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Abstract

This paper proposes MpIC, an on-manifold derivation of the probabilistic Itera-

tive Correspondence (pIC) algorithm which is a stochastic version of the original

Iterative Closest Point (ICP). It is developed in the context of autonomous un-

derwater karst exploration based on acoustic sonars. First, a derivation of pIC

based on the Lie group structure of SE(3) is developed. The closed-form ex-

pression of the covariance modeling the estimated rigid transformation is also

provided. In a second part, its application to 3D scan matching between acoustic

sonar measurements is proposed. It is a prolongation of previous work on eleva-

tion angle estimation from wide-beam acoustic sonar. While the pIC approach

proposed is intended to be a key component in a Simultaneous Localization

and Mapping (SLAM) framework, this paper focuses on assessing its viability

on a unitary basis. As ground truth data in karst aquifer are difficult to ob-

tain, quantitative experiments are carried out on a simulated karst environment

and show improvement compared to previous state-of-the-art approach. The

algorithm is also evaluated on a real underwater cave dataset demonstrating its

practical applicability.
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1. Introduction

In this paper, we are interested in the Iterative Closest Point (ICP) al-

gorithms firstly designed for 2D/3D shape registration and further applied in

robotic applications to estimate rigid transformations between point clouds ac-

quired by sensors (e.g. LIDAR, Acoustic sonar). Basically, it is an iterative

procedure with two steps. First, the association step searches for corresponding

points in both point clouds. It is followed by an optimization step minimizing

the associated points distances with respect to the rigid transformation between

the two input point clouds. In particular, we are interested in the ICP prob-

abilistic extension first proposed by [1] called probabilistic Iterative Correspon-

dence (pIC). It takes into account uncertainties in the positions of the points

and in the initial displacement estimate by modeling them as Gaussian random

variables. This is particularly important when using strongly noisy sensors such

as underwater acoustic sonar. Furthermore, unlike LIDAR which provides full

scans almost instantaneously, mechanically scanning sonar systems (MSIS) can

take several seconds for a full 360◦ scan due to higher acoustic time-of-flight

underwater. Besides, as the robot is moving during the acquisition, its pose

uncertainty is also propagated to the sonar measurements.

In the context of underwater karst exploration, we have to rely on acoustic

sonars as water turbidity affects the efficiency of vision-based and LIDAR ap-

proaches. pIC is then the natural candidate in a SLAM framework to estimate

the displacement between two overlapping scans. To guarantee overlapping be-

tween two successive scans, we have to rely on wide-beam sonar. The drawback

of such sonar is that the elevation angle in each measurement beam is unknown,

leading to high uncertainty in the positions of the measured 3D points. Previ-

ous systems based on MSIS [2][3] deal with this problem by considering a 2D

SLAM approach. In our previous work [4], we propose a method to estimate

the probability distribution of elevation angles. We first compute a probabilis-

tic surface model from the measurements of a vertically mounted narrow-beam

sonar which is then leveraged to estimate the elevation angles from an horizon-
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tally mounted wide-beam sonar. We thus obtain 3D measurements following

non-Gaussian distributions.

SLAM algorithms’ localization accuracy is directly related to the ICP/pIC

performance. Our first contribution in this paper is to propose the derivation

of on-manifold pIC (noted MpIC) as well as the derivation of the estimated

transformation covariance. We show that it leads to superior performance com-

pared to estimation based on Euler angles or quaternion representations. To the

best of our knowledge, the literature [1][2][5][6] exploiting the pIC algorithms

implicitly supposes an error covariance independent of the rigid transformation

estimation to obtain their closed-form solution in the optimization step. In

this work, we take into account the dependence of the error covariance on the

transformation to estimate.

We then apply it in the context of underwater karst exploration based on

an extension of our previous work [4]. In particular, we propose a Gaussian

approximation to our estimated sonar measurements. Furthermore, in order to

use a point-to-plane association scheme, we need to compute normals at each

point. As we can expect sparse point clouds, we propose to compute the normals

and their covariances based on the probabilistic surface model as obtained in

[4]. To quantitatively assess our algorithm, we need to have access to ground

truth displacements which are difficult to obtain in natural karst environment.

We thus evaluate our algorithm on a simulated karst environment and compare

it to the state-of-the-art 2D approach successfully used in real underwater cave

[3][7].

The structure of the paper is as follows. Section 2 gives an overview on ICP

approaches with a focus on underwater robotic applications. Section 3 briefly

introduces generalities on Lie groups and particularly on the special Euclidean

Group SE(3) which represents the rigid transformations of space. The descrip-

tion of pIC and our on-manifold derivation MpIC is given in Section 4. Section

5 succinctly introduces our previous elevation angle estimation method and its

extensions with notably normal computations and Gaussian approximation of

the estimated 3D points distribution. Finally, Section 6 evaluates our approach
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through experiments on a simulated karst environment. Conclusion and future

working directions are left to Section 7.

2. Related Works

The original ICP algorithm for 3D shapes registration comes from the sem-

inal works by [8] and [9] for point-to-plane associations. A lot of improvements

have been proposed by exploiting additional features such as surface orienta-

tions [10][11] or color [12][13], improving the association step [1][14] and/or the

objective function [1][15][16]. The range of ICP applications is large and we are

interested here in its usage in mobile robotics, especially with acoustic sonar

measurements. A comprehensive overview can be found in [17].

In order to take into account sensor uncertainties, Montesano et al. [1] pro-

pose the probabilist Iterative Correspondence (pIC), a probabilistic approach of

the original ICP algorithm. They consider both points and the relative transfor-

mation between the point clouds as Gaussian random variables. The Euclidean

distance used in the ICP association step and in the objective function is re-

placed by the Mahalanobis distance. Doing so, each association error is weighted

by its covariance so that uncertain data contribute less to the objective function.

Segal et al. [11] also introduce a probabilistic approach with their gener-

alized ICP (G-ICP). The association step is done as in the original ICP using

Euclidean distances. However, they consider points as Gaussian random vari-

ables with fixed uncertainties in the plane orthogonal to the surface at the

considered point. While this does not directly model uncertainties related to

the measurement, it takes into account the sampling error of the surface, e.g.

the fact that corresponding points are not exactly the same point on the sur-

face. Note that unlike pIC, the transformation is not considered as a random

variable.

Agamennoni et al. [14] recently propose another probabilistic approach with-

out explicit association phase. More precisely, they search to maximize the like-

lihood of points from the target cloud conditioned on the associated point in

the reference cloud. Each possible association is weighted by a latent variable.
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They use an Expectation-Maximization (EM) procedure to iteratively estimate

the transformation and the associations weights.

In the field of underwater exploration, localization with SLAM approaches

are often based on acoustic sonar scan matching. The level of noise of such

sensors is higher than scan laser used in terrestrial robotics. Furthermore, due

to the propagation time of acoustic wave in water and the inner mechanics

to rotate the acoustic emitter (for Mechanical pencil beam sonars (MPBS).

Electronically pencil beam sonar (EPBS) are still expensive and cumbersome),

a full scan can take several seconds to complete while the robot is moving.

We thus have to consider uncertainties in the robot position during the scan

acquisition on top of measurement errors.

Palomer et al [6] develop an EKF SLAM framework for seafloor mapping.

They use a multi-beam echosounder and the resulting scans are matched using

pIC in 3D. However, the closed-form expression for the estimated transformation

in the pIC error minimization step is obtained by implicitly considering an

error covariance independent of the transformation. In fact, this covariance is

dependent on the transformation through the jacobians involved in its definition.

Furthermore, optimization is made using Euler angle representation which can

be prone to gimbal lock singularity [18].

In this paper, we are interested in methods exploiting mechanically scanned

imaging sonar (MSIS) as our practical application is based on those sensors.

Mallios et al. [2][7] use the pIC algorithm [1] in an Extended Kalman Filter

(EKF) SLAM framework for underwater cave exploration in a 2D setting. A

similar approach is proposed by Burguera et al. [5][19]. Recently, McConnell

and all [20] propose a method for mapping shallow water in a human-made lit-

toral setting based on a pair of imaging sonars with orthogonal axes. They infer

elevation angles from the overlapping of the sonars [21] and extends the map-

ping coverage with a Bayesian inference framework. As this method strongly

depends on the structure of the environment, it is not appropriate for unstruc-

tured karst aquifer exploration. Furthermore, it does not provide the incertitude

(or probability distribution) on the estimated 3D points so that it can’t be used
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in a pIC framework.

This work is the continuity of our previous work [4] which proposes a method

for estimating the distribution of elevation angles from wide-beam sonar mea-

surements by leveraging measurements from a secondary narrow-beam sonar.

We first derive MpIC, a generic on-manifold pIC algorithm, with the closed-form

expressions of the estimated transformation covariance. We then propose a prac-

tical application in the context of underwater karst exploration using MpIC to

match 3D scan obtained by MSIS acoustic sonars where elevation angles are

estimated using the method in [4].

3. Generalities on Lie groups

In this section, we introduce the notations and some differential geome-

try concepts relevant to the derivations exposed in the following sections. In

particular, we focus on Lie Groups and more specifically on the 3D rigid trans-

formation group SE(3). A good introduction to Lie groups for application in

Robotics can be found in [22]. A more detailed coverage of differential geometry

and Lie groups can be found in [23].

A N -dimensional manifold M is a topological space where every neighbor-

hood Vp of a point p ∈M is homeomorphic to RN .

A N -dimensional manifold embedded in RD, N < D, is said to be smooth

(or differentiable) if every point p ∈ M can be locally parametrized by a C∞-

diffeomorphism φ : Ω → U with p ∈ U, ON ∈ Ω and (Ω, U) being respectively

open subsets of RN and M. The tangent plane at a point p on M is designed

by TpM.

A Lie group G is defined as a smooth manifold with a group structure such

that its group product and its inverse are differentiable. We can then define

its Lie algebra g = TeG (a vector space equipped with a bilinear product called

here the Lie bracket) which corresponds to the tangent space of G at its identity

element e. From a practical point of view, computations can be easier on the

Lie Algebra. In particular, it is useful for on-manifold non-linear optimization :
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Figure 1: Representation of a 2-manifold M in R3 with its tangent space TeM at a point
e ∈ M. φ and ψ are two curves of M passing through e such that their tangent vectors
G1, G2 at e generate a basis of TeM. If M is a Lie group and e its neutral element, then
TeM = m is its associated Lie algebra. The transition from one to another is done through
the applications exp : m 7→ M and log :M 7→ m. γ is an example of path with velocity v.

methods such as Gauss-Newton or Levenberg-Marquardt are designed to work

on vector spaces and not on general manifolds.

In the following, we only consider matrix Lie groups. By noting GL(n)

the general linear group in dimension n (set of inversible real n × n inversible

matrices), the Von Neumann-Cartan theorem states that every closed subgroup

of GL(n) is a Lie group (Theorem 4.8, [23]).

The exponential map exp : g→ G maps elements of the algebra to the group.

It is defined, in the case of matrix Lie group, as the exponential of a matrix

defined by the following power series :

eA =

+∞∑
k=0

1

k!
Ak

We note its inverse the logarithm map log : G → g.

We define the isomorphism ∧ which maps elements of RN (local parametriza-
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tion) to elements of the Lie algebra :

∧ :

RN → g

g 7→ (g)∧ ≡ ĝ =
∑N
i=1 giGi

(1)

where {Gi} is a basis (called generators) of the Lie algebra. We denote its

inverse mapping by the operator ∨.

Smooth manifolds, and thus Lie groups, are also Riemannian manifolds (The-

orem 14.2, [23]). Hence we can define a smooth inner product < ·, · >p on the

tangent space TpM at each point p ∈ M. The metric induced by this inner

product is used to measure the length of piecewise-C1 curves γ : [a, b] ⊂ R→M

such that

L(γ) =

∫ b

a

〈γ′(t), γ′(t)〉
1
2

γ(t)dt (2)

with the velocity γ′(t) ∈ Tγ(t)M,∀t ∈ [a, b].

Geodesics are an important class of curves. They are the curves which locally

minimize the length between two points and are equivalent to the straight line

in Euclidean geometry (null curvature). In fact, by definition, geodesics are

curves with constant velocity. This means that if γ is a geodesic of M then

∀t, γ′(0) = γ′(t) = v ∈ Tγ(0)M. We can then define for a given velocity v a

geodesic γ(t) = etv going through a point p ∈M. It is illustrated in Figure 1.

In this paper, we are interested in two particular matrix Lie groups : the

Special Orthogonal group SO(3) representing the rotations and the Special Eu-

clidean group SE(3) representing the rigid transformations in R3.

3.1. The sets SO(3) and SE(3)

SO(3) is a closed subgroup of GL(3) defined as

SO(3) =
{
R ∈ GL(3)| RRT = I3 and det(R) = 1

}
The corresponding Lie algebra so(3) is defined by the space of skew-symmetric

matrices

∀W ∈ so(3),W = ω̂ = [ω]× , ω ∈ R3
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where the operator [ ]× is defined in Appendix A. The generators G
so(3)
i of

so(3) are given by

G
so(3)
i = êi (3)

where e1, e2, e3 is the canonical basis of R3.

SE(3) is defined as the semidirect product SO(3)nR3 and is isomorphic to

the affine group GA(3) (a subgroup of GL(4)) through the application
SO(3)× R3 → GA(3)

R, t 7→ T =

R t

0T 1

 (4)

Its Lie algebra se(3) is given by

∀Ξ ∈ se(3), Ξ = ξ̂ =

[ω]× τ

0T 0


ξ =

[
ωT τT

]T
,ω ∈ R3, τ ∈ R3

The generators G
se(3)
i of se(3) are given by

G
se(3)
i =

Gso(3)
i 0

0T 0

 , i ∈ {1, 2, 3}
G

se(3)
i =

 0 ei

0T 0

 , i ∈ {4, 5, 6} (5)

Expressions for the exponential / log maps of SO(3) and SE(3) can be found

in [22].

Throughout this paper, we use the left-invariant Riemannian metric induced

by the point-independent Riemannian metric on GA(3) (Section 3.2, [24])

〈u, v〉A = Tr
(
uTv

)
= 〈A−1u, A−1v〉e

= 〈su, sv〉e

= sTuGsv (6)
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G =

I3 0

0 2I3

 , A ∈ SE(3), u,v ∈ TASE(3)

where e is the identity element of SE(3), TASE(3) the tangent plane at A and

su, sv ∈ se(3).

Pose-pose and pose-point compositions (resp. inverse compositions) are rep-

resented by the operator ⊕ (resp. 	). More precisely, for a 3D pose q ∈ SE(3)

with SE(3) seen as a matrix group, the pose-pose composition corresponds to

the group multiplication and the pose-point composition to the group action on

R3.

We also define the � operator used to compose a transformation with an

increment expressed in the tangent vector space (local parametrization). It is

given by

� :

G × Rn → G

G, ξ 7→ G� ξ = Geξ̂
(7)

3.2. Jacobian on a Riemannian Manifold

Both ICP optimization step and uncertainty propagation involve computa-

tion of Jacobians and Hessians. As we work directly on SE(3), we recall in the

following sections how to compute them on a Riemannian manifold.

For any smooth function f : M→ Rm with M being a Riemannian mani-

fold, the differential of the function f at p ∈M is defined by

∀u ∈ TpM, Dfp(u) =
d

dt
f (γ(t))

∣∣∣
t=0

(8)

where γ is a geodesic of M going through p (γ(0) = p) and with velocity u

(γ′(0) = u). Note that this is equivalent to the definition given in [23](Definition

14.3). If M is a Lie group and m its Lie algebra, it can be shown (Proposi-

tion 21.20, [23]) that the one-parameter subgroups exp(tX0), X0 ∈ m are its

geodesics.

In the case of a matrix Lie group G with its Lie algebra g, the geodesics are

thus

γ(t) = Tetĝ, T ∈ G, ĝ ∈ g (9)
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Put simply, Dfp(u) is the directional derivative along the direction vector u.

In the case of SO(3) and SE(3) manifolds, we can thus compute the Jacobian

matrix of f at T , Jf|T , by computing its derivatives along the generators Gi of

so(3) and se(3). Formally

Jf|T =
[
DfT (TGj)

]
(10)

Note that we have the following relation

Jf|Tg = DfT (T ĝ) , g ∈ Rn (11)

The advantage of using this jacobian definition is to only operate univariate

derivatives which keeps computation simple.

Jacobian computation on Lie groups could also be done directly using matrix

expression leading to complex tensorial calculus involving matrix vectorization

and kronecker products. While this approach gives exact matricial equalities, it

is unnecessarily complex for implementation purpose. The definition proposed

here gives simple expression for each element of the Jacobian which are easier

to implement and computationally efficient.

By noting q ≡ T =

R t

0T 1

 ∈ SE(3), a ∈ R3 and ξ ∈ R6, the differentials

of SE(3) group action and its inverse are given by

D ⊕|q,a
(
T ξ̂
)

= T ξ̂a (12)

D 	|q,a
(
T ξ̂
)

= −ξ̂T−1a (13)

Using (8) with (12)(13), jacobians of SE(3) group action and its inverse can be

computed and are given by

J⊕q|q,a ≡
∂q⊕ a

∂q
= R

[
− [a]× I3

]
= RUa, Ua =

[
− [a]× I3

]
(14)

J⊕a|q,a ≡
∂q⊕ a

∂a
= R (15)

J	q|q,a ≡
∂a	 q

∂q
=
[[
RTa−RT t

]
× −I3

]
= −RTUa−t (12 ⊗R) (16)

J	a|q,a ≡
∂a	 q

∂a
= RT (17)

with 12 = [1 1]
T

and ⊗ the Kronecker product defined in Appendix A.
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3.3. Hessian on a Riemannian Manifold

The hessian at p of a smooth function f : Rn → R is defined by

∀x,y ∈ Rn, Hess(f)p(x,y) = xtHpy (18)

where Hp =
[

∂2fi
∂xi∂xj

]
is the usual hessian matrix. Similarly, for a smooth

function f on a Ck+1 Riemannian manifoldM, its hessian at p ∈M is denoted

Hess(f)p(X,Y ) where X,Y are two Ck- vector fields on M(A Ck-vector field

X is a mapping p ∈M→ X(p) ∈ TpM such that X(p) is Ck with respect to p.

See Section 10.2, [23]). In particular, for u ∈ TpM, we have (Proposition 16.22,

[23])

Hess(f)p(u, u) =
d2

dt2
f (γ(t))

∣∣∣
t=0

(19)

where γ is a geodesic of M going through p (γ(0) = p) and with velocity u

(γ′(0) = u).

Similarly to the differential, by noting that TTG = Tg, the hessian matrix

is deduced from the hessian operator and the vector fields Xi : T → TGi ∈ Tg

such that

Hf
T =

[
Hess(f)T (TGi, TGj)

]
(20)

where Gi are the generators of g as defined respectively in (3) and (5) for so(3)

and se(3).

Hence the diagonal terms of the hessian matrix are computed using (19).

Other terms are obtained by exploiting the fact that the hessian is a symmetric

bilinear form :

Hess(f)T (TGi, TGj) =

1

2

(
Hess(f)T (TGi + TGj , TGi + TGj)

−Hess(f)T (TGi, TGi)−Hess(f)T (TGj , TGj)
)

(21)

4. Probabilistic Iterative Correspondence (pIC)

The Iterative Closest Point (ICP) algorithm is an iterative non-linear 2-step

process for registering unstructured 2D or 3D point clouds. In other words, it
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aims at estimating the displacement (rigid transformation) between two point

clouds. Given an initial displacement, each iteration consists in associating

points in the first cloud to points in the displaced second cloud.

The algorithm then computes, by means of non-linear optimization, the dis-

placement minimizing the sum of errors between each pair of associated points.

Originally, the error is defined by the Euclidean distance between associated

points.

A probabilistic variant taking into account point uncertainties is proposed

by [1] and further exploited in a similar context to our work in 2D [2] and 3D

[6].

In those works, the optimization is based on Euler angles representation and

the error covariance is implicitly assumed to be independent of the estimated

transformation. We improve upon previous iterations with two main contribu-

tions : we directly optimize on the SE(3) manifold using derivative on its Lie

algebra and we also take into account the error covariance dependence on the

estimated displacement.

The inputs of the algorithm are the reference 3D point cloud Sref = {ri}i=1...n,

the newly acquired 3D point cloud Snew = {ci}i=1...m and an initial transfor-

mation q(0) such that

ri ∼ N (r̄i,Σri) , ci ∼ N (c̄i,Σci) (22)

q(0) ∼ N
(
q̄(0) ∈ SE(3),Σq(0)

)
(23)

where the notation x ∼ N (x̄,Σx) represents a nD random variable following a

Gaussian distribution with mean x̄ ∈ Rn and covariance matrix Σx ∈ Sn++ where

Sn++ is the space of n × n definite positive matrix. Note that we do not need

to specify how we represent the transformation q. Generally, it is represented

as a 7D vector made up of a quaternion for the rotation part and a 3D vector

for the translation part. It can also be represented as a 6D vector using Euler

angles for the rotation part.

We now consider the k-th iteration. The current displaced point cloud is
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S
(k)
new =

{
n

(k)
i

}
i=1...m

defined by

n
(k)
i = q(k) ⊕ ci ∼ N

(
n̄

(k)
i , Σ

n
(k)
i

)
(24)

The mean and covariance of n
(k)
i are given by

n̄
(k)
i = q̄(k−1) ⊕ c̄i (25)

Σ
n

(k)
i

= J⊕q|q̄(k−1),n̄i

Σq(0)J⊕
T

q|q̄(k−1),n̄i

+ J⊕a|q̄(k−1),n̄i

ΣciJ
⊕T
a|q̄(k−1),n̄i

(26)

Note that the covariance is obtained with a first-order approximation. The

involved jacobians J⊕q and J⊕a are respectively defined by (14) and (15).

4.1. Associations

In the association step, we search the set of correspondence candidates

A
(k+1)
i ⊂ Sref for each point n

(k+1)
i ∈ S

(k+1)
new . In the following, the errors

eij ∼ N
(
ēij ,Σeij

)
between two points n

(k+1)
i and rj are defined by

ēij = n̄
(k+1)
i − r̄j =

(
q̄(k) ⊕ c̄j

)
− r̄j (27)

Σeij = Σ
n

(k+1)
i

+ Σrj (28)

The Mahalanobis distance D2(ni, rj) between a pair of points is given by

D2(ni, rj) = ēTijΣ
−1
eij ēij (29)

As the previous Mahalanobis distance follows a χ2 distribution with 3 degrees

of freedom (DoF), we consider a valid candidate for association if the distance

is inferior to the critical value for a confidence level α ∈ [0, 1] :

D2(ni, rj) < χ2
3,α (30)

In the case of point-to-point association, the final association ai ∈ A
(k+1)
i for

n
(k+1)
i is simply the element in A

(k+1)
i which minimizes D2(ni, ·) :

ai = arg min
r∈A(k+1)

i

D2(ni, r) (31)

The drawback of the point-to-point association is to suppose that the exact

same points belong to both point clouds. In practice, the two inputs point cloud

result from two different samplings of the environment leading to misalignment.
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Complementary to the point-to-point association, the point-to-plane associ-

ation uses local information on the surface shape and performs better against

misalignment. The general approach is then to first use point-to-point associa-

tion for the first iterations and to switch later on to point-to-plane association.

First, we need to estimate the tangent planes

pi =
[
vTi di

]
∼ N

([
v̄Ti d̄i

]
,Σpi

)
defined by vTi x = di at the surface from which each points has been measured.

If the point clouds are dense enough, the classic approach is to fit a plane on

the candidate sets A
(k+1)
i . In [6] an efficient method to find the normals and

their associated covariance is proposed. It is summarized in Algorithm 1. In our

work, we consider rather sparse clouds so that this method is not practicable.

However, in Section 5.3, we propose a novel method to estimate the normals

based on a Gaussian process regression of the environment surface.

Once the normals are computed, the final association ai = a⊥i ∼ N (ā⊥i ,Σa⊥i
)

for ni is the orthogonal projection of ni on the plane pi and is given by

ā⊥i = n̄i −
(
n̄Ti v̄i − d̄i

)
v̄i (32)

Σa⊥i
= J

a⊥i
ni ΣniJ

a⊥i
T

ni + J
a⊥i
pi ΣpiJ

a⊥i
T

pi (33)

In both associations schemes, the final errors ei are defined by

ēi = n̄i − āi (34)

Σei = Σni + Σai (35)

Developing (35) with (14)(15)(26), we can write the covariance as follows

Σei = Σai +RΩc̄iR
T (36)

Ωc̄i = Σci + Uc̄iΣqU
T
c̄i (37)

where R is the rotation matrix related to the current mean transformation q̄

and Uc̄i defined in (14).

15



Algorithm 1 PICP Association

Input: Association scheme Tassoc, Transformation q, Gaussian point n ∈ q ⊕
Snew, Candidate set A ⊂ Sref

Output: Gaussian point a ∈ Sref associated with n
1: if (Tassoc = point-to-point) then
2: a = arg minr∈AD

2(n, r)
3: else if (Tassoc = point-to-plane) then
4: α =

∑
r̄∈A Tr(Σr)

−2

5: pµ =
(∑

r∈A Tr(Σr)
−2r̄

)
α−1

6: C =
∑

r∈A
(r̄−pµ)(r̄−pµ)T

Tr(Σ2
r)

7: K =
∑

r∈A
r̄(r̄−pµ)T

Tr(Σ2
r)

8: H =

[
K − v̄TKT v̄ pµ

pTµ α

]
9: v̄ = Eigen vector of C associated with minimal eigen value

10: d̄ = v̄Tpµ
11: p ∼ N

(
[v̄ d̄]T , H+

)
12: ā = q̄ ⊕ n̄−

(
(q̄ ⊕ n̄)T v̄ − d̄

)
v̄

13: Σa = Ja
qΣqJ

aT

q + Ja
nΣnJ

aT

n + Ja
pΣpJ

aT

p

14: a ∼ N (ā,Σa)
15: end if

4.2. Optimization

After the association step, we have two sets of N associated points {ai} and

{ni} with corresponding errors ei = ni − ai. The optimization step consists

in searching for the transformation q(k+1) minimizing the squared Mahalanobis

norm of errors

q(k+1) = arg min
q∈SE(3)

F = f2 = ēTΣ−1
e ē (38)

where the errors are concatenated into a single vector ē =
[
ēTi
]T

. The covariance

matrix Σ−1
e is a block-diagonal matrix with its i-th block being Σei . Equation

(38) is generally solved iteratively using non-linear least square method such as

the Levenberg-Marquardt (LM) algorithm.

In this work, we optimize directly on the SE(3) manifold. If we use the

superscript k for the current ICP iteration as a subscript, the l-th iteration of
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LM solves

ξ(l) = arg min
ξ∈R6

f2
(
q̄

(l−1)
k � ξ

)
= −

(
Jf

(l)T

q Jf
(l)

q + λ(l)I
)−1

Jf
(l)

q f
(
q̄

(l−1)
k

)
(39)

q̄
(l)
k = q̄

(l−1)
k � ξ(l+1) (40)

with here q̄
(0)
k = q̄(k) and λ the dumping parameter of LM. Note here the differ-

ence with equation (32) from [6]. In our case, we do not make the assumption

that Σe is constant relative to the displacement q. To alleviate the notation,

we omit the LM iteration superscript in the following.

Proposition 1. The differential DFq of F = f2 at q ∈ SE(3) can be expressed
as

DFq(T ξ̂) =

N∑
i=1

ēTi Σ−1
ei R

(
2Uc̄iξ + (Ωc̄iω̂ − ω̂Ωc̄i)R

TΣ−1
ei ēi

)
(41)

with ξ̂ ∈ se(3) and Uc̄i ,Ωc̄i defined by (14)(37). The jacobian JF|q is obtained

using (10) and Jf|q follows by

Jf|q =
1

2f(q)
JF|q (42)

In particular, note that

∀i ∈ {4, 5, 6}, ξ̂ = G
SE(3)
i =⇒ ω̂ = 0 (43)

This leads to a simple expression for the last 3 columns of JF|q

JF|q[4 : 6] = 2

N∑
i=1

ēTi Σ−1
ei R = ēTΣ−1

e (1N ⊗R) (44)

The proof is given in Appendix B.1.

4.3. Covariance estimation

In this section, we are interested in estimating the covariance Σq of the

previously optimized transformation q. A closed-form expression is given by

[25] as follows

Σq =

(
∂2F

∂q2

)−1
∂2F

∂q∂z
Σz

∂2F

∂q∂z

T (
∂2F

∂q2

)−1

=
(
HF

q

)−1
HF

q,zΣzH
FT

q,z

(
HF

q

)−1
(45)
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with F = f2 and the hessian of F :

HF =

HF
q HF

q,z

HF
q,z HF

z

 (46)

The Gaussian vector z = [zT1 . . . z
T
p ]T with zTi = [aTi cTi ] is a vector of dimension

6p concatenating the points from both clouds. Its covariance matrix is defined

by the block-diagonal matrix of dimension 6p× 6p

Σz =



Σa1 . . . . . . 0

Σc1
...

. . .
...

...
. . .

...

Σap

0 . . . . . . Σcp


(47)

Proposition 2. The hessian Hess(F )q for all ξ̂ ∈ se(3) is given by

Hess(F )q

(
T ξ̂, T ξ̂

)
=

N∑
i=0

ēTi Σ−1
ei R

(
2ω̂ (ω̂c̄i + τ) +DωiR

TΣ−1
ei ēi

+KωiR (2Kωi ēi + 3Uc̄iξ)
)

+ ξTUTc̄iR
TΣ−1

ei R
(

2Uc̄iξ +Kωi ēi

)
(48)

with

Λωi = Ωc̄iω̂ (49)

Dωi = 2ω̂Ωc̄iω̂ − Ωc̄iω̂
2 − ω̂2Ωc̄i (50)

Kωi = (Λωi + ΛTωi)R
TΣ−1

ei (51)

The corresponding hessian matrix HF
q is obtained using (20) and (21).

The derivation is given in Appendix B.2. For HF
q,z, the expressions are more

involved and are provided in Section Appendix B.2.2 .

All the jacobian and hessian expressions are implemented and tested as a

part of our MpIC algorithm. The source code used in this paper is available at

https://gite.lirmm.fr/breux/mpic.
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Algorithm 2 On-manifold Probabilistic Iterative Closest Point

Input: Initial gaussian transformation q, point clouds Sref = {ri}, Snew =
{ci}, Maximum iteration kmax, Association scheme Tassoc

Output: Relative gaussian transformation q∗ between Snew and Sref
1: k = 0, q∗ = q
2: do
3: for (i = 1; i ≤ m; i+ +) do
4: n̄i = q̄(k) ⊕ c̄i
5: Σni = J⊕q ΣqJ

⊕T
q + J⊕a ΣciJ

⊕T
a

6: Ai =
{
r ∈ Sref |D2(ni, r) < χ2

3,α

}
7: ai = PICP Association(Tassoc, Ai,ni, Sref )
8: ēi = ni − ai
9: Σei = Σni + Σai

10: end for
11: F = 1

2

∑m
i=1 ē

T
i Σei ēi

12: for (l = 0; l < lmax; l + +) do
13: ξ∗ = arg minξ F (q̄(k) � ξ)
14: q̄(k+1) = q̄(k) � ξ∗

15: end for
16: k + +
17: while (!hasConverged() and k < kmax)
18: q̄∗ = q̄(k)

19: Σq∗ =
(
HF

q

)−1
HF

q,zH
F
q,z

T
(
HF

q

)−1

5. Application to Sonar Data with unknown elevation angle

In this section, we propose an application of our MpIC algorithm to acous-

tic sonar data in the context of underwater karst exploration. Acoustic sonar

range measurements are obtained with beams which could have large aperture.

Thus, the elevation angle θ of each measurement is generally unknown and the

3D information is lost. In our previous work [4], we propose a method which

leverages the data acquired with a narrow-beam acoustic sonar to estimate the

elevation angles from a wide-beam acoustic sonar. In the following, we briefly

introduce the original approach and its extensions used in this paper.

5.1. Notations

In the following, we reuse the notation introduced in Section 4 with some

additions. We denote by b the sonar beam-width such that each elevation angle

θ is in the range
[
− b

2 ,
b
2

]
. We also define ηpi ∈ SE(3) as the poses relative to
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Figure 2: Notations related to the robot sensing and local scans. Note that in practice,
associated points ai, ci does not correspond to the same 3D point Xi on the surface.

the current scan reference frame at which the data point pi has been measured.

The corresponding coordinates in the sonar local frame are denoted pLi . The

function g maps local spherical coordinates to local Cartesian coordinates and

is given by

g :



R+ ×
[
− b

2 ,
b
2

]
× [0, 2π]→ R3

ρ, θ, φ 7→ pL = ρ


cos(θ) cos(φ)

cos(θ) sin(φ)

sin(θ)


(52)

Similarly, we define the function h which maps the local spherical coordinates

to the global reference frame in Cartesian coordinates

h :

R+ × [− b
2 ,

b
2 ]× [0, 2π]× SE(3)→ R3

ρ, θ, φ,η 7→ η ⊕ g(ρ, θ, φ)

(53)

Hence for each data point p from any of the two point clouds

∃ρ, θ, φ, s.t. p = h (ρ, θ, φ,ηp) (54)

Figures 2a and 2b illustrate the notation and the problem configuration.

In the sonar local frame, the measurements in spherical coordinates [ρ θ φ]T
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can be modelled as the following independent random variables

ρi ∼ Gamma (αρi , βρi) (55)

θi ∼ SBeta
(
αi, βi,−

b

2
,
b

2

)
(56)

φi ∼ N
(
φ̄i, σ

2
φi

)
(57)

where SBeta(α, β,min,max) is a shifted and scaled Beta distribution. Its prob-

ability density function is defined by the following function

f(θ;α, β, b) =
Γ(α+ β)

Γ(α)Γ(β)

(
θ + b

2

)α−1 ( b
2 − θ

)β−1

bα+β−1
(58)

with Γ the Gamma function.

In practice, the mean and variance of ρ are such that it can be approximated

by a normal distribution. In the following we use this approximation by noting

ρi ∼ N
(
ρ̄i, σ

2
ρi

)
(59)

Note that θ follows a Beta distribution even when no prior information is

available for the elevation angle θ. Indeed, in this case, θ follows a uniform

distribution θ ∼ U
(
b
2 ,

b
2

)
which is also a Beta distribution as we have

∀a, b ∈ R, U(a, b) = SBeta(1, 1, a, b) (60)

In order to estimate the displacement between two points cloud following

the presented distribution, we first need to use a Gaussian approximation for

the points in global Cartesian coordinates. We can then apply the on-manifold

pIC as shown in Section 4.

5.2. Elevation angles estimation

In this section, we briefly cover our previous work [4] which focuses on es-

timating the elevation angles from a wide-beam sonar. We also cover some

improvements made in the current implementation used in this paper.

We consider a robot mounted with two perpendicular sonars : one placed

vertically with narrow beams and the other placed horizontally with wide beams.
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(a) Surface estimation (b) Scaled-beta distribution of estimated el-
evation angles for horizontal sonar measure-
ments from the first scan

Figure 3: Illustration of the elevation angles estimation method in [4] on two successive
scans. Red points corresponds to the vertical sonar measurements, the green (resp. blue)
lines corresponds to samples from the estimated mean (resp. ±3σ bounds) surface. Scaled-
beta pdf color map for elevation angles goes from dark blue (low) to red (high). Turquoise
corresponds to the density for a uniform distribution

(
1
b

)
. Best viewed in color.

This is illustrated in Figure 2a. This work aims at leveraging the information on

the surface provided by the vertical sonar to estimate the elevation angles from

the horizontal sonar measurements. This is done by estimating a stochastic

model of the environment surface with a Gaussian process [26] trained on the

vertical sonar measurements. Formally, the Gaussian process GP is defined on

the vertical sonar output (range) ρv as a function of the sonar rotation angle ψv

and the pose η (in practice, the curvilinear abscissa s) along the robot trajectory

such that

ρv = f(s, ψv) + ε, f ∼ GP (61)

with a centered noise ε ∼ N (0, σ2
n).

Once the Gaussian process trained on the vertical sonar measurements, we

sample each horizontal measurement beam into N angles. We estimate the

likelihood of each angle as the corresponding 3D point likelihood to belong to the

estimated surface. We also compute the associated uncertainty based on Fisher

information. Thus, we obtain a scaled-beta distribution for the elevation angles
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(a) Prior Cylinder (b) Sonar data expressed with the prior
cylinder axis (red axis of Bc) as the ref-
erence curve

Figure 4: Modification of original method in [4] using the prior cylinder axis as a reference
curve instead of the robot trajectory

for every horizontal measurement beams. Figure 3a represents the estimated

environment surface by sampling (for display purpose) the mean surface (green)

and its lower/upper bounds (blue). Figure 3b represents the θ distributions of

several horizontal measurements along their beam arc.

Two main modifications to [4] were made in this work and are detailed in

the following sections.

5.2.1. Reference Curve

The Gaussian process in the original paper is trained on data given by the

vertical sonar. The horizontal sonar data are thus expressed as if they were

measured by the vertical sonar to allow Gaussian process regression. Doing

so, we have to consider the robot poses along its trajectory. This can lead

to non-smooth surface estimation as the angular position of the robot are not

explicitly taken into account in the Gaussian process kernels. While this does

not impact much the elevation angles estimation, it leads to wrong normals

estimation required for the point-to-plane association scheme in our MpIC.

Instead of using the vertical sonar as a reference for the Gaussian process

and for horizontal sonar estimation, we can use an independent curve contained
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inside the environment for the scan length. Previously, sonar data were ex-

pressed by a robot pose η, a sonar angle ψ and a range ρ. This is replaced

by the point p on the curve such that the orthogonal plane to the curve at

p contains the sonar measurement. ρ, ψ are then the polar coordinates of the

sonar measurement in this orthogonal plane. As a result, both the vertical and

horizontal measurements are expressed relatively to the reference curve.

In this work, we use the prior cylinder (see [4], section 4.2.1) axis as our

reference curve. An example is provided in Figure 4a. Let note respectively

Bc = [xc yc zc] ∈ M3,3, oc ∈ R3 the cylinder orthonormal basis and center.

Here the first basis vector xc corresponds to the cylinder axis.

If p ∈ R3 is a point measured by the vertical or horizontal sonar, we then

have the new abscissa s′ = xc
T (p − oc) with range in the cylinder orthogonal

plane ρ′ = ||yc
T (p−oc)yc+zc

T (p−oc)zc|| and angle ψ′ = arctan
(

zc
T (p−oc)

yc
T (p−oc)

)
.

This is illustrated in Figure 4b.

In the case where p was measured by the vertical sonar, (s′, ρ′, ψ′) replace

respectively (s, ρv, ψv) in (61). We now modify the derivation in [4] section

4.2.3 by replacing ŝ, ρ̂v, ψ̂v with s′, ρ′, ψ′ which, as a side effect, simplify the

computation.

5.2.2. Trajectory interpolation

While in [4] we assumed that robot odometry and sonar measurements were

synchronous, this is generally not the case in practice. This requires to interpo-

late the robot poses at each sonar measurement. We use a simple on-manifold

linear interpolation scheme with constant velocity between two robot poses mea-

surement. Let consider η1 ∼ N (η̄1,Ση1) ,η2 ∼ N (η̄2,Ση2) two successive robot

poses and a geodesic γ such that γ(0) = η1 and γ′(0) = log (η2 	 η1). Thus

γ(t) = et log(η2	η1) and, for t ∈ [0, 1], the interpolated mean pose η̄(t) between

η̄1 and η̄2 is given by

η̄(t) = η̄1 ⊕ et log(η2	η1) (62)

We also need to interpolate the uncertainty between the poses. Recall that

covariance matrices are definite positives. The space of definite positive matrices
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Figure 5: Notations related to normal computation. Note the abuse of notation here as Xp,
X
s±p

and X
ψ±p

are not ”fixed” 3D points but denote 3D random variables.

Sn++ is a smooth Riemannian manifold. In particular, we are interested here in

the geodesics based on the Fisher-Rao metric. As Ση1
,Ση2

are two definite

positives matrices, the geodesic Ση(t) connecting Ση1
and Ση2

is given by [27]

Ση(t) = Σ
1
2
η1

(
Σ
− 1

2
η1 Ση2

Σ
− 1

2
η1

)t
Σ

1
2
η1 , t ∈ [0, 1] (63)

Note that the non-integer power of a matrix can be computed based on the

Schur-Padé algorithm [28].

5.3. Normal estimation

In this section, we derive a method for computing normals distribution as-

sociated to each data point based on the Gaussian process regression of the

environment surface. The normals are required for the point-to-plane associa-

tion as described in Section 4.1. We first propose the derivation for the approach

in [4]. The derivation is similar when using a reference curve and in particular

the prior cylinder axis as explained in Section 5.2.1.

As we do not have a closed-form expression of our surface in Cartesian

coordinates, we approximate the normal at a point by sampling points on the

surface around it and taking their cross product. The notations defined in the
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following are illustrated in Figure 5. Let Xp be a point on the surface defined

by

Xp = h
(
ρp, 0, ψp, η

S(sp)
)

(64)

ρp = f(sp, ψp) (65)

where ηSsp = ηS(sp) is the vertical sonar pose at the curvilinear abscissa sp along

the robot trajectory, h defined by (53) and f the Gaussian process in (61). We

also define the following random variables

ρs±p = f (sp ± δs, ψp) + ε

ρψ±p = f (sp, ψp ± δψ) + ε

ηS
s±p

= ηS (sp ± δs)

u(ψ) =
[
cos(ψp) sin(ψp) 0

]T
u± = u(ψp ± δψ)

where δs, δψ are small increments. We note RS±, tS± the rotation matrices and

translation vectors corresponding to the poses ηS
s±p

. Thus we have the sampled

points around Xp

Xs±p
= h

(
ρs± , 0, ψp, η

S
s±p

)
(66)

Xψ±p
= h

(
ρψ± , 0, ψ±p ,η

S
sp

)
(67)

The cross-product between the vectors Xs+p
−Xs−p

and Xψ+
p
−Xψ−p

gives the

unnormalized normal v(Xp) at Xp

v(Xp) =
(
Xs+p

−Xs−p

)
×
(
Xψ+

p
−Xψ−p

)
= ρs+p ρψ+

p
a0 + ρs−p ρψ−p a1 + ρs−p ρψ+

p
a2

+ ρs+p ρψ−p a3 + ρψ+
p
b0 − ρψ−p b1

= v
(
ρs+p , ρψ+

p
, ρs−p , ρψ−p

)
(68)
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with

a0 = RS+u×RSu+ a1 = RS−u×RSu−

a2 = −RS−u×RSu+ a3 = −RS+u×RSu−

b0 =
(
tS+ − tS−

)
×Ru+ b1 =

(
tS+ − tS−

)
×Ru−

In order to compute the mean and covariance of v, we need the covariance matrix

Σ of the joint gaussian vector
[
ρs+p ρψ+

p
ρs−p ρψ−p

]T
. It can be computed

using the formula (2.24) provided in [26], p.16. In the following, for any two

random variables X,Y, we denote their covariance σX,Y = Cov(X,Y ).

For any order 2 term in (68), we have E
(
ρs±p ρψ±p

)
= σρ

s
±
p
ρ
ψ
±
p

+ ρ̄s±p ρ̄ψ±p and

thus

v̄ (Xp) = v
(
ρ̄s+p , ρ̄ψ+

p
ρ̄s−p , ρ̄ψ−p

)
+ a0σρ

s
+
p
ρ
ψ

+
p

+ a1σρ
s
−
p
ρ
ψ
−
p

+ a2σρ
s
−
p
ρ
ψ

+
p

+ a3σρ
s
+
p
ρ
ψ
−
p

(69)

The covariance Σv of v is obtained with the classic relation Σv = E
(
vvT

)
−v̄v̄T .

We therefore need to compute the 4-order multivariate polynomial vvT . It has

the general expression

vvT =

4∑
i,j,k,l=0

i+j+k+l≤4

ρi
s+p
ρj
ψ+
p
ρk
s−p
ρl
ψ−p
Ai,j,k,l (70)

where Ai,j,k,l are 3 × 3 symmetric matrices defined by outer product between

the ai and bj defined in (69). Their expressions are given in Appendix C. This

yields to

Σv =

4∑
i,j,k,l=0

i+j+k+l≤4

E
(
ρi
s+p
ρj
ψ+
p
ρk
s−p
ρl
ψ−p

)
Ai,j,k,l − v̄v̄T (71)

The covariance terms of order 3 and 4 are computed thanks to the Isserlis

theorem which, in case of a centered joint Gaussian RV Zi, gives E(Z1Z2Z3) = 0

and E(Z1Z2Z3Z4) = σ12σ34+σ13σ24+σ14σ23. We deduce then, for non-centered
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variables Yi

E(Y1Y2Y3) = σ23Ȳ1 + σ13Ȳ2 + σ12Ȳ3 + Ȳ1Ȳ2Ȳ3 (72)

E(Y1Y2Y3Y4) = σ12σ34 + σ13σ24 + σ14σ23 + σ12Ȳ3Ȳ4

+ σ132̄4̄ + σ14Ȳ2Ȳ3 + σ23Ȳ1Ȳ4

+ σ24Ȳ1Ȳ3 + σ34Ȳ1Ȳ2 + Ȳ1Ȳ2Ȳ3Ȳ4 (73)

Finally, we obtain the Gaussian approximation pdf of the normalized normal

by noting fn the normalization operator such that

fn(v) =
v

||v||
∼ N

(
fn(v̄), Jfn|v̄ ΣvJ

fTn
|v̄

)
(74)

Jfn(v) =
1

||v||3


||v||2 − v2

x −vxvy −vxvz
−vxvy ||v||2 − v2

y −vyvz
−vxvz −vyvz ||v||2 − v2

z

 (75)

Figure 6 shows an example of normals and their associated incertitude cone

estimated as explained in this section.

5.3.1. Application to point-to-plane association

We explain here how point-to-plane association, explained in Section 4.1, is

performed in our practical application. For the sake of clarity, we omit the k

iteration superscript. Consider a point ni in the current new point cloud Snew

and its corresponding set of candidates Ai. As in the point-to-point association

scheme, we consider the best candidate ai as in (31). The tangent plane pi

to the environment surface at ai with normal vi ≡ vi(ai) is obtained with the

computations in Section 5.3.

Note that in our case, the general expression of a⊥i (orthogonal projection

of ni on pi) can be rewritten from (32) as follows

ā⊥i = n̄i − v̄Ti (n̄i − āi) v̄i (76)

by using the fact that ai ∈ pi ⇐⇒ di = vTi ai. By consequence, the computa-

tion of Σa⊥i in our case is slightly different from (33) :

Σa⊥i
= J

a⊥i
ni ΣniJ

a⊥i
T

ni + J
a⊥i
vi ΣviJ

a⊥i
T

vi (77)
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Figure 6: Estimated mean normals (turquoise arrow) and their 1-σ uncertainty cone (purple)

The jacobians in (77) are given by the following expressions :

J
a⊥i
ni = I3 − v̄iv̄Ti (78)

J
a⊥i
vi =

(
v̄i (n̄i − āi)T + v̄Ti (n̄i − āi) I3

)
Jfn(v̄i) (79)

5.4. Gaussian approximation

In order to apply a pIC algorithm to the point clouds obtained from the

horizontal sonar, we must have data points following Gaussian distributions as

seen in Section 4.

Let pL ∈ R3 a measured point expressed in the horizontal sonar local frame

as defined by (52)(56)(57)(59). Clearly, pL is not following a normal distribu-

tion.

To compute its Gaussian approximation, we have to estimate its mean p̄L

and covariance matrix ΣpL . From (52) we have directly

p̄L = ρ̄


E(cosφ)E(cos θ)

E(sinφ)E(cos θ)

E(sin θ)

 (80)
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The covariance matrix is given by the classic relation

ΣpL = E(pLpL
T

)− p̄Lp̄L
T

=


σ2
x σxy σxz

σxy σ2
y σyz

σxz σyz σ2
z

 (81)

with

σ2
x = E(ρ2)E(cos2 φ)E(cos2 θ)− ρ̄2(E cosφ)2(E cos θ)2 (82)

σ2
y = E(ρ2)E(sin2 φ)E(cos2 θ)− ρ̄2(E sinφ)2(E cos θ)2 (83)

σ2
z = E(ρ2)E(sin2 θ)− ρ̄2(E sin θ)2 (84)

σxy = E(ρ2)E(cosφ sinφ)E(cos2 θ)− ρ̄2E(cosφ)E(sinφ)(E cos θ)2 (85)

σxz = E(ρ2)E(cosφ)E(cos θ sin θ)− ρ̄2E(cosφ)E(cos θ)E(sin θ) (86)

σyz = E(ρ2)E(sinφ)E(cos θ sin θ)− ρ̄2E(sinφ)E(cos θ)E(sin θ) (87)

E(ρ2) = ρ̄2 + σ2
ρ (88)

The following proposition gives the expressions of the different involved expec-

tations over trigonometric functions

Proposition 3. Let θ a random value following a shifted and scale Beta distri-
bution SBeta(α, β,− b

2 ,
b
2 ). Then

E(cos θ) =

+∞∑
n=0

(−1)n

2n!

(
b

2

)2n

2F1(−2n, α, α+ β; 2) (89)

E(cos2 θ) = 1 +
1

2

+∞∑
n=1

(−1)n

2n!
b2n2F1(−2n, α, α+ β; 2) (90)

E(sin θ) =
−b
2

+∞∑
n=0

(−1)n

2n+ 1!

(
b

2

)2n

2F1(−2n− 1, α, α+ β; 2) (91)

E(cos θ sin θ) =
−b
2

+∞∑
n=0

(−1)n

2n+ 1!
b2n2F1(−2n− 1, α, α+ β; 2) (92)

where 2F1 is the hypergeometric function.

The proof is given in Appendix B.3. Note that E(cos θ sin θ), E(sin2 θ) are

deduced from Proposition 3 using the relations cos θ sin θ = sin 2θ
2 and sin2 θ =

1− cos2 θ.
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N E(cos θ) E(sin θ) E(cos2 θ) E(sin θ)
2 4.23e−2 5.60e−3 7.47e−1 2.59e−1

3 1.18e−3 1.11e−4 8.33e−2 2.07e−2

4 1.76e−5 1.29e−6 4.98e−3 9.63e−4

5 1.64e−7 9.88e−9 1.85e−4 2.39e−5

Table 1: Error bounds on expectation in Proposition 3

For practical computation, we have to approximate the previous series by

the sum of the first N terms. To estimate a good value of N with low approx-

imation error, we compute bounds on the series reminders which are given in

the following proposition.

Proposition 4. Let N > 0 and θ ∈
[
− b

2 ,
b
2

]
. The reminders of order N for the

series in Proposition 3 are given by

|RN (E(cos θ)) | ≤ 1

(2N)!

(
3b

2

)2N

cosh

(
3b

2

)
(93)

|RN (E(sin θ)) | ≤ 1

(2N + 1)!

(
3b

2

)2N+1

sinh

(
3b

2

)
(94)

|RN
(
E(cos2 θ)

)
| ≤ 1

2

1

(2N)!
(3b)

2N
cosh (3b) (95)

|RN (E(sin θ)) | ≤ 1

2

1

(2N + 1)!
(3b)

2N+1
sinh (3b) (96)

The proof is given in Appendix B.4. The corresponding bounds for small

values of N in our application where b = 0.61 (35◦) are given in Table 1. In our

following experiments, we use N = 5.

Proposition 5. Let φ ∼ N
(
φ̄, σ2

φ

)
. Then

E(cosφ) = cos φ̄e−
σ2
φ
2 (97)

E(sinφ) = sin φ̄e−
σ2
φ
2 (98)

E(cos2 φ) =
1

2

(
1 + e−2σ2

φ cos 2φ̄
)

(99)

E(sin2 φ) =
1

2

(
1− e−2σ2

φ cos 2φ̄
)

(100)

E(cosφ sinφ) =
1

2
e−2σ2

φ sin 2φ (101)

The result is obtained by the exact computation of eiφ and decomposing φ

as φ = σφZ + φ̄ with Z ∼ N (0, 1). Finally, the probability density function
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(a) External view (b) Inside view

Figure 7: Karst model used for our experiments

(pdf) of the point p = ηp ⊕pL expressed in the current scan reference frame is

given by

p ∼ N
(
η̄p ⊕ p̄L, J⊕q|η̄p,p̄LΣpLJ

⊕T
q|η̄p,p̄L

)
(102)

where ηp is the pose at which the point has been observed.

6. Experiments

In this section, we assess the performance of the proposed algorithms with

several experiments. First, in order to validate our computation, we simulate

point clouds following probability distributions (55)(56)(57) with known asso-

ciations and apply our MpIC algorithm.

Due to the lack of available ground truth with real data, we have to rely on

simulation for quantitative analysis. In section 6.2, we generate data point cloud

from measurements along a trajectory inside the simulated karst environment

shown in Figure 7. The scan matching results are quantitatively compared to

ground truth and state-of-the-art pIC approach proposed in [2][7].

We then demonstrate the use of our method on a real data set provided

by [7] corresponding to the underwater cave ”Coves de Cala Viuda” located

in the Escala area of Costa Brava (Spain). As no ground truth is provided,

we locally consider the dead-reckoning (DR) trajectory as a pseudo ground

truth. We qualitatively assess our approach by comparing DR and our estimated

trajectories. The MpIC Python source code used in this paper is available at

https://gite.lirmm.fr/breux/mpic.
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Figure 8: Comparison of distances ratio for 500 trials. Medians are indicated by black lines.
The bottom/top whiskers correspond to 5%/95% of the distributions.

6.1. Evaluation of the optimization step in pIC

In this section, we assess the improvement of MpIC compared to previous

methods. At each trial, we randomly generate 100 3D points distribution ci

and a random normal transform q ∼ N (q̄,Σq). From each distribution ci we

sample one point ĉi considered as the ground truth point. Similarly, we sample

the ground truth transformation q̂ from q. The ground truth points of the

second point cloud are computed as âi = q̂ ⊕ ĉi. Finally, the distributions ai

are generated with random covariance Σai and the means āi as samples from the

distributions N (âi,Σai). The initial transformation is given by q(0) ∼ N (q̄(0) =

q̄,Σq).

We consider here only the optimization step of pIC with perfectly associated

points. We compare the optimized transformation qopt obtained using Euler

angles, quaternion and the proposed on-manifold optimization. The distance of

the estimated pose qopt to the ground truth q̂ is computed using (2) and the

metric on SE(3) defined by (6) such that

dopt = d(qopt, q̂)

=

√
log (qopt 	 q̂)

T
G log (qopt 	 q̂) (103)
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Parameter Value

Robot sensing
Depth sensor std 0.016 m
IMU orientation std 0.16◦

Dead-reckoning noise std on x,y 0.022 m
Dead-reckoning noise std on yaw 0.13◦

MSIS
Vertical sonar range resolution 0.2 m
Horizontal sonar range resolution 0.05 m
Horizontal sonar beam width 35◦

Sonar Angular step 1.8◦

Simulation
Steps for a full sonar scan 200
Vertical sonar period step 1
Horizontal sonar period step 2
Dead-reckoning odometry period step 10

Gaussian process
Length scale ls Fixed (1)
Length scale lψ Fixed (0.25)
Signal std σf Fixed (0.64)
Noise std σn Learned

Table 2: Parameters used in the simulation experiments

In order to compare the different trials, we consider the ratio d0/dopt with the

initial distance d0 = d(q̄(0), q̂). This means that the higher the ratio is, the

better qopt improves over the initial transformation q(0).

In Figure 8, we represent the distributions of ratio for 500 trials and max-

imum of iterations set to 100. As expected, the Euler representation is more

prone to failure depending on the trial configuration. The quaternion repre-

sentation is more limited by its convergence rate due to the re-normalization

at each iteration step. The on-manifold approach provides the best results

expectation-wise.
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(a) Estimated surface from a pair of 360◦

scan
(b) Elevation angles distributions for a 360◦

scans

(c) Estimated surface from a pair of 720◦ scan(d) Elevation angles distributions for a 720◦

scan

Figure 9: Estimated surface and elevation angles estimation used for the first scan matching
in our simulated environment. Red points corresponds to the vertical sonar measurements,
the green (resp. blue) lines corresponds to samples from the estimated mean (resp. ±3σ
bounds) surface. Scaled-beta pdf color map for elevation angles goes from dark blue (low)
to red (high) for the first scan and from black(low) to Yellow(high) for the second one. Best
viewed in color.

6.2. Quantitative evaluation on simulated karst environment

It is difficult to obtain ground truth data in field experiments for underwater

karst exploration. At best, real field experiments can be qualitatively analyzed
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to assess the pertinence of an approach. In a large part of the literature on

underwater robotics, systems are globally evaluated but there are few ”test-

unit” of the algorithms composing it. For instance, in [2][7][6], the proposed

adaption of the pIC algorithm is indirectly evaluated through its integration in

a SLAM framework.

[19] first evaluates its pIC approach by matching real scans with them-selves

and adding a Gaussian noise to the initial transformation estimate. While based

on data from real experiments, it does not take into account for the surface

sampling error, e.g. associated points from each scan do not correspond exactly

to the same point on the environment surface.

We propose here to evaluate quantitatively MpIC independently from any

SLAM framework. We also compare our approach to re-implementation of the

2D approach proposed [2] which has been successfully applied in real underwater

caves mapping [7].

We consider for this a simulated karst environment as shown in Figures

7a, 7b. The ground truth trajectory is sampled from a circle contained inside

the karst model. At each time step, we generate a noisy odometry by adding

Gaussian noise to the odometry obtained from the ground truth trajectory. The

different sensors are simulated based on real characteristics provided in [3][7].

The different parameters are resumed in Table 2.

In real experiments, dead-reckoning (Kalman filter fusion of IMU and DVL

sensors) and sonars data are received asynchronously with an attached times-

tamp. Here, timestamps are replaced by the simulation step. We consider the

vertical sonar as our reference so that each step corresponds to a vertical sonar

measurement. The relative frequency of the other data are based on the real

data set provided by [7]. This can be seen by comparing simulated data in Fig-

ure 9 to the real data set in Figure 15. We can observe that we have between 2

and 3 full vertical sonar scans for one horizontal scan. Furthermore, odometry

data are received every 10 vertical sonar measurements. Thus, we consider an

horizontal sonar measurement every 2 steps and one odometry data every 10

steps. Note that we only consider point clouds from the horizontal sonar for the
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pIC. As the angular step of both sonar is 1.8◦, a full vertical (resp. horizontal)

scan takes 200 (resp. 400) simulations steps. Thus scan matching with pIC

algorithms is executed every 400 steps excepted for the first time (800 steps to

generate the two first scans).

The vertical and horizontal MSIS measurements are simulated by ray-tracing.

We then perform quantization on the obtained ranges to reproduce the original

sonar resolution based on the maximum range and the number of intensity bins.

To obtain the robot pose at each sonar measurement, we interpolate the

poses obtained by dead-reckoning as explained in Section 5.2.2.

The parameters used for the Gaussian process are also shown in Table 2.

Following [4], we use a product covariance kernel K = Ks ∗Kψ where Ks is a

Matern52 kernel on the abscissa s and Kψ a Matern52 kernel based on angle

chordal distance such that

Ks(s, s
′) = σf

(
1 +

√
5

|s− s′|
ls +

5|s− s′|2

3l2s

)
exp

(
−
√

5|s− s′|
ls

)
(104)

Kψ(ψ,ψ′) = σf

1 +

√
5

2 sin |ψ−ψ
′|

2

lψ +
20 sin |ψ−ψ

′|
2

2

3l2ψ

 exp

(
−

2
√

5 sin |ψ−ψ
′|

2

lψ

)
(105)

Recall that σ2
n in Table 2 is the variance of the Gaussian additive noise defined

in (61). While all the values related to the Gaussian process can be learned, we

fix them except σ2
n to ensure a smooth surface estimation.

As in Section 6.1, we consider the ratio d0

dopt
and compare the distributions

obtained with different approaches :

• 2DpIC : re-implementation of [2][3]. Note that the original papers only

propose a point-to-point association scheme.

• MpIC : the proposed approach with point-to-point association.

• MpICa : MpIC including measurements with a uniform distribution for

the elevation angle. Uniform distributions arise mainly from measures

outside the estimated surface covered by the vertical sonar measurements.
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• MpICp : MpIC with point-to-plane association as explained in Section

5.3. Note that the initial transformation here is the optimized transfor-

mation obtained by the MpIC with point-to-point association.

While this normalized ratio allows a global evaluation of the results, it has

some drawbacks. Obviously a ratio of 1 has not the same meaning when d0 is

small or large : it is expected in the former and can be considered as a failure in

the latter. Thus a more fine-grained representation in the form of scatter plot

is also proposed.

In the original paper of 2DpIC [2], each point cloud is built from a full 360◦

horizontal sonar scan. For MpIC and MpICp, we are limited to horizontal sonar

points measured from the surface delimited by the vertical sonar measurements.

This leads to sparser 3D point clouds. MpICa, which also considers points

outside the estimated surface, is an attempt to solve this potential drawback.

Another solution is to consider larger scans. Here, we also propose to build point

cloud based on 720◦ scan (two full horizontal sonar scans). We are interested

to see if improving the point cloud density this way overcomes the increasing

robot pose uncertainty accumulated by the dead-reckoning odometry.

Note that for 2DpIC, as in the original papers, we obtain the final 3D trans-

formation from the 2D transformation (x, y, yaw) using directly the absolute

values given by the depth sensor (z) and the IMU (pitch and roll). As can be

seen in Table 2, those values are relatively accurate. For fair comparison, we

similarly fix the z, pitch and roll values of the 3D transformation obtained with

MpIC, MpICa and MpICp.

In order to assess the effect of the association threshold defined in (30),

we also compare the results obtained with two confidence levels α = 0.95 and

α = 0.5. The higher the confidence level, the higher the threshold χ2
2,α or χ2

3,α.

In Figures 10 and 12, left (resp. right) boxes corresponds to α = 0.95 (resp.

α = 0.5).

We consider two classes of scan matching : scan matching of successive

scans and loop closure. For the first one, we estimate the distance dopt for each
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(a) Matching between 360◦ scans (b) Matching between 720◦ scans

Figure 10: Diagrams of relative errors for successive scans. 2DpIC : pIC proposed by [2],
MpIC: MpIC (point-to-point), MpICa : MpIC (point-to-point) including uniform arcs,
MpICp : MpIC (point-to-plane). Left (resp. right) boxes in each group have been com-
puted with association confidence level α = 0.95 (resp. α = 0.5)

successive scan matching along the trajectory inside the karst model (61 scan

matching). For the loop closure case, we consider a pair of scans and set higher

diagonal values to the initial transformation covariance Σq0 . We sample the

initial transformation q0 ∼ N (q̄0,Σq0) and apply the different pIC algorithms.

Thus we obtain higher initial errors in the order of magnitude encountered in

case of loop closure scan matching. We repeat this n = 50 times. In the

following, we analyze and discuss the results obtained.

6.2.1. Successive scans

Figures 10 and 11 sum up the results obtained for the scan matching of

successive scans.

The resulting distributions show that MpIC with point-to-point association

improves over the state-of-the-art 2DpIC approach. While the median is slightly

higher, it exhibits lower variance and higher minimum ratios. Note that MpIC

only uses points on the surface estimated with the vertical sonar. Points seen

behind and in front of the robot are thus ignored. This means that the matched

point cloud are expected to be smaller and less discriminative. Nevertheless,

the recovery of the 3D information overcomes this drawback.

In order to also take into account measurements outside the estimated sur-

face, we include such horizontal sonar measurements by considering a uniform el-
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(a) 360◦ scans, α = 0.95 (b) 360◦ scans, α = 0.5

(c) 720◦ scans, α = 0.95 (d) 720◦ scans, α = 0.5

Figure 11: Scatter plots for successive scans with different association confidence level. The
black line corresponds to x = y (unitary ratio) so that data points under this line corresponds
to improved estimated pose over dead-reckoning.

evation angle distribution along the beam width. This approach, called MpICa,

gives results which are a mixed of the 2DpIC and MpIC results. It yields an

accuracy improvement from the 3D information but at the expense of higher

variance as in the 2D case.

While point-to-plane ICP/pIC provides generally better performance than

its point-to-point version, MpICp seems to be only slightly better. For suc-

cessive scans, the 3D transformation uncertainty is relatively low. Indeed, the

transformation uncertainty is the accumulation of low odometry uncertainties

acquired along the robot trajectory during the scan acquisition. Informally, this

means that the initial transformation uncertainty (represented by Σq) is, to a

large extend, included in the interval of confidence obtainable with the pIC al-
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gorithm. In other words, pIC would provide only little improvements over the

initial transformation hence the low ratios in Figure 10. This is not the case

when scan matching is done in a Loop closure as can be seen in Section 6.2.2.

The initial transformation uncertainty has been accumulated along the trajec-

tory covering several scans and is relatively larger than the local scan odometry

uncertainties.

In regards to association confidence level, it is clear that α = 0.95 gives

relatively bad results regardless of the method used. It is intuitive as this

confidence level corresponds to a higher association threshold and thus can

potentially match points with lower likelihood. In the case of successive scans,

we can expect the initial transformation to be near the local optimum so that

matching points are initially near from each other. Low likelihood points should

then be discarded to avoid spurious associations.

Finally, we now compare the results obtained using 360◦ and 720◦ scans.

The difference observed for the two values of association confidence level are

accentuated with larger scans, excepted for MpICp. In the case of α = 0.5, we

observe an higher lower bound of distance ratio regardless of the method used.

Note that for 2DpIC, as can clearly be seen in Figure 11d, the algorithm is

almost always stuck to a local minimum at the initial transformation. Globally

both scan sizes give similar results. The optimal size for a given area depends

obviously on the environment structure or lack thereof. Typically, corridor-like

environments may require larger scan size to capture more structure.

6.2.2. Loop Closure

Similarly to the previous section, Figures 12 and 11 sum up the results with

large initial transformation error. Regardless of the method, improvements

over the initial transformation obtained with the dead-reckoning odometries are

more obvious than in the previous case of small transformations. This confirms

our previous hypothesis on the fact that for successive scans, the initial error

uncertainty is almost contained in the algorithm output uncertainty. In case

of larger initial error, the point-to-plane MpIC (MpICp) gives more accurate
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Figure 12: Diagrams of relative errors for loop closure with 360◦ scans. 2DpIC : pIC proposed
by [2], MpIC: MpIC (point-To-point), MpICa : MpIC(point-to-point) including uniform
arcs, MpICp : MpIC (point-to-plane). Left (resp. right) boxes in each group have been
computed with association confidence level α = 0.95 (resp. α = 0.5)

(a) α = 0.95 (b) α = 0.5

Figure 13: Scatter plots for loop closure with different association confidence level (360◦

scans). The black line corresponds to x = y (unitary ratio) so that data points under this line
corresponds to improved estimated pose over dead-reckoning. Note the natural difference of
scales compared to the successive scans case (Figure 11).

results compared to the point-to-point MpIC.

Unlike the previous case, lower confidence level for association provides bet-

ter associations for large initial transformation. This is intuitive as in the first

iterations, corresponding points are rather far between leading to higher Maha-

lanobis distances (lower likelihood). We then need a lower association thresholds

to obtain a sufficient number of correspondences.
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Figure 14: Segments (red rectangles) used to test our approach on the real experimental data
provided by [7]. The segments start respectively at timestamp 1372687311775722265 and
1372687577375451326. Green rectangles show areas where horizontal sonar elevation angles
is difficult due to the fact that only one side of the karst is visible by the vertical sonar.
Extracted and modified from [3].

6.3. Experiment on Real Terrain data

In order to validate our approach on real data, we exploit the data set pro-

vided by the University of Girona [3] [7]. It was acquired with an early version of

the Sparus AUV [29] and contains measurements from a DVL, two Inertial Mea-

surement Unit (IMU) and two MSIS. The dead-reckoning trajectory obtained

by an extended Kalman Filter (EKF) fusing DVL and IMU measurements is

also provided. The MSIS are configured similarly to Figure 2a. The horizontal

(resp. vertical) sonar has a beamwidth of 35◦ vertical by 3◦ horizontal (resp. 2◦

by 1◦) and configured to scan the 360◦ sector at 20 m range (resp. 10 m) with

a 0.05 m (resp. 0.2 m) resolution at 1.8◦ angular step.

The data set also includes six traffic cones as ground truth points which are

detected with an analog video camera. They were placed in locations where

the vehicle passed twice (loop closure) in order to evaluate the performance of

a SLAM algorithm as done in [3]. In our case, we are interested in evaluating

our scan matching which will require a lot more ground truth points.

To qualitatively assess our approach, we relatively compare the dead-reckoning
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Figure 15: Examples of elevation angles estimations on the dataset [7]. First row : first
segment with 360◦ scans. Second row : first segment with 720◦ scans. Third row : second
segment with 360◦ scans. Yellow (resp. purple) points corresponds to the current (resp.
previous) scan’s vertical points. Blue-to-Red (resp. Black-to-Yellow) arcs represents the first
(resp. second) horizontal scan elevation angles pdf. Best viewed in color.

(DR) trajectories with trajectories obtained by pIC methods. DR estimation

drifts over time, but locally the estimated trajectories from pIC approaches

should be similar.

Our tests are done on two small segments as shown in Figure 14 which

represents the acoustic map obtained with the SLAM approach in [3]. The first

and second segment start respectively at timestamp ts1 and ts2 given by

ts1 = 1372687311775722265, ts2 = 1372687577375451326
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(a) First segment, 360◦ scans (b) First segment, 720◦ scans

(c) Second segment, 360◦ scans (d) Second segment, 720◦ scans

Figure 16: 2D trajectories obtained by composing estimated relative poses of the robot. The
segments corresponds to the red areas in Figure 14. Best viewed in color.

Similarly to the previous section, we compare here 2DpIC, MpIC, MpICa and

MpICp methods. Following the observation in the simulation case, we fix the

association confidence level to α = 0.5. We also compare the results obtained

by considering 360◦ and 720◦ scans.

Figure 15 shows the estimated horizontal sonar elevation angles for one pair

of scans. While our previous work [4] was evaluated on simulated karst envi-

ronment, this illustrates its applicability to real data. It can deal with discon-

tinuities or missing data such as holes in the surface.

In areas where large parts of the environment are unseen by the vertical sonar

(Green rectangles in Figure 14), the implementation used in this paper can not

estimate elevation angles of horizontal measurements related to the unseen part
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of the surface. This problem can be partially solved by considering for the local

range ρv a uniform distribution on ]rmax,M ] (for some large enough M) when

no data is returned by the vertical sonar. This information can then be leveraged

for the elevation angle estimations of the horizontal sonar measurements.

Figure 16 represents the local trajectories obtained by composing pose es-

timated by DR or pIC methods. Note that as the trajectories are obtained by

composing estimated relative poses, a single error can lead to a large divergence

from the ground truth. Compared to our simulated karst, the environment in

both segments is similar to a corridor. This means that the relative displace-

ments along the local x-axis (forward direction) are harder to estimate. This can

be seen by comparing Figures 16a, 16c with Figures 16b, 16d. MpIC also has

an improved trajectory shape with longer scan while the results for 2DpIC are

rather similar for both 360◦ and 720◦ scans. This is expected as 2DpIC exploits

all the horizontal sonar measurements while MpIC and MpICp are restrained

to the surface covered by the vertical sonar. MpICa, which is a compromise be-

tween 2DpIC and MpIC by considering horizontal sonar measurements with no

elevation angle estimation (uniform distribution), does not improve upon 2DpIC

or MpIC/MpICp. Finally, in both segments, MpICp provides the trajectories

closest to the DR when using 720◦ scans. Compared to the simulation, we have

sparser 3D point clouds with larger misalignement. While this directly affects

the performance of MpIC (point-to-point association), MpICp (point-to-plane

association) can deal with such misaligment by leveraging the estimated surface

as explained in section 5.3.

7. Conclusion

In this paper we propose MpIC, an on-manifold derivation for the 3D prob-

abilistic Iterative Correspondence (pIC) algorithm based on basic differential

geometry related to the SE(3) Lie group. We then propose an application to

underwater sonar scan matching in the context of underwater karst exploration.

We extended our previous work [4] on elevation angle estimation from wide-

beam sonar to generate 3D point Gaussian distribution from the raw sonar

46



measurements. The approach is evaluated on a simulated karst environment to

allow quantitative analysis. It is also compared to the state-of-the-art approach

proposed in [7].

In the robotic literature, ICP algorithms are generally evaluated indirectly

in a SLAM framework and/or qualitatively on real data experiments [2][3][6].

Quantitative results, when available, are obtained by self-matching scans with

added noise [1][19]. We propose here a compromise by proposing a quantitative

evaluation of pIC with a more complex setting similar to a real experiment.

We show that, as one could expect, MpIC outperforms original pIC based

on Euler angles and Quaternion representations. We then analyzed and com-

pared different pIC approaches when applied to acoustic sonar data in several

configurations on a simulated karst environment and on real data. Compared

to previous state-of-the-art 2D method, our MpIC approach converges to more

accurate transformations with higher lower bounds. The point-to-plane asso-

ciation scheme is also more accurate than point-to-point one, showing the per-

tinence of our original normal estimation method. Our experiments also show

more general results on pIC. For successive scan matching with normally dis-

tributed dead-reckoning noise, the different pIC methods provides only slight

improvement on the estimated transformations. However, in real settings, one

can expect dead-reckoning noise outliers which do not follow the modeled Gaus-

sian distribution. For large initial transformations such as encountered in loop

closure scan matching, MpIC also provides better results over the 2D approach.

The association confidence level is an important parameter of the pIC al-

gorithms. We show through our experiments that it should be adapted to the

ratio between the initial transformation error and the scan local odometric er-

rors. This is rather intuitive : for small displacements, corresponding points are

near from each other so that the association threshold should be low to avoid

spurious associations. For larger displacements, corresponding points are far

from each other requiring thus a larger association threshold.

While the results are promising, there is still room for improvements. We ap-

proximated our points distribution by Gaussian distributions. For points coming
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from sonar measurements with a high elevation angle, a large part of the Gaus-

sian distribution covers an area outside of the original beam measurement. We

consider relaxing the Gaussian approximation and use a more generic distance

function to replace the Mahalanobis distance. This approach would certainly be

costly computationally-wise but can be interesting to further increase localiza-

tion accuracy offline. We are currently working towards the integration of this

algorithm in a SLAM framework for underwater karst exploration. As the robot

explores unknown environments, our approach will have to adapt dynamically

(eg. Gaussian kernel parameters, scans length).
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Testing sparus ii auv, an open platform for industrial, scientific and aca-

demic applications. Instrumentation viewpoint 2015;.

Appendix A. Definitions and properties of matrix product

We note Mm,n the vector space of real m×n matrices. To simplify notations,

we note [aij ] ∈Mm,n a matrix with generic term aij . Similarly, we define block

matrices as [Bij ]. The vec () : Mm,n → Rmn operator stacks the columns of a

matrix into a vector.
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Definition 1. Let ω =
[
ωx ωy ωz

]T ∈ R3. The operator [ ]× maps 3D vector
to the space of skew-symmetric matrix and is defined as

[ω]× =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0


Using this operator, the cross product operation can be expressed as a matrix
vector operation :

∀x,y ∈ R3, x× y = [x]× y

Definition 2. The Kronecker product, noted ⊗, between two matrices A =
[aij ] ∈Mm,n, B ∈Mp,q is defined by the partitioned matrix

A⊗B =

a11B . . . a1nB
...

...
am1B . . . amnB

 = [aijB] ∈Mmp,nq (A.1)

The Kronecker power notation is defined by

A⊗n = A⊗A . . .⊗A

Proposition 6. Let A ∈Mm,n, X ∈Mn,p and B ∈Mp,q. Then

vec (AXB) =
(
BT ⊗A

)
vec (X)

Proposition 7. Let f : Rn → Rm, A ∈ Mp,m such that each element aij of A
is a function from Rn to R. Suppose that both f and A are function of the same
variable x ∈ Rn. Then

dAf

dx
= A

df

dx
+
(
Ip ⊗ fT

) dvec (AT )
dx

Proof. Let x ∈ Rn and aTi the i-th row of A. We then have

dAf

dx
=

[
∂aTi f

∂xj

]
=

[
aTi

∂f

∂xj

]
+

[
fT
∂ai
∂xj

]
The first term is simply [

aTi
∂f

∂xj

]
= A

df

dx

The second term is given by

[
fT
∂ai
∂xj

]
=

fT

. . .

fT



∂a1

∂x1
. . . ∂a1

∂xn
...

...
∂ap
∂x1

. . .
∂ap
∂xn


=
(
Ip ⊗ fT

) [ ∂ai
∂xj

]
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where
[
∂ai
∂xj

]
is a p× 1 block-row matrix. By considering the transpose of A, we

have the corresponding expression[
∂ai
∂xj

]
=
dV ec

(
AT
)

dx

Appendix B. Derivations and proofs

We recall here some notations used in the following derivations. Let define

q ∈ SE(3) and ξ̂ ∈ se(3). Let Fi = ēTi Σei ēi with ēi = n̄i−āi = q⊕ c̄i−āi from

(25)(34). Thus the cost function F in (38) can be written as F =
∑N
i=1 Fi. We

denote γ the geodesic of SE(3) going through q (γ(0) = q) and with velocity ξ̂

(γ′(0) = ξ̂). Following (9), it is given by γ(t) = Tetξ̂ where q ≡ T ∈ GA(3) as

in (4).

Appendix B.1. Proof of Proposition 1

Based on the differential definition in (8), we have

d

dt
Fi(γ(t)) = ēTi

(
2Σ−1

ei

dēi
dt

+
dΣ−1

ei

dt
ēi

)
(B.1)

We have from (14)
dēi
dt

∣∣∣
t=0

= RUc̄iξ (B.2)

Similarly,
dR

dt

∣∣∣
t=0

= Rω̂ (B.3)

From (36) and (B.3), we obtain

dΣ−1
ei

dt

∣∣∣
t=0

= −Σ−1
ei

dΣei

dt

∣∣∣
t=0

Σ−1
ei (B.4)

dΣei

dt

∣∣∣
t=0

=
d
(
RΩc̄iR

T
)

dt

∣∣∣
t=0

=
dR

dt

∣∣∣
t=0

Ωc̄iR
T +RΩc̄i

dRT

dt

∣∣∣
t=0

= R (ω̂Ωc̄i − Ωc̄iω̂)RT (B.5)
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Replacing (B.2)(B.4)(B.5) in (B.1) gives the expected results provided by (41)

DFq(T ξ̂) =

N∑
i=1

d

dt
Fi(γ(t))

∣∣∣
t=0

=

N∑
i=1

ēTi Σ−1
ei R

(
2Uc̄iξ + (Ωc̄iω̂ − ω̂Ωc̄i)R

TΣ−1
ei ēi

)
(B.6)

Appendix B.2. Proof of Proposition 2

Appendix B.2.1. Derivation of HF
q

By derivating (B.1) we have

d2

dt2
Fi(γ(t)) =

dēi
dt

T (
2Σ−1

ei

dēi
dt

+
dΣ−1

ei

dt
ēi

)
+ ēTi

(
3
dΣ−1

ei

dt

dēi
dt

+ 2Σ−1
ei

d2ēi
dt2

+
d2Σ−1

ei

dt2
ēi

)
(B.7)

In homogeneous coordinates, the second derivative of ēi is given by

d2ēi
dt2

= T ξ̂2etξ̂c̄i (B.8)

from which we deduce in heterogeneous coordinates

d2ēi
dt2

∣∣∣
t=0

= Rω̂ (ω̂c̄i + τ) (B.9)

We recall (B.4)

dΣ−1
ei

dt
= Σ−1

ei R
(
etω̂Ωc̄ie

−tω̂ω̂ − ω̂etω̂Ωc̄ie
−tω̂
)
RTΣ−1

ei (B.10)

Derivating it once, we obtain after simplification

d2Σ−1
ei

dt2

∣∣∣
t=0

= Σ−1
ei R

(
2ΛωiR

TΣ−1
ei RΛωi +Dωi

)
RTΣ−1

ei (B.11)

with

Λωi = Ωc̄iω̂ (B.12)

Dωi = 2ω̂Ωc̄iω̂ − Ωc̄iω̂
2 − ω̂2Ωc̄i (B.13)
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The final result is obtained by replacing the intermediate computations in (B.7)

Hess(F )q

(
T ξ̂, T ξ̂

)
=

d2

dt2
Fi(γ(t))

∣∣∣
t=0

=

N∑
i=0

ēTi Σ−1
ei R

(
2ω̂ (ω̂c̄i + τ)

+DωiR
TΣ−1

ei ēi

+KωiR (2Kωi ēi + 3Uc̄iξ)
)

(B.14)

Kωi = (Λωi + ΛTωi)R
TΣ−1

ei (B.15)

Appendix B.2.2. Derivation of HF
q,z

The hessian matrix HFi
q,zi is defined by

HFi
q,zi =

∂J
FTi
q

∂zi
(B.16)

=

[
∂DFiq(TG

SE(3)
k )

∂zi

]
(B.17)

=

[
∂DFiq(TG

SE(3)
k )

∂ai

∂DFiq(TG
SE(3)
k )

∂ci

]
(B.18)

where we recall that G
SE(3)
k = ξ̂k, ξk being the k-th unit vector of the canonical

base of R6(Generally the canonical base vector are denoted ei, as in Section

3.1. We change the notation here to avoid ambiguity with the random variables

representing the association errors). First we have

∂ē

∂z
=
[
∂ē
∂a

∂ē
∂c

]
=
[
−I3 R

]
It follows, with Kωi defined by (B.15)

∂DFiq(T ξ̂)

∂ai
= −2

(
ξTUTc̄i + ēTi K

T
ωi

)
RTΣ−1

ei (B.19)
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from which we deduce

HFi
q,ai =

[
∂DFiq(T ξ̂k)

∂ai

]
= −2

(
UTc̄iR

TΣ−1
ei +

[
ēTi K

T
ωi(ξ̂k)RTΣ−1

ei

] )
= −2

(
UTc̄iR

TΣ−1
ei

+
(
I3 ⊗ ēTi RTΣ−1

ei

) [
(Λωi + ΛTωi)(ξ̂k)

]
RTΣ−1

ei

)
= −2

(
UTc̄i +

(
I3 ⊗ ēTi RTΣ−1

ei

) (
K +KT

) )
RTΣ−1

ei (B.20)

with K = (I6 ⊗ Ωc̄i)


G
SO(3)
1

G
SO(3)
2

G
SO(3)
3

09,3

.

For the derivation w.r.t c̄i, we have

∂DFiq(T ξ̂)

∂ci
= 2 (A1 +A2) +A3 +A4 (B.21)

A1 = ēTi
∂Σ−1

ei RUc̄iξ

∂c̄i
(B.22)

A2 = ξTUTc̄iR
TΣ−1

ei

∂ēi
∂c̄i

= ξTUTc̄iR
TΣ−1

ei R (B.23)

A3 = ēTi

(
Σ−1

ei RKωi +
(
Σ−1

ei RKωi

)T) ∂ēi
∂c̄i

= 2ēTi Σ−1
ei R

(
Λωi + ΛTωi

)
RTΣ−1

ei R (B.24)

A4 = ēTi

[
∂(Σ−1

ei
RKωi )

T

∂c̄i,j

]
(I3 ⊗ ēi) (B.25)

We then have HFi
q,ci = 2

([
A1(ξ̂k)

]
+
[
A2(ξ̂k)

])
+
[
A3(ξ̂k)

]
+
[
A4(ξ̂k)

]
. The

first term is given by[
A1(ξ̂k)

]
=

[
ēTi

∂Σ−1
ei RUc̄iξk

∂ci,j

]
(B.26)

=
(
I6 ⊗ ēTi

) [
vec

(
∂Σ−1

ei RUc̄i
∂ci,j

)]
(B.27)
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Using the following results for j ∈ J1, 3K

∂Σei

∂ci,j
= R

∂Ωc̄i
∂ci,j

RT (B.28)

∂Ωc̄i
∂ci,j

=

(
∂Uc̄i
∂ci,j

ΣqU
T
c̄i + Uc̄iΣq

∂UTc̄i
∂ci,j

)
(B.29)

∂UTc̄i
∂ci,j

=
[
−GSO(3)

j 03,3

]
(B.30)

We obtain

∂Σ−1
ei RUc̄i
∂ci,j

= Σ−1
ei R

(
∂Uc̄i
∂ci,j

−
(
∂Uc̄i
∂ci,j

ΣqU
T
c̄i + Uc̄iΣq

∂UTc̄i
∂ci,j

)
RTΣ−1

ei RUc̄i

)
(B.31)

The other terms are given by[
A2(ξ̂k)

]
= UTc̄iR

TΣ−1
ei R (B.32)[

A3(ξ̂k)
]

= 2
(
I6 ⊗ ēTi Σ−1

ei R
) (
K +KT

)
RTΣ−1

ei R[
A4(ξ̂k)

]
= (I6 ⊗ ēi)

∂(Σ−1
ei
RKωi (G

SO(3)
k ))T

∂c̄i,j

09,3

 (I3 ⊗ ēi) (B.33)

with

∂(Σ−1
ei RKωi(G

SO(3)
k ))T

∂ci,j
= Σ−1

ei

((
R(K ′j +K ′Tj )− ∂Σei

∂ci,j
KT
ωi

)
RT (B.34)

−RKωi

∂Σei

∂ci,j

)
Σ−1

ei (B.35)

K ′j =

(
I6 ⊗

∂Ωc̄i
∂ci,j

)

G
SO(3)
1

G
SO(3)
2

G
SO(3)
3

09,3

 (B.36)
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Appendix B.3. Proof of Proposition 3

First, recall the SBeta pdf f followed by θ :

f(θ) =
Γ(α+ β)

Γ(α)Γ(β)

(
θ + b

2

)α−1 ( b
2 − θ

)β−1

bα+β−1

= K(α, β, b)

(
θ +

b

2

)α−1(
b

2
− θ
)β−1

(B.37)

where Γ is the Gamma function. Using the power series of cosinus, we have

E(cos θ) =

∫ b
2

− b2
cos(θ)f(θ)dθ

= K(α, β, b)

∫ b
2

− b2

+∞∑
n=0

(−1)n

2n!
θ2n

(
θ +

b

2

)α−1(
b

2
− θ
)β−1

dθ (B.38)

One can easily show that the serie-integral inversion holds and gives

E(cos θ) = K(α, β, b)

+∞∑
n=0

(−1)n

2n!

∫ b
2

− b2
θ2n

(
θ +

b

2

)α−1(
b

2
− θ
)β−1

dθ (B.39)

With a simple change of variable, the integral can be expressed as∫ b
2

− b2
θ2n

(
θ +

b

2

)α−1(
b

2
− θ
)β−1

dθ =
bα+β+2n−1

4n

∫ 1

0

θα−1 (1− 2θ)
2n

(1− θ)β−1
dθ

=
bα+β+2n−1

4n
2F1(−2n, α, α+ β; 2)

K(α, β, b)bα+β−1

=

(
b

2

)2n

2F1(−2n, α, α+ β; 2) (B.40)

where we used the integral form of the Hypergeometric function 2F1.

The result for E(sin θ) and E(cos2 θ) are obtained similarly using the power

series

sin θ =
+∞∑
n=0

(−1)2n+1

2n+ 1!
θ2n+1

cos2 θ = 1 +

+∞∑
n=1

(−1)n

2n!
22n−1θ2n

Appendix B.4. Proof of Proposition 4

First define the Pochhammer symbol as a generalization of the usual facto-

rial. Let a ∈ R and n ∈ N∗ :

(a)n = a(a+ 1) . . . (a+ n− 1) (B.41)
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and set (a)0 otherwise. The hypergeometric function 2F1 depends on 3 param-

eters and is defined for m ∈ N and b, c ∈ R+ as :

2F1(−m, b, c; z) =

m∑
n=0

(−1)n
(
m

n

)
(b)n
(c)n

zn (B.42)

We aim at controlling the reminder for the series :

RN (E(cos θ)) =

+∞∑
n=N

(−1)n

2n!

(
b

2

)2n

2F1(−2n, α, α+ β; 2) (B.43)

Notice that

2F1(−2n, α, α+ β; 2) =

2n∑
k=0

(−1)k
(

2n

k

)
(α)k

(α+ β)k
2k (B.44)

Since (α)k
(α+β)k

≤ 1, we get |2F1(−2n, α, α+ β; 2)| ≤
∑2n
k=0

(
2n
k

)
2k = 32n so that

|RN (E(cos θ)) | ≤
+∞∑
n=N

1

(2n)!

(
3b

2

)2n

=

+∞∑
k=0

1

(2(k +N))!

(
3b

2

)2(k+N)

(B.45)

≤ 1

(2N)!

(
3b

2

)2N +∞∑
k=0

1

(2n)!

(
3b

2

)2n

(B.46)

≤ 1

(2N)!

(
3b

2

)2N

cosh

(
3b

2

)
(B.47)

The proof for the other bounds is obtained following similar computation.
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Appendix C. Expressions of Ai,j,k,l in Section 5.3

The non-null matrices Aijkl defined in (70) are given by

A2,2,0,0 = a0a
T
0 A0,0,2,2 = a1a

T
1

A0,2,2,0 = a2a
T
2 A2,0,0,2 = a3a

T
3

A2,1,0,1 = a0a
T
3 + a3a

T
0 A1,2,1,0 = a0a

T
2 + a2a

T
0

A0,1,2,1 = a1a
T
2 + a2a

T
1 A1,0,1,2 = a1a

T
3 + a3a

T
1

A1,1,1,1 = a0a
T
1 + a1a

T
0 + a2a

T
3 + a3a

T
2 A1,2,0,0 = a0b

T
0 + b0a

T
0

A0,2,1,0 = a2b
T
0 + b0a

T
2 A0,0,1,2 = a1b

T
1 + b1a

T
1

A1,0,0,2 = a3b
T
1 + b1a

T
3 A0,1,1,1 = a1b

T
0 + b0a

T
1 + a2b

T
1 + b1a

T
2

A1,1,0,1 = a0b
T
1 + b1a

T
0 + a3b

T
0 + b0a

T
3 A0,2,0,0 = b0b

T
0

A0,0,0,2 = b1b
T
1 A0,1,0,1 = b0b

T
1 + b1b

T
0

with a0, a1, a2, a3, b0, b1 defined in (68)
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