Yohan Breux 
email: yohan.breux@gmail.com
  
André Mas 
email: andre.mas@umontpellier.fr
  
Lionel Lapierre 
email: lionel.lapierre@lirmm.fr
  
On-manifold Probabilistic ICP : Application to Underwater Karst Exploration

) is developed. The closed-form expression of the covariance modeling the estimated rigid transformation is also provided. In a second part, its application to 3D scan matching between acoustic sonar measurements is proposed. It is a prolongation of previous work on elevation angle estimation from wide-beam acoustic sonar. While the pIC approach proposed is intended to be a key component in a Simultaneous Localization and Mapping (SLAM) framework, this paper focuses on assessing its viability on a unitary basis. As ground truth data in karst aquifer are difficult to obtain, quantitative experiments are carried out on a simulated karst environment and show improvement compared to previous state-of-the-art approach. The algorithm is also evaluated on a real underwater cave dataset demonstrating its practical applicability.

Introduction

In this paper, we are interested in the Iterative Closest Point (ICP) algorithms firstly designed for 2D/3D shape registration and further applied in robotic applications to estimate rigid transformations between point clouds acquired by sensors (e.g. LIDAR, Acoustic sonar). Basically, it is an iterative procedure with two steps. First, the association step searches for corresponding points in both point clouds. It is followed by an optimization step minimizing the associated points distances with respect to the rigid transformation between the two input point clouds. In particular, we are interested in the ICP probabilistic extension first proposed by [START_REF] Montesano | Probabilistic scan matching for motion estimation in unstructured environments[END_REF] called probabilistic Iterative Correspondence (pIC). It takes into account uncertainties in the positions of the points and in the initial displacement estimate by modeling them as Gaussian random variables. This is particularly important when using strongly noisy sensors such as underwater acoustic sonar. Furthermore, unlike LIDAR which provides full scans almost instantaneously, mechanically scanning sonar systems (MSIS) can take several seconds for a full 360 • scan due to higher acoustic time-of-flight underwater. Besides, as the robot is moving during the acquisition, its pose uncertainty is also propagated to the sonar measurements.

In the context of underwater karst exploration, we have to rely on acoustic sonars as water turbidity affects the efficiency of vision-based and LIDAR approaches. pIC is then the natural candidate in a SLAM framework to estimate the displacement between two overlapping scans. To guarantee overlapping between two successive scans, we have to rely on wide-beam sonar. The drawback of such sonar is that the elevation angle in each measurement beam is unknown, leading to high uncertainty in the positions of the measured 3D points. Previous systems based on MSIS [START_REF] Mallios | Scan matching slam in underwater environments[END_REF] [START_REF] Mallios | Toward autonomous exploration in confined underwater environments[END_REF] deal with this problem by considering a 2D SLAM approach. In our previous work [START_REF] Breux | Elevation angle estimations of wide-beam acoustic sonar measurements for autonomous underwater karst exploration[END_REF], we propose a method to estimate the probability distribution of elevation angles. We first compute a probabilistic surface model from the measurements of a vertically mounted narrow-beam sonar which is then leveraged to estimate the elevation angles from an horizon-tally mounted wide-beam sonar. We thus obtain 3D measurements following non-Gaussian distributions. SLAM algorithms' localization accuracy is directly related to the ICP/pIC performance. Our first contribution in this paper is to propose the derivation of on-manifold pIC (noted MpIC) as well as the derivation of the estimated transformation covariance. We show that it leads to superior performance compared to estimation based on Euler angles or quaternion representations. To the best of our knowledge, the literature [START_REF] Montesano | Probabilistic scan matching for motion estimation in unstructured environments[END_REF][2] [START_REF] Burguera | The uspic: Performing scan matching localization using an imaging sonar[END_REF] [START_REF] Palomer | Multibeam 3d underwater slam with probabilistic registration[END_REF] exploiting the pIC algorithms implicitly supposes an error covariance independent of the rigid transformation estimation to obtain their closed-form solution in the optimization step. In this work, we take into account the dependence of the error covariance on the transformation to estimate.

We then apply it in the context of underwater karst exploration based on an extension of our previous work [START_REF] Breux | Elevation angle estimations of wide-beam acoustic sonar measurements for autonomous underwater karst exploration[END_REF]. In particular, we propose a Gaussian approximation to our estimated sonar measurements. Furthermore, in order to use a point-to-plane association scheme, we need to compute normals at each point. As we can expect sparse point clouds, we propose to compute the normals and their covariances based on the probabilistic surface model as obtained in [START_REF] Breux | Elevation angle estimations of wide-beam acoustic sonar measurements for autonomous underwater karst exploration[END_REF]. To quantitatively assess our algorithm, we need to have access to ground truth displacements which are difficult to obtain in natural karst environment.

We thus evaluate our algorithm on a simulated karst environment and compare it to the state-of-the-art 2D approach successfully used in real underwater cave [START_REF] Mallios | Toward autonomous exploration in confined underwater environments[END_REF] [START_REF] Mallios | Underwater caves sonar data set[END_REF].

The structure of the paper is as follows. Section 2 gives an overview on ICP approaches with a focus on underwater robotic applications. Section 3 briefly introduces generalities on Lie groups and particularly on the special Euclidean Group SE(3) which represents the rigid transformations of space. The description of pIC and our on-manifold derivation MpIC is given in Section 4. Section 5 succinctly introduces our previous elevation angle estimation method and its extensions with notably normal computations and Gaussian approximation of the estimated 3D points distribution. Finally, Section 6 evaluates our approach through experiments on a simulated karst environment. Conclusion and future working directions are left to Section 7.

Related Works

The original ICP algorithm for 3D shapes registration comes from the seminal works by [START_REF] Besl | Method for registration of 3-d shapes[END_REF] and [START_REF] Chen | Object modelling by registration of multiple range images[END_REF] for point-to-plane associations. A lot of improvements have been proposed by exploiting additional features such as surface orientations [START_REF] Censi | An icp variant using a point-to-line metric[END_REF] [START_REF] Segal | Generalized-icp[END_REF] or color [START_REF] Druon | Color constrained icp for registration of large unstructured 3d color data sets[END_REF] [START_REF] Servos | Multi-channel generalized-icp: A robust framework for multi-channel scan registration[END_REF], improving the association step [START_REF] Montesano | Probabilistic scan matching for motion estimation in unstructured environments[END_REF] [START_REF] Agamennoni | Point clouds registration with probabilistic data association[END_REF] and/or the objective function [START_REF] Montesano | Probabilistic scan matching for motion estimation in unstructured environments[END_REF][15] [START_REF] Du | Robust rigid registration algorithm based on pointwise correspondence and correntropy[END_REF]. The range of ICP applications is large and we are interested here in its usage in mobile robotics, especially with acoustic sonar measurements. A comprehensive overview can be found in [START_REF] Pomerleau | A review of point cloud registration algorithms for mobile robotics[END_REF].

In order to take into account sensor uncertainties, Montesano et al. [START_REF] Montesano | Probabilistic scan matching for motion estimation in unstructured environments[END_REF] propose the probabilist Iterative Correspondence (pIC), a probabilistic approach of the original ICP algorithm. They consider both points and the relative transformation between the point clouds as Gaussian random variables. The Euclidean distance used in the ICP association step and in the objective function is replaced by the Mahalanobis distance. Doing so, each association error is weighted by its covariance so that uncertain data contribute less to the objective function.

Segal et al. [START_REF] Segal | Generalized-icp[END_REF] also introduce a probabilistic approach with their generalized ICP (G-ICP). The association step is done as in the original ICP using Euclidean distances. However, they consider points as Gaussian random variables with fixed uncertainties in the plane orthogonal to the surface at the considered point. While this does not directly model uncertainties related to the measurement, it takes into account the sampling error of the surface, e.g. the fact that corresponding points are not exactly the same point on the surface. Note that unlike pIC, the transformation is not considered as a random variable.

Agamennoni et al. [START_REF] Agamennoni | Point clouds registration with probabilistic data association[END_REF] recently propose another probabilistic approach without explicit association phase. More precisely, they search to maximize the likelihood of points from the target cloud conditioned on the associated point in the reference cloud. Each possible association is weighted by a latent variable.

They use an Expectation-Maximization (EM) procedure to iteratively estimate the transformation and the associations weights.

In the field of underwater exploration, localization with SLAM approaches are often based on acoustic sonar scan matching. The level of noise of such sensors is higher than scan laser used in terrestrial robotics. Furthermore, due to the propagation time of acoustic wave in water and the inner mechanics to rotate the acoustic emitter (for Mechanical pencil beam sonars (MPBS).

Electronically pencil beam sonar (EPBS) are still expensive and cumbersome), a full scan can take several seconds to complete while the robot is moving.

We thus have to consider uncertainties in the robot position during the scan acquisition on top of measurement errors.

Palomer et al [START_REF] Palomer | Multibeam 3d underwater slam with probabilistic registration[END_REF] develop an EKF SLAM framework for seafloor mapping.

They use a multi-beam echosounder and the resulting scans are matched using pIC in 3D. However, the closed-form expression for the estimated transformation in the pIC error minimization step is obtained by implicitly considering an error covariance independent of the transformation. In fact, this covariance is dependent on the transformation through the jacobians involved in its definition. Furthermore, optimization is made using Euler angle representation which can be prone to gimbal lock singularity [START_REF] Blanco | A tutorial on se (3) transformation parameterizations and onmanifold optimization[END_REF].

In this paper, we are interested in methods exploiting mechanically scanned imaging sonar (MSIS) as our practical application is based on those sensors. Mallios et al. [START_REF] Mallios | Scan matching slam in underwater environments[END_REF][7] use the pIC algorithm [START_REF] Montesano | Probabilistic scan matching for motion estimation in unstructured environments[END_REF] in an Extended Kalman Filter (EKF) SLAM framework for underwater cave exploration in a 2D setting. A similar approach is proposed by Burguera et al. [START_REF] Burguera | The uspic: Performing scan matching localization using an imaging sonar[END_REF] [START_REF] Burguera | A novel approach to register sonar data for underwater robot localization[END_REF]. Recently, McConnell and all [START_REF] Mcconnell | Predictive 3d sonar mapping of underwater environments via object-specific bayesian inference[END_REF] propose a method for mapping shallow water in a human-made littoral setting based on a pair of imaging sonars with orthogonal axes. They infer elevation angles from the overlapping of the sonars [START_REF] Mcconnell | Fusing concurrent orthogonal wideaperture sonar images for dense underwater 3d reconstruction[END_REF] and extends the mapping coverage with a Bayesian inference framework. As this method strongly depends on the structure of the environment, it is not appropriate for unstructured karst aquifer exploration. Furthermore, it does not provide the incertitude (or probability distribution) on the estimated 3D points so that it can't be used in a pIC framework. This work is the continuity of our previous work [START_REF] Breux | Elevation angle estimations of wide-beam acoustic sonar measurements for autonomous underwater karst exploration[END_REF] which proposes a method for estimating the distribution of elevation angles from wide-beam sonar measurements by leveraging measurements from a secondary narrow-beam sonar.

We first derive MpIC, a generic on-manifold pIC algorithm, with the closed-form expressions of the estimated transformation covariance. We then propose a practical application in the context of underwater karst exploration using MpIC to match 3D scan obtained by MSIS acoustic sonars where elevation angles are estimated using the method in [START_REF] Breux | Elevation angle estimations of wide-beam acoustic sonar measurements for autonomous underwater karst exploration[END_REF].

Generalities on Lie groups

In this section, we introduce the notations and some differential geometry concepts relevant to the derivations exposed in the following sections. In particular, we focus on Lie Groups and more specifically on the 3D rigid transformation group SE [START_REF] Mallios | Toward autonomous exploration in confined underwater environments[END_REF]. A good introduction to Lie groups for application in Robotics can be found in [START_REF] Sola | A micro lie theory for state estimation in robotics[END_REF]. A more detailed coverage of differential geometry and Lie groups can be found in [START_REF] Gallier | Differential Geometry and Lie Groups: A Computational Perspective[END_REF].

A N -dimensional manifold M is a topological space where every neighbor- A Lie group G is defined as a smooth manifold with a group structure such that its group product and its inverse are differentiable. We can then define its Lie algebra g = T e G (a vector space equipped with a bilinear product called here the Lie bracket) which corresponds to the tangent space of G at its identity element e. From a practical point of view, computations can be easier on the Lie Algebra. In particular, it is useful for on-manifold non-linear optimization : In the following, we only consider matrix Lie groups. By noting GL(n) the general linear group in dimension n (set of inversible real n × n inversible matrices), the Von Neumann-Cartan theorem states that every closed subgroup of GL(n) is a Lie group (Theorem 4.8, [START_REF] Gallier | Differential Geometry and Lie Groups: A Computational Perspective[END_REF]).

hood V p of a point p ∈ M is homeomorphic to R N . A N -dimensional manifold embedded in R D , N < D,
The exponential map exp : g → G maps elements of the algebra to the group.

It is defined, in the case of matrix Lie group, as the exponential of a matrix defined by the following power series :

e A = +∞ k=0 1 k! A k
We note its inverse the logarithm map log : G → g.

We define the isomorphism ∧ which maps elements of R N (local parametriza-tion) to elements of the Lie algebra :

∧ :      R N → g g → (g) ∧ ≡ g = N i=1 g i G i (1) 
where {G i } is a basis (called generators) of the Lie algebra. We denote its inverse mapping by the operator ∨ .

Smooth manifolds, and thus Lie groups, are also Riemannian manifolds (Theorem 14.2, [START_REF] Gallier | Differential Geometry and Lie Groups: A Computational Perspective[END_REF]). Hence we can define a smooth inner product < •, • > p on the tangent space T p M at each point p ∈ M. The metric induced by this inner product is used to measure the length of piecewise-C

1 curves γ : [a, b] ⊂ R → M such that L(γ) = b a γ (t), γ (t) 1 2 γ(t) dt (2) 
with the velocity

γ (t) ∈ T γ(t) M, ∀t ∈ [a, b].
Geodesics are an important class of curves. They are the curves which locally minimize the length between two points and are equivalent to the straight line in Euclidean geometry (null curvature). In fact, by definition, geodesics are curves with constant velocity. This means that if γ is a geodesic of M then ∀t, γ (0) = γ (t) = v ∈ T γ(0) M. We can then define for a given velocity v a geodesic γ(t) = e tv going through a point p ∈ M. It is illustrated in Figure 1.

In this paper, we are interested in two particular matrix Lie groups : the Special Orthogonal group SO(3) representing the rotations and the Special Euclidean group SE(3) representing the rigid transformations in R 3 .

The sets SO(3) and SE(3)

SO( 3) is a closed subgroup of GL(3) defined as

SO(3) = R ∈ GL(3)| RR T = I 3 and det(R) = 1
The corresponding Lie algebra so(3) is defined by the space of skew-symmetric matrices

∀W ∈ so(3), W = ω = [ω] × , ω ∈ R 3
where the operator [ ] × is defined in Appendix A. The generators G so(3) i of so(3) are given by

G so(3) i = e i (3) 
where e 1 , e 2 , e 3 is the canonical basis of R 3 . 3) is defined as the semidirect product SO(3) R 3 and is isomorphic to the affine group GA(3) (a subgroup of GL( 4)) through the application

SE(

           SO(3) × R 3 → GA(3) R, t → T =    R t 0 T 1    (4) 
Its Lie algebra se(3) is given by

∀Ξ ∈ se(3), Ξ = ξ =   [ω] × τ 0 T 0   ξ = ω T τ T T , ω ∈ R 3 , τ ∈ R 3
The generators G se(3) i of se(3) are given by

G se(3) i =   G so(3) i 0 0 T 0   , i ∈ {1, 2, 3} G se(3) i =   0 e i 0 T 0   , i ∈ {4, 5, 6} (5) 
Expressions for the exponential / log maps of SO(3) and SE(3) can be found in [START_REF] Sola | A micro lie theory for state estimation in robotics[END_REF].

Throughout this paper, we use the left-invariant Riemannian metric induced by the point-independent Riemannian metric on GA(3) (Section 3.2, [START_REF] Belta | Euclidean metrics for motion generation on se (3)[END_REF])

u, v A = T r u T v = A -1 u, A -1 v e = s u , s v e = s T u Gs v (6) 
G =   I 3 0 0 2I 3   , A ∈ SE(3), u, v ∈ T A SE(3)
where e is the identity element of SE(3), T A SE(3) the tangent plane at A and

s u , s v ∈ se(3).
Pose-pose and pose-point compositions (resp. inverse compositions) are represented by the operator ⊕ (resp. ). More precisely, for a 3D pose q ∈ SE(3)

with SE(3) seen as a matrix group, the pose-pose composition corresponds to the group multiplication and the pose-point composition to the group action on

R 3 .
We also define the operator used to compose a transformation with an increment expressed in the tangent vector space (local parametrization). It is given by :

     G × R n → G G, ξ → G ξ = Ge ξ (7) 

Jacobian on a Riemannian Manifold

Both ICP optimization step and uncertainty propagation involve computation of Jacobians and Hessians. As we work directly on SE(3), we recall in the following sections how to compute them on a Riemannian manifold.

For any smooth function f : M → R m with M being a Riemannian manifold, the differential of the function f at p ∈ M is defined by

∀u ∈ T p M, Df p (u) = d dt f (γ(t)) t=0 (8) 
where γ is a geodesic of M going through p (γ(0) = p) and with velocity u (γ (0) = u). Note that this is equivalent to the definition given in [START_REF] Gallier | Differential Geometry and Lie Groups: A Computational Perspective[END_REF](Definition 14.3). If M is a Lie group and m its Lie algebra, it can be shown (Proposition 21.20, [START_REF] Gallier | Differential Geometry and Lie Groups: A Computational Perspective[END_REF]) that the one-parameter subgroups exp(tX 0 ), X 0 ∈ m are its geodesics.

In the case of a matrix Lie group G with its Lie algebra g, the geodesics are thus

γ(t) = T e t g , T ∈ G, g ∈ g (9) 
Put simply, Df p (u) is the directional derivative along the direction vector u.

In the case of SO(3) and SE(3) manifolds, we can thus compute the Jacobian matrix of f at T , J f |T , by computing its derivatives along the generators G i of so(3) and se(3). Formally

J f |T = Df T (T G j ) (10) 
Note that we have the following relation

J f |T g = Df T (T g) , g ∈ R n (11) 
The advantage of using this jacobian definition is to only operate univariate derivatives which keeps computation simple.

Jacobian computation on Lie groups could also be done directly using matrix expression leading to complex tensorial calculus involving matrix vectorization and kronecker products. While this approach gives exact matricial equalities, it is unnecessarily complex for implementation purpose. The definition proposed here gives simple expression for each element of the Jacobian which are easier to implement and computationally efficient.

By noting q ≡ T =   R t 0 T 1   ∈ SE(3), a ∈ R 3 and ξ ∈ R 6
, the differentials of SE(3) group action and its inverse are given by

D ⊕ |q,a T ξ = T ξa (12) 
D |q,a T ξ = -ξT -1 a (13) 
Using ( 8) with (12)(13), jacobians of SE(3) group action and its inverse can be computed and are given by

J ⊕ q |q,a ≡ ∂q ⊕ a ∂q = R -[a] × I 3 = RU a , U a = -[a] × I 3 (14) 
J ⊕ a |q,a ≡ ∂q ⊕ a ∂a = R (15) 
J q |q,a ≡ ∂a q ∂q = R T a -R T t × -I 3 = -R T U a-t (1 2 ⊗ R) (16) 
J a |q,a ≡ ∂a q ∂a = R T (17) 
with

1 2 = [1 1]
T and ⊗ the Kronecker product defined in Appendix A.

Hessian on a Riemannian Manifold

The hessian at p of a smooth function f : R n → R is defined by

∀x, y ∈ R n , Hess(f ) p (x, y) = x t H p y (18) 
where

H p = ∂ 2 fi ∂xi∂xj
is the usual hessian matrix. Similarly, for a smooth function f on a C k+1 Riemannian manifold M, its hessian at p ∈ M is denoted

Hess(f ) p (X, Y ) where X, Y are two C k -vector fields on M(A C k -vector field X is a mapping p ∈ M → X(p) ∈ T p M such that X(p) is C k with respect to p.
See Section 10.2, [START_REF] Gallier | Differential Geometry and Lie Groups: A Computational Perspective[END_REF]). In particular, for u ∈ T p M, we have (Proposition 16.22, [START_REF] Gallier | Differential Geometry and Lie Groups: A Computational Perspective[END_REF])

Hess(f ) p (u, u) = d 2 dt 2 f (γ(t)) t=0 ( 19 
)
where γ is a geodesic of M going through p (γ(0) = p) and with velocity u

(γ (0) = u).
Similarly to the differential, by noting that T T G = T g, the hessian matrix is deduced from the hessian operator and the vector fields

X i : T → T G i ∈ T g such that H f T = Hess(f ) T (T G i , T G j ) ( 20 
)
where G i are the generators of g as defined respectively in (3) and (5) for so [START_REF] Mallios | Toward autonomous exploration in confined underwater environments[END_REF] and se(3).

Hence the diagonal terms of the hessian matrix are computed using [START_REF] Burguera | A novel approach to register sonar data for underwater robot localization[END_REF].

Other terms are obtained by exploiting the fact that the hessian is a symmetric bilinear form :

Hess(f ) T (T G i , T G j ) = 1 2 Hess(f ) T (T G i + T G j , T G i + T G j ) -Hess(f ) T (T G i , T G i ) -Hess(f ) T (T G j , T G j ) (21) 

Probabilistic Iterative Correspondence (pIC)

The Iterative Closest Point (ICP) algorithm is an iterative non-linear 2-step process for registering unstructured 2D or 3D point clouds. In other words, it aims at estimating the displacement (rigid transformation) between two point clouds. Given an initial displacement, each iteration consists in associating points in the first cloud to points in the displaced second cloud.

The algorithm then computes, by means of non-linear optimization, the displacement minimizing the sum of errors between each pair of associated points.

Originally, the error is defined by the Euclidean distance between associated points.

A probabilistic variant taking into account point uncertainties is proposed by [START_REF] Montesano | Probabilistic scan matching for motion estimation in unstructured environments[END_REF] and further exploited in a similar context to our work in 2D [START_REF] Mallios | Scan matching slam in underwater environments[END_REF] and 3D [START_REF] Palomer | Multibeam 3d underwater slam with probabilistic registration[END_REF].

In those works, the optimization is based on Euler angles representation and the error covariance is implicitly assumed to be independent of the estimated transformation. We improve upon previous iterations with two main contributions : we directly optimize on the SE(3) manifold using derivative on its Lie algebra and we also take into account the error covariance dependence on the estimated displacement.

The inputs of the algorithm are the reference 3D point cloud S ref = {r i } i=1...n , the newly acquired 3D point cloud S new = {c i } i=1...m and an initial transformation q (0) such that

r i ∼ N (r i , Σ ri ) , c i ∼ N (c i , Σ ci ) (22) 
q (0) ∼ N q(0) ∈ SE(3), Σ q (0) (23) 
where the notation x ∼ N (x, Σ x ) represents a nD random variable following a Gaussian distribution with mean x ∈ R n and covariance matrix Σ x ∈ S n ++ where S n ++ is the space of n × n definite positive matrix. Note that we do not need to specify how we represent the transformation q. Generally, it is represented as a 7D vector made up of a quaternion for the rotation part and a 3D vector for the translation part. It can also be represented as a 6D vector using Euler angles for the rotation part.

We now consider the k-th iteration. The current displaced point cloud is

S (k) new = n (k) i i=1...m defined by n (k) i = q (k) ⊕ c i ∼ N n(k) i , Σ n (k) i (24) 
The mean and covariance of n

(k) i are given by n(k) i = q(k-1) ⊕ ci (25) Σ n (k) i = J ⊕ q | q(k-1) , ni Σ q (0) J ⊕ T q | q(k-1) , ni + J ⊕ a | q(k-1) , ni Σ ci J ⊕ T a | q(k-1) , ni (26) 
Note that the covariance is obtained with a first-order approximation. The involved jacobians J ⊕ q and J ⊕ a are respectively defined by ( 14) and ( 15).

Associations

In the association step, we search the set of correspondence candidates

A (k+1) i ⊂ S ref for each point n (k+1) i ∈ S (k+1)
new . In the following, the errors

e ij ∼ N ēij , Σ eij between two points n (k+1) i and r j are defined by ēij = n(k+1) i -rj = q(k) ⊕ cj -rj (27) 
Σ eij = Σ n (k+1) i + Σ rj (28) 
The Mahalanobis distance D 2 (n i , r j ) between a pair of points is given by

D 2 (n i , r j ) = ēT ij Σ -1 eij ēij (29) 
As the previous Mahalanobis distance follows a χ 2 distribution with 3 degrees of freedom (DoF), we consider a valid candidate for association if the distance is inferior to the critical value for a confidence level α ∈ [0, 1] :

D 2 (n i , r j ) < χ 2 3,α (30) 
In the case of point-to-point association, the final association

a i ∈ A (k+1) i for n (k+1) i is simply the element in A (k+1) i which minimizes D 2 (n i , •) : a i = arg min r∈A (k+1) i D 2 (n i , r) (31) 
The drawback of the point-to-point association is to suppose that the exact same points belong to both point clouds. In practice, the two inputs point cloud result from two different samplings of the environment leading to misalignment.

Complementary to the point-to-point association, the point-to-plane association uses local information on the surface shape and performs better against misalignment. The general approach is then to first use point-to-point association for the first iterations and to switch later on to point-to-plane association.

First, we need to estimate the tangent planes

p i = v T i d i ∼ N vT i di , Σ pi
defined by v T i x = d i at the surface from which each points has been measured. If the point clouds are dense enough, the classic approach is to fit a plane on the candidate sets A (k+1) i

. In [START_REF] Palomer | Multibeam 3d underwater slam with probabilistic registration[END_REF] an efficient method to find the normals and their associated covariance is proposed. It is summarized in Algorithm 1. In our work, we consider rather sparse clouds so that this method is not practicable. However, in Section 5.3, we propose a novel method to estimate the normals based on a Gaussian process regression of the environment surface.

Once the normals are computed, the final association

a i = a ⊥ i ∼ N (ā ⊥ i , Σ a ⊥ i )
for n i is the orthogonal projection of n i on the plane p i and is given by

ā⊥ i = ni -nT i vi -di vi (32) Σ a ⊥ i = J a ⊥ i ni Σ ni J a ⊥ i T ni + J a ⊥ i pi Σ pi J a ⊥ i T pi (33) 
In both associations schemes, the final errors e i are defined by ēi = niāi (34)

Σ ei = Σ ni + Σ ai (35) 
Developing ( 35) with ( 14)(15)(26), we can write the covariance as follows

Σ ei = Σ ai + RΩ ci R T (36) 
Ω ci = Σ ci + U ci Σ q U T ci ( 37 
)
where R is the rotation matrix related to the current mean transformation q and U ci defined in [START_REF] Agamennoni | Point clouds registration with probabilistic data association[END_REF].

Algorithm 1 PICP Association

Input: Association scheme T assoc , Transformation q, Gaussian point n ∈ q ⊕ S new , Candidate set A ⊂ S ref Output: Gaussian point a ∈ S ref associated with n 1: if (T assoc = point-to-point) then 2: a = arg min r∈A D 2 (n, r) 3: else if (T assoc = point-to-plane) then 4: α = r∈A Tr(Σ r ) -2 5: p µ = r∈A Tr(Σ r ) -2 r α -1 6: C = r∈A ( r-pµ)( r-pµ) T T r(Σ 2 r )
7:

K = r∈A r( r-pµ) T T r(Σ 2 r )
8:

H = K -vT K T v p µ p T µ α 9:
v = Eigen vector of C associated with minimal eigen value 10:

d = vT p µ 11: p ∼ N [v d] T , H + 12: ā = q ⊕ n -( q ⊕ n) T v -d v 13: Σ a = J a q Σ q J a T q + J a n Σ n J a T n + J a p Σ p J a T p 14:
a ∼ N (ā, Σ a ) 15: end if

Optimization

After the association step, we have two sets of N associated points {a i } and {n i } with corresponding errors e i = n i -a i . The optimization step consists in searching for the transformation q (k+1) minimizing the squared Mahalanobis norm of errors

q (k+1) = arg min q∈SE(3) F = f 2 = ēT Σ -1 e ē ( 38 
)
where the errors are concatenated into a single vector ē = ēT i T . The covariance matrix Σ -1 e is a block-diagonal matrix with its i-th block being Σ ei . Equation (38) is generally solved iteratively using non-linear least square method such as the Levenberg-Marquardt (LM) algorithm.

In this work, we optimize directly on the SE(3) manifold. If we use the superscript k for the current ICP iteration as a subscript, the l-th iteration of LM solves

ξ (l) = arg min ξ∈R 6 f 2 q(l-1) k ξ = -J f (l) T q J f (l) q + λ (l) I -1 J f (l) q f q(l-1) k (39) q(l) k = q(l-1) k ξ (l+1) (40) 
with here q(0) k = q(k) and λ the dumping parameter of LM. Note here the difference with equation (32) from [START_REF] Palomer | Multibeam 3d underwater slam with probabilistic registration[END_REF]. In our case, we do not make the assumption that Σ e is constant relative to the displacement q. To alleviate the notation, we omit the LM iteration superscript in the following.

Proposition 1. The differential DF q of F = f 2 at q ∈ SE(3) can be expressed as

DF q (T ξ) = N i=1 ēT i Σ -1 ei R 2U ci ξ + (Ω ci ω -ωΩ ci ) R T Σ -1 ei ēi (41) 
with ξ ∈ se(3) and U ci , Ω ci defined by ( 14)(37). The jacobian J F |q is obtained using [START_REF] Censi | An icp variant using a point-to-line metric[END_REF] and J f |q follows by

J f |q = 1 2f (q) J F |q (42)
In particular, note that

∀i ∈ {4, 5, 6}, ξ = G SE(3) i =⇒ ω = 0 (43)
This leads to a simple expression for the last 3 columns of

J F |q J F |q [4 : 6] = 2 N i=1 ēT i Σ -1 ei R = ēT Σ -1 e (1 N ⊗ R) (44) 
The proof is given in Appendix B.1.

Covariance estimation

In this section, we are interested in estimating the covariance Σ q of the previously optimized transformation q. A closed-form expression is given by [START_REF] Censi | An accurate closed-form estimate of icp's covariance[END_REF] as follows

Σ q = ∂ 2 F ∂q 2 -1 ∂ 2 F ∂q∂z Σ z ∂ 2 F ∂q∂z T ∂ 2 F ∂q 2 -1 = H F q -1 H F q,z Σ z H F T q,z H F q -1 (45) 
with F = f 2 and the hessian of F :

H F =   H F q H F q,z H F q,z H F z   (46) 
The Gaussian vector z

= [z T 1 . . . z T p ] T with z T i = [a T i c T i
] is a vector of dimension 6p concatenating the points from both clouds. Its covariance matrix is defined by the block-diagonal matrix of dimension 6p × 6p

Σ z =               Σ a1 . . . . . . 0 Σ c1 . . . . . . . . . . . . . . . . . . Σ ap 0 . . . . . . Σ cp               (47) 
Proposition 2. The hessian Hess(F ) q for all ξ ∈ se(3) is given by

Hess(F ) q T ξ, T ξ = N i=0 ēT i Σ -1 ei R 2 ω ( ω ci + τ ) + D ωi R T Σ -1 ei ēi + K ωi R (2K ωi ēi + 3U ci ξ) + ξ T U T ci R T Σ -1 ei R 2U ci ξ + K ωi ēi ( 48 
)
with

Λ ωi = Ω ci ω (49) 
D ωi = 2 ωΩ ci ω -Ω ci ω 2 -ω 2 Ω ci (50) 
K ωi = (Λ ωi + Λ T ωi )R T Σ -1 ei (51) 
The corresponding hessian matrix H F q is obtained using [START_REF] Mcconnell | Predictive 3d sonar mapping of underwater environments via object-specific bayesian inference[END_REF] and [START_REF] Mcconnell | Fusing concurrent orthogonal wideaperture sonar images for dense underwater 3d reconstruction[END_REF].

The derivation is given in Appendix B.2. For H F q,z , the expressions are more involved and are provided in Section Appendix B.2.2 .

All the jacobian and hessian expressions are implemented and tested as a part of our MpIC algorithm. The source code used in this paper is available at https://gite.lirmm.fr/breux/mpic.

Algorithm 2 On-manifold Probabilistic Iterative Closest Point

Input: Initial gaussian transformation q, point clouds S ref = {r i }, S new = {c i }, Maximum iteration k max , Association scheme T assoc Output: Relative gaussian transformation q * between S new and S ref 1: k = 0, q * = q 2: do 3:

for (i = 1; i ≤ m; i + +) do 4: ni = q(k) ⊕ ci 5: Σ ni = J ⊕ q Σ q J ⊕ T q + J ⊕ a Σ ci J ⊕ T a 6: A i = r ∈ S ref |D 2 (n i , r) < χ 2 3,α 7 
:

a i = PICP Association(T assoc , A i , n i , S ref ) 8: ēi = n i -a i 9: Σ ei = Σ ni + Σ ai 10:
end for 11:

F = 1 2 m i=1 ēT i Σ ei ēi 12:
for (l = 0; l < l max ; l + +) do 13:

ξ * = arg min ξ F ( q(k) ξ)

14:

q(k+1) = q(k) ξ * 15:
end for 16:

k + + 17: while (!hasConverged() and k < k max ) 18: q * = q(k)

19: Σ q * = H F q -1 H F q,z H F q,z T H F q -1

Application to Sonar Data with unknown elevation angle

In this section, we propose an application of our MpIC algorithm to acoustic sonar data in the context of underwater karst exploration. Acoustic sonar range measurements are obtained with beams which could have large aperture.

Thus, the elevation angle θ of each measurement is generally unknown and the 3D information is lost. In our previous work [START_REF] Breux | Elevation angle estimations of wide-beam acoustic sonar measurements for autonomous underwater karst exploration[END_REF], we propose a method which leverages the data acquired with a narrow-beam acoustic sonar to estimate the elevation angles from a wide-beam acoustic sonar. In the following, we briefly introduce the original approach and its extensions used in this paper.

Notations

In the following, we reuse the notation introduced in Section 4 with some additions. We denote by b the sonar beam-width such that each elevation angle

θ is in the range -b 2 , b 2 .
We also define η pi ∈ SE(3) as the poses relative to . 

" % "! " "! # "! $%& "' " ! & "#$ "' # "' $%& # !! $ % $ % ' % % ' % % Complete scan a from ( ! ! " to ! ! #$% ) Complete scan c from ( !& " to !& #$% )
g :                    R + × -b 2 , b 2 × [0, 2π] → R 3 ρ, θ, φ → p L = ρ       cos(θ) cos(φ) cos(θ) sin(φ) sin(θ)       (52) 
Similarly, we define the function h which maps the local spherical coordinates to the global reference frame in Cartesian coordinates h :

     R + × [-b 2 , b 2 ] × [0, 2π] × SE(3) → R 3 ρ, θ, φ, η → η ⊕ g(ρ, θ, φ) (53) 
Hence for each data point p from any of the two point clouds

∃ρ, θ, φ, s.t. p = h (ρ, θ, φ, η p ) (54) 
Figures 2a and2b illustrate the notation and the problem configuration.

In the sonar local frame, the measurements in spherical coordinates [ρ θ φ] T can be modelled as the following independent random variables

ρ i ∼ Gamma (α ρi , β ρi ) ( 55 
)
θ i ∼ SBeta α i , β i , - b 2 , b 2 (56) 
φ i ∼ N φi , σ 2 φi ( 57 
)
where SBeta(α, β, min, max) is a shifted and scaled Beta distribution. Its probability density function is defined by the following function

f (θ; α, β, b) = Γ(α + β) Γ(α)Γ(β) θ + b 2 α-1 b 2 -θ β-1 b α+β-1 (58) 
with Γ the Gamma function.

In practice, the mean and variance of ρ are such that it can be approximated by a normal distribution. In the following we use this approximation by noting

ρ i ∼ N ρi , σ 2 ρi ( 59 
)
Note that θ follows a Beta distribution even when no prior information is available for the elevation angle θ. Indeed, in this case, θ follows a uniform

distribution θ ∼ U b 2 , b 2 
which is also a Beta distribution as we have

∀a, b ∈ R, U(a, b) = SBeta(1, 1, a, b) (60) 
In order to estimate the displacement between two points cloud following the presented distribution, we first need to use a Gaussian approximation for the points in global Cartesian coordinates. We can then apply the on-manifold pIC as shown in Section 4.

Elevation angles estimation

In this section, we briefly cover our previous work [START_REF] Breux | Elevation angle estimations of wide-beam acoustic sonar measurements for autonomous underwater karst exploration[END_REF] which focuses on estimating the elevation angles from a wide-beam sonar. We also cover some improvements made in the current implementation used in this paper.

We consider a robot mounted with two perpendicular sonars : one placed vertically with narrow beams and the other placed horizontally with wide beams. This is illustrated in Figure 2a. This work aims at leveraging the information on the surface provided by the vertical sonar to estimate the elevation angles from the horizontal sonar measurements. This is done by estimating a stochastic model of the environment surface with a Gaussian process [START_REF] Williams | Gaussian processes for machine learning[END_REF] trained on the vertical sonar measurements. Formally, the Gaussian process GP is defined on the vertical sonar output (range) ρ v as a function of the sonar rotation angle ψ v and the pose η (in practice, the curvilinear abscissa s) along the robot trajectory such that

ρ v = f (s, ψ v ) + , f ∼ GP (61) 
with a centered noise ∼ N (0, σ 2 n ). Once the Gaussian process trained on the vertical sonar measurements, we sample each horizontal measurement beam into N angles. We estimate the likelihood of each angle as the corresponding 3D point likelihood to belong to the estimated surface. We also compute the associated uncertainty based on Fisher information. Thus, we obtain a scaled-beta distribution for the elevation angles for every horizontal measurement beams. Figure 3a represents the estimated environment surface by sampling (for display purpose) the mean surface (green) and its lower/upper bounds (blue). Figure 3b represents the θ distributions of several horizontal measurements along their beam arc.

Two main modifications to [START_REF] Breux | Elevation angle estimations of wide-beam acoustic sonar measurements for autonomous underwater karst exploration[END_REF] were made in this work and are detailed in the following sections.

Reference Curve

The Gaussian process in the original paper is trained on data given by the vertical sonar. The horizontal sonar data are thus expressed as if they were measured by the vertical sonar to allow Gaussian process regression. Doing so, we have to consider the robot poses along its trajectory. This can lead to non-smooth surface estimation as the angular position of the robot are not explicitly taken into account in the Gaussian process kernels. While this does not impact much the elevation angles estimation, it leads to wrong normals estimation required for the point-to-plane association scheme in our MpIC.

Instead of using the vertical sonar as a reference for the Gaussian process and for horizontal sonar estimation, we can use an independent curve contained inside the environment for the scan length. Previously, sonar data were expressed by a robot pose η, a sonar angle ψ and a range ρ. This is replaced by the point p on the curve such that the orthogonal plane to the curve at p contains the sonar measurement. ρ, ψ are then the polar coordinates of the sonar measurement in this orthogonal plane. As a result, both the vertical and horizontal measurements are expressed relatively to the reference curve.

In this work, we use the prior cylinder (see [START_REF] Breux | Elevation angle estimations of wide-beam acoustic sonar measurements for autonomous underwater karst exploration[END_REF], section 4.2.1) axis as our reference curve. An example is provided in Figure 4a. Let note respectively In the case where p was measured by the vertical sonar, (s , ρ , ψ ) replace respectively (s, ρ v , ψ v ) in (61). We now modify the derivation in [START_REF] Breux | Elevation angle estimations of wide-beam acoustic sonar measurements for autonomous underwater karst exploration[END_REF] section 4.2.3 by replacing ŝ, ρv , ψv with s , ρ , ψ which, as a side effect, simplify the computation.

B c = [x c y c z c ] ∈ M 3,3 , o c ∈ R 3 the

Trajectory interpolation

While in [START_REF] Breux | Elevation angle estimations of wide-beam acoustic sonar measurements for autonomous underwater karst exploration[END_REF] we assumed that robot odometry and sonar measurements were synchronous, this is generally not the case in practice. This requires to interpolate the robot poses at each sonar measurement. We use a simple on-manifold linear interpolation scheme with constant velocity between two robot poses measurement. Let consider η 1 ∼ N ( η1 , Σ η1 ) , η 2 ∼ N ( η2 , Σ η2 ) two successive robot poses and a geodesic γ such that γ(0) = η 1 and γ (0) = log (η 2 η 1 ). Thus γ(t) = e t log(η2 η1) and, for t ∈ [0, 1], the interpolated mean pose η(t) between η1 and η2 is given by η(t) = η1 ⊕ e t log(η2 η1) (62)

We also need to interpolate the uncertainty between the poses. Recall that covariance matrices are definite positives. The space of definite positive matrices S n ++ is a smooth Riemannian manifold. In particular, we are interested here in the geodesics based on the Fisher-Rao metric. As Σ η1 , Σ η2 are two definite positives matrices, the geodesic Σ η (t) connecting Σ η1 and Σ η2 is given by [START_REF] Said | Riemannian gaussian distributions on the space of symmetric positive definite matrices[END_REF] Σ η (t) = Σ

X . ! ! . . . . . ! " ! " ! " ! # ! # ! " ! # ! # ! ! ! ! ! ! ! " " " " " " " # # $# % , % ! # $ # " % , % ! # $ # ! % , % ! & & & &
1 2 η1 Σ -1 2 η1 Σ η2 Σ -1 2 η1 t Σ 1 2 η1 , t ∈ [0, 1] (63) 
Note that the non-integer power of a matrix can be computed based on the Schur-Padé algorithm [START_REF] Higham | A schur-padé algorithm for fractional powers of a matrix[END_REF].

Normal estimation

In this section, we derive a method for computing normals distribution associated to each data point based on the Gaussian process regression of the environment surface. The normals are required for the point-to-plane association as described in Section 4.1. We first propose the derivation for the approach in [START_REF] Breux | Elevation angle estimations of wide-beam acoustic sonar measurements for autonomous underwater karst exploration[END_REF]. The derivation is similar when using a reference curve and in particular the prior cylinder axis as explained in Section 5.2.1.

As we do not have a closed-form expression of our surface in Cartesian coordinates, we approximate the normal at a point by sampling points on the surface around it and taking their cross product. The notations defined in the following are illustrated in Figure 5. Let X p be a point on the surface defined by X p = h ρ p , 0, ψ p , η S (s p ) (64)

ρ p = f (s p , ψ p ) ( 65 
)
where η S sp = η S (s p ) is the vertical sonar pose at the curvilinear abscissa s p along the robot trajectory, h defined by (53) and f the Gaussian process in (61). We also define the following random variables

ρ s ± p = f (s p ± δs, ψ p ) + ρ ψ ± p = f (s p , ψ p ± δψ) + η S s ± p = η S (s p ± δs) u(ψ) = cos(ψ p ) sin(ψ p ) 0 T u ± = u(ψ p ± δψ)
where δs, δψ are small increments. We note R S ± , t S ± the rotation matrices and translation vectors corresponding to the poses η S s ± p . Thus we have the sampled points around X p

X s ± p = h ρ s ± , 0, ψ p , η S s ± p (66) X ψ ± p = h ρ ψ ± , 0, ψ ± p , η S sp (67) 
The cross-product between the vectors X s + p -X s - p and X

ψ + p -X ψ - p gives the unnormalized normal v(X p ) at X p v(X p ) = X s + p -X s - p × X ψ + p -X ψ - p = ρ s + p ρ ψ + p a 0 + ρ s - p ρ ψ - p a 1 + ρ s - p ρ ψ + p a 2 + ρ s + p ρ ψ - p a 3 + ρ ψ + p b 0 -ρ ψ - p b 1 = v ρ s + p , ρ ψ + p , ρ s - p , ρ ψ - p (68) 
with

a 0 = R S + u × R S u + a 1 = R S -u × R S u - a 2 = -R S -u × R S u + a 3 = -R S + u × R S u - b 0 = t S + -t S -× Ru + b 1 = t S + -t S -× Ru -
In order to compute the mean and covariance of v, we need the covariance matrix Σ of the joint gaussian vector ρ s

+ p ρ ψ + p ρ s - p ρ ψ - p T
. It can be computed using the formula (2.24) provided in [START_REF] Williams | Gaussian processes for machine learning[END_REF], p.16. In the following, for any two random variables X,Y, we denote their covariance σ X,Y = Cov(X, Y ).

For any order 2 term in (68), we have

E ρ s ± p ρ ψ ± p = σ ρ s ± p ρ ψ ± p + ρs ± p ρψ ± p and thus v (X p ) = v ρs + p , ρψ + p ρs - p , ρψ - p + a 0 σ ρ s + p ρ ψ + p + a 1 σ ρ s - p ρ ψ - p + a 2 σ ρ s - p ρ ψ + p + a 3 σ ρ s + p ρ ψ - p (69) 
The covariance Σ v of v is obtained with the classic relation

Σ v = E vv T -vv T .
We therefore need to compute the 4-order multivariate polynomial vv T . It has the general expression

vv T = 4 i,j,k,l=0 i+j+k+l≤4 ρ i s + p ρ j ψ + p ρ k s - p ρ l ψ - p A i,j,k,l (70) 
where A i,j,k,l are 3 × 3 symmetric matrices defined by outer product between the a i and b j defined in (69). Their expressions are given in Appendix C. This yields to

Σ v = 4 i,j,k,l=0 i+j+k+l≤4 E ρ i s + p ρ j ψ + p ρ k s - p ρ l ψ - p A i,j,k,l -vv T (71)
The covariance terms of order 3 and 4 are computed thanks to the Isserlis theorem which, in case of a centered joint Gaussian RV Z i , gives E(Z 1 Z 2 Z 3 ) = 0 and E(Z 1 Z 2 Z 3 Z 4 ) = σ 12 σ 34 +σ 13 σ 24 +σ 14 σ 23 . We deduce then, for non-centered 

variables Y i E(Y 1 Y 2 Y 3 ) = σ 23 Ȳ1 + σ 13 Ȳ2 + σ 12 Ȳ3 + Ȳ1 Ȳ2 Ȳ3 (72) E(Y 1 Y 2 Y 3 Y 4 ) =
f n (v) = v ||v|| ∼ N f n (v), J fn |v Σ v J f T n |v (74) J fn (v) = 1 ||v|| 3      ||v|| 2 -v 2 x -v x v y -v x v z -v x v y ||v|| 2 -v 2 y -v y v z -v x v z -v y v z ||v|| 2 -v 2 z      (75) 
Figure 6 shows an example of normals and their associated incertitude cone estimated as explained in this section.

Application to point-to-plane association

We explain here how point-to-plane association, explained in Section 4.1, is performed in our practical application. For the sake of clarity, we omit the k iteration superscript. Consider a point n i in the current new point cloud S new and its corresponding set of candidates A i . As in the point-to-point association scheme, we consider the best candidate a i as in (31). The tangent plane p i to the environment surface at a i with normal v i ≡ v i (a i ) is obtained with the computations in Section 5.3.

Note that in our case, the general expression of a ⊥ i (orthogonal projection of n i on p i ) can be rewritten from (32) as follows

ā⊥ i = ni -vT i ( ni -āi ) vi (76)
by using the fact that a i ∈ p i ⇐⇒ d i = v T i a i . By consequence, the computation of Σ a ⊥ i in our case is slightly different from (33) : The jacobians in (77) are given by the following expressions :

Σ a ⊥ i = J a ⊥ i ni Σ ni J a ⊥ i T ni + J a ⊥ i vi Σ vi J a ⊥ i T vi (77) 
J a ⊥ i ni = I 3 -vi vT i (78) J a ⊥ i vi = vi ( ni -āi ) T + vT i ( ni -āi ) I 3 J fn (v i ) (79) 

Gaussian approximation

In order to apply a pIC algorithm to the point clouds obtained from the horizontal sonar, we must have data points following Gaussian distributions as seen in Section 4.

Let p L ∈ R 3 a measured point expressed in the horizontal sonar local frame as defined by (52)(56)(57)(59). Clearly, p L is not following a normal distribution.

To compute its Gaussian approximation, we have to estimate its mean pL and covariance matrix Σ p L . From (52) we have directly

pL = ρ      E(cos φ)E(cos θ) E(sin φ)E(cos θ) E(sin θ)      (80) 
The covariance matrix is given by the classic relation

Σ p L = E(p L p L T ) -pL pL T =      σ 2 x σ xy σ xz σ xy σ 2 y σ yz σ xz σ yz σ 2 z      (81) 
with

σ 2 x = E(ρ 2 )E(cos 2 φ)E(cos 2 θ) -ρ2 (E cos φ) 2 (E cos θ) 2 (82) σ 2 y = E(ρ 2 )E(sin 2 φ)E(cos 2 θ) -ρ2 (E sin φ) 2 (E cos θ) 2 (83) σ 2 z = E(ρ 2 )E(sin 2 θ) -ρ2 (E sin θ) 2 (84) 
σ xy = E(ρ 2 )E(cos φ sin φ)E(cos 2 θ) -ρ2 E(cos φ)E(sin φ)(E cos θ) 2 (85) σ xz = E(ρ 2 )E(cos φ)E(cos θ sin θ) -ρ2 E(cos φ)E(cos θ)E(sin θ) (86) 
σ yz = E(ρ 2 )E(sin φ)E(cos θ sin θ) -ρ2 E(sin φ)E(cos θ)E(sin θ) (87) E(ρ 2 ) = ρ2 + σ 2 ρ ( 88 
)
The following proposition gives the expressions of the different involved expectations over trigonometric functions Proposition 3. Let θ a random value following a shifted and scale Beta distribution SBeta(α, β, -b 2 , b 2 ). Then

E(cos θ) = +∞ n=0 (-1) n 2n! b 2 2n 2 F 1 (-2n, α, α + β; 2) (89) E(cos 2 θ) = 1 + 1 2 +∞ n=1 (-1) n 2n! b 2n 2 F 1 (-2n, α, α + β; 2) (90) E(sin θ) = -b 2 +∞ n=0 (-1) n 2n + 1! b 2 2n 2 F 1 (-2n -1, α, α + β; 2) (91) E(cos θ sin θ) = -b 2 +∞ n=0 (-1) n 2n + 1! b 2n 2 F 1 (-2n -1, α, α + β; 2) ( 92 
)
where 2 F 1 is the hypergeometric function.

The proof is given in Appendix B.3. Note that E(cos θ sin θ), E(sin 2 θ) are deduced from Proposition 3 using the relations cos θ sin θ = sin 2θ 2 and sin 2 θ = 1 -cos 2 θ.

N E(cos θ) E(sin θ) E(cos 2 θ) E(sin θ) 2 4.23e -2 5.60e -3 7.47e -1 2.59e -1 3 1.18e -3 1.11e -4 8.33e -2 2.07e -2 4 1.76e -5 1.29e -6 4.98e -3 9.63e -4 5 1.64e -7 9.88e -9

1.85e -4 2.39e -5

Table 1: Error bounds on expectation in Proposition 3

For practical computation, we have to approximate the previous series by the sum of the first N terms. To estimate a good value of N with low approximation error, we compute bounds on the series reminders which are given in the following proposition.

Proposition 4. Let N > 0 and θ ∈ -b 2 , b 2 .
The reminders of order N for the series in Proposition 3 are given by

|R N (E(cos θ)) | ≤ 1 (2N )! 3b 2 2N cosh 3b 2 (93) |R N (E(sin θ)) | ≤ 1 (2N + 1)! 3b 2 2N +1 sinh 3b 2 (94) |R N E(cos 2 θ) | ≤ 1 2 1 (2N )! (3b) 2N cosh (3b) (95) |R N (E(sin θ)) | ≤ 1 2 1 (2N + 1)! (3b) 2N +1 sinh (3b) ( 96 
)
The proof is given in Appendix B.4. The corresponding bounds for small values of N in our application where b = 0.61 (35 • ) are given in Table 1. In our following experiments, we use N = 5.

Proposition 5. Let φ ∼ N φ, σ 2 φ . Then E(cos φ) = cos φe - σ 2 φ 2 (97) E(sin φ) = sin φe - σ 2 φ 2 (98) E(cos 2 φ) = 1 2 1 + e -2σ 2 φ cos 2 φ (99) E(sin 2 φ) = 1 2 1 -e -2σ 2 φ cos 2 φ (100) E(cos φ sin φ) = 1 2 e -2σ 2 φ sin 2φ ( 101 
)
The result is obtained by the exact computation of e iφ and decomposing φ as φ = σ φ Z + φ with Z ∼ N (0, 1). Finally, the probability density function 

p ∼ N ηp ⊕ pL , J ⊕ q | ηp, pL Σ p L J ⊕ T q | ηp , pL (102) 
where η p is the pose at which the point has been observed.

Experiments

In this section, we assess the performance of the proposed algorithms with several experiments. First, in order to validate our computation, we simulate point clouds following probability distributions (55)(56)(57) with known associations and apply our MpIC algorithm.

Due to the lack of available ground truth with real data, we have to rely on simulation for quantitative analysis. In section 6.2, we generate data point cloud from measurements along a trajectory inside the simulated karst environment shown in Figure 7. The scan matching results are quantitatively compared to ground truth and state-of-the-art pIC approach proposed in [2] [START_REF] Mallios | Underwater caves sonar data set[END_REF].

We then demonstrate the use of our method on a real data set provided by [START_REF] Mallios | Underwater caves sonar data set[END_REF] corresponding to the underwater cave "Coves de Cala Viuda" located in the Escala area of Costa Brava (Spain). As no ground truth is provided, we locally consider the dead-reckoning (DR) trajectory as a pseudo ground truth. We qualitatively assess our approach by comparing DR and our estimated trajectories. The MpIC Python source code used in this paper is available at https://gite.lirmm.fr/breux/mpic. The bottom/top whiskers correspond to 5%/95% of the distributions.

Evaluation of the optimization step in pIC

In this section, we assess the improvement of MpIC compared to previous methods. At each trial, we randomly generate 100 3D points distribution c i and a random normal transform q ∼ N ( q, Σ q ). From each distribution c i we sample one point ĉi considered as the ground truth point. Similarly, we sample the ground truth transformation q from q. The ground truth points of the second point cloud are computed as âi = q ⊕ ĉi . Finally, the distributions a i are generated with random covariance Σ ai and the means āi as samples from the distributions N (â i , Σ ai ). The initial transformation is given by q (0) ∼ N ( q(0) = q, Σ q ).

We consider here only the optimization step of pIC with perfectly associated points. We compare the optimized transformation q opt obtained using Euler angles, quaternion and the proposed on-manifold optimization. The distance of the estimated pose q opt to the ground truth q is computed using (2) and the metric on SE(3) defined by ( 6) such that In order to compare the different trials, we consider the ratio d 0 /d opt with the initial distance d 0 = d( q(0) , q). This means that the higher the ratio is, the better q opt improves over the initial transformation q (0) .

d opt = d(q opt , q) = log (q opt q) T G log (q opt q) (103) 
In Figure 8, we represent the distributions of ratio for 500 trials and maximum of iterations set to 100. As expected, the Euler representation is more prone to failure depending on the trial configuration. The quaternion representation is more limited by its convergence rate due to the re-normalization at each iteration step. The on-manifold approach provides the best results expectation-wise. 

Quantitative evaluation on simulated karst environment

It is difficult to obtain ground truth data in field experiments for underwater karst exploration. At best, real field experiments can be qualitatively analyzed to assess the pertinence of an approach. In a large part of the literature on underwater robotics, systems are globally evaluated but there are few "testunit" of the algorithms composing it. For instance, in [START_REF] Mallios | Scan matching slam in underwater environments[END_REF][7] [START_REF] Palomer | Multibeam 3d underwater slam with probabilistic registration[END_REF], the proposed adaption of the pIC algorithm is indirectly evaluated through its integration in a SLAM framework.

[19] first evaluates its pIC approach by matching real scans with them-selves and adding a Gaussian noise to the initial transformation estimate. While based on data from real experiments, it does not take into account for the surface sampling error, e.g. associated points from each scan do not correspond exactly to the same point on the environment surface.

We propose here to evaluate quantitatively MpIC independently from any SLAM framework. We also compare our approach to re-implementation of the 2D approach proposed [START_REF] Mallios | Scan matching slam in underwater environments[END_REF] which has been successfully applied in real underwater caves mapping [START_REF] Mallios | Underwater caves sonar data set[END_REF].

We consider for this a simulated karst environment as shown in Figures 7a, 7b The different parameters are resumed in Table 2.

In real experiments, dead-reckoning (Kalman filter fusion of IMU and DVL sensors) and sonars data are received asynchronously with an attached timestamp. Here, timestamps are replaced by the simulation step. We consider the vertical sonar as our reference so that each step corresponds to a vertical sonar measurement. The relative frequency of the other data are based on the real data set provided by [START_REF] Mallios | Underwater caves sonar data set[END_REF]. This can be seen by comparing simulated data in Fig-

ure 9 to the real data set in Figure 15. We can observe that we have between 2 and 3 full vertical sonar scans for one horizontal scan. Furthermore, odometry data are received every 10 vertical sonar measurements. Thus, we consider an horizontal sonar measurement every 2 steps and one odometry data every 10 steps. Note that we only consider point clouds from the horizontal sonar for the pIC. As the angular step of both sonar is 1.8 • , a full vertical (resp. horizontal) scan takes 200 (resp. 400) simulations steps. Thus scan matching with pIC algorithms is executed every 400 steps excepted for the first time (800 steps to generate the two first scans).

The vertical and horizontal MSIS measurements are simulated by ray-tracing.

We then perform quantization on the obtained ranges to reproduce the original sonar resolution based on the maximum range and the number of intensity bins.

To obtain the robot pose at each sonar measurement, we interpolate the poses obtained by dead-reckoning as explained in Section 5.2.2.

The parameters used for the Gaussian process are also shown in Table 2.

Following [START_REF] Breux | Elevation angle estimations of wide-beam acoustic sonar measurements for autonomous underwater karst exploration[END_REF], we use a product covariance kernel K = K s * K ψ where K s is a Matern52 kernel on the abscissa s and K ψ a Matern52 kernel based on angle chordal distance such that

K s (s, s ) = σ f 1 + √ 5 |s -s | l s + 5|s -s | 2 3l 2 s exp - √ 5|s -s | l s (104) 
K ψ (ψ, ψ ) = σ f   1 + √ 5 2 sin |ψ-ψ | 2 l ψ + 20 sin |ψ-ψ | 2 2 3l 2 ψ   exp - 2 √ 5 sin |ψ-ψ | 2 l ψ (105) 
Recall that σ 2 n in Table 2 is the variance of the Gaussian additive noise defined in (61). While all the values related to the Gaussian process can be learned, we fix them except σ 2 n to ensure a smooth surface estimation. As in Section 6.1, we consider the ratio d0 dopt and compare the distributions obtained with different approaches :

• 2DpIC : re-implementation of [2][3]. Note that the original papers only propose a point-to-point association scheme.

• MpIC : the proposed approach with point-to-point association.

• MpIC a : MpIC including measurements with a uniform distribution for the elevation angle. Uniform distributions arise mainly from measures outside the estimated surface covered by the vertical sonar measurements. successive scan matching along the trajectory inside the karst model (61 scan matching). For the loop closure case, we consider a pair of scans and set higher diagonal values to the initial transformation covariance Σ q0 . We sample the initial transformation q 0 ∼ N (q 0 , Σ q0 ) and apply the different pIC algorithms.

Thus we obtain higher initial errors in the order of magnitude encountered in case of loop closure scan matching. We repeat this n = 50 times. In the following, we analyze and discuss the results obtained. The resulting distributions show that MpIC with point-to-point association improves over the state-of-the-art 2DpIC approach. While the median is slightly higher, it exhibits lower variance and higher minimum ratios. Note that MpIC only uses points on the surface estimated with the vertical sonar. Points seen behind and in front of the robot are thus ignored. This means that the matched point cloud are expected to be smaller and less discriminative. Nevertheless, the recovery of the 3D information overcomes this drawback.

Successive scans

In order to also take into account measurements outside the estimated surface, we include such horizontal sonar measurements by considering a uniform el- evation angle distribution along the beam width. This approach, called MpIC a ,

gives results which are a mixed of the 2DpIC and MpIC results. It yields an accuracy improvement from the 3D information but at the expense of higher variance as in the 2D case.

While point-to-plane ICP/pIC provides generally better performance than its point-to-point version, MpIC p seems to be only slightly better. For successive scans, the 3D transformation uncertainty is relatively low. Indeed, the transformation uncertainty is the accumulation of low odometry uncertainties acquired along the robot trajectory during the scan acquisition. Informally, this means that the initial transformation uncertainty (represented by Σ q ) is, to a large extend, included in the interval of confidence obtainable with the pIC al-gorithm. In other words, pIC would provide only little improvements over the initial transformation hence the low ratios in Figure 10. This is not the case when scan matching is done in a Loop closure as can be seen in Section 6.2.2.

The initial transformation uncertainty has been accumulated along the trajectory covering several scans and is relatively larger than the local scan odometry uncertainties.

In regards to association confidence level, it is clear that α = 0.95 gives relatively bad results regardless of the method used. It is intuitive as this confidence level corresponds to a higher association threshold and thus can potentially match points with lower likelihood. In the case of successive scans, we can expect the initial transformation to be near the local optimum so that matching points are initially near from each other. Low likelihood points should then be discarded to avoid spurious associations.

Finally, we now compare the results obtained using 360 • and 720 • scans.

The difference observed for the two values of association confidence level are accentuated with larger scans, excepted for MpICp. In the case of α = 0.5, we observe an higher lower bound of distance ratio regardless of the method used.

Note that for 2DpIC, as can clearly be seen in Figure 11d, the algorithm is almost always stuck to a local minimum at the initial transformation. Globally both scan sizes give similar results. The optimal size for a given area depends obviously on the environment structure or lack thereof. Typically, corridor-like environments may require larger scan size to capture more structure.

Loop Closure

Similarly to the previous section, Figures 12 and11 sum up the results with large initial transformation error. Regardless of the method, improvements over the initial transformation obtained with the dead-reckoning odometries are more obvious than in the previous case of small transformations. This confirms our previous hypothesis on the fact that for successive scans, the initial error uncertainty is almost contained in the algorithm output uncertainty. In case of larger initial error, the point-to-plane MpIC (MpIC p ) gives more accurate results compared to the point-to-point MpIC.

Unlike the previous case, lower confidence level for association provides better associations for large initial transformation. This is intuitive as in the first iterations, corresponding points are rather far between leading to higher Mahalanobis distances (lower likelihood). We then need a lower association thresholds to obtain a sufficient number of correspondences. 

Experiment on Real Terrain data

In order to validate our approach on real data, we exploit the data set provided by the University of Girona The data set also includes six traffic cones as ground truth points which are detected with an analog video camera. They were placed in locations where the vehicle passed twice (loop closure) in order to evaluate the performance of a SLAM algorithm as done in [START_REF] Mallios | Toward autonomous exploration in confined underwater environments[END_REF]. In our case, we are interested in evaluating our scan matching which will require a lot more ground truth points.

To qualitatively assess our approach, we relatively compare the dead-reckoning (DR) trajectories with trajectories obtained by pIC methods. DR estimation drifts over time, but locally the estimated trajectories from pIC approaches should be similar.

Our tests are done on two small segments as shown in Figure 14 which represents the acoustic map obtained with the SLAM approach in [START_REF] Mallios | Toward autonomous exploration in confined underwater environments[END_REF]. The first and second segment start respectively at timestamp ts 1 and ts 2 given by ts 1 = 1372687311775722265, ts 2 = 1372687577375451326 of the surface. This problem can be partially solved by considering for the local range ρ v a uniform distribution on ]r max , M ] (for some large enough M ) when no data is returned by the vertical sonar. This information can then be leveraged for the elevation angle estimations of the horizontal sonar measurements. 

Conclusion

In this paper we propose MpIC, an on-manifold derivation for the 3D probabilistic Iterative Correspondence (pIC) algorithm based on basic differential geometry related to the SE(3) Lie group. We then propose an application to underwater sonar scan matching in the context of underwater karst exploration.

We extended our previous work [START_REF] Breux | Elevation angle estimations of wide-beam acoustic sonar measurements for autonomous underwater karst exploration[END_REF] on elevation angle estimation from widebeam sonar to generate 3D point Gaussian distribution from the raw sonar measurements. The approach is evaluated on a simulated karst environment to allow quantitative analysis. It is also compared to the state-of-the-art approach proposed in [START_REF] Mallios | Underwater caves sonar data set[END_REF].

In the robotic literature, ICP algorithms are generally evaluated indirectly in a SLAM framework and/or qualitatively on real data experiments [START_REF] Mallios | Scan matching slam in underwater environments[END_REF][3] [START_REF] Palomer | Multibeam 3d underwater slam with probabilistic registration[END_REF].

Quantitative results, when available, are obtained by self-matching scans with added noise [1][19]. We propose here a compromise by proposing a quantitative evaluation of pIC with a more complex setting similar to a real experiment.

We show that, as one could expect, MpIC outperforms original pIC based on Euler angles and Quaternion representations. We then analyzed and compared different pIC approaches when applied to acoustic sonar data in several configurations on a simulated karst environment and on real data. Compared to previous state-of-the-art 2D method, our MpIC approach converges to more accurate transformations with higher lower bounds. The point-to-plane association scheme is also more accurate than point-to-point one, showing the pertinence of our original normal estimation method. Our experiments also show more general results on pIC. For successive scan matching with normally distributed dead-reckoning noise, the different pIC methods provides only slight improvement on the estimated transformations. However, in real settings, one can expect dead-reckoning noise outliers which do not follow the modeled Gaussian distribution. For large initial transformations such as encountered in loop closure scan matching, MpIC also provides better results over the 2D approach.

The association confidence level is an important parameter of the pIC algorithms. We show through our experiments that it should be adapted to the ratio between the initial transformation error and the scan local odometric errors. This is rather intuitive : for small displacements, corresponding points are near from each other so that the association threshold should be low to avoid spurious associations. For larger displacements, corresponding points are far from each other requiring thus a larger association threshold.

While the results are promising, there is still room for improvements. We approximated our points distribution by Gaussian distributions. For points coming Definition 1. Let ω = ω x ω y ω z T ∈ R 3 . The operator [ ] × maps 3D vector to the space of skew-symmetric matrix and is defined as The hessian matrix H Fi q,zi is defined by

H Fi q,zi = ∂J F T i q ∂z i (B.16) = ∂DF iq (T G SE (3) k 
) ∂z i (B.17 ∂DF iq (T ξ)

∂a i = -2 ξ T U T ci + ēT i K T ωi R T Σ -1 ei (B.19)
from which we deduce 

H Fi q,ai = ∂DF iq (T ξ k ) ∂a i = -2 U T ci R T Σ -1 ei + ēT i K T ωi ( ξ k )R T Σ -1 ei = -2 U T ci R T Σ -1 ei + I 3 ⊗ ēT i R T Σ -1 ei (Λ ωi + Λ T ωi )( ξ k ) R T Σ -1 ei = -2 U T ci + I 3 ⊗ ēT i R T Σ -1 ei K + K T R T Σ -1 ei (B.
A 2 = ξ T U T ci R T Σ -1 ei ∂ ēi ∂ ci = ξ T U T ci R T Σ -1 ei R (B.23) A 3 = ēT i Σ -1 ei RK ωi + Σ -1 ei RK ωi T ∂ ēi ∂ ci = 2ē T i Σ -1 ei R Λ ωi + Λ T ωi R T Σ -1 ei R (B.24) A 4 = ēT i ∂(Σ -1 e i RKω i ) T ∂ ci,j (I 3 ⊗ ēi ) (B.25)
We then have H Fi q,ci = 2 A 1 ( ξ k ) + A 2 ( ξ k ) + A 3 ( ξ k ) + A 4 ( ξ k ) . The first term is given by We obtain

A 1 ( ξ k ) = ēT i ∂Σ -1 ei RU ci ξ k ∂c i,j ( 
∂Σ -1 ei RU ci ∂c i,j = Σ -1 ei R ∂U ci ∂c i,j - ∂U ci ∂c i,j Σ q U T ci + U ci Σ q ∂U T ci ∂c i,j R T Σ -1 ei RU ci (B.31)
The other terms are given by 

A 2 ( ξ k ) = U T ci R T Σ -1 ei R (B.32) A 3 ( ξ k ) = 2 I 6 ⊗ ēT i Σ -1 ei R K + K T R T Σ -

  is said to be smooth (or differentiable) if every point p ∈ M can be locally parametrized by a C ∞diffeomorphism φ : Ω → U with p ∈ U, O N ∈ Ω and (Ω, U ) being respectively open subsets of R N and M. The tangent plane at a point p on M is designed by T p M.

Figure 1 :

 1 Figure 1: Representation of a 2-manifold M in R 3 with its tangent space TeM at a point e ∈ M. φ and ψ are two curves of M passing through e such that their tangent vectors G 1 , G 2 at e generate a basis of TeM. If M is a Lie group and e its neutral element, then TeM = m is its associated Lie algebra. The transition from one to another is done through the applications exp : m → M and log : M → m. γ is an example of path with velocity v.
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Figure 2 :

 2 Figure 2: Notations related to the robot sensing and local scans. Note that in practice, associated points a i , c i does not correspond to the same 3D point X i on the surface.

Figure 3 :

 3 Figure3: Illustration of the elevation angles estimation method in[START_REF] Breux | Elevation angle estimations of wide-beam acoustic sonar measurements for autonomous underwater karst exploration[END_REF] on two successive scans. Red points corresponds to the vertical sonar measurements, the green (resp. blue) lines corresponds to samples from the estimated mean (resp. ±3σ bounds) surface. Scaledbeta pdf color map for elevation angles goes from dark blue (low) to red (high). Turquoise corresponds to the density for a uniform distribution 1 b . Best viewed in color.

Figure 4 :

 4 Figure 4: Modification of original method in [4] using the prior cylinder axis as a reference curve instead of the robot trajectory

  cylinder orthonormal basis and center. Here the first basis vector x c corresponds to the cylinder axis. If p ∈ R 3 is a point measured by the vertical or horizontal sonar, we then have the new abscissa s = x c T (p -o c ) with range in the cylinder orthogonal plane ρ = ||y c T (p -o c )y c + z c T (p -o c )z c || and angle ψ = arctan zc T (p-oc) yc T (p-oc) . This is illustrated in Figure 4b.

Figure 5 :

 5 Figure 5: Notations related to normal computation. Note the abuse of notation here as Xp, X s ± p and X ψ ± p are not "fixed" 3D points but denote 3D random variables.

Figure 6 :

 6 Figure 6: Estimated mean normals (turquoise arrow) and their 1-σ uncertainty cone (purple)

Figure 7 :

 7 Figure 7: Karst model used for our experiments

Figure 8 :

 8 Figure 8: Comparison of distances ratio for 500 trials. Medians are indicated by black lines. The bottom/top whiskers correspond to 5%/95% of the distributions.

Figure 9 :

 9 Figure9: Estimated surface and elevation angles estimation used for the first scan matching in our simulated environment. Red points corresponds to the vertical sonar measurements, the green (resp. blue) lines corresponds to samples from the estimated mean (resp. ±3σ bounds) surface. Scaled-beta pdf color map for elevation angles goes from dark blue (low) to red (high) for the first scan and from black(low) to Yellow(high) for the second one. Best viewed in color.

  . The ground truth trajectory is sampled from a circle contained inside the karst model. At each time step, we generate a noisy odometry by adding Gaussian noise to the odometry obtained from the ground truth trajectory. The different sensors are simulated based on real characteristics provided in [3][7].

  Figure 10: Diagrams of relative errors for successive scans. 2DpIC : pIC proposed by [2], MpIC: MpIC (point-to-point), MpICa : MpIC (point-to-point) including uniform arcs, MpICp : MpIC (point-to-plane). Left (resp. right) boxes in each group have been computed with association confidence level α = 0.95 (resp. α = 0.5)

Figures 10 and 11

 11 Figures 10 and 11 sum up the results obtained for the scan matching of successive scans.

5 Figure 11 :

 511 Figure 11: Scatter plots for successive scans with different association confidence level. The black line corresponds to x = y (unitary ratio) so that data points under this line corresponds to improved estimated pose over dead-reckoning.

Figure 12 : 5 Figure 13 :

 12513 Figure 12: Diagrams of relative errors for loop closure with 360 • scans. 2DpIC : pIC proposed by [2], MpIC: MpIC (point-To-point), MpICa : MpIC(point-to-point) including uniform arcs, MpICp : MpIC (point-to-plane). Left (resp. right) boxes in each group have been computed with association confidence level α = 0.95 (resp. α = 0.5)

Figure 14 :

 14 Figure14: Segments (red rectangles) used to test our approach on the real experimental data provided by[START_REF] Mallios | Underwater caves sonar data set[END_REF]. The segments start respectively at timestamp 1372687311775722265 and 1372687577375451326. Green rectangles show areas where horizontal sonar elevation angles is difficult due to the fact that only one side of the karst is visible by the vertical sonar. Extracted and modified from[START_REF] Mallios | Toward autonomous exploration in confined underwater environments[END_REF].

[ 3 ]

 3 [START_REF] Mallios | Underwater caves sonar data set[END_REF]. It was acquired with an early version of the Sparus AUV[START_REF] Carreras | Testing sparus ii auv, an open platform for industrial, scientific and academic applications[END_REF] and contains measurements from a DVL, two Inertial Measurement Unit (IMU) and two MSIS. The dead-reckoning trajectory obtained by an extended Kalman Filter (EKF) fusing DVL and IMU measurements is also provided. The MSIS are configured similarly to Figure 2a. The horizontal (resp. vertical) sonar has a beamwidth of 35 • vertical by 3 • horizontal (resp. 2 • by 1 • ) and configured to scan the 360 • sector at 20 m range (resp. 10 m) with a 0.05 m (resp. 0.2 m) resolution at 1.8 • angular step.

Figure 15 :

 15 Figure 15: Examples of elevation angles estimations on the dataset [7]. First row : first segment with 360 • scans. Second row : first segment with 720 • scans. Third row : second segment with 360 • scans. Yellow (resp. purple) points corresponds to the current (resp. previous) scan's vertical points. Blue-to-Red (resp. Black-to-Yellow) arcs represents the first (resp. second) horizontal scan elevation angles pdf. Best viewed in color.

Figure 16 represents

 16 Figure16represents the local trajectories obtained by composing pose estimated by DR or pIC methods. Note that as the trajectories are obtained by composing estimated relative poses, a single error can lead to a large divergence from the ground truth. Compared to our simulated karst, the environment in both segments is similar to a corridor. This means that the relative displacements along the local x-axis (forward direction) are harder to estimate. This can be seen by comparing Figures16a, 16cwith Figures16b, 16d. MpIC also has an improved trajectory shape with longer scan while the results for 2DpIC are rather similar for both 360 • and 720 • scans. This is expected as 2DpIC exploits all the horizontal sonar measurements while MpIC and MpICp are restrained to the surface covered by the vertical sonar. MpICa, which is a compromise between 2DpIC and MpIC by considering horizontal sonar measurements with no elevation angle estimation (uniform distribution), does not improve upon 2DpIC or MpIC/MpICp. Finally, in both segments, MpICp provides the trajectories closest to the DR when using 720 • scans. Compared to the simulation, we have sparser 3D point clouds with larger misalignement. While this directly affects the performance of MpIC (point-to-point association), MpICp (point-to-plane association) can deal with such misaligment by leveraging the estimated surface as explained in section 5.3.
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 2672115 Using this operator, the cross product operation can be expressed as a matrix vector operation :∀x, y ∈ R 3 , x × y = [x] × y The Kronecker product, noted ⊗, between two matrices A = [a ij ] ∈ M m,n , B ∈ M p,q is defined by the partitioned matrixA ⊗ B =    a 11 B . . . a 1n B . . . . . . a m1 B . . . a mn B    = [a ij B] ∈ M mp,nq (A.1)The Kronecker power notation is defined byA ⊗n = A ⊗ A . . . ⊗ A Let A ∈ M m,n , X ∈ M n,p and B ∈ M p,q . Then vec (AXB) = B T ⊗ A vec (X) Let f : R n → R m , A ∈ M p,msuch that each element a ij of A is a function from R n to R. Suppose that both f and A are function of the same variable x ∈ R n . ThendAf dx = A df dx + I p ⊗ f T dvec A T dx Proof. Let x ∈ R n and a T i the i-th row of A. We then have dAf dx I p ⊗ f T ∂a i ∂x jThe final result is obtained by replacing the intermediate computations in (B.7)Hess(F ) q T ξ, T ξ = d 2 dt 2 F i (γ(t)) ( ω ci + τ ) + D ωi R T Σ -1 ei ēi + K ωi R (2K ωi ēi + 3U ci ξ) (B.14)K ωi = (Λ ωi + Λ T ωi )R T Σ -Appendix B.2.2. Derivation of H F q,z

== -I 3 R

 3 ξ k , ξ k being the k-th unit vector of the canonical base of R 6 (Generally the canonical base vector are denoted e i , as in Section 3.1. We change the notation here to avoid ambiguity with the random variables representing the association errors). First we have It follows, with K ωi defined by (B.[START_REF] Rusinkiewicz | A symmetric objective function for icp[END_REF] 

4 (

 4 [START_REF] Mcconnell | Predictive 3d sonar mapping of underwater environments via object-specific bayesian inference[END_REF] with K = (I 6 ⊗ Ω ci ) w.r.t ci , we have∂DF iq (T ξ) ∂c i = 2 (A 1 + A 2 ) + A 3 + A

1 ei R A 4 (

 4 ξ k ) = (I 6 ⊗ ēi )

  σ 12 σ 34 + σ 13 σ 24 + σ 14 σ 23 + σ 12 Ȳ3 Ȳ4

	+ σ 13 24 + σ 14 Ȳ2 Ȳ3 + σ 23 Ȳ1 Ȳ4	
	+ σ 24 Ȳ1 Ȳ3 + σ 34 Ȳ1 Ȳ2 + Ȳ1 Ȳ2 Ȳ3 Ȳ4	(73)
	Finally, we obtain the Gaussian approximation pdf of the normalized normal
	by noting f n the normalization operator such that	

Table 2 :

 2 Parameters used in the simulation experiments

	Parameter	Value
	Robot sensing	
	Depth sensor std	0.016 m
	IMU orientation std	0.16 •
	Dead-reckoning noise std on x,y	0.022 m
	Dead-reckoning noise std on yaw	0.13 •
	MSIS	
	Vertical sonar range resolution	0.2 m
	Horizontal sonar range resolution	0.05 m
	Horizontal sonar beam width	35 •
	Sonar Angular step	1.8 •
	Simulation	
	Steps for a full sonar scan	200
	Vertical sonar period step	1
	Horizontal sonar period step	2
	Dead-reckoning odometry period step 10
	Gaussian process	
	Length scale l s	Fixed (1)
	Length scale l ψ	Fixed (0.25)
	Signal std σ f	Fixed (0.64)
	Noise std σ n	Learned
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• MpIC p : MpIC with point-to-plane association as explained in Section 5.3. Note that the initial transformation here is the optimized transformation obtained by the MpIC with point-to-point association.

While this normalized ratio allows a global evaluation of the results, it has some drawbacks. Obviously a ratio of 1 has not the same meaning when d 0 is small or large : it is expected in the former and can be considered as a failure in the latter. Thus a more fine-grained representation in the form of scatter plot is also proposed.

In the original paper of 2DpIC [START_REF] Mallios | Scan matching slam in underwater environments[END_REF], each point cloud is built from a full 360 • horizontal sonar scan. For MpIC and MpICp, we are limited to horizontal sonar points measured from the surface delimited by the vertical sonar measurements. This leads to sparser 3D point clouds. MpICa, which also considers points outside the estimated surface, is an attempt to solve this potential drawback.

Another solution is to consider larger scans. Here, we also propose to build point cloud based on 720 • scan (two full horizontal sonar scans). We are interested to see if improving the point cloud density this way overcomes the increasing robot pose uncertainty accumulated by the dead-reckoning odometry.

Note that for 2DpIC, as in the original papers, we obtain the final 3D transformation from the 2D transformation (x, y, yaw) using directly the absolute values given by the depth sensor (z) and the IMU (pitch and roll). As can be seen in Table 2, those values are relatively accurate. For fair comparison, we similarly fix the z, pitch and roll values of the 3D transformation obtained with MpIC, MpIC a and MpIC p .

In order to assess the effect of the association threshold defined in (30), we also compare the results obtained with two confidence levels α = 0.95 and α = 0.5. The higher the confidence level, the higher the threshold χ 2 2,α or χ 2 3,α . In Figures 10 and12, left (resp. right) boxes corresponds to α = 0.95 (resp. α = 0.5).

We consider two classes of scan matching : scan matching of successive scans and loop closure. For the first one, we estimate the distance d opt for each Similarly to the previous section, we compare here 2DpIC, MpIC, MpICa and MpICp methods. Following the observation in the simulation case, we fix the association confidence level to α = 0.5. We also compare the results obtained by considering 360 • and 720 • scans.

Figure 15 shows the estimated horizontal sonar elevation angles for one pair of scans. While our previous work [START_REF] Breux | Elevation angle estimations of wide-beam acoustic sonar measurements for autonomous underwater karst exploration[END_REF] was evaluated on simulated karst environment, this illustrates its applicability to real data. It can deal with discontinuities or missing data such as holes in the surface.

In areas where large parts of the environment are unseen by the vertical sonar (Green rectangles in Figure 14), the implementation used in this paper can not estimate elevation angles of horizontal measurements related to the unseen part from sonar measurements with a high elevation angle, a large part of the Gaussian distribution covers an area outside of the original beam measurement. We consider relaxing the Gaussian approximation and use a more generic distance function to replace the Mahalanobis distance. This approach would certainly be costly computationally-wise but can be interesting to further increase localization accuracy offline. We are currently working towards the integration of this algorithm in a SLAM framework for underwater karst exploration. As the robot explores unknown environments, our approach will have to adapt dynamically (eg. Gaussian kernel parameters, scans length).
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Appendix A. Definitions and properties of matrix product

We note M m,n the vector space of real m×n matrices. To simplify notations, where ∂ai ∂xj is a p × 1 block-row matrix. By considering the transpose of A, we have the corresponding expression

Derivations and proofs

We recall here some notations used in the following derivations. Let define q ∈ SE(3) and ξ ∈ se(3). Let F i = ēT i Σ ei ēi with ēi = niāi = q⊕ ciāi from (25)(34). Thus the cost function F in (38) can be written as F = N i=1 F i . We denote γ the geodesic of SE(3) going through q (γ(0) = q) and with velocity ξ (γ (0) = ξ). Following [START_REF] Chen | Object modelling by registration of multiple range images[END_REF], it is given by γ(t) = T e t ξ where q ≡ T ∈ GA(3) as in (4).

Appendix B.1. Proof of Proposition 1

Based on the differential definition in (8), we have

We have from ( 14)

From ( 36) and (B.3), we obtain

Replacing (B.2)(B.4)(B.5) in (B.1) gives the expected results provided by (41)

By derivating (B.1) we have

In homogeneous coordinates, the second derivative of ēi is given by

from which we deduce in heterogeneous coordinates

We recall (B.4)

Derivating it once, we obtain after simplification

First, recall the SBeta pdf f followed by θ :

where Γ is the Gamma function. Using the power series of cosinus, we have

One can easily show that the serie-integral inversion holds and gives

With a simple change of variable, the integral can be expressed as

where we used the integral form of the Hypergeometric function 2 F 1 .

The result for E(sin θ) and E(cos 2 θ) are obtained similarly using the power series We aim at controlling the reminder for the series :

The proof for the other bounds is obtained following similar computation.

Appendix C. Expressions of A i,j,k,l in Section 5.3

The non-null matrices A ijkl defined in (70) are given by