
HAL Id: hal-03182013
https://hal.science/hal-03182013v1

Preprint submitted on 26 Mar 2021 (v1), last revised 9 Jun 2021 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On-manifold Probabilistic ICP : Application to
Underwater Karst Exploration
Yohan Breux, André Mas, Lionel Lapierre

To cite this version:
Yohan Breux, André Mas, Lionel Lapierre. On-manifold Probabilistic ICP : Application to Underwater
Karst Exploration. 2021. �hal-03182013v1�

https://hal.science/hal-03182013v1
https://hal.archives-ouvertes.fr

Abstract

This paper proposes an on-manifold derivation of the probabilistic ICP (pICP) and its adap-
tation in the context of autonomous underwater karst exploration. As vision-based methods may
fail due to water turbidity, we have to rely on acoustic sonar measurements. This work leverages
previous results on elevation angle estimations of wide-beam profiling sonar and adapts the pICP
to the obtained point distributions.

1

On-manifold Probabilistic ICP : Application to Underwater

Karst Exploration.

Yohan Breux, André Mas and Lionel Lapierre

March 24, 2021

1 Introduction

Iterative Closest Point (ICP) [3] is a well-known technique widely used in domains such as 3D Data
registration or SLAM (Simultaneous Localization And Mapping). It aims at computing the relative
displacement between two given 2D or 3D point clouds acquired with some sensors (3D scanner,
LIDAR, acoustic sonar). The basic algorithm consists in iterating over the two following steps until
convergence or for a fixed number of iterations. First, compute the correspondences (associations)
between the two input clouds. Then find the displacement minimizing the sum of euclidean distance
error over the associated pair of points. Generally, the minimization is done with least square methods.
As only a local optimum can be found, this algorithm is limited to relatively small displacement or
requires a good initial estimate for larger displacement.

In this paper, we are interested in its probabilistic extension first proposed by [18] that we note
pIC. It takes in account uncertainties in the points positions and in the initial displacement estimate
by modeling them as Gaussian random variables. This is particularly important when using sensors
with strong noise such as underwater acoustic sonar. Furthermore, unlike LIDAR which provides full
scans almost instantaneously, mechanically scanning sonar systems (MSIS) can take several seconds
for a full 360◦ scan due to higher time-of-flight underwater. Besides, as the robot is moving during
the acquisition, its uncertainty is also propagated to the measurements.

In the context of underwater karst exploration, we have to rely on acoustic sonar as water turbidity
affects the efficiency of vision-based and LIDAR approaches. pIC is then the natural candidate
in a SLAM framework to estimate the displacement between two overlapping scan. To guarantee
overlapping between two successive scans, we have to rely on wide-beam sonar. The drawback of
such sonar is that the elevation angle is unknown, leading to high uncertainty to the measured 3D
points. Previous systems based on MSIS [15][16] deals with this problem by considering a 2D SLAM.
In our previous work [5], we propose a method to estimate the probability distribution of elevation
angles. We first compute a probabilistic surface model from the measurements of a vertically mounted
narrow-beam sonar which is then leveraged to estimate the elevation angles from an horizontally
mounted wide-beam sonar. We thus obtain 3D measurements following non-Gaussian distributions.

SLAM algorithms’ localization accuracy is directly related to the ICP/pIC performance. Our
first contribution in this paper is to propose the derivation of on-manifold probabilistic ICP (noted
MpIC) as well as the derivation of the estimated transformation covariance. We show that it leads to
superior performance compared to estimation based on Euler angles or quaternion representations.
To the best of our knowledge, the literature [18][15][7][19] exploiting the pIC algorithms implicitly
suppose an independent error covariance to obtain their closed-form solution for the transformation
estimation. In this work, we also take into account the dependence of the error covariance on the
transformation to estimate.

We then apply it in the context of underwater karst exploration based on an extension of our
previous work [5]. In particular, we propose a Gaussian approximation to our estimated sonar mea-
surements. In order to use a point-to-plane association scheme, we need to compute normals at each
point. As we can expect sparse point cloud, we propose to compute the normals and their covariances
based on the environment probabilistic model as obtained in [5]. In order to quantitatively assess
our algorithm, we need to have access to ground truth displacement which are difficult to obtain in
natural karst environment. We evaluate our algorithm on a simulated karst environment and compare
it to state-of-the-art 2D approach successfully used in real underwater cave [16][17].

2

The structure of the paper is as follows. Section 2 gives an overview on ICP approaches with a
focus on underwater robotics application. Section 3 briefly introduces generalities on Lie groups and
related notations used throughout this paper. The description of pIC and its on-manifold derivation
is given in Section 4. Section 5 succinctly introduces our previous elevation angle estimation method
and its extensions with notably normal computations and Gaussian approximation. Finally, Section
6 evaluates our approach through experiments on a simulated karst environment. Conclusion and
future working directions are left in Section 7.

2 Related Works

The original ICP algorithm comes from the seminary works by [3] and [10] for point-to-plane associ-
ations. A lot of improvements have been proposed by exploiting additional features such as surface
orientations [9][23] or color [11][24], improving the association step [18][1] and/or the objective func-
tion [18][21][12]. The range of ICP applications is large and we are interested here on its usage in
mobile robotics. A comprehensive overview can be found in [20].

In order to take into account sensor uncertainties, Montesano et al. [18] propose pIC, a probabilis-
tic approach of the original ICP algorithm. They consider both points and the relative transformation
between the point clouds as Gaussian random variables. The Euclidean distance used in the ICP as-
sociation step and in the objective function is replaced by the Mahalanobis distance. Doing so, each
association error is weighted by its covariance so that uncertain data contribute less to the objective
function.

Segal et al. [23] also introduce a probabilistic approach with their generalized ICP (G-ICP).
The association step is done as in the original ICP using Euclidean distances. However, they consider
points as Gaussian random variables with fixed uncertainties in the plane orthogonal to the surface at
the considered point. While this does not directly modelized uncertainties related to the measurement,
it takes account of the sampling error of the surface e.g. corresponding points are not exactly the
same point on the surface. Note that unlike pIC, the transformation is not considered as a random
variable.

Agamennoni et al. [1] recently propose another probabilistic variant without explicit association
phase. More precisely, they search to maximize the likehood of points from the target cloud con-
ditioned on the associated point in the reference cloud. Each possible association is weighted by a
latent variable. They use an Expectation-Maximization (EM) procedure to iteratively estimate the
transformation and the associations weights.

In the field of underwater exploration, localization with SLAM approaches are often based on
acoustic sonar scan matching. The level of noise of such sensors is higher than scan laser used in
terrestrial robotics. Furthermore, due to the propagation time of wave in water, a full scan can take
several seconds to complete while the robot is moving. We thus have to consider uncertainties in the
robot position during the scan acquisition on top of measurement errors.

Palomer et al [19] develop an EKF SLAM framework for seafloor mapping. They use a multi-
beam echosounder and the resulting scans are matched using pIC in 3D. However, the closed-form
expression for the estimated transformation in the pIC error minimization step is obtained by im-
plicitly considering an error covariance independent of the transformation. In fact, this covariance
is dependent on the transformation through the jacobians involved in its definition. Furthermore,
optimization is made using Euler angle representation which can be prone to gimbal lock [4].

In this paper, we are interested in methods exploiting mechanically scanned imaging sonar (MSIS).
Mallios et al. [15][17] use the pIC algorithm [18] in an Extended Kalman Filter (EKF) SLAM
framework for underwater cave exploration in a 2D setting. A similar approach is proposed by
Burguera et al. [7] [6]. Similarly to this work, they are based on mechanically scanned imaging sonar
(MSIS).

In order to estimate 3D transformations, we propose in our previous work [5] a method for esti-
mating the distribution of elevation angles from wide-beam sonar measurements by leveraging mea-
surements from a secondary narrow-beam sonar. In this paper, we propose a generic on-manifold pIC
algorithm MpIC with the derivation of its estimated transformation covariance. We then propose
a practical application where it is used to match 3D scan obtained by MSIS acoustic sonars where
elevation angles are estimated using the method in [5].

3

Figure 1: Representation of a 2-manifold M in R3 with its tangent space TeM at a point e ∈ M.
φ and ψ are two curves of M passing through e such that their tangent vector G1, G2 at e generate
a basis of TeM. If M is a Lie group and e its neutral element, then TeM = m is its associated
Lie algebra. The transition from one to another is done through the applications exp : m 7→ M and
log :M 7→ m. γ is an example of path with velocity v.

3 Generalities on Lie groups

In this section, we introduce the notations and some differential geometry concepts relevant to the
derivations in the following sections. In particular, we focus on Lie Groups and more particularly
on the 3D rigid transformation group SE(3). A good introduction to Lie groups for application in
Robotics can be found in [25]. A more detailed coverage of differential geometry and Lie groups can
be found in [14]

A N -dimensional manifold M is a topological space where every neighboorhood Vp of a point
p ∈M is homeomorphic to RN .

A N-dimensional manifold embedded in RD, N < D, is said to be smooth (or differentiable) if every
point p ∈ M can be locally parametrized by a C∞-diffeomorphism φ : Ω → U with p ∈ U, ON ∈ Ω
and (Ω, U) being respectively open subsets of RN and M. The tangent plane at a point p on M is
designed by TpM.

A Lie group G is defined as a smooth manifold with a group structure such that its group product
and its inverse are differentiable. We can then define its Lie algebra g = TeG (a vector space equipped
with a bilinear product called here the Lie bracket) which corresponds to the tangent space of G at
its identity element e. Generally, computations are easier on the Lie Algebra. In particular, it is used
for on-manifold non-linear optimizations such as Gauss-Newton or Levenberg-Marquardt as they are
designed to work on vector spaces and not on general manifolds.

In the following, we only consider matrix Lie groups. By noting GL(n) the general linear group
in dimension n (set of inversible real n×n inversible matrices), the Cartan theorem shows that every
closed subgroup of GL(n) is a Lie group.

The exponential map exp : g→ G maps elements of the algebra to the group. It is defined, in the
case of matrix Lie group, as the exponential of a matrix such that

eA =

+∞∑
k=0

1

k!
Ak

4

We note its inverse the logarithm map log : G → g. Note that there is no general results on the
injectivity/surjectivity of those applications.

We define the isomorphism ∧ which maps elements of RN (local parametrization) to elements of
the Lie algebra. We also define its inverse operator vee ∨.

∧ : RN 7→ g

g→ (g)∧ ≡ ĝ =

N∑
i=1

giGi

where {Gi} is a basis (called generators) of the Lie algebra.
Smooth manifolds, and then Lie groups, are also Riemaniann manifolds ([14], Theorem 13.2

p410). Thus, we can define a smooth inner product < ·, · >p on the tangent space TpM at each point
p ∈ M. The metric induced by this inner product is used to measure the length of piecewise-C1

curves γ : [a, b] ⊂ R 7→ M on M such that

L(γ) =

∫ b

a

〈γ′(t), γ′(t)〉
1
2

γ(t)dt (1)

with the velocity γ′(t) ∈ Tγ(t)M,∀t ∈ [a, b]. Geodesics are an important class of curves. They are
the curves which locally minimize the length between two points and are equivalent to the straight
line in Euclidean geometry (null curvature). In fact, by definition, geodesics are curves with constant
velocity. This means that ∀t, γ′(0) = γ′(t) = v ∈ Tγ(0)M. We can then define for a given velocity v
a geodesic γ going through a point p ∈M

γ(t) = etv

It is illustrated in Figure ??.
In this paper, we are interested in two particular matrix Lie groups : the Special Orthogonal

group SO(3) representing the rotations and the Special Euclidian group SE(3) representing the rigid
transformations in R3.

3.1 SO(3) and SE(3)

SO(3) is a closed subgroup of GL(3) defined as

SO(3) =
{
R ∈ GL(3)| RRT = I3 and detR = 1

}
The corresponding Lie algebra so(3) is defined by the space of skew-symmetric matrices

∀W ∈ so(3),W = ω̂ = [ω]× , ω ∈ R3

The generators G
so(3)
i of so(3) are given by

G
so(3)
i = êi (2)

where e1, e2, e3 is the canonical basis of R3.
SE(3) is defined as the semidirect product SO(3)nR3 and is isomorphic to the affine group GA(3)

(a subgroup of GL(4)) through the application

SO(3)× R3 7→ GA(3)

R, t→
[
R t
0T 1

]
Its Lie algebra se(3) is given by

∀Ξ ∈ se(3), Ξ = ξ̂ =

[
[ω]× τ
0T 0

]
ξ =

[
ωT τT

]T
,ω ∈ R3, τ ∈ R3

5

The generators G
se(3)
i of se(3) are given by

G
se(3)
i =

[
G

so(3)
i 0
0T 0

]
, i ∈ {1, 2, 3}

G
se(3)
i =

[
0 ei

0T 0

]
, i ∈ {4, 5, 6} (3)

Expressions for the exponential / log maps of SO(3) and SE(3) can be found in [25].
Throughout this paper, we use the left-invariant Riemannian metric induced by the point-independent

Riemanian metric on GA(3) ([2], Section 3.2)

〈u, v〉A = Tr(uTv)

= 〈A−1u, A−1v〉e
= 〈su, sv〉e
= sTuGsv (4)

G =

[
I3 0
0 2I3

]
, A ∈ SE(3), u,v ∈ TASE(3)

where e is the identity element of SE(3), TASE(3) the tangent plane at A and su, sv ∈ se(3).
Pose-pose and pose-point compositions (resp. inverse compositions) are represented by the oper-

ator ⊕ (resp.). More precisely, for 3D pose q ∈ SE(3) with SE(3) seen as a matrix group, the
pose-pose composition corresponds to the group multiplication and the pose-point composition to the
group action on R3.

We also define the � operator for directly composed increments of Lie group expressed in the
tangent vector space (local parametrization). It is given by

� : G × Rn 7→ G

G, ξ → G� ξ = Geξ̂

3.2 Jacobian on a Riemannian Manifold

For any smooth function f :M→ Rm with M being a Riemannian manifold, the differential of the
function f at p ∈M is defined by (Definition 13.3, [14])

∀u ∈ TpM, Dfp(u) =
d

dt
f(γ(t))|t=0 (5)

where γ is a geodesic of M going through p (γ(0) = p) and with velocity u (γ′(0) = u). If M is a
Lie group and m its Lie algebra, it can be shown ([14], Proposition 20.20) that the one-parameter
subgroups exp(tX0), X0 ∈ m are its geodesics.

In the case of a matrix Lie group G, the geodesics are thus

γ(t) = Tetĝ, T ∈ G, ĝ ∈ g (6)

Put simply, Dfp(u) is the directional derivative along the direction vector u. From this, in the

case of SO(3) and SE(3) manifolds, we can compute the Jacobian matrix of f Jf|p by computing its

derivatives along the generators Gi of so(3) and se(3). Formally

Jf|p = [Dfp(PGj)] (7)

Note that we have the following relation

Jf|pg = Dfp(P ĝ), g ∈ Rn (8)

The advantage of using this jacobian definition is to only operate univariate derivatives which
keeps calculus simple.

In the literature, jacobian computation on Lie groups are often done directly using matrix expres-
sion leading to complex tensorial calculus involving matrix vectorization and kronecker products [][].

6

While this approach gives exact matricial equalities, it is unnecessary complex for implementation
purpose. The definition proposed here gives simple expression for each element of the Jacobian which
are easier to implement and computationally efficient.

The differentials of SE(3) group action and its inverse are given by

q ≡ T =

[
R t
0T 1

]
(9)

D ⊕|q,a (T ξ̂) = T ξ̂a (10)

D 	|q,a (T ξ̂) = −ξ̂T−1a (11)

The jacobians of SE(3) group action and its inverse are then given by

J⊕q|q,a ≡ ∂q⊕ a

∂q
= R

[
− [a]× I3

]
= RUa (12)

J⊕a|q,a ≡ ∂q⊕ a

∂a
= R (13)

J	q|q,a ≡ ∂a	 q

∂q
=
[[
RTa−RT t

]
× −I3

]
= −RTUa−t (12 ⊗R) (14)

J	a|q,a ≡ ∂a	 q

∂a
= RT (15)

3.3 Hessian on a Riemannian Manifold

For a smooth function f : Rn 7→ R, the Hessian at p of a smooth function f is defined by

∀x,y ∈ Rn, Hess(f)p(x,y) = xtHpy (16)

where Hp =
[

∂2fi
∂xi∂xj

]
is the usual hessian matrix. Similarly, for a smooth function f on a Ck+1

Riemannian manifold M, its hessian at p ∈ M is noted Hess(f)p(X,Y) where X,Y are two Ck

vector fields on M.1 In particular, for u ∈ TpM, we have ([14], Proposition 15.22)

Hess(f)p(u, u) =
d2

dt2
f (γ(t))|t=0 (17)

where γ is a geodesic of M going through p (γ(0) = p) and with velocity u (γ′(0) = u).
Similarly to the differential, by noting that TTG = Tg, the hessian matrix is deduced from the

hessian operator and the vector fields X : T → TGi ∈ Tg such that

Hf
T = [Hess(f)T (TGi, TGj)] (18)

with Gi are the generators of g as define respectively in eq (2) and (3) for so(3) and se(3).
The diagonal terms are computed using eq (17). Other terms are obtained by exploiting the fact

that the hessian is a symmetric bilinear form :

Hess(f)T (TGi, TGj) =

1

2
(Hess(f)T (TGi + TGj , TGi + TGj)

− Hess(f)T (TGi, TGi)−Hess(f)T (TGj , TGj)) (19)

4 Probabilistic Iterative Closest Point (ICP)

The Iterative Closest Point (ICP) algorithm is an iterative non-linear 2-step process for registering
unstructured 2D or 3D point clouds. In other words, it aims at estimating the displacement (rigid
transformation) between two point clouds. Given an initial displacement, each iteration consists in
associating points in the first cloud to points in the displaced second cloud.

1A Ck-vector field X is a mapping p ∈ M → X(p) ∈ TpM such that X(p) is Ck with reference to p, see [14] Section
9.2

7

Once done, the algorithm computes with non-linear optimization the displacement minimizing
the sum of errors between each pair of associated points. Originally, the error is measured as the L2
norm between the points but variants on the error function have been proposed.

A probabilistic variant taking in account point uncertainties is proposed by [18] and further
exploited in the context similar to our work in 2D [15] and 3D [19].

In the previous works, the optimization is based on Euler angles representation and the error
covariance is implicitly assumed independent of the estimated transformation. We improve upon
previous iterations with two main contributions : we directly optimize on the SE(3) manifold using
derivative on its Lie algebra and we also take into account the error covariance dependence on the
estimated displacement.

The inputs of the algorithm are the reference point cloud Sref = {ri}i=1...n, the newly acquired
point cloud Snew = {ci}i=1...m and an initial transformation q(0) such that

ri ∼ N
(
r̄i ∈ R3,Σri

)
, ci ∼ N (c̄i,Σci) (20)

q(0) ∼ N
(
q̄(0) ∈ SE(3),Σq(0)

)
(21)

Note that we do not need to specify how we represent the transformation q. Generally, it is represented
as 7D vector composed of a quaternion for the rotation part and a 3D translation. It can also be
represented as a 6D vector using Euler angles for the rotation part.

We now consider the k-th iteration. The current displaced point cloud is S
(k)
new =

{
n

(k)
i

}
i=1...m

with n(k) ∼ N
(
n̄

(k)
i ,Σ

n
(k)
i

)
and

n̄
(k)
i = q̄(k−1) ⊕ c̄i (22)

Σ
n

(k)
i

= J⊕q|q̄(k−1),n̄i

Σq(0)J⊕
T

q|q̄(k−1),n̄i

+ J⊕a|q̄(k−1),n̄i

ΣciJ
⊕T
a|q̄(k−1),n̄i

(23)

where the involved jacobians J⊕q and J⊕a are defined in eq (12) and eq (13).

4.1 Associations

For the association step, we search for each point n
(k+1)
i ∈ S(k+1)

new the set of candidates A
(k+1)
i ⊂ Sref .

In the following, the errors eij ∼ N (ēij ,Σeij) between two points n
(k+1)
i and rj are defined by

ēij = n̄i − r̄j =
(
q̄(k+1) ⊕ c̄j

)
− r̄j (24)

Σeij = Σni + Σrj (25)

The Mahalanobis distance D2(ni, rj) of a pair of points is given by

D2(ni, rj) = ēTijΣ
−1
eij ēij (26)

As the Mahalanobis distance follows a chi-squared distribution, we can use a confidence level
α ∈ [0, 1] and consider a valid candidate for association if

D2(ni, rj) < χ2
3,α (27)

In the case of point-to-point association, the final association ai ∈ A
(k+1)
i for ni is simply the

element in A
(k+1)
i which minimizes D2(ni, ·)

ai = arg min
r∈A(k+1)

i

D2(ni, r) (28)

The drawback of the point-to-point association is to suppose that the exact same points belong
to both point clouds. In practice, the two inputs point cloud results from two different sampling of
the environment leading to misalignment.

Complementary to the point-to-point association, the point-to-plane association uses local infor-
mation on the surface shape and performs better against misalignments. The general approach is then

8

Algorithm 1 PICP Association

Input: Association scheme Tassoc, Transformation q, Gaussian point n ∈ q ⊕ Snew, Candidate set
A ⊂ Sref

Output: Gaussian point a ∈ Sref associated with n
1: if (Tassoc = point-to-point) then
2: a = arg minr∈AD

2(n, r)
3: else if (Tassoc = point-to-plane) then
4: α =

∑
r̄∈A Tr(Σr)

−2

5: pµ =
(∑

r∈A Tr(Σr)
−2r̄

)
α−1

6: C =
∑

r∈A
(r̄−pµ)(r̄−pµ)T

Tr(Σ2
r)

7: K =
∑

r∈A
r̄(r̄−pµ)T

Tr(Σ2
r)

8: H =

[
K − v̄TKT v̄ pµ

pTµ α

]
9: v̄ = Eigen vector of C associated with minimal eigen value

10: d̄ = v̄Tpµ
11: p ∼ N

(
[v̄ d̄]T , H+

)
12: ā = q̄ ⊕ n̄−

(
(q̄ ⊕ n̄)T v̄ − d̄

)
v̄

13: Σa = Ja
qΣqJ

aT

q + Ja
nΣnJ

aT

n + Ja
pΣpJ

aT

p

14: a ∼ N (ā,Σa)
15: end if

to first use point-to-point association for the first iterations and to switch later on to point-to-plane
association.

First, we need to estimate the tangent planes pi =
[
vTi dTi

]
∼ N (

[
v̄Ti d̄Ti

]
,Σpi) defined by

vTi x = di at the surface from which each points has been measured. If the point clouds are dense

enough, the classic approach is to fit a plane on the candidate sets A
(k+1)
i . In [19] an efficient method

to find the normals and their associated covariance is proposed. It is summarized in Algorithm 1. In
our work, we consider rather sparse clouds so that this method is not practicable. However, in Section
??, we propose a novel method to estimate the normals based on a Gaussian process regression of
the environment surface.

Once the normals are computed, the final association a⊥i ∼ N (ā⊥i ,Σa⊥i
) for ni is the orthogonal

projection of ni on the plane pi and is given by

ā⊥i = n̄i −
(
n̄Ti v̄i − d̄i

)
v̄i (29)

Σai = J
a⊥i
ni ΣniJ

a⊥i
T

ni + J
a⊥i
pi ΣpiJ

a⊥i
T

pi (30)

In both associations schemes, the final errors ei are defined by

ēi = n̄i − āi (31)

Σei = Σni + Σai (32)

Developping (32) with (23)(13)(12), we can write the covariance as follows

Σei = Σai +RΩc̄iR
T (33)

where
Ωc̄i = Σci + Uc̄iΣqU

T
c̄i (34)

4.2 Optimization

After the association step, we have two sets of N associated points {ai} and {ni} with correspond-
ing errors ei = ni − ai. The optimization step consists in searching for the transformation q(k+1)

minimizing the squared Mahalanobis distance of errors

q(k+1) = arg min
q∈SE(3)

F = f2 = ēTΣ−1
e ē (35)

9

where the errors are concatenated into a single vector ē =
[
ēTi
]T

. The covariance matrix Σ−1
e is a

block-diagonal matrix with its i-th block being Σei . This is generally done iteratively using non-linear
least square method such as Levenberg-Marquardt (LM) algorithm.

In this work, we optimize directly on SE(3) manifold. If we omit the superscript k for the current
ICP iteration, the l-th iteration of LM solves

ξ(l+1) = arg min
ξ∈R6

f2
(
q̄(l) � ξ

)
= −

(
Jf

(l)T

q Jf
(l)

q + λ(l)I
)−1

Jf
(l)

q f
(
q̄(l)
)

(36)

q̄(l+1) = q̄(l) � ξ(l+1) (37)

with λ the dumping parameter of LM. Note here the difference with equation (32) from [19]. In our
case, we do not make the assumption that Σe is constant relative to the displacement q.

To alleviate the notation, we omit the LM iteration superscript.

Proposition 1. The differential DFq of F = f2 at q ∈ SE(3) can be expressed as

DFq(T ξ̂) =

N∑
i=1

ēTi Σ−1
ei R

(
2Uc̄iξ + (Ωc̄iω̂ − ω̂Ωc̄i)R

TΣ−1
ei ēi

)
, ξ̂ ∈ se(3) (38)

with U,Ω defined by (??)(34). The jacobian JF|q is obtained using (7) and Jf|q follows by

Jf|q =
1

2f(q)
JF|q (39)

In particular, note that

∀i ∈ {4, 5, 6}, ξ̂ = G
SE(3)
i =⇒ ω̂ = 0 (40)

This leads to a simple expression for the last 3 columns of JF|q

JF|q[4 : 6] = 2

N∑
i=1

ēTi ΣeiR = ēTΣe (1N ⊗R) (41)

The proof is given in Appendix A.2.1.

4.3 Covariance estimation

In this section, we are interested on estimating the covariance Σq of the previously optimized trans-
formation q. A closed-form expression is given by [8] as follows

Σqmin =

(
∂2F

∂q2

)−1
∂2F

∂q∂z
Σz

∂2F

∂q∂z

T (
∂2F

∂q2

)−1

=
(
HF

q

)−1
HF

q,zΣzH
FT

q,z

(
HF

q

)−1
(42)

with F = f2 and the hessian of F :

HF =

[
HF

q HF
q,z

HF
q,z HF

z

]
(43)

The Gaussian vector z = [zT1 . . . z
T
p] with zTi = [aTi cTi] is a vector of dimension 6p concatenating the

points from both clouds. Its covariance matrix is defined by the block-diagonal matrix of dimension
6p× 6p

Σz =



Σa1
. 0

Σc1
...

. . .
...

...
. . .

...
Σap

0 Σcp


(44)

10

Algorithm 2 On-manifold Probabilistic Iterative Closest Point

Input: Initial gaussian transformation q, point clouds Sref = {ri}, Snew = {ci}, Maximum iteration
kmax, Association scheme Tassoc

Output: Relative gaussian transformation q∗ between Snew and Sref
1: k = 0, q∗ = q
2: do
3: for (i = 1; i ≤ m; i+ +) do
4: n̄i = q̄(k) ⊕ c̄i
5: Σni = J⊕q ΣqJ

⊕T
q + J⊕a ΣciJ

⊕T
a

6: Ai =
{
r ∈ Sref |D2(ni, r) < χ2

3,α

}
7: ai = PICP Association(Tassoc, Ai,ni, Sref)
8: ēi = ni − ai
9: Σei = Σni + Σai

10: end for
11: F = 1

2

∑m
i=1 ē

T
i Σei ēi

12: for (l = 0; l < lmax; l + +) do
13: ξ∗ = arg minξ F (q̄(k) � ξ)
14: q̄(k+1) = q̄(k) � ξ∗

15: end for
16: k + +
17: while (!hasConverged() and k < kmax)
18: q̄∗ = q̄(k)

19: Σq∗ =
(
HF

q

)−1
HF

q,zH
F
q,z

T
(
HF

q

)−1

Proposition 2. The hessian Hess(F)q is given for all ξ̂ ∈ se(3)

Hess(F)q(T ξ̂, T ξ̂) = 2

(
ξTUTc̄

(
Ω−1
c̄ Uc̄ξ − (Ω−1

c̄ ω̂ − ω̂Ω−1
c̄)RT ē

)
+

ēTR
(

Ω−1
c̄ ω̂ (ω̂c̄+ τ) + ω̂Ω−1

c̄ ω̂R
T ē
))

(45)

The corresponding hessian matrix HF
q is obtained using (18) and (19). Similarly to Proposition ??,

the bottom-right 3× 3 submatrix of HF
q can be simply express by

HF
q [3 : 6, 3 : 6] = 2Ω−1

c̄ (46)

The derivation is given in Appendix A.2.2.
For HF

q,z, the expressions are more involved and are provided in Section A.2.4

5 Application to Sonar Data with unknown elevation angle

In this section, we propose a variant of probabilistic ICP adapted to sonar data which are not
normally distributed. Indeed, sonar range measurements are obtained with beams which could have
large overture. Thus, the elevation angle θ of the measurement is generally unknown and the 3D
information is lost . Note that our approach is not limited to sonar and can apply to any other data
involving similar data point distributions.

5.1 Notations

In the following, we reuse the notation introduced in Section 4 with some additions. We denote by
b the sonar beam-width such that θ ∈

[
− b

2 ,
b
2

]
. We also define ηpi ∈ SE(3) the poses relative to

the current scan reference frame at which the data point pi has been measured. The corresponding
coordinates in the sonar local frame are denoted pLi . The function g maps local spherical coordinates

11

HPS

{SH}

{SV}

ρV

ρH

θH

(a) Illustration of the robot mounted with two perpendicular sonar

x

{Sa}
{Sc}

q

a

ηa
ηc

c
aL

cL

(b) Illustration of both scans (TODO : basique
en attendant)

Figure 2: Notations related to the Robot sensing and local scans (TODO : refaire)

to local Cartesian coordinates and is given by

g :


[0, +∞]× [− b

2 ,
b
2]× [0, 2π]→ R3

ρ, θ, φ 7→ pL = ρ

cos(θ) cos(φ)

cos(θ) sin(φ)

sin(θ)

 (47)

Similarly, we define the function h which maps the local spherical coordinates to the global reference
frame in Cartesian coordinates

h :

{
[0, +∞]× [− b

2 ,
b
2]× [0, 2π]× SE(3)→ R3

ρ, θ, φ, η 7→ η ⊕ g(ρ, θ, φ)
(48)

Hence for each data point p from any of the two point clouds

∃ρ, θ, φ, s.t. p = h (ρ, θ, φ,ηp) (49)

Figure ?? illustrates the notation and the problem configuration.
In the sonar local frame, the measurements in spherical coordinates [ρ θ φ]T can be modelized as

follows

ρi ∼ Gamma (αρi , βρi) (50)

θi ∼ SBeta

(
αi, βi,−

b

2
,
b

2

)
(51)

φi ∼ N
(
φ̄i, σ

2
φi

)
(52)

where SBeta(α, β,min,max) is a shifted and scaled Beta distribution.
In practice, the mean and variance of ρ are such that it can be approximated by a normal distri-

bution. In the following we use this approximation by noting

ρi ∼ N
(
ρ̄i, σ

2
ρi

)
(53)

Note that θ modelization is valid even when no prior information is available for the elevation
angle θ. Indeed, in this case, θ follows a uniform distribution θ ∈ U

(
b
2 ,

b
2

)
which is also a Beta

distribution as we have
∀a, b ∈ R, U(a, b) = SBeta(1, 1, a, b) (54)

In order to estimate the displacement between two points cloud following the presented distribu-
tion, we first need to use a Gaussian approximation for the points in global Cartesian coordinates.
We can then apply the on-manifold pIC presented in Section 4.

12

(a) Surface estimation (b) Scaled-beta distribution of estimated elevation an-
gles for horizontal sonar measurements from the first
scan

Figure 3: Illustration of the elevation angle estimation method in [5] on two successives scans.

5.2 Elevation angles estimation

In this section, we briefly cover our previous work [5] which focuses on estimating the elevation angles
from a wide-beam sonar. We also cover some improvements made in the current implementation used
in this paper.

We consider a robot mounted with two perpendicular sonars : one placed vertically with narrow
beams and the other placed horizontally with wide beams. This is illustrated in Figure ??. This
work aims at leveraging the information on the surface provided by the vertical sonar to estimated
the elevation angles from the horizontal sonar measurements. This is done by estimating a stochastic
model of the environment surface with a Gaussian process trained on the vertical sonar measurements.
Formally, the Gaussian process GP is defined on the vertical sonar output (range) ρv as a function of
the sonar rotation angle ψv and the pose η (in practice, the curvilinear abscissa s) along the robot
trajectory such that

ρv = f(s, ψv) + ε, f ∼ GP (55)

with a centered noise ε ∼ N (0, σ2
n).

Once the Gaussian Process trained on the vertical sonar measurements, we sample each horizontal
measurement beam into N angles. We estimate the likelihood of each angle as the corresponding 3D
point likelihood to belong to the estimated surface. We also compute the associated uncertainty based
on Fisher information. Thus, we obtain a scaled-beta distribution for the elevation angles for every
horizontal measurement beams.

Two main modifications to [5] were made in this work and are detailed in the following sections.

5.2.1 Reference Curve

The Gaussian process in the original paper is trained on data given by the vertical sonar. The
horizontal sonar data are thus expressed as if they were measured by the vertical sonar to be able to
use the trained Gaussian process. Doing this, we have to consider the robot poses along its trajectory.
This can lead to non-smooth surface estimation as the angular position of the robot are not explicitly
taken in account in the Gaussian process kernels (TODO : figure ?). While this does not impact much
the elevation angle estimations, it leads to wrong normal estimation required for the point-to-plane
ICP.

Instead of using the vertical sonar as a reference for the Gaussian process and for horizontal sonar
estimation, we can use an independent curve contained inside the environment for the scan length.
Previously, sonar data were expressed by a robot pose η, the sonar angle ψ and the range ρ. This is
replaced by the point p on the curve such that the orthogonal plane to the curve at p contained the

13

(a) Prior Cylinder (b) Sonar data expressed with the reference curve

Figure 4: Modification of original method in [5] using a reference curve instead of the robot trajectory

sonar measurement. ρ, ψ are then the polar coordinates of the sonar measurement in this orthogonal
plane. This is illustrated in Figure 4. Doing this, both the vertical and horizontal measurements are
expressed relative to the reference curve.

In this work, we use the prior cylinder (see [5] section 4.2.1) axis as our reference curve. Let note
respectively Bc = [xc yc zc] ∈ M3,3, oc ∈ R3 the cylinder orthornormal basis and center. Note that
the first basis vector xc corresponds to the axis cylinder.

If p ∈ R3 is a point measured by the vertical or horizontal sonar, we then have the new abscissa
s′ = xc

T (p− oc) with range in the cylinder orthogonal plane ρ′ = ||yc
T (p− oc)yc + zc

T (p− oc)zc||
and angle ψ′ = arctan

(
zc
T (p−oc)

yc
T (p−oc)

)
. This is illustrated in Figure 4.

In the case where p was measured by the vertical sonar, s′, ρ′, ψ′ replace respectively s, ρv, ψv

in Eq (55). Previously, the surface was estimated based on the vertical sonar measurements. The
horizontal sonar data were then expressed as if they were seen by the vertical sonar. We now replace
the derivation in [5] section 4.2.3 computing ŝ, ρ̂v, ψ̂v with s′, ρ′, ψ′ which as a side effect simplify the
computation.

5.2.2 Trajectory interpolation

While in [5] we assumed that robot odometry and sonar measurements were synchronous, this is
generally not the case in practice. This requires to interpolate the robot poses at each sonar mea-
surement. We use a simple on-manifold linear interpolation scheme with constant velocity between
two robot poses measurement. Let consider η1 ∼ N (η̄1,Ση1

) ,η2 ∼ N (η̄2,Ση2
) two successives robot

poses and a geodesic γ such that γ(0) = η1 and γ′(0) = log (η2 	 η1). Thus γ(t) = et log(η2	η1) and,
for t ∈ [0, 1], the interpolated mean pose η̄(t) between η̄1 and η̄2 is given by

η̄(t) = η̄1 ⊕ et log(η2	η1) (56)

We also need to interpolate the uncertainty between the poses. The space of definite positive
matrices is a smooth Riemannian manifold. In particular, we are interested here in the geodesics
based on the Fisher-Rao metric [22]. As Ση1 ,Ση1 are two definite positives matrices, the geodesic
Ση(t) connecting Ση1

and Ση2
is given by

Ση(t) = Σ
1
2
η1

(
Σ
− 1

2
η1 Ση2

Σ
− 1

2
η1

)t
Σ

1
2
η1 , t ∈ [0, 1] (57)

Note that the non-integer power of a matrix can be computed base on the Schur-Padé algorithm [13].

14

5.3 Normal estimation

In this section, we derive a method for computing normals distribution associated to each data point
based on the Gaussian process regression of the environment surface. The normals are required for
the point-to-plane association as described in Section 4.1. We first propose the derivation for the
approach in [5]. The derivation is similar when using a reference curve and in particular the prior
cylinder axis as explained in Section 5.2.1

As we do not have a closed-form expression of our surface in Cartesian coordinates, we approximate
the normal at a point by sampling points on the surface around it and taking their cross product.
Let Xp a point on the surface defined by

Xp = h
(
ρp, 0, ψp, η

S(sp)
)

(58)

ρp = fGP (sp, ψp) (59)

with ηSsp = ηS(sp) is the vertical sonar pose at the curvilinear abscissa sp. We define the following
R.V.

ρs±p = fGP (sp ± δs, ψp) + ε,

ρψ±p = fGP (sp, ψp ± δψ) + ε

ηS
s±p

= ηS (sp ± δs)

u(ψ) =
[
cos(ψp) sin(ψp) 0

]T
u± = u(ψp ± δψ) (60)

where δs, δψ are small increments. We note RS±, tS± the corresponding rotation matrices and trans-
lation vectors. Thus we have the sampled points around Xp

Xs±p
= h

(
ρs± , 0, ψp, η

S
s±p

)
(61)

Xψ±p
= h

(
ρψ± , 0, ψ±p ,η

S
sp

)
(62)

The cross-product between the vectors Xs+p
−Xs−p

and Xψ+
p
−Xψ−p

gives the unnormalized normal

n(Xp) at Xp

n(Xp) =
(
Xs+p

−Xs−p

)
×
(
Xψ+

p
−Xψ−p

)
= ρs+p ρψ+

p

(
RS+u×RSu+

)
+ ρs−p ρψ−p

(
RS−u×RSu−

)
−ρs−p ρψ+

p

(
RS−u×RSu+

)
− ρs+p ρψ−p

(
RS+u×RSu−

)
+ρψ+

p

((
tS+ − tS−

)
×Ru+

)
− ρψ−p

((
tS+ − tS−

)
×Ru−

)
= ρs+p ρψ+

p
a0 + ρs−p ρψ−p a1 + ρs−p ρψ+

p
a2 + ρs+p ρψ−p a3

+ρψ+
p
b0 − ρψ−p b1

= n
(
ρs+p , ρψ+

p
, ρs−p , ρψ−p

)
(63)

In order to compute the mean and covariance of n, we need the covariance matrix Σ of the joint

gaussian vector
[
ρs+p ρψ+

p
ρs−p ρψ−p

]T
. It can be computed using the formula (2.24) provided in

[26], p16.

For any order 2 term in (63), we have E
(
ρs±p ρψ±p

)
= σρ

s
±
p
ρ
ψ
±
p

+ ρ̄s±p ρ̄ψ±p and thus

n̄ (Xp) = n
(
ρ̄s+p , ρ̄ψ+

p
ρ̄s−p , ρ̄ψ−p

)
+ a0σρ

s
+
p
ρ
ψ

+
p

+ a1σρ
s
−
p
ρ
ψ
−
p

+a2σρ
s
−
p
ρ
ψ

+
p

+ a3σρ
s
+
p
ρ
ψ
−
p

(64)

The covariance V ar(n) of n is obtained with classic relation V ar(n) = E
(
nnT

)
− n̄n̄T . We therefore

need to compute the 4-order multivariate polynomial nnT . It has the general expression

nnT =

4∑
i,j,k,l=0

i+j+k+l≤4

ρi
s+p
ρj
ψ+
p
ρk
s+p
ρl
ψ−p
Ai,j,k,l (65)

15

Figure 5: Estimated mean normals (turquoise arrow) and their 1-σ uncertainty cone (purple)

where Ai,j,k,l are 3 × 3 symmetric matrices defined by outer product between the ai and bj defined
in (64). Their expressions are given in Appendix A.3. It follows

V ar(n) =

4∑
i,j,k,l=0

i+j+k+l≤4

E
(
ρi
s+p
ρj
ψ+
p
ρk
s+p
ρl
ψ−p

)
Ai,j,k,l − n̄n̄T (66)

The covariance term of order 3 and 4 are computed thanks to the Isserlis theorem which, in case of
centered joint Gaussian RV Zi, gives E(Z1Z2Z3) = 0 and E(Z1Z2Z3Z4) = σ12σ34 + σ13σ24 + σ14σ23.
We deduce then, for non-centered variables Yi

E(Y1Y2Y3) = σ23Y1 + σ13Y2 + σ12Y3 + Ȳ1Ȳ2Ȳ3 (67)

E(Y1Y2Y3Y4) = σ12σ34 + σ13σ24 + σ14σ23 + σ12Ȳ3Ȳ4 + σ132̄4̄ + σ14Ȳ2Ȳ3

+σ23Ȳ1Ȳ4 + σ24Ȳ1Ȳ3 + σ34Ȳ1Ȳ2 + Ȳ1Ȳ2Ȳ3Ȳ4 (68)

Finally, we obtain the distribution on the normalized normal by noting fn the normalization
operator such that

fn(n) =
n

||n||
∼ N

(
fn(n̄), Jfn|n̄ ΣnJ

fTn
|n̄

)
(69)

Jfn(n) =
1

||n||3

||n||2 − n2
x −nxny −nxnz

−nxny ||n||2 − n2
y −nynz

−nxnz −nynz ||n||2 − n2
z

 (70)

Note that here we have di = vTi ai in the general expression of the associated point a⊥ defined in
(29). It follows

ā⊥i = n̄i − v̄Ti (n̄i − āi) v̄i (71)

with the expression of the jacobians

J
a⊥i
ni = I3 − v̄iv̄Ti (72)

J
a⊥i
vi =

(
v̄i (n̄i − āi)T + v̄Ti (n̄i − āi) I3

)
Jfn(v̄i) (73)

Figure ?? shows an example of normals and their associated incertitude cone estimated as ex-
plained in this section.

16

5.4 Gaussian approximation

Let pL ∈ R3 a measured point in the sonar local frame. To compute its gaussian approximation, we
have to estimate its mean p̄L and covariance matrix ΣpL . From (47) we have directly

p̄L = ρ̄

E(cosφ)E(cos θ)
E(sinφ)E(cos θ)

E(sin θ)

 (74)

The covariance matrix is given by the classic relation

ΣpL = E(XXT)− X̄X̄T

=

 σ2
x σxy σxz

σxy σ2
y σyz

σxz σyz σ2
z

 (75)

with

σ2
x = E(ρ2)E(cos2 φ)E(cos2 θ)− ρ̄2E(cosφ)2E(cos θ)2 (76)

σ2
y = E(ρ2)E(sin2 φ)E(cos2 θ)− ρ̄2E(sinφ)2E(cos θ)2 (77)

σ2
z = E(ρ2)E(sin2 θ)− ρ̄2E(sin θ)2 (78)

σxy = E(ρ2)E(cosφ sinφ)E(cos2 θ)− ρ̄2E(cosφ)E(sinφ)E(cos θ)2 (79)

σxz = E(ρ2)E(cosφ)E(cos θ sin θ)− ρ̄2E(cosφ)E(cos θ)E(sin θ) (80)

σyz = E(ρ2)E(sinφ)E(cos θ sin θ)− ρ̄2E(sinφ)E(cos θ)E(sin θ) (81)

E(ρ2) = ρ̄2 + σ2
ρ (82)

The following propositions give the expressions of the different involved expectations over trigono-
metric functions

Proposition 3. Let θ a random value following a shifted and scale Beta distribution SBeta(α, β,− b
2 ,

b
2).

Then

E(cos θ) =

+∞∑
n=0

(−1)n

2n!

(
b

2

)2n

2F1(−2n, α, α+ β; 2) (83)

E(cos2 θ) = 1 +
1

2

+∞∑
n=1

(−1)n

2n!
b2n2F1(−2n, α, α+ β; 2) (84)

E(sin θ) =
−b
2

+∞∑
n=0

(−1)n

2n+ 1!

(
b

2

)2n

2F1(−2n− 1, α, α+ β; 2) (85)

E(cos θ sin θ) =
−b
2

+∞∑
n=0

(−1)n

2n+ 1!
b2n2F1(−2n− 1, α, α+ β; 2) (86)

where 2F1 is the hypergeometric function.

The proof is given in Appendix A.2.5. Note that E(cos θ sin θ), E(sin2 θ) are deduced from Propo-
sition 3 using the relations cos θ sin θ = sin 2θ

2 and sin2 θ = 1− cos2 θ.
We also have the following error bounds on the previous expectations

Proposition 4. Let N > 0 and θ ∈ [− b
2 ,

b
2]. The reminders of order N for the series in Proposition

3 are given by

|RN (E(cos θ)) | ≤ 1

(2N)!

(
3b

2

)2N

cosh

(
3b

2

)
(87)

|RN (E(sin θ)) | ≤ 1

(2N + 1)!

(
3b

2

)2N+1

sinh

(
3b

2

)
(88)

|RN
(
E(cos2 θ)

)
| ≤ 1

2

1

(2N)!
(3b)

2N
cosh (3b) (89)

|RN (E(sin θ)) | ≤ 1

2

1

(2N + 1)!
(3b)

2N+1
sinh (3b) (90)

17

N E(cos θ) E(sin θ) E(cos2 θ) E(sin θ)
2 4.23 ∗ 10−2 5.60 ∗ 10−3 7.47 ∗ 10−1 2.59 ∗ 10−1

3 1.18 ∗ 10−3 1.11 ∗ 10−4 8.33 ∗ 10−2 2.07 ∗ 10−2

4 1.76 ∗ 10−5 1.29 ∗ 10−6 4.98 ∗ 10−3 9.63 ∗ 10−4

5 1.64 ∗ 10−7 9.88 ∗ 10−9 1.85 ∗ 10−4 2.39 ∗ 10−5

Table 1: Error bounds on expectation in Proposition 3

(a) Global view (b) Inside view

Figure 6: Karst model used for our experiments

The proof is given in Appendix A.2.6. The corresponding errors for small values of N in our
application where b = 0.61 are given in Table 1. In our following experiments, we use N = 5.

Proposition 5. Let φ ∼ N
(
φ̄, σ2

φ

)
. Then

E(cosφ) = cos φ̄e−
σ2
φ
2 (91)

E(sinφ) = sin φ̄e−
σ2
φ
2 (92)

E(cos2 φ) =
1

2

(
1 + e−2σ2

φ cos 2φ̄
)

(93)

E(sin2 φ) =
1

2

(
1− e−2σ2

φ cos 2φ̄
)

(94)

E(cosφ sinφ) =
1

2
e−2σ2

φ sin 2φ (95)

The proof is given in Section A.2.7.
Finally, the pdf of the point p = ηp ⊕ pL expressed in the current scan reference frame is given

by

p ∼ N
(
η̄p ⊕ p̄L, J⊕q|η̄p,p̄LΣpLJ

⊕T
q|η̄p,p̄L

)
(96)

where ηp is the pose at which the point has been observed.

6 Experiments

In this section, we assess the performance of proposed algorithms with several experiments. First,
in order to validate our computation, we simulate point clouds following probability distributions
(50)(51)(52) with known association and apply our pICP algorithm.

In Section ??, we generate data points from a simulated karst environment shown in Figure 6. We
briefly introduce our method exposed in [5] used to estimate the distribution of elevation angles θi. We
also detail some modification from our original work and propose a method for normal computation.

6.1 Evaluation of the optimization step in pIC

In this section, we assess the improvement of our on-manifold pICP compared to previous methods.

18

Euler Quat se

2

4

6

8

10

12

14

16

d 0 d o
pt

Figure 7: Comparison of distances ratio for 500 trials. Medians are indicated by black lines. The
bottom/top whiskers correspond to 5%/95% of the distributions.

At each trial, we randomly generate 100 3D points distribution ci and a random normal transform
q. From each distribution ci we sample one point ĉi considered as a ground truth point. Similarly, we
sample a ground truth transformation q̂ from q. The ground truth points of the second point cloud
are computed as âi = q̂ ⊕ ĉi. Finally, the distributions ai are generated with random covariance Σai
and the means āi as samples from the distributions N (âi,Σai). The initial transformation is given
by q(0) ∼ N (q̄(0) = q̄,Σq).

First, we consider only the optimization step of PICP with perfectly associated points. We
compare the optimized transformation qopt obtained using Euler angles, quaternion and the proposed
on-manifold optimization. The distance of qopt to the ground truth q̂ is computed using (1) and the
metric on SE(3) defined by (4) such that

dopt = d(qopt, q̂) =

√
log (qopt 	 q̂)T G log (qopt 	 q̂) (97)

In order to compare the different trials, we consider the ratio d0/dopt with the initial distance d0 =
d(q̄(0), q̂).

In Figure 7, we represent the distributions of ratio for 500 trials and maximum of iterations set to
100. As expected, the Euler representation is more prone to failure depending on the trial configura-
tion. The quaternion representation is more limited by its convergence rate due to the renormalization
at each iteration step. The on-manifold approach provides the best results expectation-wise.

6.2 Quantitative evaluation on simulated karst environment

It is difficult to obtain ground truth data in field experiments for karst exploration. At best, real field
experiments can be qualitatively analyzed to assess the pertinence of an approach. In majority of
literature in underwater robotics, systems are globally evaluated but there are few ”test-unit” of the
algorithms composing it. For instance, in [15][17][19], the proposed adaption of the pIC algorithm is
indirectly evaluated through its integration in a SLAM framework.

[6] first evaluates its pIC approach by matching real scans with them-selves and adding a Gaussian
noise to the initial transformation estimate. While based on data from real experiments, it do not

19

Parameter Value

Robot sensing
Depth sensor std 0.016 m
IMU orientation std 0.16 deg
Dead-reckoning noise std on x,y 0.022 m
Dead-reckoning noise std on yaw 0.13 deg

MSIS
Vertical sonar range resolution 0.2 m
Horizontal sonar range resolution 0.05 m
Horizontal sonar beam width 35 deg

Simulation
Steps for full sonar scan 200
Vertical sonar period step 1
Horizontal sonar period step 2
Dead-reckoning odometry period step 10

Gaussian process
Lengthscale ls Fixed (1)
Lengthscale lψ Fixed (0.25)
Signal std σf Fixed (0.64)
Noise std σn Learned

Table 2: Parameters used in the simulation experiments

take in account for the surface sampling error e.g. associated points from each scan do not correspond
exactly to the same point on the environment surface.

We propose here to evaluate quantitatively our on-manifold pIC independently from any SLAM
framework. We also compare our approach to reimplementation of the 2D approach proposed [15]
which has been successfully applied in real underwater caves mapping [17].

We consider for this a simulated karst environment as shown in Figure ??. The ground-truth
trajectory is sampled from a circle contained inside the karst model. At each time step, we generate a
noisy odometry by adding Gaussian noise to the odometry obtained from the ground truth trajectory.
The different sensors are simulated based on values provided in [16][17]. The different parameters are
resumed in Table 2.

In a real experiments, dead-reckoning data (Kalman filter fusion of IMU and DVL sensors) and
sonars are received asynchronously with an attached timeStamp. Here, timestamps are replaced by
the simulation step. We consider the vertical sonar measurement as our reference so that each step
corresponds to a vertical sonar measurement. The relative frequency of the other data are based on
the real dataset provided by [17]. We can observe that we have between 2 and 3 full vertical sonar
scan for one horizontal scan. Furthermore, one odometry data is received every 10 vertical sonar
measurements. Thus, we consider an horizontal sonar measurement every 2 steps and one odometry
data every 10 steps. Note that we only consider point clouds from the horizontal sonar for the pIC.
Thus scan matching is executed every 400 steps excepted for the first time (800 steps to generate the
two first scans).

The vertical and horizontal MSIS measurements are simulated by ray-tracing. The obtained
ranges are then quantified to reproduce the original sonar resolution based on the max range and the
number of bin intensity.

To obtain the robot pose at each sonar measurement, we interpolate the poses obtained by dead-
reckoning as explained in Section 5.2.2.

The parameters used for the Gaussian process are shown in Table 2. Following [5], we use a
product covariance kernel K = Ks ∗Kψ where Ks is a Matern52 kernel on the abscissa s and Kψ a

20

(a) Successive scans (small initial transformation error) (b) Loop closure (large initial transformation error)

Figure 8: Diagrams of relative errors for successive scans and loop closure. 2DpIC : pIC proposed
by [15], MpIC: MpIC (point-To-point), MpICa : MpIC(point-to-point) including uniform arcs,
MpICp : MpIC (point-to-plane). Left (resp. right) boxes in each group have been computed with
association confidence level α = 0.95 (resp. α = 0.5)

Matern52 kernel based on angle chordal distance such that

Ks(s, s
′) = σf

(
1 +

√
5

|s− s′|
ls +

5|s− s′|2

3l2s

)
exp

(
−
√

5|s− s′|
ls

)
(98)

Kψ(ψ,ψ′) = σf

1 +

√
5

2 sin |ψ−ψ
′|

2

lψ +
20 sin |ψ−ψ

′|
2

2

3l2ψ

 exp

(
−

2
√

5 sin |ψ−ψ
′|

2

lψ

)
(99)

Recall that σ2
n is the variance of the Gaussian additive noise defined in Eq (55).

As in Section 6.1, we consider the ratio d0

dopt
and compare the distributions obtained with different

approaches :

• 2DpIC : implementation proposed by [15][16]

• MpIC : the proposed approach with point-to-point association

• MpICa : MpIC including measurements with a uniform distribution for the elevation angle

• MpICp : MpIC with point-to-plane association as explained in Section 5.3

While this normalized ratio allows a global evaluation of the results, it has some drawbacks. For
instance, a ratio of 1 has not the same meaning when d0 is small or large. A more fine-grained
representation in scatter plot is also proposed.

In order to assess the effect of the association threshold defined in Eq (27), we also compare the
results obtained with two confidence level α = 0.95 and α = 0.5. The higher the confidence level, the
higher the threshold χ2

2,α or χ2
3,α is. In Figures 8a and 8b, left (resp. right) boxes corresponds to

α = 0.95 (resp. α = 0.5).
We consider two cases : scan matching of successive scans and loop closure. For the first one, we

estimate the distance dopt for each successive scan matching for one loop inside the modelized karst
(61 scans matching). In order to simulate the same order of magnitude encountered in loop closure
scan matching, we consider a pair of scans and set higher diagonal values to the initial transformation
covariance σq0 . We sample the initial transformation q0 ∼ N (q0, σq0) and apply the different pIC
algorithms. We repeat this n = 50 times. In the following, we analyze and discuss the results
obtained.

6.2.1 Successive scans

Figures 8a, 9c and 9d summed up the results obtained for the scan matching of successive scans.

21

(a) Successive scans, α = 0.95 (b) Successive scans, α = 0.5

(c) Loop closure, α = 0.95 (d) Loop closure, α = 0.5

Figure 9: Scatter plots for successive scans and loop closure. The black line corresponds to x = y
(unitary ratio)

The resulting distributions show that the point-to-point association for MpIC improved over the
previous 2D approach. While the median is slightly higher, the important feature is a lower variance
and higher minimum ratios. Note that here MpIC only use points inside the surface estimated with
the vertical sonar. Points seen behind and in front of the robot are thus ignored. This means that
the matched point cloud are smaller and less discriminative. Nevertheless, the recovery of the 3D
information overcomes this drawback.

In order to deal with this drawback, we try to include the horizontal sonar measurements outside of
the estimated surface by considering a uniform elevation angle distribution along the beam width. The
results are somewhat a mixed of both the 2D and MpIC cases. It inherits an accuracy improvement
from the 3D information but at the expense of higher variance as in the 2D case.

While point-to-plane ICP provides generally better performance than its point-to-point version,
this is not the case here for small transformation.

Note that for successive scans, the 3D transformation uncertainty is relatively low. Indeed, the
transformation uncertainty is the accumulation of low odometry uncertainties acquired along the scan
trajectory. Informally, this means that the transformation uncertainty is to a large extend included in
the interval of confidence obtainable with the pIC algorithm (mal-dit ... figure ?). In other words, pIC
would provide only little improvements over the initial transformation hence the low ratio in Figure
8a. This is not the case when scan matching is done in a Loop closure. Here, the transformation
uncertainty has been accumulated along several scans and is relatively larger than the local scan
odometry uncertainties.

In regards to association confidence level, it is clear that α = 0.95 gives relatively bad results
regardless of the method used. It is intuitive as this confidence level corresponds to a higher association
threshold and thus can potentially match points with lower likelihood. In the case of successive scans,

22

we can expect the initial transformation to be near the local optimum so that matching points are
initially near from each other. Low likelihood points should then be discarded to avoid spurious
associations.

6.2.2 Loop Closure

Similarly to the previous section, Figures 8b, ?? and ?? summed up the results with large initial
transformation error.

Regardless of the method, improvements over dead-reckoning odometries are clearer than in the
case of small transformation. This confirms our previous hypothesis on the fact that for successive
scans, the initial error uncertainty is almost contained in the algorithm output uncertainty. In case of
larger initial error, the point-to-plane MpIC (MpICp) gives more accurate results over point-to-point
MpIC.

Unlike the previous case, for large initial transformation lower confidence level for association
provides better associations. This is intuitive as in the first iterations, points are rather far between
leading to higher Mahalanobis distances (lower likelihood). (Quoi rajouter ?)

7 Conclusion

In this paper we propose MpIC, an on-manifold derivation for the 3D probabilistic Iterative Closest
Point (pIC) algorithm based on basic differential geometry related to the SE(3) Lie group. We then
propose an application to underwater sonar scan matching in the context of karst exploration. We
extended our previous work on elevation angle estimation from wide-beam sonar [5] to generate 3D
point Gaussian distribution from the raw sonar measurements. The approach is evaluated on a
simulated karst environment to allow quantitative analysis. It is also compared to the state-of-the-art
approach proposed in [17].

In the robotic literature, ICP algorithms are generally evaluate indirectly in a SLAM framework
and/or qualitatively on real data experiments [15][16][19]. Quantitative results, when available, are
obtained by adding self-matching a scan with added noise [18][6]. We propose here a compromise by
proposing a quantitative evaluation of ICP with a more complex setting similar to real experiment.

We shown that, as one could expect, MpIC outperforms pIC based on Euler angles and Quaternion
representations. We then analyzed and compared different pIC approaches when applied to acoustic
sonar data. Compared to previous 2D method, our MpIC approach converge to slightly more accurate
transformation. While point-to-plane association scheme is generally more accurate than point-to-
point, it is not the case in our experimental configuration. Here, point-to-plane is prone to converge
to wrong local minima. Our experiments also shown more general results on pIC. For successive scan
matching with normally distributed dead-reckoning noise, the different pIC methods provides only
slight improvement on the estimated transformation. Depending on the environment configuration
and sensors noise, it may be better to rely solely on dead-reckoning estimate. However, in real settings
one can expect dead-reckoning noise outliers which do not follow the modelized Gaussian distribution.

For large initial transformations such as encountered in loop closure scan matching, MpIC also
provides better results over the 2D approach. In particular, unlike to the previous case of successive
scan, the point-to-plane association scheme outperforms point-to-point associations.

The association confidence level is an important parameter of the pIC algorithms. We show
through our experiments that it should be adapted to the ratio between the initial transformation error
and the scan local odometries error. This is rather intuitive : for small displacements, corresponding
points are near from each other so that the association threshold should be low to avoid spurious
associations. For larger displacements, correspondings points are far from each other requiring thus
a larger association threshold.

While the results are promising, there is still room for improvements. We approximated our
points distribution by Gaussian distributions. For points coming from sonar measurements with a
high elevation angle, a large part of the Gaussian distribution covers an area outside of the origi-
nal beam measurement. We consider relaxing the Gaussian approximation and use a more generic
distance function to replace the Mahalanobis distance. This approach would certainly be costly
computationnaly-wise but can be interesting to further increase localization accuracy offline. On the
application side, this work was a necessary step towards an integration in a graphSLAM framework
for karst aquifer exploration

23

References

[1] Gabriel Agamennoni et al. “Point clouds registration with probabilistic data association”. In:
2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE.
2016, pp. 4092–4098.

[2] Calin Belta and Vijay Kumar. “Euclidean metrics for motion generation on SE (3)”. In: Pro-
ceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering
Science 216.1 (2002), pp. 47–60.

[3] Paul J Besl and Neil D McKay. “Method for registration of 3-D shapes”. In: Sensor fusion IV:
control paradigms and data structures. Vol. 1611. International Society for Optics and Photonics.
1992, pp. 586–606.

[4] Jose-Luis Blanco. “A tutorial on se (3) transformation parameterizations and on-manifold op-
timization”. In: University of Malaga, Tech. Rep 3 (2010).

[5] Yohan Breux and Lionel Lapierre. “Elevation Angle Estimations of Wide-Beam Acoustic Sonar
Measurements for Autonomous Underwater Karst Exploration”. In: Sensors 20.14 (2020),
p. 4028.

[6] Antoni Burguera. “A novel approach to register sonar data for underwater robot localization”.
In: 2017 Intelligent Systems Conference (IntelliSys). IEEE. 2017, pp. 1034–1043.

[7] Antoni Burguera, Yolanda González, and Gabriel Oliver. “The UspIC: Performing scan match-
ing localization using an imaging sonar”. In: Sensors 12.6 (2012), pp. 7855–7885.

[8] Andrea Censi. “An accurate closed-form estimate of ICP’s covariance”. In: Proceedings 2007
IEEE international conference on robotics and automation. IEEE. 2007, pp. 3167–3172.

[9] Andrea Censi. “An ICP variant using a point-to-line metric”. In: 2008 IEEE International
Conference on Robotics and Automation. Ieee. 2008, pp. 19–25.

[10] Yang Chen and Gérard Medioni. “Object modelling by registration of multiple range images”.
In: Image and vision computing 10.3 (1992), pp. 145–155.

[11] Sébastien Druon, Marie-José Aldon, and André Crosnier. “Color constrained icp for registra-
tion of large unstructured 3d color data sets”. In: 2006 IEEE International Conference on
Information Acquisition. IEEE. 2006, pp. 249–255.

[12] Shaoyi Du et al. “Robust rigid registration algorithm based on pointwise correspondence and
correntropy”. In: Pattern Recognition Letters 132 (2020), pp. 91–98.

[13] Nicholas J Higham and Lijing Lin. “A Schur–Padé algorithm for fractional powers of a matrix”.
In: SIAM Journal on Matrix Analysis and Applications 32.3 (2011), pp. 1056–1078.

[14] Jocelyn Quaintance Jean Gallier. Differential Geometry and Lie Groups A computational Per-
spective. 2019.

[15] Angelos Mallios et al. “Scan matching SLAM in underwater environments”. In: Autonomous
Robots 36.3 (2014), pp. 181–198.

[16] Angelos Mallios et al. “Toward autonomous exploration in confined underwater environments”.
In: Journal of Field Robotics 33.7 (2016), pp. 994–1012.

[17] Angelos Mallios et al. “Underwater caves sonar data set”. In: The International Journal of
Robotics Research 36.12 (2017), pp. 1247–1251.

[18] Luis Montesano, Javier Minguez, and Luis Montano. “Probabilistic scan matching for motion
estimation in unstructured environments”. In: 2005 IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE. 2005, pp. 3499–3504.

[19] Albert Palomer, Pere Ridao, and David Ribas. “Multibeam 3D underwater SLAM with prob-
abilistic registration”. In: Sensors 16.4 (2016), p. 560.

[20] François Pomerleau, Francis Colas, and Roland Siegwart. “A review of point cloud registration
algorithms for mobile robotics”. In: Foundations and Trends in Robotics 4.1 (2015), pp. 1–104.

[21] Szymon Rusinkiewicz. “A symmetric objective function for ICP”. In: ACM Transactions on
Graphics (TOG) 38.4 (2019), pp. 1–7.

24

[22] Salem Said et al. “Riemannian Gaussian distributions on the space of symmetric positive definite
matrices”. In: IEEE Transactions on Information Theory 63.4 (2017), pp. 2153–2170.

[23] Aleksandr Segal, Dirk Haehnel, and Sebastian Thrun. “Generalized-icp.” In: Robotics: science
and systems. Vol. 2. 4. Seattle, WA. 2009, p. 435.

[24] James Servos and Steven L Waslander. “Multi-Channel Generalized-ICP: A robust framework
for multi-channel scan registration”. In: Robotics and Autonomous systems 87 (2017), pp. 247–
257.

[25] Joan Sola, Jeremie Deray, and Dinesh Atchuthan. “A micro Lie theory for state estimation in
robotics”. In: arXiv preprint arXiv:1812.01537 (2018).

[26] Christopher KI Williams and Carl Edward Rasmussen. Gaussian processes for machine learning.
Vol. 2. 3. MIT press Cambridge, MA, 2006.

A Appendices

A.1 Definitions and properties of matrix product

We note Mm,n the vector space of real m× n matrices. To simplify notations, we note [aij] ∈Mm,n

a matrix with generic term aij . Similarly, we define block matrices as [Bij]. The determinant of a
matrix M is noted |M | when there is no ambiguity with the absolute value operator.

Definition 1. Let ω =
[
ωx ωy ωz

]T ∈ R3. The operator []× maps 3D vector to the space of
skew-symmetric matrix and is defined as

[ω]× =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0


Using this operator, the cross product operation can be expressed as a matrix vector operation :

∀x,y ∈ R3, x× y = [x]× y

Definition 2. The Kronecker product, noted ⊗, between two matrices A = [aij] ∈ Mm,n, B ∈ Mp,q

is defined by the partitioned matrix

A⊗B =

a11B . . . a1nB
...

...
am1B . . . amnB

 = [aijB] ∈Mmp,nq (100)

The Kronecker power notation is defined by

A⊗n = A⊗A . . .⊗A

Proposition 6. Let A ∈Mm,n, X ∈Mn,p and B ∈Mp,q. Then

vec (AXB) =
(
BT ⊗A

)
vec (X)

Proposition 7. Let f : Rn → Rm, A ∈ Mp,m such that each element aij of A are a function from
Rn to R. Suppose that both f and A are function of the same variable x ∈ Rn. Then

dAf

dx
= A

df

dx
+
(
Ip ⊗ fT

) dvec (AT)
dx

Proof. Let x ∈ Rn and aTi the i-th row of A. We then have

dAf

dx
=

[
∂aTi f

∂xj

]
=

[
aTi

∂f

∂xj

]
+

[
fT
∂ai
∂xj

]

25

The first term is simply [
aTi

∂f

∂xj

]
= A

df

dx

The second term is given by

[
fT
∂ai
∂xj

]
=

fT

. . .

fT



∂a1

∂x1
. . . ∂a1

∂xn
...

...
∂ap
∂x1

. . .
∂ap
∂xn


=
(
Ip ⊗ fT

) [∂ai
∂xj

]
where

[
∂ai
∂xj

]
is p×1 block-row matrix. By considering the transpose of A, we have the corresponding

expression [
∂ai
∂xj

]
=
dV ec

(
AT
)

dx

A.2 Derivations and proofs

A.2.1 Proof of Proposition 1

Proof. Based on (5) and (6) with G = SE(3), we compute from (26)

d

dt
Fi(γ(t)) = ēTi

(
2Σ−1

ei

dēi
dt

+
dΣ−1

ei

dt
ēi

)
(101)

We have from (12)
dēi
dt |0

= RUc̄iξ (102)

Similarly,
dR

dt |0
= Rω̂ (103)

From (25) and (103), we have

dΣ−1
ei

dt |0
= −Σ−1

ei

dΣei

dt |0
Σ−1

ei (104)

dΣei

dt |0
=

dRΩc̄iR
T

dt |0

=
dR

dt |0
Ωc̄iR

T +RΩc̄i
dR

dt

T

|0

= R (ω̂Ωc̄i − Ωc̄iω̂)RT (105)

Replacing (102)(104)(105) in (101) gives

DFq(T ξ̂) =

N∑
i=1

ēTi Σ−1
ei R

(
2Uc̄iξ + (Ωc̄iω̂ − ω̂Ωc̄i)R

TΣ−1
ei ēi

)
(106)

26

A.2.2 Proof of Proposition 2

A.2.3 Derivation of HF
q

By derivating (101) we have

d2

dt2
F (γ(t)) =

dē

dt

T (
2Σ−1

e

dē

dt
+
dΣ−1

e

dt
ē

)
+ēT

(
3
dΣ−1

e

dt

dē

dt
+ 2Σ−1

e

d2ē

dt2
+
d2Σ−1

e

dt2
ē

)
(107)

In homogeneous coordinates we have

d2ē

dt2
= T ξ̂2etξ̂c̄ (108)

from which we deduce in heterogeneous coordinates

d2ē

dt2 |0
= Rω̂ (ω̂c̄+ τ) (109)

We recall (104)

dΣ−1
ei

dt
= Σ−1

ei R
(
etω̂Ωc̄ie

−tω̂ω̂ − ω̂etω̂Ωc̄ie
−tω̂
)
RTΣ−1

ei (110)

Derivating it once we obtain after simplification,

d2Σ−1
ei

dt2 |0
= Σ−1

ei R
(
2ΛωiR

TΣ−1
ei RΛωi + 2ω̂Ωc̄iω̂ − Ωc̄iω̂

2 − ω̂2Ωc̄i
)
RTΣ−1

ei (111)

The final result is obtained by replacing the intermediate computation in (107)

d2

dt2
F (γ(0)) = ēTi Σ−1

ei R
(

2ω̂ (ω̂c̄i + τ) +DωiR
TΣ−1

ei ēi +KωiR (2Kωi ēi + 3Uc̄iξ)
)

+

ξTUTc̄iR
TΣ−1

ei R
(

2Uc̄iξ +Kωi ēi

)
Λωi = Ωc̄iω̂

Kωi = (Λωi + ΛTωi)R
TΣ−1

ei

Dωi = 2ω̂Ωc̄iω̂ − Ωc̄iω̂
2 − ω̂2Ωc̄i (112)

A.2.4 Derivation of HF
q,z

Proof. The hessian matrix HFi
q,zi is defined by

HFi
q,zi =

∂J
FTi
q

∂zi
(113)

=

[
∂DFiq(TG

SE(3)
k)

∂zi

]
(114)

=

[
∂DFiq(TG

SE(3)
k)

∂ai

∂DFiq(TG
SE(3)
k)

∂ci

]
(115)

First we have
∂ē

∂z
=
[
∂ē
∂a

∂ē
∂c

]
=
[
−I3 R

]
It follows

∂DFiq(T ξ̂)

∂ai
= −2

(
ξTUTc̄i + ēTi K

T
ωi

)
RTΣ−1

ei (116)

27

from which we deduce

HFi
q,ai =

[
∂DFiq(T ξ̂k)

∂ai

]
= −2

(
UTc̄iR

TΣ−1
ei +

[
ēTi K

T
ωi(ξ̂k)RTΣ−1

ei

])
= −2

(
UTc̄iR

TΣ−1
ei +

(
I3 ⊗ ēTi RTΣ−1

ei

) [
(Λωi + ΛTωi)(ξ̂k)

]
RTΣ−1

ei

)
= −2

(
UTc̄i +

(
I3 ⊗ ēTi RTΣ−1

ei

) (
K +KT

))
RTΣ−1

ei (117)

with K = (I6 ⊗ Ωc̄i)


G
SO(3)
1

G
SO(3)
2

G
SO(3)
3

09,3

. For the derivation w.r.t c̄i, we have

∂DFiq(T ξ̂)

∂ci
= 2 (A1 +A2) +A3 +A4 (118)

A1 = ēTi
∂Σ−1

ei RUc̄iξ

∂c̄i
(119)

A2 = ξTUTc̄iR
TΣ−1

ei

∂ēi
∂c̄i

(120)

= ξTUTc̄iR
TΣ−1

ei R (121)

A3 = ēTi

(
Σ−1

ei RKωi +
(
Σ−1

ei RKωi

)T) ∂ēi
∂c̄i

(122)

= 2ēTi Σ−1
ei R

(
Λωi + ΛTωi

)
RTΣ−1

ei R (123)

A4 = ēTi

[
∂(Σ−1

ei
RKωi)

T

∂c̄i,j

]
(I3 ⊗ ēi) (124)

We then have HFi
q,ci = 2

([
A1(ξ̂k)

]
+
[
A2(ξ̂k)

])
+
[
A3(ξ̂k)

]
+
[
A4(ξ̂k)

]
. The first term is given by

[
A1(ξ̂k)

]
=

[
ēTi

∂Σ−1
ei RUc̄iξk

∂ci,1
ēTi

∂Σ−1
ei RUc̄iξk

∂ci,2
ēTi

∂Σ−1
ei RUc̄iξk

∂ci,3

]
(125)

=
(
I6 ⊗ ēTi

) [
vec

(
∂Σ−1

ei RUc̄i
∂ci,1

)
vec

(
∂Σ−1

ei RUc̄i
∂c1,2

)
vec

(
∂Σ−1

ei RUc̄i
∂ci,3

)]
(126)

Using the following results

∂Σei

∂ci,j
= R

∂Ωc̄i
∂ci,j

RT (127)

∂Ωc̄i
∂ci,j

=

(
∂Uc̄i
∂ci,j

ΣqU
T
c̄i + Uc̄iΣq

∂UTc̄i
∂ci,j

)
(128)

∂UTc̄i
∂ci,j

=
[
−GSO(3)

j 03,3

]
(129)

We then have

∂Σ−1
ei RUc̄i
∂ci,j

= Σ−1
ei R

(
∂Uc̄i
∂ci,j

−
(
∂Uc̄i
∂ci,j

ΣqU
T
c̄i + Uc̄iΣq

∂UTc̄i
∂ci,j

)
RTΣ−1

ei RUc̄i

)
(130)

The other terms are given by[
A2(ξ̂k)

]
= UTc̄iR

TΣ−1
ei R (131)[

A3(ξ̂k)
]

= 2
(
I6 ⊗ ēTi Σ−1

ei R
) (
K +KT

)
RTΣ−1

ei R (132)[
A4(ξ̂k)

]
= (I6 ⊗ ēi)

[
∂(Σ−1

ei
RKωi (G

SO(3)
k))T

∂c̄i,j

09,3

]
(I3 ⊗ ēi) (133)

28

with

∂(Σ−1
ei RKωi(G

SO(3)
k))T

∂ci,j
= Σ−1

ei

((
R(K ′j +K ′Tj)− ∂Σei

∂ci,j
KT
ωi

)
RT −RKωi

∂Σei

∂ci,j

)
Σ−1

ei (134)

K ′j =

(
I6 ⊗

∂Ωc̄i
∂ci,j

)
G
SO(3)
1

G
SO(3)
2

G
SO(3)
3

09,3

 (135)

A.2.5 Proof of Proposition 3

Proof. First, recall the SBeta pdf f followed by θ :

f(θ) =
Γ(α+ β)

Γ(α)Γ(β)

(
θ + b

2

)α−1 (b
2 − θ

)β−1

bα+β−1

= K(α, β, b)

(
θ +

b

2

)α−1(
b

2
− θ
)β−1

(136)

where Γ is the Gamma function. Using the power series of cosinus, we have

E(cos θ) =

∫ b
2

− b2
cos(θ)f(θ)dθ

= K(α, β, b)

∫ b
2

− b2

+∞∑
n=0

(−1)n

2n!
θ2n

(
θ +

b

2

)α−1(
b

2
− θ
)β−1

dθ (137)

One can easily show that the serie-integral inversion holds and gives

E(cos θ) = K(α, β, b)

+∞∑
n=0

(−1)n

2n!

∫ b
2

− b2
θ2n

(
θ +

b

2

)α−1(
b

2
− θ
)β−1

dθ (138)

With a simple change of variable, the integral can be express as∫ b
2

− b2
θ2n

(
θ +

b

2

)α−1(
b

2
− θ
)β−1

dθ =
bα+β+2n−1

4n

∫ 1

0

θα−1 (1− 2θ)
2n

(1− θ)β−1
dθ

=
bα+β+2n−1

4n
2F1(−2n, α, α+ β; 2)

K(α, β, b)bα+β−1

=

(
b

2

)2n

2F1(−2n, α, α+ β; 2) (139)

where we used the integral form of the Hypergeometric function 2F1.
The result for E(sin θ) and E(cos2 θ) are obtained similarly using the power series

sin θ =

+∞∑
n=0

(−1)2n+1

2n+ 1!
θ2n+1

cos2 θ = 1 +

+∞∑
n=1

(−1)n

2n!
22n−1θ2n

29

A.2.6 Proof of Proposition 4

Proof. First define the Pochhammer symbol as a generalization of the usual factorial. Let a ∈ R and
n ∈ N∗ :

(a)n = a(a+ 1) . . . (a+ n− 1) (140)

and set (a)0 otherwise. The hypergeometric function 2F1 depends on 3 parameters and is defined for
m ∈ N and b, c ∈ R+ as :

2F1(−m, b, c; z) =

m∑
n=0

(−1)n
(
m

n

)
(b)n
(c)n

zn (141)

We aim at controlling the reminder for the series :

RN (E(cos θ)) =

+∞∑
n=N

(−1)n

2n!

(
b

2

)2n

2F1(−2n, α, α+ β; 2) (142)

Notice that

2F1(−2n, α, α+ β; 2) =

2n∑
k=0

(−1)k
(

2n

k

)
(α)k

(α+ β)k
2k (143)

Since (α)k
(α+β)k

≤ 1, we get |2F1(−2n, α, α+ β; 2)| ≤
∑2n
k=0

(
2n
k

)
2k = 32n so that

|RN (E(cos θ)) | ≤
+∞∑
n=N

1

(2n)!

(
3b

2

)2n

=

+∞∑
k=0

1

(2(k +N))!

(
3b

2

)2(k+N)

(144)

≤ 1

(2N)!

(
3b

2

)2N +∞∑
k=0

1

(2n)!

(
3b

2

)2n

(145)

≤ 1

(2N)!

(
3b

2

)2N

cosh

(
3b

2

)
(146)

The proof for the other bounds is obtained following similar computation.

A.2.7 Proof of Proposition 5

Proof. First, let consider a centered standard normal random value Z ∼ N (0, 1). We then have
φ = σφZ + φ̄ and

E(eiφ) = E(ei(σφZ+φ̄)) (147)

= E(eiφ̄)E(eiσφZ)

=
E(eiφ̄)√

2π

∫ +∞

−∞
eiσφze−

z2

2 dz

=
E(eiφ̄)√

2π

∫ +∞

−∞
e−

(z−iσφ)2

2 e−
σ2
φ
2 dz

=
E(eiφ̄)√

2π
e−

σ2
φ
2

∫ +∞−iσφ

−∞−iσφ
e−

z2

2 dz

= E(eiφ̄)e−
σ2
φ
2 (148)

Taking the real and imaginary part of (148) gives E(cos θ) and E(sin θ). The other results are deduced
from classic trigonometric relations.

30

A.3 Expressions of Ai,j,k,l in Section 5.3

The non-null matrices Aijkl defined in (65) are given by

A2,2,0,0 = a0a
T
0 A0,0,2,2 = a1a

T
1

A0,2,2,0 = a2a
T
2 A2,0,0,2 = a3a

T
3

A2,1,0,1 = a0a
T
3 + a3a

T
0 A1,2,1,0 = a0a

T
2 + a2a

T
0

A0,1,2,1 = a1a
T
2 + a2a

T
1 A1,0,1,2 = a1a

T
3 + a3a

T
1

A1,1,1,1 = a0a
T
1 + a1a

T
0 + a2a

T
3 + a3a

T
2 A1,2,0,0 = a0b

T
0 + b0a

T
0

A0,2,1,0 = a2b
T
0 + b0a

T
2 A0,0,1,2 = a1b

T
1 + b1a

T
1

A1,0,0,2 = a3b
T
1 + b1a

T
3 A0,1,1,1 = a1b

T
0 + b0a

T
1 + a2b

T
1 + b1a

T
2

A1,1,0,1 = a0b
T
1 + b1a

T
0 + a3b

T
0 + b0a

T
3 A0,2,0,0 = b0b

T
0

A0,0,0,2 = b1b
T
1 A0,1,0,1 = b0b

T
1 + b1b

T
0

with a0, a1, a2, a3, b0, b1 defined in (63)

31

