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Introduction

The quantile, also called Value-at-Risk in actuarial and financial areas, is a widespread tool for risk measurement, due to its simplicity and interpretability: if Y is a random variable with a cumulative distribution function F, the quantile at level α ∈ (0, 1) is defined as q(α) = inf {y ∈ R|F (y) ≥ α}. As pointed out in [START_REF]Regression quantiles[END_REF], quantiles may also be seen as a solution of the following minimization problem: q(α) = arg min t ∈R E ρ (1) α (Yt) -ρ (1) α (Y ) ,

where ρ (1) α (y) = |α -1 {y ≤0} ||y| is the quantile check function. However, the quantile is not subadditive in general and so is not a coherent risk measure in the sense of [START_REF] Usseglio | Coherent measures of risk[END_REF]. An alternative risk measure gaining popularity is the expectile, introduced in [START_REF]Asymmetric least squares estimation and testing[END_REF]. This is the solution of (1), with the new loss function ρ (2) α (y) = |α -1 {y ≤0} |y 2 in place of ρ (1) α . Expectiles larger than the mean are coherent risk measures, and have started to be used in actuarial and financial practice (see for instance [START_REF]Optimal reinsurance with expectile[END_REF]). A pioneering paper for the estimation of extreme expectiles in heavy-tailed settings is [START_REF]Estimation of tail risk based on extreme expectiles[END_REF].

Quantiles and expectiles may be generalized by considering the family of L p -quantiles. Introduced in [START_REF]Conditional L p -quantiles and their application to the testing of symmetry in nonparametric regression[END_REF], this class of risk measures is defined, for all p ≥ 1, by:

q (p) (α) = arg min t ∈R E ρ (p) α (Y -t) -ρ (p) α (Y ) , (2) where ρ (p) 
α (y) = |α -1 {y ≤0} ||y| p is the L p -quantile loss function; the case p = 1 leads to the quantile and p = 2 gives the expectile. Note that, for p > 1, using the formulation [START_REF]Generalized quantiles as risk measures[END_REF] and through the subtraction of the (at first sight unimportant) term ρ (p) α (Y ), it is a straightforward consequence of the mean value theorem applied to the function ρ (p) α that the L p -quantile q (p) (α) is well-defined as soon as E(|Y | p-1 ) < ∞. While the expectile is the only coherent L p -quantile (see [START_REF]Generalized quantiles as risk measures[END_REF]), [START_REF]Extreme M-quantiles as risk measures: from L 1 to L p optimization[END_REF] showed that for extreme levels of quantiles or expectiles (α → 1), it may be better to estimate L p -quantiles first (where typically p is between 1 and 2) and exploit an asymptotic proportionality relationship to estimate quantiles or expectiles. An overview of the potential applications of this kind of statistical assessment of extreme risk may for instance be found in [START_REF]Modelling Extremal Events[END_REF]. The contribution of this work is to propose a methodology to estimate extreme L p -quantiles of Y |X = x, where the random covariate vector X ∈ R d is recorded alongside Y . In this context, the case p = 1 (quantile) has been considered in [START_REF]Kernel estimators of extreme level curves[END_REF] and [START_REF]On kernel smoothing for extremal quantile regression[END_REF], and the case p = 2 (expectile) has recently been studied in [START_REF] U -C | Nonparametric extreme conditional expectile estimation[END_REF]. For the general case p ≥ 1, only [START_REF]Estimation of conditional extreme risk measures from heavy-tailed elliptical random vectors[END_REF] proposes an estimation procedure under the strong assumption that the vector (X, Y ) is elliptically distributed. The present paper avoids this modeling assumption by constructing a kernel estimator. The paper is organized as follows. Section 2 introduces an estimator of conditional L p -quantiles. Section 3 gives the asymptotic properties of the estimator previously introduced, at extreme levels. Finally, Section 4 proposes a simulation study in order to assess the accuracy of our estimator which is then showcased on a real insurance data set in Section 5. Proofs are postponed to the Appendix.

L p -quantile kernel regression

Let (X i , Y i ), i = 1, . . . , n be independent realizations of a random vector (X, Y ) ∈ R d ×R. For the sake of simplicity we assume that Y ≥ 0 with probability 1. We denote by g the density function of X and let, in the sequel, x be a fixed point in R d such that g(x) > 0. We denote by F(1) (y|x) = P (Y > y|X = x) the conditional survival function of Y given X = x and assume that this survival function is continuous and regularly varying with index -1/γ(x):

∀t > 0, lim y→∞ F(1) (t y|x) F(1) (y|x) = t -1/γ(x) . (3) 
Such a distribution belongs to the Fréchet maximum domain of attraction [START_REF]Extreme Value Theory: An Introduction[END_REF]. Note that for any

k < 1/γ(x), E Y k |X = x < ∞. Since the definition of L p -quantiles in (2) requires E |Y | p-1 |X = x < ∞,
our minimal assumption will be that p -1 < 1/γ(x). From Equation (2), L p -quantiles of level α ∈ (0, 1) of Y given X = x may also be seen as the solution of the following equation:

E |Y -y| p-1 1 {Y >y } |X = x E |Y -y| p-1 |X = x = 1 -α.
In other terms, as noticed in [START_REF]Expectiles and M-quantiles are quantiles[END_REF], (conditional) L p -quantiles can be equivalently defined as quantiles

q (p) (α|x) = inf y ∈ R | F(p) (y|x) ≤ 1 -α
of the distribution associated with the survival function

F(p) (y|x) = ϕ (p-1) (y|x) m (p-1) (y|x) ,
where, for all k ≥ 0,

m (k) (y|x) = E |Y -y| k |X = x g(x)
and

ϕ (k) (y|x) = E |Y -y| k 1 {Y >y } |X = x g(x).
Obviously, if p = 1, we get the survival function introduced above. The case p = 2 leads to the function introduced in [START_REF]Expectiles and M-quantiles are quantiles[END_REF] and used in [START_REF] U -C | Nonparametric extreme conditional expectile estimation[END_REF]. To estimate F(p) (y|x), we let K be a probability density function on R d and we introduce the kernel estimators

m(k) n (y|x) = n i=1 |Y i -y| k K x-X i h n nh d n , φ(k) n (y|x) = n i=1 |Y i -y| k K x-X i h n 1 {Y i >y } nh d n .
Note that m(0) n (0|x) is the kernel density estimator of g(x), and m(1) n (0|x)/ m(0) n (0|x) is the standard kernel regression estimator (since the Y i are nonnegative). The kernel estimators of F(p) (y|x) and q (p) (α|x) are then easily deduced:

F(p) n (y|x) = φ(p-1) n (y|x) m(p-1) n (y|x) , q(p) n (α|x) = inf y ∈ R | F(p) n (y|x) ≤ 1 -α . (4) 
The case p = 1 gives the kernel quantile estimator introduced in [START_REF]On kernel smoothing for extremal quantile regression[END_REF], while p = 2 leads to the conditional expectile estimator of [START_REF] U -C | Nonparametric extreme conditional expectile estimation[END_REF]. We study here the asymptotic properties of q(p) n (α|x) for an arbitrary p ≥ 1, when α = α n → 1.

Main results

We first make a standard assumption on the kernel. We fix a norm || • || on R d .

(K ) The density function K is bounded and its support S is contained in the unit ball.

To be able to analyze extreme conditional L p -quantiles in a reasonably simple way, we make a standard second-order regular variation assumption (for a survey of those conditions, see Section 2 in [START_REF]Extreme Value Theory: An Introduction[END_REF]).

C 2 (γ(x), ρ(x), A(.|x)) There exist γ(x) > 0, ρ(x) ≤ 0 and a positive or negative function A(•|x) converging to 0 such that:

∀t > 0, lim y→∞ 1 A(y|x) q (1) (1 -1/(t y)|x) q (1) (1 -1/y|x) -t γ(x) =            t γ(x) t ρ(x) -1 ρ(x) if ρ(x) < 0, t γ(x) log(t) if ρ(x) = 0.
Our last assumption is a local Lipschitz condition which may be found for instance in [START_REF]On kernel smoothing for extremal quantile regression[END_REF][START_REF]Non-parametric estimation of extreme risk measures from conditional heavy-tailed distributions[END_REF]. We denote by B(x, r) the ball with center x and radius r.

(L) We have g(x) > 0 and there exist c, r > 0 such that

∀x ∈ B(x, r), |g(x) -g(x )| ≤ c||x -x ||.
To be able to control the local oscillations of (x, y) → F(1) (y|x), we let, for any nonnegative y n → ∞,

ω (1) h n (y n |x) = sup x ∈B(x,h n ) sup z ≥y n 1 log(z) log F(1) (z|x ) F(1) (z|x) , ω (2) 
h n (y n |x) = sup x ∈B(x,h n ) sup 0<y ≤y n | F(1) (y|x ) -F(1) (y|x)|,
and

ω (3) h n (y n |x) = sup x ∈B(x,h n ) sup λ≥1 sup b n ,b n →0 F(1) (λ y n (1 + b n )|x ) F(1) (λ y n (1 + b n )|x ) -1 .
The quantity ω (1) h n (y n |x), discussed for instance in [START_REF] U -C | Nonparametric extreme conditional expectile estimation[END_REF], controls the oscillation of the conditional survival function with respect to x in its right tail, while ω (2) h n (y n |x) and ω (3) h n (y n |x) are introduced to be able to deal with the case p {1, 2} specifically. Let us highlight that ω (3) h n (y n |x) is again geared towards controlling an oscillation of the right tail of the conditional distribution; however, ω (2) h n (y n |x) focuses on the oscillation of the center of the conditional distribution with respect to x. For p > 1, the introduction of a quantity such as ω (2) h n (y n |x) is in some sense natural, since we will have to deal with the local oscillation of the conditional moment m (p-1) (y|x), appearing in the denominator of F(p) (y|x), and this conditional moment indeed depends on the whole of the conditional distribution rather than merely on its right tail. Typically ω (1) h n (y 

n |x) = O(h n ), ω (2) h n (y n |x) = O(h n ) and ω (3) h n (y n |x) = o(
∀y ≥ 1, F(1) (y|x) = y -1/γ(x) .
If γ is locally Lipschitz continuous, we clearly have ω (1) h n (y n |x) = O(h n ). Furthermore, for any y ≥ 1, the mean value theorem yields

| F(1) (y|x ) -F(1) (y|x)| ≤ 1 γ(x ) - 1 γ(x)
× y -1/[γ(x)∨γ(x )] log y.

(Here and below ∨ denotes the maximum operator.) Under this same local Lipschitz assumption, one then finds ω (2) h n (y n |x) = O(h n ) as well. Finally, for any y, y > 1,

F(1) (y |x ) F(1) (y|x ) -1 = y y 1/γ(x ) -1 ≤ |y -y | y × 1 + (y/y ) 1/γ(x )-1 γ(x )
by the mean value theorem again. This inequality yields ω (3) h n (y n |x) = o(1).

The same arguments, and asymptotic bounds on ω (1) h n (y n |x), ω (2) h n (y n |x) and ω (3) h n (y n |x), apply to the conditional Fréchet model

∀y > 0, F(1) (y|x) = 1 -exp(-y -1/γ(x) ).
Analogous results are easily obtained for the conditional Burr model

∀y > 0, F(1) (y|x) = (1 + y -ρ(x)/γ(x) ) 1/ρ(x)
when ρ < 0 is assumed to be locally Lipschitz continuous, and the conditional mixture Pareto model

∀y ≥ 1, F(1) (y|x) = y -1/γ(x) c(x) + (1 -c(x))y ρ(x)/γ(x)
when ρ < 0 and c ∈ (0, 1) are assumed to be locally Lipschitz continuous.

Intermediate L p -quantile regression

In this paragraph, we assume that σ -2 n = nh d n (1 -α n ) → ∞. Such an assumption means that the L p -quantile level α n tends to 1 slowly (by extreme value standards), hence the denominations intermediate sequence and intermediate L p -quantiles. This assumption is widespread in the literature of risk measure regression: see, among others, [START_REF]On kernel smoothing for extremal quantile regression[END_REF][START_REF]Kernel estimators of extreme level curves[END_REF][START_REF]Non-parametric estimation of extreme risk measures from conditional heavy-tailed distributions[END_REF][START_REF] U -C | Nonparametric extreme conditional expectile estimation[END_REF]. Throughout, we let

||K || 2 2 = S K (u) 2 du be the squared L 2 -norm of K, Ψ(•) denote the digamma function and I B(t, x, y) = t 0 u x-1 (1 - u) y-1 du be the incomplete Beta function. Note that I B(1, x, y) = B(x, y) is the standard Beta function.
We now give our first result on the joint asymptotic normality of a finite number J of empirical conditional quantiles with an empirical conditional L p -quantile (p > 1).

Theorem 1 Assume that (K ), (L) and C 2 (γ(x), ρ(x), A(.|x)) hold. Let α n → 1, h n → 0 and a n = 1 -τ(1 -α n )(1 + o(1)), where τ > 0. Assume further that σ -2 n = nh d n (1 -α n ) → ∞, nh d+2 n (1 -α n ) → 0, σ -1 n A (1 -α n ) -1 |x = O(1), ω (3)
h n (q (1) (α n |x)|x) → 0 and there exists δ ∈ (0, 1) such that

σ -1 n ω (1) h n ((1 -δ)(θ ∧ 1)q (1) (α n |x)|x) log(1 -α n ) → 0, (5) 
where

θ = τγ(x)/B p, γ(x) -1 -p + 1 -γ(x)
. Let further

α n, j = 1 -τ j (1 -α n ), for 0 < τ 1 < τ 2 < . . . < τ J ≤ 1 such that σ -1 n ω (2) h n ((1 + δ)(θ ∨ τ -γ(x)) 1 )q (1) (α n |x)|x) → 0. (6) 
Then, for all p ∈ (1, γ(x) -1 /2 + 1), one has

σ -1 n      q(1) n (α n, j |x) q (1) (α n, j |x) -1 1≤ j ≤J , q(p) n (a n |x) q (p) (a n |x) -1      d -→ N 0 J+1 , ||K || 2 2 g(x) γ(x) 2 Σ(x) , (7) 
where Σ(x) is the symmetric matrix having entries

                           Σ j, (x) = τ j ∨ τ -1 Σ j,J+1 (x) = τ -1 j           γ(x) (p-1)I B 1∨ τ -γ (x) j θ -1 ,γ(x) -1 -p+1, p-1 B(p,γ(x) -1 -p+1) + 1 ∨ τ -γ (x) j θ -1 p-1           Σ J+1,J+1 (x) = B(2p-1,γ(x) -1 -2p+2) τB(p,γ(x) -1 -p+1) . (8) 
Theorem 1, which will be useful to introduce estimators of the tail index γ(x) as part of our extrapolation methodology, generalizes and adapts to the conditional setup several results already found in the literature: see Theorem 1 in [START_REF]On kernel smoothing for extremal quantile regression[END_REF], Theorem 1 in [START_REF]Extreme M-quantiles as risk measures: from L 1 to L p optimization[END_REF] and Theorem 3 in [START_REF]Tail expectile process and risk assessment[END_REF]. Note however that, although they are in some sense related, Theorem 1 does not imply Theorem 1 of [START_REF] U -C | Nonparametric extreme conditional expectile estimation[END_REF], because the latter is stated under weaker regularity conditions warranted by the specific context p = 2 of extreme conditional expectile estimation. On the technical side, assumptions ( 5) and ( 6) ensure that the bias introduced by smoothing in the x direction is negligible compared to the standard deviation σ n of the estimator. The aim of the next paragraph is now to extrapolate our intermediate estimators to properly extreme levels.

Extreme L p -quantile regression

We consider here a level

β n → 1 such that nh d n (1 -β n ) → c < ∞.
The estimators previously introduced no longer work at such an extreme level. In order to overcome this problem, we first recall a result of [START_REF]Extreme M-quantiles as risk measures: from L 1 to L p optimization[END_REF] (see also Lemma 5 below):

∀p ≥ 1, lim α→1 q (p) (α|x) q (1) (α|x) = γ(x) B p, γ(x) -1 -p + 1 -γ(x) . (9) 
In the sequel we shall use the notation g p (γ) = γ/B p, γ -1p + 1 . A first consequence of this result is that the L p -quantile function is regularly varying, i.e.:

∀t > 0, lim y→∞ q (p) (1 -1/(t y)|x) q (p) (1 -1/y|x) = t γ(x) . (10) 
This suggests then that, by considering an intermediate sequence (α n ), our conditional extreme L p -quantile may be approximated (and estimated) as follows:

q (p) ( β n |x) ≈ 1 -α n 1 -β n γ(x) q (p) (α n |x), estimated by q(p) n,α n ( β n |x) = 1 -α n 1 -β n γαn (x) q(p) n (α n |x).
Here, q(p) n (α n |x) is the kernel estimator introduced in Equation ( 4) and γα n (x) is a consistent estimator of the conditional tail index γ(x). This is a class of Weissmantype estimators (see [START_REF]Estimation of parameters and large quantiles based on the k largest observations[END_REF]) of which we give the asymptotic properties.

Theorem 2 Assume that (K ), (L) and C 2 (γ(x), ρ(x), A(•|x)) hold with ρ(x) < 0. Let α n , β n → 1, h n → 0 be such that σ -2 n = nh d n (1 -α n ) → ∞ and nh d n (1 -β n ) → c < ∞. Assume further that nh d+2 n (1 -α n ) → 0, ω (3) h n (q (1) (α n |x)|x) → 0 and i) σ -1 n A (1 -α n ) -1 |x = O(1), σ -1 n (1 -α n ) = O(1) and σ -1 n E Y 1 {0<Y <q (1) (α n |x) } |x q (1) (α n |x) -1 = O(1), ii) For some δ ∈ (0, 1), σ -1 n ω (1) h n ((1-δ)[g p (γ(x))] -γ(x) q (1) (α n |x)|x) log(1-α n ) → 0 and σ -1 n ω (2) h n ((1 + δ)q (1) (α n |x)|x) → 0, iii) σ -1 n / log ((1 -α n )/(1 -β n )) → ∞. Take p ∈ (1, γ(x) -1 /2 + 1). If in addition σ -1 n ( γα n (x) -γ(x)) d -→ Γ, then σ -1 n log((1 -α n )/(1 -β n )) q(p) n,α n ( β n |x) q (p) ( β n |x) -1 d -→ Γ.
We notice, as is classical in the analysis of heavy tails, that the asymptotic distribution of the extrapolated estimator q(p) n,α n ( β n |x) is exactly that of the purely empirical estimator γα n (x) with a slightly slower rate of convergence. Technically speaking, assumption (i) controls the bias due to the asymptotic approximation (9), while assumption (ii) is used to deal with the bias due to smoothing.

Our aim is now to propose some estimators of γ(x) solely based on intermediate L p -quantiles, in order to carry out the extrapolation step.

L p -quantile based estimation of the conditional tail index

The aim of this paragraph is to discuss the estimation of the conditional tail index γ(x). A local Pickands estimator is studied in [START_REF]On kernel smoothing for extremal quantile regression[END_REF][START_REF]Kernel estimators of extreme level curves[END_REF]. This estimator however has a large variance, which is why [START_REF]Kernel estimators of extreme level curves[END_REF] propose a simplified, conditional and local version of the Hill estimator:

γ(H) α n (x) = 1 log(J!) J j=1 log qn j -1 + α n j |x / qn (α n |x) . (11) 
They also mentioned that taking J = 9 is an optimal choice, and leads to an asymptotic variance close to 1.25||K || 2 2 γ(x) 2 /g(x). Recently, [START_REF]ExpectHill estimation, extreme risk and heavy tails[END_REF][START_REF] U -C | Nonparametric extreme conditional expectile estimation[END_REF] have shown that replacing the quantile by the expectile in tail index estimators can lead to a significant variance reduction. Our idea here is to propose an estimator based on L p -quantiles rather than quantiles. In this context, we propose to follow the approach of [START_REF] U -C | An L p -quantile methodology for estimating extreme expectiles[END_REF] and exploit the asymptotic relationship (9) by introducing the following estimator, valid for all 1 < p < γ(x) -1 + 1:

γ(p) α n (x) = inf        γ > 0 : g p (γ) ≤ F(1) n q(p) n (α n |x)|x 1 -α n        . ( 12 
)
This class of estimators is introduced in [START_REF] U -C | An L p -quantile methodology for estimating extreme expectiles[END_REF] in an unconditional setting, and the (explicit) estimator γ(2) α n (x) is introduced in [START_REF] U -C | Nonparametric extreme conditional expectile estimation[END_REF]. Using the results previously obtained, we can give the asymptotic distribution of γ(p)

α n (x) for all 1 < p < γ(x) -1 /2 + 1. Theorem 3 Assume that (K ), (L) and C 2 (γ(x), ρ(x), A(•|x)) hold with γ(x) < 1. Let α n → 1 and h n → 0. Assume further that σ

-2 n = nh d n (1 -α n ) → ∞, nh d+2 n (1 -α n ) → 0, ω (3) h n (q (1) (α n |x)|x) → 0 and i) σ -1 n A (1 -α n ) -1 |x → 0, ii) σ -1 n q (1) (α n |x) -1 → λ ∈ R, iii) For some δ ∈ (0, 1), σ -1 n ω (1) h n ((1 -δ) g p (γ(x)) -γ(x) q (1) (α n |x) |x) log(1 - α n ) → 0 and σ -1 n ω (2) h n ((1 + δ) q (1) (α n |x) |x) → 0. Then, for all p ∈ (1, γ(x) -1 /2 + 1), one has σ -1 n γ(p) α n (x) -γ(x), q(p) n (α n |x) q (p) (α n |x) -1 d -→ Θ, ( 13 
)
where Θ is a bivariate Gaussian distribution with mean vector b p (x), 0 and covariance matrix ||K || 2 2 γ(x) 2 g(x) -1 Ω(x) such that:

                             b p (x) = (1-p)γ(x)g p (γ(x)) γ (x) E[Y |X=x] 1-1 γ (x) (Ψ(γ(x) -1 +1)-Ψ(γ(x) -1 -p+1)) λ Ω 11 (x) = B(p,γ(x) -1 -p+1) 1-1 γ (x) (Ψ(γ(x) -1 +1)-Ψ(γ(x) -1 -p+1)) 2 B(2p-1,γ(x) -1 -2p+2) B(p,γ(x) -1 -p+1) 2 -1 γ(x) Ω 12 (x) = B(p,γ(x) -1 -p+1) 1-1 γ (x) (Ψ(γ(x) -1 +1)-Ψ(γ(x) -1 -p+1)) 1 γ(x) - B(2p-1,γ(x) -1 -2p+2) B(p,γ(x) -1 -p+1) 2 Ω 22 (x) = B(2p-1,γ(x) -1 -2p+2) B(p,γ(x) -1 -p+1) . (14) 
Let us remark here that although Theorem 3 can be seen as a version of Theorem 4 of [START_REF] U -C | Nonparametric extreme conditional expectile estimation[END_REF], the latter is stated under weaker regularity assumptions and applies to further examples of estimators developed specifically in the conditional expectile setup. Note that condition γ(x) < 1 entails E[Y |X = x] < ∞ and leads to a simple expression of the bias term b p (x). A result dropping this assumption is available in the unconditional setting in [START_REF] U -C | An L p -quantile methodology for estimating extreme expectiles[END_REF]; here, our motivation for this condition is that we shall use extreme regression L p -quantiles as a way to estimate extreme regression expectiles, for the existence of which a natural condition is that

E[|Y ||X = x] < ∞. The bias term b p (x) is related to γ(x), q (1) (α n |x) and E[Y |X = x].
All these quantities may be easily estimated (the latter two by kernel regression estimators) to construct a bias-reduced conditional tail index estimator as follows:

γ(p) α n (x) = γ(p) α n (x) 1 + (p -1) n i=1 Y i K x-X i hn n i=1 K x-X i hn q(p) n (α n |x) -1 1 + 1 γ(p) αn (x) Ψ 1/ γ(p) α n (x) -p + 1 -Ψ 1/ γ(p) α n (x) + 1
.

Under the conditions of Theorem 3, it is clear that σ -1 n ( γ(p)

α n (x) -γ(x)) d -→ N (0, Ω 11 (x))
where Ω 11 (x) is given in Equation ( 14). This bias reduction improves significantly the numerical results, and is used in the finite-sample study below.

Even though L p -quantiles with 1 < p < 2 are more widely estimable than expectiles and take into account the whole tail information, they are neither easy to interpret nor coherent as risk measures. Recent work in [START_REF]Extreme M-quantiles as risk measures: from L 1 to L p optimization[END_REF] has shown that extreme L p -quantiles can be used as vehicles for extreme quantile and expectile estimation; see also [START_REF]Beyond tail median and conditional tail expectation: extreme risk estimation using tail L p -optimisation[END_REF] for an analogous study of the estimation of (a compromise between) Median Shortfall and Conditional Tail Expectation at extreme levels, using tail L p -medians. Our focus in the following finite-sample study is to analyse the potential of extreme regression L p -quantiles for the estimation of extreme regression quantiles and expectiles.

Simulation study

We consider here a one-dimensional covariate (d = 1), uniformly distributed on [0, 1], and a Burr-type distribution for Y given X = x:

F(1) (y|x) = 1 + y -ρ(x)/γ(x) 1/ρ(x)
, γ(x) = 4 + sin(2πx) 10 and ρ(x) ≡ -1.

Such a distribution fulfills Assumption C 2 (γ(x), ρ(x), A(•|x)) with auxiliary function A(y|x) = γ(x)y ρ(x) . We simulate N = 500 samples of size n = 1,000 independent replications of (X, Y ), and propose to estimate the conditional quantiles and expectiles of level β n = 1 -1/n = 0.999 using our extreme regression L p -quantile estimators. Note that the quantiles may be calculated explicitly:

q(α|x) = (1 -α) ρ(x) -1 -γ(x)/ρ(x) .
Expectiles have to be approximated numerically, since they do not have a simple closed form. In order to estimate these two quantities, we propose to compare different approaches (called either direct or indirect):

(i) Use the conditional Weissman-type estimators respectively based on empirical quantiles and the estimator γ(H) α n (x) (direct quantile estimator) and on empirical expectiles and γ(2)

α n (x) (direct expectile estimator), i.e.

1 -α n 1 -β n γ(H ) αn (x) q(1) n (α n |x) , 1 -α n 1 -β n γ(2) αn (x) q(2) n (α n |x).
(ii) Indirect quantile estimator: estimate first the conditional L p -quantile using estimator (4), and exploit asymptotic relationship [START_REF]ExpectHill estimation, extreme risk and heavy tails[END_REF] to recover the extreme conditional quantile,

1 -α n 1 -β n γ(p) αn (x) q(p) n (α n |x) γ(p) α n (x) B p, γ(p) α n (x) -1 -p + 1 γ(p) αn (x) 
.

(iii) Indirect expectile estimator: use Equation ( 9) to get a connection between L p -quantile and quantile, and quantile and expectile, resulting in the extreme conditional expectile estimator

1 -α n 1 -β n γ(p) αn (x) q(p) n (α n |x) B 2, γ(p) α n (x) -1 -1 B p, γ(p) α n (x) -1 -p + 1 γ(p) αn (x)
.

The choice of p is discussed in [START_REF] U -C | An L p -quantile methodology for estimating extreme expectiles[END_REF] using the MSE of (the unconditional version of) γ(p) α n (x) as a criterion. Cross-validation choices of the bandwidth h n and intermediate quantile level α n , meanwhile, are discussed in [START_REF]On kernel smoothing for extremal quantile regression[END_REF][START_REF] U -C | Nonparametric extreme conditional expectile estimation[END_REF]. For the sake of simplicity, we choose here common parameters p = 1.7 following the guidelines of [START_REF] U -C | An L p -quantile methodology for estimating extreme expectiles[END_REF]), h n = 0.15 and α n = 1 -1/ √ n ≈ 0.968 across all replications and K is the Epanechnikov kernel defined by K (t) = 0.75(1t 2 )1 { |t |<1} . Results are shown in Figure 1. We can notice that an indirect estimation of extreme quantiles or expectiles with a L p -quantile (with p between 1 and 2) leads to a trade-off between bias and variance: the indirect L p -estimator of an extreme regression quantile is less variable than the direct estimator but slightly more biased, and the indirect L p -estimator of an extreme regression expectile is more variable than the direct estimator but less biased. For conditional quantiles, an explanation is that using the asymptotic approximation [START_REF]ExpectHill estimation, extreme risk and heavy tails[END_REF] in the construction of the indirect estimator adds a source of bias, while the reduced variance stems from the use of p = 1.7 in the estimator γ(p)

α n (x), providing an estimator with lower variance compared to the simple Hill estimator in our case (see [START_REF] U -C | An L p -quantile methodology for estimating extreme expectiles[END_REF]). The case of conditional expectiles is less clear, although the increased variability observed for x ∈ [0, 0.5] seems to originate in the use of the estimated constant B(2, γ(p)

α n (x) -1 -1)/B(p, γ(p) α n (x) -1p + 1): when γ(p) α n (x) gets close to 1, which is sometimes the case in this zone where γ(x) ∈ [0.4, 0.5], this estimated constant tends to explode, while the direct estimator is less affected. A similar observation, in the context of extreme Wang distortion risk measure estimation, is made by [START_REF]Extreme versions of Wang risk measures and their estimation for heavy-tailed distributions[END_REF].

Real data example

We study here a data set on motorcycle insurance, collected from the former Swedish insurance provider Wasa. Our data is on motorcycle insurance policies and claims over the period 1994-1998 and is available from www.math.su.se/GLMbook or the R packages insuranceData and CASdatasets, and analyzed in [START_REF]Non-Life Insurance Pricing with Generalized Linear Models[END_REF]. We concentrate here on the relationship between the claim severity Y (defined as the ratio of claim cost by number of claims for each given policyholder) in Swedish kroner (SEK), and the number of years X of exposure of a policyholder. Data for X > 3 are very sparse, so we restrict our attention to the case Y > 0 and X ∈ [0, 3], resulting in n = 593 pairs (X i , Y i ). Our goal in this section is to estimate extreme conditional quantiles and expectiles of Y given X, at a level β n = 1 -3/n ≈ 0.9949. This level is slightly less extreme than the more standard β n = 1 -1/n ≈ 0.9985, but is an appropriately extreme level in this conditional context where less data are available locally for the estimation. A preliminary diagnostic using a local version of the Hill estimator (which we do not show here) suggests that the data is indeed heavy-tailed with γ(x) ∈ [0.25, 0.6]. Following again the guidelines in [START_REF] U -C | An L p -quantile methodology for estimating extreme expectiles[END_REF], we choose p = 1.7 for our indirect extreme conditional quantile and expectile estimators. These are respectively compared to:

• the estimator q W n ( β n |x) of [START_REF] U -C | Nonparametric extreme conditional expectile estimation[END_REF], calculated as in Section 5 therein, and our direct quantile estimator presented in Section 4 (i),

• the estimator e W, BR n ( β n |x) of [START_REF] U -C | Nonparametric extreme conditional expectile estimation[END_REF], calculated as in Section 5 therein, and our direct expectile estimator presented in Section 4 (i).

For the direct and indirect estimators presented in Section 4 (ii)-(iii), the parameters α n and h n are chosen by a cross-validation procedure analogous to that of [START_REF] U -C | Nonparametric extreme conditional expectile estimation[END_REF]. The Epanechnikov kernel is adopted. Results are given in Figure 2. In each case, all three estimators reassuringly point to roughly the same results, with slight differences; in particular, for quantile estimation and when data is scarce, the direct estimator in Section 4 (i) appears to be more sensitive to the local shape of the tail than the indirect, L p -quantile based estimator in Section 4 (ii), resulting in less stable estimates.

Appendix

Preliminary results

Lemma 1 Assume that (L) and C 2 (γ(x), ρ(x), A(.|x)) hold, and let y n → ∞ and h n → 0 be such that ω (1) h n (y n |x) log(y n ) → 0 and ω (2) h n (y n |x) → 0. Then for all 0 ≤ k < γ(x) -1 we have, uniformly in x ∈ B(x, h n ),

m (k) (y n |x ) = m (k) (y n |x) 1 + O (h n ) + o ω (1) h n (y n |x) + O ω (2) h n (y n |x) .
In particular

m (k) (y n |x ) = y k n g(x) (1 + o(1)) uniformly in x ∈ B(x, h n ). Proof Let us first write m (k) (y n |x) = E (Y -y n ) k 1 {Y >y n } |X = x g(x)+E (y n -Y ) k 1 {Y ≤y n } |X = x g(x).
By the arguments of the proof of Lemma 3 in [START_REF] U -C | Nonparametric extreme conditional expectile estimation[END_REF],

E (Y -y n ) k 1 {Y >y n } |X = x g(x ) E (Y -y n ) k 1 {Y >y n } |X = x g(x) = 1 + O (h n ) + O ω (1)
h n (y n |x) log(y n ) . Besides, an integration by parts yields

E (y n -Y ) k 1 {Y ≤y n } |X = x = y n 0 kt k-1 F (1) (y n -t|x) dt.

It clearly follows that

E (y n -Y ) k 1 {Y ≤y n } |X = x -E (y n -Y ) k 1 {Y ≤y n } |X = x ≤ y k n ω (2) h n (y n |x). Now E (y n -Y ) k 1 {Y ≤y n } |X = x = y k n E       1 - Y y n k 1 {Y ≤y n } |X = x       = y k n (1 + o(1))
by the dominated convergence theorem, and

E (Y -y n ) k 1 {Y >y n } |X = x = g(x)B k + 1, γ(x) -1 -k γ(x) y k n F(1) (y n |x)(1 + o(1)), (15) 
see for instance Lemma 1(i) in [START_REF]Extreme M-quantiles as risk measures: from L 1 to L p optimization[END_REF]. The result follows from direct calculations. Lemma 2 Assume that (K ), (L) and C 2 (γ(x), ρ(x), A(.|x)) hold, and let y n → ∞ and h n → 0 be such that nh

d n → ∞, ω (1) h n (y n |x) log(y n ) → 0 and ω (2) h n (y n |x) → 0. Then for all 0 ≤ k < γ(x) -1 /2, E m(k) n (y n |x) = m (k) (y n |x) 1 + O (h n ) + o ω (1) h n (y n |x) + O ω (2) h n (y n |x) and Var m(k) n (y n |x) = ||K || 2 2 nh d n g(x)y 2k n (1 + o(1)). Proof Note that E m(k) n (y n |x) = S m (k) (y n |x -uh n )K (u)
du by Assumption (K ) and a change of variables, and use Lemma 1 to get the first result. The second result is obtained through similar calculations.

Lemma 3 Assume that (K ), (L) and C 2 (γ(x), ρ(x), A(.|x)) hold. Let y n → ∞, h n → 0 be such that nh d n → ∞ and ω (1) h n (y n |x) log(y n ) → 0. Then for all 0 ≤ k < γ(x) -1 /2,        E φ(k) n (y n |x) = ϕ (k) (y n |x) 1 + O(h n ) + O ω (1) h n (y n |x) log(y n ) , Var φ(k) n (y n |x) = ||K || 2 2 g(x) B(2k+1,γ(x) -1 -2k) γ(x)
y 2k n F (1) (y n |x) nh d n (1 + o(1)).
Proof See Lemma 5 of [START_REF] U -C | Nonparametric extreme conditional expectile estimation[END_REF].

Lemma 4 Assume that C 2 (γ(x), ρ(x), A(.|x)) holds. Let λ ≥ 1, y n → ∞, y n = λ y n (1 + o(1)) and 0 < k < γ(x) -1 .
(i) Then the following asymptotic relationship holds:

E |Y -y n | k 1 {Y >y n } |X = x = y k n F(1) (y n |x) k I B λ -1 , γ(x) -1 -k, k + (λ -1) k λ -1/γ(x) (1 + o(1)).
(ii) Assume further that ω (1) h n (y n ∧ y n |x) log(y n ) → 0 and ω (3) h n (y n |x) → 0. Then, uniformly in x ∈ B(x, h n ),

E |Y -y n | k 1 {Y >y n } |X = x = E |Y -y n | k 1 {Y >y n } |X = x (1 + o(1)). Proof (i) Straightforward calculations entail E |Y -y n | k 1 {Y >y n } |X = x = y k n E            Y y n -1 k -(λ -1) k      1 {Y >λy n } |X = x       (1 + o(1)) + y k n (λ -1) k F(1) (λ y n |x)(1 + o(1)), with y n = λ y n (1 + o(1)
). The result then comes directly from the regular variation property of F(1) (•|x) and Lemma 1 in [START_REF]Extreme M-quantiles as risk measures: from L 1 to L p optimization[END_REF] with H (t) = (t -1) k and b = λ.

(ii) Note first that for n large enough

E |Y -y n | k 1 {Y >y n } |X = x -E |Y -y n | k 1 {Y >λy n } |X = x ≤ |y n -y n | k + (λ -1) k y k n F(1) (y n ∧ λ y n |x ) -F(1) (y n ∨ λ y n |x ) ≤ 3(λ -1) k y k n × F(1) (y n |x ) × ω (3) h n (y n |x). Write (Y -y n ) k = ((Y -y n ) k -(λ -1) k y k n ) + (λ -1) k y k n .
It then follows from the assumption ω (3) h n (y n |x) → 0 that, uniformly in x ∈ B(x, h n ),

E |Y -y n | k 1 {Y >y n } |X = x = (λ -1) k y k n F(1) (y n |x )(1 + o(1)) + k ∞ λy n (z -y n ) k-1 F(1) (z|x )dz(1 + o(1)).
Remark now F(1)

y n |x (y n ) -ω (1) hn (y n |x) ≤ F(1) y n |x ≤ F(1) y n |x (y n ) ω (1)
hn (y n |x) . Then condition ω (1) h n (y n |x) log(y n ) → 0 entails, uniformly in x ∈ B(x, h n ), F(1)

y n |x = F(1) y n |x (1 + o(1)) = F(1) (λ y n |x) (1 + o(1)). Besides, for any z ≥ λ y n ≥ y n , F(1) (z|x) z -ω (1) hn (y n |x) ≤ F(1) (z|x ) ≤ F(1) (z|x) z ω (1)
hn (y n |x) . Following the proof of Lemma 3 in [START_REF] U -C | Nonparametric extreme conditional expectile estimation[END_REF], we get, uniformly in x ∈ B(x, h n ), 

∞ λy n (z -y n ) k-1 F(1) (z|x )dz ∞ λy n (z -y n ) k-1 F(1) (z|x)dz -1 = O(ω (1) h n (y n |x) log(y n )) → 0. Since ∞ λy n (z -y n ) k-1 F(1) (z|x)dz is of order y k n F ( 
F(p) (y|x) F(1) (y|x) = B p, γ(x) -1 -p + 1 γ(x) 1 + r (y|x)
where there are constants

C 1 (x), C 2 (x), C 3 (x) such that r (y|x) = C 1 (x) E(Y 1 {0<Y <y } |X = x) y (1 + o(1)) + C 2 (x) F(1) (y|x)(1 + o(1)) + C 3 (x) A(1/ F(1) (y|x)|x)(1 + o(1)) as y → ∞.
Similarly

q (p) (α|x) q (1) (α|x) = γ(x) B p, γ(x) -1 -p + 1 -γ(x) [1 + R(α|x)]
where there are constants

D 1 (x), D 2 (x), D 3 (x) such that R(α|x) = D 1 (x) E(Y 1 {0<Y <q (1) (α |x) } |X = x) q (1) (α|x) (1 + o(1)) + D 2 (x)(1 -α)(1 + o(1)) + D 3 (x) A((1 -α) -1 |x)(1 + o(1)) as α → 1.
Proof We start by focusing on the ratio F(p) (y|x)/ F(1) (y|x). By Lemma 1 in [START_REF] U -C | An L p -quantile methodology for estimating extreme expectiles[END_REF], the function F(p) (•|x) is continuous and strictly decreasing on the support of Y given X = x. It is therefore enough to show the announced formula for y = q (p) (α|x) with α → 1; this, in turn, is a simple corollary of Proposition 2 in [START_REF]Extreme M-quantiles as risk measures: from L 1 to L p optimization[END_REF]. To show the analogous formula on q (p) (α|x)/q (1) (α|x), we define U (1) (t|x) = q (1) (1t -1 |x); U (1) (•|x) also satisfies a (local uniform) second-order regular variation condition, see Theorem 2.3.9 p.48 in [START_REF]Extreme Value Theory: An Introduction[END_REF]. Consequently, we note that the asymptotic expansion on F(p) (y|x)/ F(1) (y|x) entails a similar expansion on

U (1) (1/ F(1) (y|x)|x) U (1) (1/ F(p) (y|x)|x) = y q (1) (F (p) (y|x)) (1 + o( A(1/ F(1) (y|x)|x)))
as y → ∞, with different constants (here Lemma 1 in [START_REF]Tail expectile process and risk assessment[END_REF] was used). Setting y = q (p) (α|x), with α → 1, gives the announced result.

Lemma 6 Assume that (K ), (L) and

C 2 (γ(x), ρ(x), A(.|x)) hold. Let y n → ∞, h n → 0 and z n = θ y n (1 + o(1)), where θ > 0. Assume further that -2 n = nh d n F(1) (y n |x) → ∞, nh d+2 n F(1) (y n |x) → 0, there exists δ ∈ (0, 1) such that -1 n ω (1) h n ((1 -δ)(θ ∧ 1)y n |x) log(y n ) → 0, and ω (3) h n (z n |x) → 0. Letting, for all j ∈ {1, . . . , J}, y n, j = τ -γ(x) j y n (1 + o(1)) with 0 < τ 1 < τ 2 < . . . < τ J ≤ 1, and p ∈ (1, γ(x) -1 /2 + 1), one has -1 n      φ(0) n (y n, j |x) ϕ (0) (y n, j |x) -1 1≤ j ≤J , φ(p-1) n (z n |x) ϕ (p-1) (z n |x) -1      d → N 0 J+1 , ||K || 2 2 g(x) Λ(x) ,
where Λ(x) is a symmetric matrix having entries:

                     Λ j, (x) = τ j ∨ τ -1 Λ j,J+1 (x) = γ(x) (p-1)I B 1∨ τ -γ (x) j θ -1 ,γ(x) -1 -p+1, p-1 + 1∨ τ -γ (x) j θ -1 p-1 1∨ τ -γ (x) j θ -1/γ (x) τ j B(p,γ(x) -1 -p+1) Λ J+1,J+1 (x) = γ(x) B(2p-1,γ(x) -1 -2p+2) B(p,γ(x) -1 -p+1) 2 θ 1/γ(x) . ( 16 
) Proof Let β = ( β 1 , . . . , β J , β J+1 ) ∈ R J+1 . Set Z n = -1 n J j=1 β j φ(0) n (y n, j |x) ϕ (0) (y n, j |x) -1 + -1 n β J+1 φ(p-1) n (z n |x) ϕ (p-1) (z n |x) -1 . ||K || 2 2 nh d n g(x)z p-1 n F(1) (z n |x) (p -1)I B (1 ∨ τ -γ(x) j /θ) -1 , γ(x) -1 -p + 1, p -1 +((1 ∨ τ -γ(x) j /θ) -1) p-1 1 ∨ τ -γ(x) j /θ -1/γ(x) .
And finally B (n) j,J+1 (x) is asymptotically equivalent to

τ -1 j γ(x) | |K | | 2 2 g(x) 2 n B p, γ(x) -1 -p + 1 (p -1)I B (1 ∨ τ -γ(x) j /θ) -1 , γ(x) -1 -p + 1, p -1 +((1 ∨ τ -γ(x) j /θ) -1) p-1 1 ∨ τ -γ(x) j /θ -1/γ(x) . Therefore, Var[Z n ] = ||K || 2 2 β Λ(x)β/g(x)(1 + o(1)
), where Λ(x) is given in Equation [START_REF] U -C | An L p -quantile methodology for estimating extreme expectiles[END_REF]. It remains to prove the asymptotic normality of Z n . For that purpose, we denote Z n = n i=1 Z i,n , where

Z i,n = -1 n nh d n J j=1 β j K x-X i h n 1 {Y i >y n, j } -E K x-X i h n 1 {Y i >y n, j } ϕ (0) (y n, j |x) + -1 n nh d n β J+1 |Y i -z n | p-1 K x-X i h n 1 {Y i >z n } -E |Y i -z n | p-1 K x-X i h n 1 {Y i >z n }
ϕ (p-1) (z n |x) .

Taking δ > 0 sufficiently small and arguing as in the closing stages of the proof of Lemma 6 in [START_REF] U -C | Nonparametric extreme conditional expectile estimation[END_REF], we find that nE | Z 1,n | 2+δ = O δ n = o(1). Applying the classical Lyapunov central limit theorem concludes the proof. h n (y n |x) → 0 and there exists δ ∈ (0, 1) such that -1 n ω (1) h n ((1 -δ)(θ ∧ 1)y n |x) log(y n ) → 0. If, for all j ∈ {1, . . . , J}, the y n, j = τ -γ(x) j y n (1 + o(1)) with 0 < τ 1 < τ 2 < . . . < τ J ≤ 1 are such that -1 n ω (2) h n ((1 + δ)(θ ∨ τ -γ(x) 1

)y n |x) → 0, then, for all p ∈ (1, γ(x) -1 /2 + 1), one has Applying Lemma 6 concludes the proof.

Proofs of main results

Proof of Theorem 1 Let us denote t = (t 1 , . . . , t J , t J+1 ) and focus on the probability

Φ n (t) = P J j=1      σ -1 n q(1) n (α n, j |x) q (1) (α n, j |x) -1 ≤ t j           σ -1 n q(p) n (a n |x) q (p) (a n |x) -1 ≤ t J+1     
.

Set y n = q (1) (α n |x), y n, j = q (1) (α n, j |x) 1 + σ n t j and z n = q (p) (a n |x) (1 + σ n t J+1 ).

The technique of proof of Proposition 1 in [START_REF] U -C | An L p -quantile methodology for estimating extreme expectiles[END_REF] yields Second-order regular variation arguments similar to those of the proof of Proposition 1 in [START_REF] U -C | An L p -quantile methodology for estimating extreme expectiles[END_REF] give, for all j ∈ {1, . . . , J}, σ -1 n F(1) q (1) (α n, j |x)|x F(1) y n, j |x -1 = t j γ(x)

Φ n (t) = P J j=1        σ -1 n F (1) 
(1 + o(1))

and similarly

σ -1 n F(p) q (p) (a n |x)|x F(p) (z n |x) -1 = t J+1 γ(x) (1 + o(1)).
Finally, notice that y n, j = τ -γ(x) j y n (1+ o(1)) and z n = θ y n (1+ o( 1)) (see ( 9)). Moreover, for n large enough, ω (1) h n (y n, j |x) ≤ ω (1) h n (1 -δ)q (1) (α n |x)|x and ω (1) h n (z n |x) ≤ ω (1) h n (1 -δ)θq (1) (α n |x)|x . Similarly, ω (2) h n (y n, j |x) ≤ ω (2) h n (1 + δ)τ -γ(x) 1

q (1) (α n |x)|x and ω (2) h n (z n |x) ≤ ω (2) h n (1 + δ)θq (1) (α n |x)|x . Conclude using Proposition 1.

1 )Remark 1

 11 under reasonable assumptions; we give examples below. Assume that Y |X = x has a Pareto distribution with tail index γ(x) > 0:

Fig. 1

 1 Fig. 1 Left: Boxplots of 500 estimates of q (1) (β n |x) with the direct (green) and indirect (blue) quantile estimators. Right: Boxplots of 500 estimates of q (2) (β n |x) with the direct (green) and indirect (blue) expectile estimators. True values are in red.

Fig. 2

 2 Fig. 2 Swedish motorcycle insurance data. Left panel: extreme conditional quantile estimation, black curve: estimator q W n (β n |x) of [17], blue curve: direct quantile estimator (i) of Section 4, red curve: indirect quantile estimator (ii) of Section 4. Right panel: extreme conditional expectile estimation, black curve: estimator e W , B R n (β n |x) of [17], blue curve: direct expectile estimator (i) of Section 4, red curve: indirect expectile estimator (iii) of Section 4. In each panel, x-axis: number of years of exposure of policyholder, y-axis: claim severity.

1 )Lemma 5

 15 (y n |x) (by regular variation of F(1) (•|x)), the conclusion follows. Assume that C 2 (γ(x), ρ(x), A(.|x)) holds. For all 1 ≤ p < γ(x) -1 + 1,

Proposition 1 F( 1 )F( 1 )

 111 Assume that (K ), (L) and C 2 (γ(x), ρ(x), A(.|x)) hold. Let y n → ∞, h n → 0 and z n = θ y n (1 + o(1)), where θ > 0. Assume further that -2 n = nh d n (y n |x) → ∞, nh d+2 n (y n |x) → 0, ω(3) 

  the Chebyshev inequality ensure that for all p ∈ (1, γ(x) -1 /2 + 1) and u n ∈ {y n,1 , . . . , y n,J , z n }, m(p-1)n (u n |x)/m (p-1) (u n |x) -1 = O P (1/ nh d n ), so that |x) ϕ (p-1) (u n |x)-1 + o P (1).

n y n, j |x F( 1 ) 1 ≤ σ - 1 nF( 1 )F 1 ≤ σ - 1 nF

 |x111111 y n, j |x -q (1) (α n, j |x)|x n (z n |x) F(p) (z n |x) -(p) q (p) (a n |x)|x F(p) (z n |x)

nancial Steering, led by the French Ecole Polytechnique and its Foundation and sponsored by BNP Paribas, and the support of the French National Research Agency in the framework of the Investissements d'Avenir program (ANR-15-IDEX-02).

Acknowledgments. This research was supported by the French National Research Agency under the grant ANR-19-CE40-0013-01/ExtremReg project. S. Girard gratefully acknowledges the support of the Chair Stress Test, Risk Management and Fi-

Clearly ω (1) h n (y n, j |x) ≤ ω (1) h n ((1 -δ)y n |x) and ω (1) h n (z n |x) ≤ ω (1) h n ((1 -δ)θ y n |x) for n large enough. Lemma 3 then provides E(Z n ) = o [START_REF] Usseglio | Coherent measures of risk[END_REF]. It thus remains to focus on the asymptotic distribution of the centered variable n) is the symmetric matrix having entries:

We recall

) and Lemma 3 combined with Equation ( 15) immediately gives

The calculation of B (n) j, (x) gives, through straightforward calculations and the use of Lemma 3 and Equation ( 15),

The regular variation property of F(1) gives

.

Clearly, as a direct consequence of Lemma 3, the first term dominates. Remark that

) and combine Assumption (K ), the results of Lemma 4 (with λ = (1 ∨ τ -γ(x) j /θ)), and the regular variation property of ϕ (k) (•) (see Equation ( 15)) to find that the numerator of this first term is asymptotically equivalent to

Proof of Theorem 2 We recall σ

The first term converges in distribution to Γ. The second one converges to 0 in probability, by Theorem 1. To control the third one, write

In view of Theorem 4.3.8 in [START_REF]Extreme Value Theory: An Introduction[END_REF] and its proof,

The third term therefore converges to 0. Conclude using Slutsky's lemma and the delta-method.

Proof of Theorem 3

This proof is similar to those of Theorem 4 in [START_REF] U -C | Nonparametric extreme conditional expectile estimation[END_REF] (where p = 2) and Theorem 1 in [START_REF] U -C | An L p -quantile methodology for estimating extreme expectiles[END_REF] (an unconditional version) and is thus left to the reader.