elasticity), the efficiency strongly depends on
the eccentricity between the input shaft and cycloidal plate. In
this way, smaller is the eccentricity, smaller is the dynamics of
the gap between the pins and the cycloid teeth. From this article’s
point of view, this is due to non-linear dynamic effects when stiff-
ness increases with the load.

2 Research Object

The tested machine has been designed for this research study and
is composed of two disks (Fig. 1). Each disc has 19 teeth (z1) and
cooperates with housing equipped with 20 housing pins (z2). In
this case, the total ratio of the gearbox is

i =
ωin

ωout

=
−z1

z2 − z1
= −19 (1)

The main nominal values of the cycloidal reducer are presented in
the following table:

Rotational speed of input shaft 1500 rpm

Power 7.5 kW
Gear box ratio 19 –

Fig. 1 Two sections of the cycloidal gearbox, z1=19 teeth and z2=20 housing pins, ωin on the
small shaft (high speed on the right side), and ωout on the big shaft (low speed on the left side).
This new design introduces specific brass washers in order to reduce friction forces and
improve efficiency.
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The parts of the new cycloid gearbox were manufactured in Lodz
(Fig. 2).

3 Test Bench

The cycloidal gearbox was tested on the bench assembled at
AML (Fig. 3).
The test bench consists of the following:

(1) Two electrical motors “3” (200 kW each), which are charac-
terized by reversible work, they can operate both as a motor
or as a break. The commonDC voltage cable allows the trans-
mission of electrical energy from the generator to the engine.
In this way, the external power supply is charged only to cover
energy losses much smaller than appear in the working drive
system.

(2) Inverters “5” are made by two ABB frequency converters,
which in the power supply have a rectifier bridge and an
input filter in order to reduce harmonic distortion from the
external power supply.

(3) The CPU “17” (Fig. 3) allows to plan and to execute the
experiment. Experimental cycle of electrical machines can
be carried out with step, trapezoidal, or sinusoidal function.

(4) An oil cooling system is used to keep the desired temperature
inside the cyclo gearbox’s housing.

(5) The oil temperature sensor is mounted at the bottom of the
cycloid gear housing. It allows the observation of oil
average temperature during bench operation.

In order to reduce the vibration of test components, a set of laser
sensors “ShaftAlign” made by Prüftechnik was used to set coaxiality
for shafts and clutches in the drive line. After reaching the required
accuracy in setting the cooperating connections, the test can be
started. The control system “18” allows to set up the speed on the
input shaft and the torque on the output shaft. Thus, the system
keeps the speed constant when the torque increases at the braking
side. In the same way, the system keeps the torque constant on the
braking unit when the speed increases at the input side. In transient
conditions, the torque and speed can vary due to themoment of inertia.
The measurement system consists of the following:

(1) Two torque and speed sensors HBM T40b, which are
mounted on the input and output shaft of the cycloidal
gearbox.

(2) Temperature sensor that measures the oil temperature in the
gearbox.

Fig. 2 Tested cycloidal drive: (a) cycloidal plate, (b) output shaft and output rollers, (c) cyclo gearbox, and (d)
housing with pins

Fig. 3 Test bench schematic view: 1, cycloidal gearbox; 2, planetary gear set; 3,
electric motor; 4, oil supply system; 5, inverter; 6, soundmeter; 17, computer with
an application software tool for the inverter control system; and 18, inverter
control system
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A schematic view of the data acquisition hardware is shown in
Fig. 4.

4 Methodology and Results

Tests are carried out at constant torques on the output shaft of the
tested gear. The speed increased from 0 rpm to the set maximum
value kept constant during 20 s and then decreased to 0 rpm again
(maximum value kept for input speed as equal to 2200 rpm).
Example of the acquired data is shown inFig. 5; as itmay be observed
that there are no important oscillations during the 20 s; moreover,
during that time, the data of efficiency will be taken.
The torques and speed values acquired during these 20 s are aver-

aged. The instantaneous efficiency is computed according to the
formula:

η =
Tout ωout

Tin ωin

(2)

As we can see by the trend of efficiency in Fig. 5, the system reaches
quickly the stationary condition referring to the transmissionFig. 4 Data acquisition system

Fig. 5 A sample of measured signals
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efficiency, this is one of the main reason why, in a latter time, we
impose stationary working conditions on dynamics.
The oil temperature was kept around 33 °C in order to have a

quite constant oil viscosity around 44 mm2/s to avoid the influence
of a variation of this environmental parameter.
The main efficiency results obtained with the test bench are sum-

marized in Fig. 6. there is a relevant dependence of efficiency on
output torque, while the input speed does not significantly affect
the efficiency especially for high values of the load.

5 Dynamics Model

5.1 Kinematic Analysis. First,the gearbox ratio of the cycloid
drive (Fig. 7) is obtained by using the Willis formula in the case of
having the ring in a fixed state:

i =
ωin

ωout

=
−z1

z2 − z1
(3)

For compactness and efficiency reasons, most of the cycloid drive is
designed with z2= z1+ 1; then, the gearbox ratio is i= z1.
Following formula are based on the theorem of Kennedy. The

theorem of Kennedy states that the three instantaneous centers of

rotation shared by three rigid bodies in relative planar motion
(whether or not connected) all lie on the same straight line.
Figure 8 shows the geometric outline: part 1 (housing pin) is in
contact with part 3 (cycloidal plate) and part 3 (cycloidal plate) is
in contact with part 2 (input shaft). O is the center of rotation of
the input shaft and O1 is the center of the cycloidal disk. The
point O is the instant center of rotation of the body 2, so I12=O.
Moreover, part 3 is in rotation with part 2 in the center O1, then
the point O1 is the instant center of rotation of part 3 relatively to
part 2: I23=O1. Applying the Kennedy theorem, we obtain the posi-
tion of I31. In fact, I31 is located at the intersection of the straight
(OO1) and the normal to the tangent at the point of contact A
between the cycloidal disc and housing pin. The velocity of the
point O1 is obtained with the theorem of Rival applied in the
instant center of rotation I31:

VO1∈2/1

������
= ω2/1
���

× OO1

���
(4)

VO1∈3/1

������
= ω3/1
���

× I13O1

����
(5)

VO1∈2/1

������
is the speed of point O1 inbuilt to part 2 relatively to part 1,

VO1∈3/1

������
is the speed of point O1 inbuilt to part 3 relatively to part 1

Fig. 6 Computed efficiency versus torque for several speeds and versus speed for several values of load (examples of data are in
Appendix B)

Fig. 7 CAD model of the reduce
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and leads to

VO1∈2/1

������
= VO1∈3/1

������
(6)

Thus,

ω3/1

ω2/1

= −
e

Q − e
(7)

where e is the eccentricity between the axis of the input shaft and the
axis of the cycloidal disc (the floating clearance with continuous
contact). Q is the length of the segment I31O, and ω2/1 is the
input speed of the mechanism. The contact between the internal
lobes of the cycloidal disk and the output rollers inbuilt to the
output shaft is homo-kinetic. The angular speeds of the cycloidal
disk and the output shaft are equal. ω3/1 is the output speed.
Knowing ω3/1/ω2/1= (z2− z1)/z1, Q is obtained:

Q =
z2e

z2 − z1
(8)

Point A belongs to line I31O0 with a distance from O0 equal to the
radius of housing pins rc. r2 is the distribution radius of the
housing pins. The position of point A referring to Fig. 8 is given by

XA = r2 − rc cos χ

YA = rc sin χ

{

(9)

And, χ is built from geometric properties in Fig. 8:

χ = arctan
Q sinϕ2

r2 − Q cosϕ2

( )

= arctan
sinϕ2

r2/Q − cosϕ2

( )

(10)

For the consecutive works on dynamics, it is relevant to know the
velocity of the contact point A:

VA∈3/1

�����
= ω3/1
���

× I31A
���

(11)

knowing:

I31A
���

=

r2 − rc cos χ − Q cosϕ2

rc sin χ − Q sinϕ2

0

⎡

⎣

⎤

⎦ (12)

When the previous term is developed:

I31A
���

=

r2 − rc

r2

Q
− cosϕ2
















r2

Q
− 2 cosϕ2

√ − Q cosϕ2

rc
sinϕ2
















r2

Q
− 2 cosϕ2

√ − Q sinϕ2

0

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(13)

The velocity of the point A becomes

VA∈3/1

�����
= ω3/1
���

× I31A
���

=

ω3/1 rc
sinϕ2
















r2

Q
− 2 cosϕ2

√ − Q sinϕ2

⎛

⎜
⎜
⎝

⎞

⎟
⎟
⎠

−ω3/1 r2 − rc

r2

Q
− cosϕ2
















r2

Q
− 2 cosϕ2

√ − Q cosϕ2

⎛

⎜
⎜
⎝

⎞

⎟
⎟
⎠

0

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(14)

Based on these results, the complete kinematics of the reducer is
known and lay the foundations to solve the dynamics.

5.2 Analytic Formulations of Forces. In order to apply the
fundamental law of dynamics, the forces acting upon the cycloidal
disk are defined:

• The force (normal Ex and tangential components (1− μE)Ey)
(center of Fig. 9) applied on the cycloidal disk by the input
shaft (through the intermediate bearing).

• The forces (normal FN,i and tangential components μpFN,i)
applied on the cycloidal disk by the housing pins in contact.

• The forces (normal Fk,j and tangential components μsFk,j)
applied on the cycloidal disk by the output rollers.

Fig. 8 Geometric setup of the cycloidal disc with a contact point A (between cycloidal disc and a single housing pin): 1, housing
pin; 2, input shaft; and 3, cycloidal plate
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The retained assumptions are as follows:

• The output torque is constant.
• All the bodies are rigid, no deformations are taken into account

in this model (rigid bodies model).
• Input speed is constant and output speed obtained from the

gear ratio;
• Input torque is unknown and obtained by solving the dynamic

problem;
• Only one disc is modeled. Experimentation (made in Lodz)

shows that the number of discs does not modify the experi-
mental trend of efficiency. Model is made with only one
disc, with the hypothesis that one disc see half of the complete
torque of the reducer because two discs are working in parallel.
This hypothesis involves that the losses of the two parallel
discs should have the same non-linearity behavior and level.

To fit to the experimentation, the disc calculations are made
with half-torque of the experimentation torque.

Due to geometry construction, without clearance between disc
and pins, all pins can not be loaded all together and simultaneously.
Then, at any time, of all the pins, some ones are fully loaded, others
partially or not loaded.

FN,i(φ2i)=

Fmax,N

r2

Q

sin ϕ2i



























1+
r2

Q

( )2

−2
r2

Q
cosϕ2i

√ if 0 ≤ ϕ2i ≤ π

0 if π ≤ ϕ2i ≤ 2π

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

(15)

The load distribution linked to the contact between rollers and
cycloidal plate is defined as follows (Fig. 10):

Fk,j(ϕ2j)=
Fmax,k sin ϕ2j if 0 ≤ ϕ2j ≤ π

0 if π ≤ ϕ2j ≤ 2π

{

(16)

5.3 Rigid Bodies Model. The initial model is a rigid bodies
model. Therefore, no elastic property is introduced in dynamics.
All the numerical values of parameters are resumed in Appendix
A. Acting forces do not involve any deformation. Acting forces
do not affect the efficiency of the reducer. All the previous equa-
tions are the outcome of the hypotheses of rigid bodies. X1O1Y1
is the mobile reference system, and X0OY0 is the fixed system.
The kinematic torsor of the cycloidal plate referring to the X0OY0 is

CCy/R0

{ }

= −
φ̇

z1
Z
�

|eφ̇Y1
�

{ }

X0OY0

(17)

The dynamic torsor of the cycloidal plate is

DCy/R0

{ }

= −mcyeφ̇
2X1

�
+ mcyeφ̈Y1

�
| −

Izz

z1
φ̈ Z
�

{ }

X0OY0

(18)

where mcy is the cycloidal disk’s mass and Izz is its moment of
inertia.

The main dynamic interactions between the cycloidal disk and the other bodies are given as follows:

• The action of the input shaft on the cycloidal disk:

ECy/R0

{ }

= ExX1

�
+ sgn(ω0)(1 − μE)EyY1

�
|(1 − μE)Eye Z

�
{ }

X0OY0

(19)

• The action of the housing pins on the cycloidal disk:

OCy/R0

{ }

= COi

��
= Kc

∑

i

CXi
X1

�
+ Kc

∑

i

CYiY1
�
∣
∣
∣

∑

i

OAi

���
× COi

��
( )

{ }

X0OY0

(20)

OCy/R0

{ }

= COi

��
= Kc

∑

i

CXi
X1

�
+ Kc

∑

i

CYiY1
�
∣
∣
∣

∑

i

KcMCi
Z
�

{ }

X0OY0

(21)

where i stays for the ith pin in contact with the plate.
• The action of the output rollers on the cycloidal disk:

OSy/R0

{ }

= SOj

��
= Ks

∑

j

SXj
X1

�
+ Ks

∑

j

SYjY1
�
∣
∣
∣

∑

j

KsOSj
��

× SOj

��( )
{ }

X0OY0

(22)

OSy/R0

{ }

= SOj

��
= Ks

∑

j

SXj
X1

�
+ Ksμs

∑

j

SxjY1
�
∣
∣
∣Ks

∑

i

Msj Z
�

{ }

X0OY0

(23)

where j stays for the jth roller in contact with the plate.

Fig. 9 Sketch of the cycloid drive and forces acting on the
cycloidal disk
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In the main equations, there are two coefficients Kc and Ks

that are strictly linked to the maximum values of the forces
exchanged. Ks is obtained by the balance on the output shaft. Kc

is an unknown parameter identified by solving the dynamic
problem. The terms inside the sums are tied to the geometrical dis-
tribution of forces.
Then, we apply the fundamental principle of the dynamics with

the virtual work principle. The cycloidal disc is a rigid body
moving into a plane. It involves three degrees of freedom in the
general case.
Along the X1

�
direction:

∑

F
�

· δX1

��( )

= 0; Kc

∑

i

CXi
+ Ks

∑

j

SXj
+ Ex + mcyeφ̇

2
= 0

(24)

Along the Y1
�

direction:

∑

F
�

· δY1
��( )

= 0;

Kc

∑

i

Cyi + Ksμs

∑

j

SXj
+ Ey(1 − μE) − mcyeφ̈ = 0 (25)

Regarding the balance of torques around the axis Z
�

:

∑

MZ

��
· δθZ
��( )

= 0;

Kc

∑

i

MCi
+ Ks

∑

j

MSj + Eye(1 − μE) +
Izz

z1
φ̈ = 0 (26)

Unknown variables in the dynamic problem are as follows: Ex, Ey,
Kc, Ks, φ and its first and second derivatives. The balance of torque
on the output shaft leads to

Ks

∑

i

Msj Z
�

−
IzzOS
z1

φ̈ Z
�

− Cs Z
�

= 0 (27)

where IzzOS is the moment of inertia of the output shaft and CS is the
constant output load imposed on the output shaft. Then,

Kc

∑

i CXi
+ Ks

∑

j SXj
+ Ex + mcyeφ̇

2
= 0

Kc

∑

i Cyi + Ksμs
∑

j SXj
+ Ey(1 − μE) − mcyeφ̈ = 0

Kc

∑

i MCi
+ Ks

∑

j MSj + Eye(1 − μE) +
Izz

z1
φ̈ = 0

Ks

∑

j Msj −
IzzOS
z1

φ̈ − Cs = 0

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

(28)

Considering the steady state of the system:

φ̈(t) = 0, φ̇(t) = ω0 (29)

And the system of equations becomes

Kc

∑

i CXi
+ Ks

∑

j SXj
+ Ex + mcyeω

2
0 = 0

Kc

∑

i Cyi + Ksμs
∑

j SXj
+ Ey(1 − μE) = 0

Kc

∑

i MCi
+ Ks

∑

j MSj + Eye(1 − μE) = 0

Ks

∑

j Msj − CS = 0

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

(30)

Regarding unknown variables Kc, Ex, and Ey, the system is
expressed in a matrix way as follows:

∑

i CXi
1 0

∑

i CYi 0 1 − μE
∑

i MCi
0 (1 − μE)e

⎛

⎜
⎝

⎞

⎟
⎠

Kc

Ex

Ey

⎡

⎢
⎣

⎤

⎥
⎦ =

−mcye ω
2
0 − Ks

∑

j SXj

−Ksμs
∑

j SXj

Ks

∑

j Msj

⎡

⎢
⎣

⎤

⎥
⎦

(31)

Analytic solution leads to

Tin = Ey(1 − μE)e = Ks e

∑

i CYi

∑

j Msj + μs
∑

j SXj

∑

i Mci
∑

i CYie −
∑

i Mci

(32)

And the instantaneous efficiency of gearbox transmission is
defined by

η =
Toutωout

Tinωin

=

∑

j MSj

∑

i CYie −
∑

i Mci

( )

e z1
∑

i CYi

∑

j Msj + μs
∑

j SXj

∑

i Mci

( ) (33)

In order to simulate the system in working condition, the input
speed and the output load are imposed. The output speed is deter-
mined by the gear ratio and the input torque is obtained by
solving the dynamic problem. This operating condition is compara-
ble with the working state of the test’s bench. However, as Eq. (33)
shows, due to the hypothesis of rigid bodies, the efficiency does not
depend on the constant output load (represented by Ks). For this
main reason, we improve our model in the following section.

5.4 Stiffness Model. In order to model the stiffness of parts in
contact, several studies have been performed. LiXin Xu and YuHu
Yang [16] propose a detailed model based finite element method
(FEM) for the design of the bearings; Hsieh [17] in a same approach
focuses on pinwheel and its effect on efficiency. The contact
dynamics is analyzed in Refs. [18,19] in order to predict dynamics
and local stress effects. The studies on paper [15] propose in a
similar way a study on a large set of parameters with a specific
study on each parameter and its effects on efficiency.
These studies are based on FEMwith detailed models designed to

predict, torques, loads, and stress on several parts. In order to
compute the efficiency (the ratio between instantaneous powers
between input and output shaft), all applied loads and torques

Fig. 10 Contacting force during the engagement
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have to be defined and computed on the input shaft and the output
shaft. In the tested conditions (see Sec. 4) with controlled output
conditions, all the dynamics due to the stiffness of parts in
contact can be condensed on the input shaft.
In that way, the reduced-order model of a cycloid drive, taking

into account the equivalent static behavior and the first non-linear
mode, can be produced with an equivalent non-linear stiffness con-
densed between the input shaft and the cycloidal disc. According
these assumptions and objectives, a mobility with stiffness is intro-
duced along the direction of force transmission between the input
shaft and the cycloidal disk. The main properties of these mobility
and stiffness depend on the following:

• The capability to take into account the overall elastic effects on
dynamics.

• The eccentric bearing, in a first approximation, is included as
being inbuilt in the input shaft. In contact dynamics, the elastic
relationship between force and deformation in contacts is
non-linear.

• Because of the small axial length of the disk, its contact with
the input shaft can not be assumed as a contact between cylin-
ders of infinite length, neither as the contact between two
spheres.

• The mobility and elasticity introduced only between the input
shaft and cycloidal disc are the direct consequence of previous
works, the focus of which is the analysis of strength and stress
distribution (see Ref. [3]). The most stressed sections of the
cycloidal plate are those closer to the coupling with the input

shaft in the direction of the force (Y1
�

). Thus, the main elastic
effects involve in this mechanical joint (Fig. 11).

In the following model, the elastic force is non-linear and kcy is
the non-linear stiffness coefficient and p is the exponent of non-
linearity. Then, the relation is linear only in the case of p= 1.

Fel(y1)
�����

= −kcy|y1|
p y1

|y1|
Y1
�

= −kcyy1|y1|
p−1 Y1

�
(34)

The kinematic torsor of the cycloidal disc is as follows:

CCy/R0

{ }

= −
φ̇

z1
Z
�

|eφ̇Y1
�

+ (ẏ1Y1
�

− y1φ̇X1

�
)

{ }

X0OY0

(35)

The kinematics used is the same as the previous model, and dis-
placements along y1 are assumed as small displacements. Thanks
to the kinematic torsor, the dynamic torsor of the cycloidal disc is
written as follows:

DCy/R0

{ }

= mcy(−eφ̇
2
− 2ẏ1φ̇ − ÿ1)X1

�
+ mcy(eφ̈ + ÿ1 − y1φ̇

2)Y1
�

| −
Izz

z1
φ̈ Z
�

{ }

X0OY0

(36)

The torsor representing the interactions between the input shaft and
the cycloidal disk is defined as follows:

ECy/R0

{ }

= ExX1

�
− kcyy1|y1|

p−1Y1
�

| − kcyy1|y1|
p−1e Z

�
{ }

X0OY0

(37)

Along the X1

�
:

∑

F
�

· δX1

��( )

= 0;

Kc

∑

i

CXi
+ Ks

∑

j

SXj
+ Ex + mcy(eφ̇

2
+ 2ẏ1φ̇ + ÿ1) = 0 (38)

Along the Y1
�

:

∑

F
�

· δY1
��( )

=0;

Kc

∑

i

Cyi +Ksμs

∑

j

SXj
−kcyy1|y1|

p−1
+mcy(−eφ̈+ ÿ1−y1φ̇

2)=0

(39)

Regarding the balance of torque around the axis Z
�

:

∑

MZ

��
· δθZ
��( )

=0;

Kc

∑

i

MCi
+Ks

∑

j

MSj −ekcyy1|y1|
p−1

+
Izz

z1
φ̈= 0 (40)

Fig. 11 Model for y1 mobility introducing a contact stiffness: part 1 represents the input shaft,
part 2 represents the cycloidal disc’s internal coupling surface (O1 is the cycloidal disk’s
center and O is the input shaft’s center)
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Then, by using Eqs. (39) and (40) and steady-state assumption
(φ̈= 0 and φ̇=ω0), the system of equations is defined as follows:

Kc

∑

iMCi
+Ks

∑

jMSj −kcye|y1|
p−1y1 = 0

Kc

∑

iCyi +Ksμs
∑

jSXj
−kcy|y1|

p−1y1+mcy(ÿ1−y1ω
2
0)= 0

{

(41)

Kc can be expressed as a function of y1 from the first equation of the
system (41):

Kc=
−Ks

∑

jMSj +kcye|y1|
p−1y1

∑

iMCi

(42)

by substituting Kc in the second equation of Eq. (41), we obtain:

mcyÿ1+kcyy1|y1|
p−1 1−e

∑

iCYi
∑

iMCi

( )

−mcyω
2
0y1

=Ksμs

∑

j

SXj
−Ks

∑

j

MSj

∑

iCYi
∑

iMCi

(43)

The equation above is a non-linear differential equation with
terms varying over time, the solution of which is determined numer-
ically by using a step-by-step solver. With these numerical results,
the efficiency of the gearbox transmission is computed. For a steady
state (and without dynamic effects), the efficiency is defined as
follows:

η=
Tout ωout

Tinωin

=
CS

z1e kcy |y1|
p (44)

The main idea of introducing the solution only in steady state is
from the assumption to describe the dynamic behavior under
nominal steady-state conditions: we have observed the reduced
transitional phase until reaching the nominal working conditions.
Thanks to the torque balance on the input shaft, we obtain the fol-
lowing equation:

Tin= [Fel(y1)
�����

× (eX1

�
)] · Z

�
=kcy|y1|

pe (45)

CS is the output load and e is the eccentricity between the axes of the
input shaft and the cycloidal disk, thus ωin

ωout
=z1.

6 Results From Computational Simulations

This section focuses on some details of simulations and the main
results from the mathematical model proposed. The forces and the
solution of the dynamic problem are computed with MATLAB, the dif-
ferential equation with the stiffness model is solved with SIMULINK.
Only steady states are studied, transient responses from starting
point are rejected in all the presented analysis. The first model
that we have used to evaluate the efficiency of the reducer is the
rigid bodies model. The dynamics of forces exchanged is made
very clear by using this rigid bodies model (Fig. 12).
However, even if the rigid bodies model fully explains the

dynamics of the forces exchanged between all the bodies, the fore-
cast of the efficiency is poor and does not respect the trends
observed experimentally.
According to the rigid bodies model, the efficiency does not

depend on the input speed and the output load, the only dependence
is for the geometrical parameters of the machine and we can dis-
cover that by simulating this model on MATLAB.
First, the improved model (with the mobility and the stiffness) is

computed and its efficiency is evaluated with the parameter p equal
to 1 (Fig. 13).
The chosen stiffness model comes from the linearization of

contact forces. The computed efficiency does not depend on the
input speed (as for the experimentation) and depends too very
weakly on the output torque.
As it is shown in Fig. 13, the previsions coming from the linear

stiffness model are not in accordance with the experimentation. In

agreement with the theory of contacts, the model of elasticity is
non-linear. Several contacts introduce non-linear stiffness (input
shaft and cycloidal disc, housing pins and cycloidal disc, output
rollers, and cycloidal disc). The chosen model is based on empir-
ical Palmgren equation model [20,21], for the contact between two
cylinders. For each contact, the stiffness can be formulated as
follows:

F = 8, 06.104l8/9δ10/9 (46)

where F is the contact force, l is the contact length, and δ is the
normal displacement. So, we can formulate the contact stiffness as

F = ky
10/9
1 (47)

But the different contacts do not occur in the same time, so the
contact between disc and pins, for example, can be modeled as
shown in Fig. 14.
So, this contact can be mobilized as follows:

F = k
∑n

i=0

y − yi
( )10/9

≃ kcy y
p (48)

With p factor more important than 10/9, in the case of the Fig. 14, p
is greater than 2.
For easier computation, this function is reversed to define the

load according to the displacement and approximated (fitting
method) by a non-linear stiffness:

F = kcy y1 |y1|
p−1 (49)

To take into account in this stiffness all the contacts, the p factor was
identified from the experimental results and is equal to 2.35. This
stiffness could be also computed with FEM as proposed in Refs.
[15,16].
The simulations with the previous non-linear model are in accor-

dance with measurements as Fig. 15 shows. The simulated dis-
placements (Fig. 16) are in accordance with expected real
displacements (not measured). As observed on the test bench, the
more the load increases, the more the efficiency goes up as well.

Fig. 12 Instant of simulations with rigid bodies model with the
normal forces exchanged between cycloidal plate and rollers/
housing pins/input shaft and the point of convergence of the
normal forces exchanged with housing pins
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This phenomenon is the direct consequence of non-linear contact
dynamics with the cycloidal disk.

7 Conclusions

A new model for cycloidal reducers is proposed. This model is
based on kinematics and dynamics of rigid bodies and a non-linear
stiffness. In this model, the elasticity effects are all condensed
between input shaft and cycloidal disk.
The presented parametric reduced ordermodel has allowed to have

a quick model to fit to a physical cycloidal drive device. Then, from

this model, this method which requests light computational device
and low time calculation, a wide parameter study can be performed
to find the best optimized design regarding the initial one. This
method is well adapted to industrial cycloidal drive.
As the experimentation and simulations show, the input speed

has a negligible impact on the efficiency. The efficiency depends
more on deformations linked to the normal load rather than on
the sliding velocity. The efficiency of the cycloid drive rises with
the increase of load. For small loads, it is almost linear and increases
very fast, but for higher loads, the efficiency curve bends and grows
more slowly.

Fig. 13 Efficiency with the linear model (p=1) at two different speeds with kcy=109 N m−1

Fig. 14 Contact law for several pin with distributed loads

Fig. 15 Efficiency with the non-linear model (p=2.35) at two different speeds with
kcy = 1.5 × 1010 N

m2.35
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It has been shown that this shape of efficiency curve can be sim-
ulated by introducing non-linear stiffness into the model.
More generally, this work shows that a kinematic model with

rigid bodies is not the representative of real phenomena and effi-
ciency. The elasticity of solids in contact influences the efficiency.
According to contact models, contact stiffness is non-linear, and
the non-linearity depends on the shape of solids in contact
which explains and justifies the trends of efficiency observed
experimentally.
The proposed model is currently used for the design of new

cycloid drives with an expected optimal efficiency. New and com-
plementary models based on the finite element method are in devel-
opment in order to identify the non-linear elasticity of contacts from
the geometric specifications of cycloidal gearbox.

Nomenclature

e = eccentricity
i = gearbox ratio
p = exponent of non-linearity

kcy = non-linear stiffness constant
mcy = cycloidal plate’s mass
y1 = contact stiffness mobility parameter

Cs = output constant load (torque)
Izz = disc’s moment of inertia (around the main

its axis)
Kc = amplitude factor of forces exchanged between output

rollers and disc
Ks = amplitude factor of forces exchanged between

housing pins and disc
MCi

= net torque exchanged between disc and pins
MSj = net torque exchanged between disc and rollers

CXi
, CYi = components of the forces exchanged between disc

and pins
Ex, Ey = component action on input shaft
SXj

, SYj = components of the forces exchanged between disc
and rollers

Tin, Tout = shafts torque

Greek Symbols

μE, μP, μS = friction coefficients between disc and input shaft, disc
and housing pins, disc and output rollers

φ = angular position of input shaft
ϕ2 = angular position on cycloidal plate

ωin, ωout = shafts speed

Appendix A: Parameters of Simulation

The following table summarizes all the main input parameters introduced:

Main geometrical reducer’s features and dynamic parameters

Cycloidal disc Housing

Symbol and description Value Symbol and description Value

z1 number of teeth 19 z2 number of housing pins 20
r1 primitive radius 91.2 mm rc housing pins radius 8.5mm
x correction coefficient 0,38 r2 pins distribution radius 96.0mm
e0 eccentricity 3.0mm

Output rollers Dynamic parameters

Symbol and description Value Symbol and description Value

Rs roller distribution radius 62.0mm mcy cycloidal disc mass 1.27 kg
Nc number of output rollers 10 μp housing pins friction coefficient 0.05
rc output rollers radius 13.0mm μs output rollers friction coefficient 0.05

μE bearing friction coefficient 0.005

Fig. 16 Simulations results to evaluate the displacements with the non-linear model (p=2.35) at two dif-
ferent speed with kcy = 1.5 × 1010 N

m2.35
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The default value in the simulations (μ= 0.05) is suggested by the
literature in the case of contact between steel ad steel with a lubri-
cating film and bodies in mutual rolling.

Appendix B: Experimental Values of Efficiency

In order to show an example of the most relevant measures
(directly measured and indirectly obtained) that we have focused
on, detailed experimental data obtained with the input speed
equal to 1000 rpm are given in the following table:

Viscosity, Oil temp., nin, nout, Speed ratio, Tin, Tout, η,
mm2/s °C rpm rpm – Nm Nm –

42.1 33 1001 52.7 19.00 3.01 30.7 0.54
41.1 34.4 1001 52.7 19.00 6.11 83.2 0.72
44.4 32.5 1001 52.7 19.00 9.02 131.9 0.77
45.0 32.1 1001 52.7 19.00 11.45 178.9 0.82
44.1 32.6 1001 52.7 19.00 13.70 219.8 0.84
44.2 32.6 1001 52.7 19.00 16.66 271.1 0.86
43.0 33.3 1001 52.7 19.00 19.07 316.9 0.87
42.2 33.7 1001 52.7 19.00 21.58 361.9 0.88
42.0 33.9 1001 52.7 19.00 24.14 408.2 0.89
41.9 33.9 1001 52.7 19.00 26.67 450.5 0.89
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