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ABSTRACT

This paper presents the setup for empirical validations of the Pair-based Analytical model for Segmented Tele-
scope Imaging from Space (PASTIS) tolerancing model for segmented coronagraphy. We show the hardware
configuration of the High-contrast imager for Complex Aperture Telescopes (HiCAT) testbed on which these
experiments will be conducted at an intermediate contrast regime between 10−6 and 10−8. We describe the
optical performance of the testbed with a classical Lyot coronagraph and describe the recent hardware upgrade
to a segmented mode, using an IrisAO segmented deformable mirror. Implementing experiments on HiCAT is
made easy through its top-level control infrastructure that uses the same code base to run on the real testbed,
or to invoke the optical simulator. The experiments presented in this paper are run on the HiCAT testbed
emulator, which makes them ready to be performed on actual hardware. We show results of three experiments
with results from the emulator, with the goal to demonstrate PASTIS on hardware next. We measure the testbed
PASTIS matrix, and validate the PASTIS analytical propagation model by comparing its contrast predictions
to simulator results. We perform the tolerancing analysis on the optical eigenmodes (PASTIS modes) and on
independent segments, then validate these results in respective experiments. This work prepares and enables the
experimental validation of the analytical segment-based tolerancing model for segmented aperture coronagraphy
with the specific application to the HiCAT testbed.

Keywords: Segmented telescope, cophasing, exoplanet, high-contrast imaging, error budget, wavefront sensing
and control, wavefront requirements, wavefront error tolerancing

1. INTRODUCTION

Imaging an Earth-like exoplanet is one of the most highly sought science goals in astronomy today.1,2 While
there are several viable techniques for giant gaseous exoplanet detection, the method of direct imaging allows us
to access the light from these extra-solar systems directly, enabling a generalized spectral study of the planetary
atmosphere’s chemical composition and search for the presence of biomarkers. In the case of Earth-like planets
the goal is more ambitious as the observatories will need to reach contrast levels (planet to star flux ratios) of
at least 10−10, at a separation of only ∼ 0.1 arcsec from the star, compared to 10−6 at ∼ 0.3 arcsec for faint
gas giants. Telescopes providing these capabilities will require large collecting areas, and they will most likely
be realized with segmented primary mirrors, both in space and on the ground. Currently, the favored method
to achieve these extreme high contrast levels are dedicated instruments, which strongly attenuate the on-axis
star light while preserving the off-axis planet light.3 These systems are very sensitive to residual wavefront
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aberrations, which generate speckles of light in the imaging focal plane that can be mistaken for planets. This is
why coronagraphy needs to be combined with wavefront sensing and active control (WFS&C) to create a zone
of deep contrast in the final image, a dark hole (DH). These long-term goals will be achieved from space by
missions such as the Habitable Exoplanet Observatory4 (HabEx) and Large UV Optical InfraRed Surveyor5,6

(LUVOIR) currently under consideration by the NASA Decadal Survey, with the Nancy Grace Roman Space
Telescope (RST)7 working towards shorter-term demonstrations at more moderate contrast levels (∼ 10−9).

Due to the high sensitivity of coronagraphs to wavefront errors (WFE), a careful analysis of all aberration
sources and their impact on contrast is paramount when designing an imaging system. In particular, cophasing
errors of the primary mirror segments like in the case of LUVOIR will significantly contribute to these aberra-
tions, which have a degrading effect on the coronagraph contrast. Previous studies have determined cophasing
requirements for large segmented apertures to be on the order of 10 pm over the full pupil,8 with the objective
of maintaining a DH contrast of 10−10. Instead of defining WFE tolerances over the entire telescope pupil,
the Pair-based Analytical model for Segmented Telescope Imaging from Space (PASTIS)9–12 allows us to derive
segment-specific requirements, either for each segment individually when they are statistically independent from
each other, or in the form of a segment covariance matrix when there are correlations between them.13

The next step is to perform an experimental validation of these segment-level tolerances on a segmented
mirror of a high contrast instrument in a laboratory setting to seek confirmation that they indeed yield the
coronagraphic contrast they were calculated for. In this paper, we present the adaptation of the theoretical
results to an application on the High-contrast imager for Complex Aperture Telescopes (HiCAT) testbed.14,15

In order to derive realistic requirements that can be validated with a given instrument, we set up a specific
hardware configuration that is capable of operating at a sufficiently deep dark hole contrast and include an IrisAO
segmented deformable mirror (DM) in the optical setup. We define a target contrast with a corresponding WFE
perturbation amplitude that is compatible with the performance of the installed segmented DM and carry out
emulated experiments on the integrated HiCAT simulator, which are ready to run on the hardware as-is.

In Sec. 2 we recall the most important points about the PASTIS forward model and its use in WFE tolerancing.
In Sec. 3 we describe the HiCAT project, its synthetic testbed emulator including an optical end-to-end simulator,
and the testbed configuration used for the presented experiments. In Sec. 4 we show the tolerancing results and
their validations performed on the HiCAT emulator and in Sec. 5 we report our conclusions and considerations
for the upcoming hardware validations.

Note that the objective of the PASTIS model is the spatially averaged contrast in the dark hole (normalized
to the peak of the direct image), which is what we refer to as “contrast” throughout this paper. We also
stress that we differentiate between this spatially averaged dark hole intensity, the “average DH contrast”, and
a statistical mean (expectation value) of this averaged contrast over many optical propagations, the statistical
“mean contrast”.

2. PASTIS MODEL SUMMARY

PASTIS9–13 is an analytical forward model that directly calculates the average contrast over the DH, a scalar
quantity, from a set of segment-level aberration amplitudes in the pupil plane. Central to this model is the
PASTIS matrix M , which describes the contrast contributions of an aberrated segment pair. This matrix is a
full representation of a given high contrast optical system, including its coronagraph and primary mirror geometry.
Combined with the separately defined mechanical properties of the segmented aperture, expressed as a segment
covariance matrix Ca, it can be used to calculate the expected mean contrast of a particular instrument, no matter
the nature of the correlation between the segments. Additionally, it allows us to calculate the contrast variance of
this distribution. The ability to calculate this information (independent segment requirements, analytical mean
contrast and variance derivation) describes the statistical response of a segmented coronagraph to segment-level
cophasing errors. In this paper, we use the semi-analytical development of the PASTIS model12,13 to calculate
a PASTIS matrix with an emulated HiCAT testbed, which we use for further analysis. In the following section,
we present a brief summary of the tolerancing model.

Representing optical aberrations on a segmented telescope with local Zernike modes, we can expand the
phase aberrations on the segmented pupil φs as a sum of such segment-level polynomials [13, Eq. 1]. We then

2



represent the total phase in the pupil with two terms, one best-contrast phase solution, φDH , and the segmented
perturbation, φs. Under the assumption of the small aberration regime for φs, we can express the average
contrast in the DH as a matrix multiplication:

c = c0 + aTMa, (1)

where c is the spatial average contrast in the dark hole, c0 the coronagraph floor (i.e. the average contrast in
the dark hole at best contrast with φDH , in the absence of additional phase perturbations), M is the PASTIS
matrix with elements mij , a is the aberration vector of the local Zernike coefficients on all discrete nseg segments
and aT its transpose. It was previously shown that the average DH contrast with varying DH solutions can
always be expressed as a quadratic function of a segmented phase perturbation under an appropriate change of
variable [13, Eq. 4].

The PASTIS matrix represents the contrast contribution to the DH average contrast by each aberrated
segment pair in the pupil, cij . In its semi-analytic calculation, we first calculate the DH average contrast with
an end-to-end simulator, before computing the PASTIS matrix elements mij analytically with [13, Eqs. 16 and
17], which for the matrix diagonal is:

mii =
cii − c0
a2c

, (2)

and for the off-diagonal matrix elements:

mij =
cij + c0 − cii − cjj

2a2c
, (3)

where ac is the calibration aberration amplitude that is put on each segment in the calculation of the contrast
matrix (cij). While the PASTIS matrix elements could equally be calculated from the image plane electric field
directly, this is not a viable option in empirical tests, since the electric field can only be estimated, while the DH
intensity can be directly measured.

Once the PASTIS matrix is established, we can calculate its eigenmodes up and eigenvalues λp by means of
an eigendecomposition. These modes form an orthonormal basis with a deterministic effect on the average DH
contrast, where each mode has a contrast contribution cp. This contrast contribution can be defined for each
mode individually, which allows us to derive the required mode weight bp as a WFE rms [13, Eq. 25], to attain
this contrast. To illustrate one particular way of allocating contrast contributions to each mode, we can calculate
the mode weights corresponding specifically to a uniform contrast contribution of the overall target contrast ct
over all modes, cp = (ct − c0)/nmodes [13, Eq. 26]:

b̃p =

√
ct − c0

nmodes · λp
, (4)

where b̃p is the particular weight of a mode with index p in the case of a uniform contrast allocation across all
modes.

It follows that the mode weights bp have the statistical meaning of a standard deviation in a zero-mean normal
distribution [13, Eq. 28], describing the resulting average DH contrast over many realizations of segmented pupil
aberrations. In the same way, we can derive segment-level WFE requirements when assuming independent
segments, where the tolerances are given in the form of a standard deviation µk per segment k, assuming that
all segments contribute equally to the final contrast [13, Eq. 37]:

µ2
k =

ct − c0
nsegmkk

, (5)

where ct = 〈c〉 is the targeted mean contrast over many realizations, c0 the coronagraph floor, nseg the total
number of segments and mkk the diagonal elements of the PASTIS matrix.

While Eq. 5 assumes independent segments, which can be expressed with a diagonal segment covariance
matrix, Ca, the PASTIS matrix allows us to calculate the expected mean of the average DH contrast and its
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variance directly from any given (correlated or uncorrelated) segment covariance matrix, even if non-diagonal,
with [13, Eqs. 31 and 33]:

〈c〉 = c0 + tr(MCa), (6)

where tr denotes a trace, and:
Var (c) = 2 tr[(MCa)2]. (7)

The two equations above allow us to calculate these two integral quantities directly from the optical properties
of the instrument, described by M , and the mechanical correlations of the segments, captured by Ca, without
having to run any Monte Carlo simulations, which allows for an analytical prediction of the mean DH contrast.

3. THE HICAT TESTBED AND EXPERIMENT EMULATION

3.1 The HiCAT project

The HiCAT testbed (High contrast imager for Complex Aperture Telescopes14–20) is dedicated to a LUVOIR-
type coronagraphic demonstration with on-axis segmented apertures. The project is targeting system-level
experiments in ambient conditions that can happen before demonstrations in vacuum, for example at the Decadal
Survery Testbed (DST)21 located at the Jet Propulsion Laboratory.

The HiCAT testbed [15, Fig. 1] incorporates three DMs: two Boston Micromachines 952-actuator micro
electro-mechanical (MEMS) “kilo-DMs” and an IrisAO PTT111L 37-element hexagonally-segmented DM.22 A
central obstruction and support structures, as well as any arbitrarily shaped pupil masks can be added in the
first pupil plane, using a laser-cut or etched transmissive mask. The segmented DM has a calibrated surface
error of 9 nm rms [15, Fig. 3], with very high open-loop repeatability, which makes it directly suitable for the
high contrast goals of HiCAT. The HiCAT telescope simulator therefore is truly segmented with the ability
to add real co-phasing wavefront errors and introduce temporal drifts for dynamical studies. The workhorse
coronagraph configuration for HiCAT is an Apodized Pupil Lyot Coronagraph (APLC)14,23,24 that includes
apodizers manufactured using carbon nanotubes grown on a customized catalyst for the black areas, and protected
silver or gold for the reflective areas. These masks are manufactured by Advanced Nanophotonics Inc.25 These
optical components are mounted on easily interchangeable bonding cells that allow a fast change between different
designs and optics in the apodizer pupil plane, or to swap in a high-quality flat mirror to put the testbed in a
classical Lyot coronagraph (CLC) configuration. In previous experiments, the IrisAO was installed in CLC mode
for experimental validations of coronagraphic focal plane wavefront sensing on a segmented aperture.26 The
testbed also includes a fast tip-tilt system, and an extensive supporting metrology suite (custom interferometric
metrology for critical hardware elements, phase retrieval channel, theodolites, cameras) that allows for fast and
precise component changes. The phase retrieval camera can be used to measure the wavefront at a focal plane
mask (FPM) proxy location by introducing a high-quality flat mirror into the beam.27,28 A Zernike wavefront
sensor has been assembled as part of the low-order wavefront sensor, using the light rejected by the FPM.29

3.2 HiCAT testbed emulator and controls

The high-level testbed control system of HiCAT is unique due to its dual-mode operation setup. Coded purely
in Python, the same code base is used to control either the actual testbed hardware or to use the moderately
high fidelity optical simulator for HiCAT. The latter includes a full simulation of the hardware control interfaces,
which makes it a complete “synthetic testbed”. In practice, this means that the exact scripts that are used
to run testbed simulations can also be run on the actual testbed, allowing us to first test experiments on the
simulator, and then work right out of the box on the hardware. This works with identical commands to the
motor controllers, DMs, and all hardware components, using the same pipeline for data processing and producing
the same output data products. It is this “emulated testbed” that we use to produce the results presented in
this paper.

The overall control system and software architecture is object-oriented and modular, and is hosted on GitHub,
while also deploying automatic testing and continuous integration. The hardware controls have been abstracted
in the public CATKit∗ Python package, which provides the interface to all our hardware components, e.g.

∗https://github.com/spacetelescope/catkit
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DM1 DM2 FPM LSSegmented DM
Entrance pupil

Science camera

Figure 1. HiCAT optical configuration used for PASTIS experiments, here shown with transmissive optics for simplicity.
The entrance pupil is a custom shaped mask tracing the outline of the segmented DM in a consecutive pupil plane. Of
the two continuous deformable mirrors, DM1 is in a pupil plane, and DM2 is located out of pupil. The focal plane mask
(FPM) and Lyot stop (LS) build the classical Lyot coronagraph setup.

from Boston Micromachines, IrisAO, Thorlabs, Newport and others. The HiCAT optical simulator uses the
POPPY Python Fourier optics toolkit,30,31 mixing Fraunhofer and Fresnel models, including a fast semi-analytic
coronagraph propagation at high resolution. The simulator was originally constructed from the theoretical
testbed optical design and later refined with empirical calibrations and measured optical alignments. It enables
model-based control algorithms with a Jacobian calculated on the simulator, e.g. for pair-wise probing32 and
stroke minimization.33–35

3.3 HiCAT testbed configuration for experimental validation of PASTIS

While the HiCAT APLC is designed to provide a superior performance on a segmented aperture compared to the
simpler CLC, the pupil plane apodization of this coronagraph causes a lot of the aperture segments to be highly
concealed (see [15, Fig. 7]). This will have a direct impact on the segment-level tolerancing as described by the
PASTIS model [13, Sec. 6]. Moreover, the pupil apodization and the FPM filtering display competing effects in
the tolerancing, which is why we chose to perform the empirical validation of PASTIS on a CLC configuration of
HiCAT. This is the setup in which the HiCAT hardware has been operating over the past months, except that
there was no segmented DM installed. Adding the IrisAO puts HiCAT into a “segmented CLC mode”, which
includes a pupil mask that traces the segmented IrisAO outline, and its largest diameter is slightly undersized
from that of a circumscribed circle around the IrisAO, with diameter Dpup. HiCAT hosts one in-pupil and
one out-of-pupil 1k Boston continuous DM, an FPM with a radius of 8.56 λ/Dpup and a circular, unobscured
Lyot stop. Its diameter DLS is undersized by two percent with respect to the inscribed circle of the IrisAO
(projected in the Lyot plane), keeping its edges within the controllable area of the segmented mirror (and the
hexagonally outlined pupil mask, see Fig. 2, left), which puts its size at 81% of Dpup. With the WFS&C strategy
on HiCAT, using pair-wise estimation and stroke minimization, the unsegmented version of this CLC setup (with
a circular pupil instead of the outline mask, with diameter Dpup) achieved a contrast of 4× 10−8 on hardware,
in monochromatic light at 640 nm, and 2×10−7 in 10% broadband light, in a 360◦ DH from 6-11 λ/DLS (where
the outer working angle is defined by the highest spatial frequency controllable by the continuous DMs).

To perform our experimental validations, we have recently installed a 37-segment IrisAO PTT111L36 DM
on HiCAT (see Fig. 2, right) together with said pupil mask that traces its outline, in order to prevent any
illumination of the DM surface beyond the controllable segments, which completes the configuration for our
empirical validations. This optical testbed layout can be seen in Fig. 1. The segments of the IrisAO are each
controllable in piston, tip and tilt, with a maximum stroke of 5 µm. Using a 14bit controller, we assume close
to perfect linear actuators,37 resulting in the smallest control step per actuator of 0.3 nm, excluding any noise.
This control step will drive the contrast level we tolerance to in Sec. 4.

With this segmented CLC setup on the HiCAT emulator, without any WFS&C and with a flat segmented
DM, the average contrast in the DH area is 1.2×10−5. In order to place the coronagraph floor of the testbed into
a higher contrast regime, we deploy an iterative WFS&C loop that uses pair-wise sensing to estimate the E-field
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Figure 2. Left: Overlapping pupils in the HiCAT segmented CLC configuration used for the PASTIS experiments. The
entrance pupil mask traces the outline of the IrisAO, preventing the illumination of areas outside of the controllable
segments. The Lyot stop is sized such that its edges stay within the controllable outline of the IrisAO (yellow circle). The
entrance pupil diameter Dpup is defined as the circumscribed circle around the IrisAO (dashed white). Right: Measured
pupil image in a pupil plane before the two continuous DMs and the Lyot stop, showing the IrisAO segments and the pupil
mask outlining the segmented DM. Note the slightly undersized outline, which results in somewhat irregular hexagons at
the edges. The bright spot of light at the bottom comes from the metrology suite that was mounted at the time of the
exposure and it does not impact the HiCAT optical performance.
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Figure 3. DM maps applied to continuous DM1 (in-pupil, left) and DM2 (out-of-pupil, center) to obtain the 360◦ DH
solution on the HiCAT emulator (right), calculated by 10 iterations of pair-wise sensing and stroke minimization, which
yields an average contrast of 5.7× 10−8. The segmented DM in this setup has a static co-phasing WFE of 10 nm applied
to it, which gets corrected with the WFS&C loop. We include these DM solutions into the definition of our coronagraph
when working with PASTIS.

in each iteration, followed by a control step with both DMs as calculated by the stroke minimization algorithm,
replicating the result achieved on hardware in the unsegmented configuration (see above). The IrisAO is kept at
its best flat position throughout. We chose to stop this control loop after 10 iterations, which is when we reach
an average DH contrast of 5.7× 10−8, comparable to the best contrast HiCAT can reach on the real testbed in
an unsegmented CLC configuration, and in monochromatic light. The DM solutions and focal plane image from
this simulated experiment are displayed in Fig. 3. The WFS&C solution shown in Fig. 3 are included in the static
coronagraph contribution of the PASTIS model [13, Eq. 12], which allows us to work around an improved best
contrast solution compared to the coronagraph without deploying a DH algorithm. This sets our coronagraph
floor that we use in the emulated PASTIS experiments on HiCAT in Sec. 4 to an initial c0 = 5.7× 10−8.
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4. RESULTS ON THE HICAT EMULATOR

The experimental validations of the PASTIS model tolerancing predictions seek to confirm that a set of derived
PASTIS mode, and per-segment WFE requirements indeed yield the average DH contrast they were calculated
for. For this purpose, we are preparing these experiments on the HiCAT testbed, making use of the “synthetic
testbed” mode of the hardware controls to write the experiments and to estimate sensitivity levels of the individual
optical components in the presence of realistic residual WFE on the testbed. These experiments include all
preparation steps needed for the anticipated hardware runs and they are expected to run “out of the box” on
the testbed hardware.

In this section, we present the results of these emulated validation experiments. We use the testbed configu-
ration described in Sec. 3.3, using a monochromatic light source at 640 nm. Before running an experiment, we
apply the DM solutions for the DH shown in Fig. 3 in order to use the DH contrast from that stroke minimization
solution as the coronagraph floor, initially c0 = 5.7×10−8. During hardware operations, there will be a temporal
contrast drift due to environmental changes, mostly driven by the changing temperature and humidity in the
lab, as well as image jitter caused by the air vents injecting dry air into the testbed enclosure. The installation
of diffusers on these vents has lead to a great improvement on image stability, and HiCAT is able to recover the
same level of contrast in the range of 5− 6× 10−8 by applying an open-loop DH solution up to two weeks after
the experiment. The residual jitter will likely result in a systematic, though small, error in the results.

The first experiment is the measurement of a PASTIS matrix, which will be used to calculate the mode and
segment requirements for a given target contrast. As described in Sec. 3.3, the least significant bit (LSB) of the
IrisAO controller allows for a minimal movement of 0.3 nm of a single IrisAO segment, barring any noise. In
order to minimize limitations by the LSB, we chose here a conservative target contrast of ct = 10−6, which results
in a standard deviation for the segment requirements larger than 4 nm (see Sec. 4.3). Since these tolerances are
drawn from a zero-mean distribution, some random WFE realizations in Sec. 4.3 will still be truncated to zero
due to the LSB limit, especially when taking into account additional controller noise, but with larger standard
deviations we are increasing the fraction of realizations above that limit.

In the following, we present the results of three experiments for the validations of the PASTIS tolerancing
model: (1) measuring an empirical PASTIS matrix and validating the PASTIS forward model with a “hockey
stick curve” experiment (see [13, Fig. 4]), (2) measuring the cumulative contrast of the modes obtained from the
testbed PASTIS matrix by tolerancing all modes to a uniform contrast contribution, and (3) performing a Monte
Carlo experiment for the validation of the calculated segment requirements, where we propagate random WFE
maps drawn from the tolerancing prescription for independent segments calculated with PASTIS to measure the
resulting DH average contrasts.

4.1 PASTIS matrix measurement and validation

The PASTIS matrix is a pair-wise influence matrix, linking segment aberrations to the average contrast in the
coronagraphic DH. Having the scalar quantity of the average DH contrast as its objective, it has the advantage
that no prior knowledge of the electric field is required in order to construct it. This means that measuring
an empirical PASTIS matrix is much faster compared to measuring an empirical electric field Jacobian, since
its calculation does not introduce overheads that usually come with E-field estimation methods (e.g. measuring
probe images in the pair-wise estimator). Moreover, there will be no estimation error in the matrix result,
and measuring an empirical Jacobian has not been successfully done to date. One aspect to consider is that
the measurement time for the PASTIS matrix scales roughly with the square of the number of segments (nseg)
divided by two, rather than linearly with the number of segments:

nmeas =
n2seg + nseg

2
, (8)

where nmeas is the total number of measurements required for the construction of the PASTIS matrix. We divide
by 2 because the matrix is symmetrical, and include the matrix diagonal by adding nseg. On the 37-segment
HiCAT pupil, this requires only nmeas = 703 measured images.

In the presented experiment, we obtain the PASTIS matrix on the HiCAT emulator, and we intend to do
exactly the same on the testbed hardware. We constrain ourselves to a local piston mode with an amplitude

7



0 10 20 30
SegPents

0

5

10

15

20

25

30

35

Se
gP

en
ts

SePi-analytical 3ASTIS Patrix

−2

−1

0

1

2

co
nt

ra
st

/n
P

2

1e−10

34

33

32

31

35

17

16

15

30

36

18

6

5

14

29

19

7

1

0

4

13

28

20

8

2

3

12

27

21

9

10

11

26

22

23

24

25

x10-10

Figure 4. Left: PASTIS matrix for HiCAT as measured in an emulated experiment. Each entry represents the differential
contrast contribution of each aberrated segment pair, normalized to the aberration amplitude. The matrix is symmetric,
and its diagonal shows the impact on contrast by the individual segments, which is used in the independent segment
tolerancing. Right: Geometry of the IrisAO segmented DM on HiCAT and the segment numbering used in this paper.
The 37 segments are numbered starting at 0 for the center segment, to 36 in the outer ring.

of 10 nm for the calibration aberration of the PASTIS matrix. Other modes are possible, e.g. tip/tilt, or
a combination of local segment aberrations, but they are not considered in this paper. Following the semi-
analytical approach, we first calculate the contrast matrix by aberrating pairs of segments and recording the
resulting DH average contrast. We then use Eqs. 2 and 3 to calculate the PASTIS matrix shown in Fig. 4.
The PASTIS matrix is fully symmetric, with its diagonal describing the impact on contrast by the individual
segments, which is used in the independent segment tolerancing. There are some dark streaks in the matrix with
a very low change of contrast for particular segment pairs, which correspond to adjacent segments in the pupil.

To validate the PASTIS forward model using the PASTIS matrix in Eq. 1, we generate random segment
phase aberrations over the entire segmented DM, a, scale them to a global rms WFE and propagate them with
with the PASTIS model. In parallel, we also apply this aberration to the HiCAT segmented DM in simulation
and measure the resulting DH contrast. Since one particular rms WFE over the total pupil can be realized
with many different individual segment configurations, we average over the contrast values from 10 different
realizations at each rms WFE value. The result of this experiment is shown in Fig. 5. We observe that the two
propagators show very good accordance, and more so in the small aberration regime up to ∼ 2 nm rms, just
above the coronagraph floor, even if the error between them grows only marginally beyond that. We can clearly
see this curve flatten out towards the left, where it is limited by the coronagraph floor, and the two solutions
start diverging from each other at a global WFE value of around 100 nm rms.

We proceed with an eigendecomposition of the PASTIS matrix [13, Sec. 3] and calculate its eigenmodes,
shown as the PASTIS modes in Fig. 6. The modes are ordered from highest to lowest eigenvalue, indicating their
comparative impact on the DH average contrast in their natural normalization. In Sec. 4.2 we scale these modes
to a uniform contrast contribution between them.

4.2 Validation of mode tolerances

The PASTIS modes in Fig. 6 form an orthonormal mode basis, making them independent from each other -
each of them contributes to the overall contrast without influence from the other modes. This can be used to
define error budgets based purely on these optical modes [13, Sec. 3.2]. In the present example, we chose that
the PASTIS modes should contribute uniformly to the total contrast, in which case we can calculate the mode
tolerances for a particular target contrast with Eq. 4. The resulting mode requirements for a target contrast of
ct = 10−6 are shown in Fig. 7, left. To validate the assumption of modes that are independent in contrast, we
run an experiment to measure the cumulative contrast of the toleranced PASTIS modes. For this, we multiply
the modes by their respective requirement, apply them cumulatively to the IrisAO and measure the resulting
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Figure 5. Validation of PASTIS matrix by propagating the same segmented WFE maps both with the semi-analytical
PASTIS matrix from Fig. 4 (solid blue) and with the emulated HiCAT testbed (dashed orange). The curve flattens out
to the left, at the coronagraph floor c0, and shows linear behavior at larger WFE, giving it its hockey stick-like shape.
The two propagators show very good accordance in the small aberration regime right above the contrast floor, between
∼ 0.6 and 4 nm rms over the entire segmented mirror.

DH average contrast at each step (Fig. 7, right). The cumulative measurements with the HiCAT emulator follow
the general expected linear shape, although some mode contributions seem to overshoot its predicted contrast
contribution slightly. These over-contributing modes then seem to be compensated by weighted modes that do
not influence the contrast quite as much as intended, displaying a periodic error pattern, and reaching a final
contrast 5% (5× 10−8) above the target contrast of 10−6.

4.3 Validation of independent segment tolerances

To fully validate the PASTIS tolerancing model, we calculate segment-level requirements and probe them with
HiCAT. In cases where the segments can be assumed to be independent from each other, as is the case for an
IrisAO, we can calculate individual segment requirements [13, Sec. 4.2] with Eq. 5 as a function of the target
contrast. While the overall level of WFE requirements will be highly influenced by the Fourier filtering of the
FPM, the different segments display a differential tolerance between them, see Fig. 8, left. These individual
segment requirements will be highly influenced by pupil features of the optical system. Looking at their spatial
distribution in the HiCAT pupil, we can see in Fig. 8 (right) that the segments of the outer ring have more
relaxed requirements than the two inner rings and the center segment. This will be caused, in large part, by the
Lyot stop, which is covering a large fraction of the segments in the outer ring because it is undersizing the pupil,
which can be seen in Fig. 2, left. The segment-level WFE requirements displayed in Fig. 8 present a statistical
description of the allowable segment-level WFE if a target contrast of 10−6 is to be maintained as a statistical
mean over many states of the segmented DM. As long as the change of the segment-level WFE on the DM follows
a zero-mean normal distribution whose standard deviation per segment is described by the numbers in Fig. 8,
the target contrast will be a recovered as the statistical mean over many such realizations.

In order to confirm this assumption, we proceed by running a Monte Carlo experiment, producing 1000
different WFE aberration patterns on the segmented DM and recording the propagated average DH contrast.
Taking data for 1000 realizations is doable on the hardware in a time frame of about one hour, so we expect
to retrieve a histogram with about the same accuracy when performing this experiment on the testbed. The
tolerances in Fig. 8 are the prescription as to how to draw the random WFE realizations: each segment-level
WFE on segment k, in a single random WFE map a, is drawn from its own zero-mean normal distribution with
a standard deviation of µk. This means that one random HiCAT WFE map is composed of 37 distinct normal
distributions with a mean of zero, and a standard deviation of µk, which then gets applied to the IrisAO on
the HiCAT emulator and propagated through the coronagraph to measure the DH contrast. The distribution of
measured average contrast values is shown in Fig. 9. The resulting figure corresponds to a Gaussian distribution
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Figure 6. All PASTIS modes for HiCAT with a classical Lyot coronagraph, for local piston aberrations, sorted from highest
to lowest eigenvalue. The modes are unitless, showcasing the relative scaling of the segments to each other, and between
all modes. They gain physical meaning when multiplied by a mode aberration amplitude bp in units of wavefront error
or phase. Their relative impact on final contrast is given by their eigenvalues.
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Figure 7. Left: Mode requirements as calculated with Eq. 4 for a uniform contrast contribution per mode to a target
contrast of 10−6. Right: Cumulative contrast plot for the uniform mode requirements shown left, calculated both with
the PASTIS propagator (solid blue) and measured with the HiCAT emulator (dashed orange). The experimental result
shows a better accordance with the PASTIS model at lower mode index. Note how neither line starts at the coronagraph
floor because the mode with index 0 already adds a contrast contribution on top of the baseline contrast.
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Figure 9. Monte Carlo validation experiment on the HiCAT emulator to validate the independent segment error budget
shown in Fig. 8, for a target contrast ct = 10−6. Each segmented WFE map draws from 37 zero-mean distributions with an
individual standard deviation per segment, µk. The expected mean contrast and standard deviation of this distribution,
as calculated by Eqs. 6 and 7, are 〈c〉 = 10−6 (the target contrast) and 2.35× 10−7 (dashed and dotted yellow lines). The
measured distribution has a mean of 1.07× 10−6 and a standard deviation of 2.57× 10−7, both of which are larger than
the predicted values. This is likely to stem from a combination of a drifting coronagraph floor due to image jitter, and a
low number of samples, statistically speaking.
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with a mean of 1.07× 10−6 and a standard deviation of 2.57× 10−7, marked in the plot with dark red lines. To
interpret the results in Fig. 9, we remember that PASTIS provides analytical expressions to derive the expected
mean contrast (Eq. 6) and variance (Eq. 7) from a distribution calculated with a set of segment requirements.
Apart from the PASTIS matrix M , what is needed to calculate these quantities is the segment covariance matrix
Ca, which in the case of independent segments as presented here is a simple diagonal matrix made of the segment
requirement variances, µ2

k, which we take from Fig. 8. Then, Eq. 7 yields an analytical standard deviation of
2.35 × 10−7 and the mean is, as expected, the target contrast value 10−6. These are marked with yellow lines
in Fig. 9. We observe that both the measured mean as well as the variance are higher than the analytically
calculated values from the PASTIS matrix. This discrepancy could be attributed to a drifting coronagraph floor,
as the baseline contrast will not be exactly the same like the one that was used in the calculation of the segment
tolerances; it could also be a result of small-sample statistics.

Overall, our experiments on the HiCAT emulator present a successful implementation of empirical validations
of the PASTIS model for a specific high contrast instrument, the HiCAT testbed. We measured a PASTIS
matrix and validated it by comparing its propagation results with measurements from the synthetic testbed. We
decompose the matrix into independent optical modes that we toleranced uniformly and cumulatively to a target
contrast of 10−6. Finally, we calculate segment-level WFE requirements under the assumption of independent
segments and validate them with a Monte Carlo experiment, measuring the contrast from randomly drawn
segmented WFE maps as prescribed by the derived requirements.

5. CONCLUSIONS AND FUTURE WORK

The PASTIS tolerancing model is well established:11,13 it includes a semi-analytical coronagraphic propagation
model for segmented phase aberrations, and a statistical framework for the calculation of segment-based WFE
requirements. This model has been validated against an end-to-end simulator for the LUVOIR-A case, confirming
the properties of the optical eigenmodes and derived segment-level tolerances.

The most recent results on the HiCAT testbed show a contrast performance of ∼ 5× 10−8 in a 6-11 λ/DLS

circular DH with pair-wise and stroke minimization, in an unsegmented CLC configuration. The recent addition
of an IrisAO segmented DM on hardware makes it the ideal environment for the validation of PASTIS on an
actual high contrast instrument, at moderate contrasts between 10−6 and 10−8 in ambient conditions. In order
to prepare for these empirical validations, we implemented a set of experiments on the HiCAT testbed emulator
that include the newly installed segmented DM, with realistic testbed residual WFE and noise. These emulated
experiments are embedded in the fully functional HiCAT control infrastructure, which will let us run them on
hardware as soon as the testbed is fully calibrated.

The results we present show three experiments that we want to perform on the hardware testbed:

1. Measure an empirical PASTIS matrix and validate the PASTIS forward model against hardware measure-
ments.

2. Validate the individual contrast contributions from the scaled PASTIS modes.

3. Validate the independent segment-level requirements as calculated with PASTIS through a Monte Carlo
experiment.

We have shown that we can perform these empirical tests on HiCAT in the 10−6 to 10−7 contrast range,
with the results showing a successful validation of the PASTIS model tolerancing predictions. The measured
PASTIS matrix is used for a set of propagations of random segment aberrations and successfully validated against
equal propagations on the testbed emulator. The matrix was then decomposed into eigenmodes which we scale
uniformly to yield a cumulative target contrast of 10−6. We proceeded by measuring the cumulative contrast
impact from these toleranced optical modes. Using the same target contrast, we calculate the independent
segment requirements which showed to be WFE standard deviations in a range between 4 and 6.5 nm rms. We
use these to draw random segmented WFE maps from zero-mean normal distributions, measuring the resulting
average DH contrast for 1000 random realizations. The empirical mean of the resulting distribution recovers the
target contrast to a small error.
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The experiments we prepared on the emulator show that we might anticipate certain challenges when moving
to the real hardware. The limitations imposed by the IrisAO will define how well we can control the aberration
modes we introduce. While this segmented DM is known to have close to perfect linear behavior, the modes
applied to it will stem from open loop calibrations, which might include some errors. Furthermore, the least
significant bit introduced by the IrisAO controller will prevent us from aberrating a segment with an amplitude
smaller than ∼ 1 nm when taking noise into account. This will lead to drawing from imperfect normal distribu-
tions when creating random WFE maps with the prescription of the segment requirements, truncating any small
aberrations to zero, which might skew the results of the Monte Carlo analysis. However, we expect these errors
to be small if the target contrast is chosen high enough compared to the coronagraph floor. Another challenge
will be the stability of the DH solution that we adopt into our coronagraph, setting the contrast floor we perform
our experiments at. Since the independent segment tolerances µk are a function of the contrast floor (Eq. 5), a
drifting baseline contrast during an experiment will likely introduce a constant shift in the final results. Recent
work on HiCAT reduced this drift significantly, enabling us to recover the DH contrast of 5−6×10−8, reached by
a WFS&C loop, many times over a period of two weeks simply by invoking the same DM commands, to an error
of 0.5 − 1 × 10−7. We intend to mitigate the residual effects of this by running our experiments on timescales
that are faster than the drifts, and by regularly measuring the effective contrast floor where possible.

The apparent next step is to perform these experiments on the HiCAT testbed. In the future, we intend to
explore the usage of the PASTIS modes as part of the low-order wavefront sensor, determining the sensitivity of
the sensor to these modes, and to investigate options for modal control.
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Apellániz, J., Bartlett, J., Belikov, R., Bendek, E., Cenko, B., Douglas, E., Dulz, S., Evans, C., Faramaz, V.,
Feng, Y. K., Ferguson, H., Follette, K., Ford, S., Garćıa, M., Geha, M., Gelino, D., Götberg, Y., Hildebrand
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M., Cardoso, J. V. M., Cheedella, S., Copin, Y., Corrales, L., Crichton, D., D’Avella, D., Deil, C., Depagne,
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