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ABSTRACT
We identify several challenges and opportunities opened to agent
and multiagent systems, following the recent developments in the
domain of Earth observation constellations. We focus on three chal-
lenge categories that manifest in this field: (i) configuration prob-
lems of constellations and ground stations used to operate them,
potentially owned by different actors, as to provide better services
and coordination; (ii) offline planning and scheduling problems,
which consist in finding solution methods to schedule observation
and upload/download tasks over the constellation; (iii) the design
of efficient and reactive online operation methods as to adapt sched-
ules in dynamic settings. Being naturally distributed and composed
of multiple entities and users, these problems clearly fit the multia-
gent paradigm, and may challenge researchers for many years.
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1 INTRODUCTION
Recent years have shown a large increase in the development of
satellite constellations. Instead of considering individual satellites,
the idea is to take advantage of a group of satellites, some of them
often sharing the same orbital planes, to provide richer services like
positioning, telecommunication or Earth observation [62]. With
few satellites (e.g. two in PLEIADES [38]), and in low or medium
Earth orbits (altitude inferior to 35,000km), any region on Earth
is not covered at any time. So, the main motivation to increase
the size of these constellations is to allow capturing any point
on Earth at higher frequency, as the Planet company with more
than 150 Earth observation satellites (EOS) [53]. But, operating
numerous EOS requires improving cooperation between assets
and on-board autonomy as to make the best use of the system,
which is a highly combinatorial task. Besides their growing number,

constellations’ composition is evolving too. Recent technologies
allow the production and deployment of agile EOS able to change
their orientation, and to provide multiple type of image shooting
with multiple sensors. While providing richer services, this adds
many degrees of freedom and decision variables to schedule EOS
activity, opening many challenges [4, 65].

Figure 1 shows an EOS system with its ground and space op-
erations. It highlights the multiplicity and richness of actors and
components having their own activities and goals. Since EOS have a
limited on-board computation capacity, major part of the mission is
built offline and transmitted to EOS using ground stations. Besides,
mission centers and agencies need to collaborate to share orbits,
to schedule plan uploads, image acquisitions and data downloads.
If EOS are owned by different stakeholders, they may even nego-
tiate to share some on-board resources. In-space operations also
require cooperation, notably between EOS which have to perform
multiple and often composite acquisitions. For optical applications,
weather uncertainties have to be handled to avoid capturing cloud-
full useless images. EOS also share tasks, so that unusable observa-
tions made by an EOS can be performed later by a following EOS
overflying the region. As to cooperate, EOS may rely on indirect
communication (via dedicated relay satellites) or direct in-range
communication as to transfer tasks from one to another, instead of
waiting minutes to interact with accessible ground stations.

This scenario illustrates the need to cooperate, collectively solve
and schedule, self-adapt and interact, which are the overarching
motivations for multiagent systems (MAS). While MAS have early
been identified to model satellite systems [32, 52], this scenario
opens new challenges to be addressed by the MAS community, re-
grouped into three categories. We stress areas of interest of AAMAS
call [1] each challenge falls into, using the ➥ <Area> notation.

2 CONSTELLATION DESIGN CHALLENGES
Prior to deploying a constellation and operating it, several hard
problems have to be solved, related to constellation sizing and com-
position, fair allocation of orbits and plans between stakeholders.

2.1 System Modeling and Simulation
The design phase consists in dimensioning the constellation, i.e.
deciding the orbital pattern(s), the number of satellites on each
orbital plane along with their orbital elements, the set of ground
stations used to download images and upload mission plans. The
composite nature, heterogeneity, dynamics and openness of EOS
constellation shall be considered in that phase. Moreover, space
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Figure 1: An Earth Observation system composed of a main mission center and distributed stations (with ranges), agencies emitting
observation requests (to mission center), EOS (with image footprint), communication satellites (linking EOS)

number of satellite passes over target regions, the delay of revisit of a
satellite over those same regions and also the cost of the constellation.
While some analytical methods can be used [35, 51], the complexity of
architectures canalsobehandled throughdifferentnumerical approaches,
like Multi-Disciplinary Optimization [16], Genetic Algorithms [21] or
Particle Swarm Optimization [65]. But, these black box techniques make
it difficult to understand the influence of parameters on the resulting
configurations.Beingable to explain todeciders thedifferent components,
their behavior and interactions is a key requirement. Thus,Multiagent-
based simulation (MABS) appears as a relevant fine-grained approach to
better grasp the operation of the system, or to make predictions about its
performance [6, 16, 71]. In the space domain, existing simulators like [49]
could benefit from MABS concepts and efforts, since more autonomy is
predicted to be provided to space systems. However, such integration
requires research efforts on simulator coupling and interoperability
[18, 44].
➥ Modelling and Simulation of Societies

2.2 Systemmodeling and engineering
Using MAS modeling concepts may ease the development of EOS con-
stellation systems, and thus coping with their composite nature, het-
erogeneity, dynamics and openness, at design time. For instance, [19]
consider a cluster of EOSs. Compared with a classical constellation, a
cluster can contain a larger number of satellites (from dozens to hun-
dreds of satellites), its satellites can be highly heterogeneous (platform,
payload, orbit) and it is usually designed for a specific short-term goal
(e.g. scientific mission). Authors assume all tasks can be performed by
satellites, whereas in classical constellations, the catalog of requests is
much larger than the actual observation capability of the constellation.
Here, the problem consists in selecting the subset of satellites in the clus-
ter to perform the observation tasks. [19] define the cost of a team as an
aggregation of the cost of the tasks to perform that depends on the satel-
lite that actually performs it and the idle time of each satellite and aim
at finding the cheapest team for a set of tasks. Following that approach,
as mentioned by the authors, it would be possible to consider a wider
range of properties when designing teams (e.g. robustness or individual
goals if satellites belong to different entities) [2].Multiagentmodeling and
programming [10, 67] could here be a great help by providing modeling
concepts (e.g. roles, goals, organizations, institutions) and methodolo-
gies to develop platforms to manage multi-satellite and multi-operator
systems. Space systems are amongst the most demanding concerning
functional guarantees and safety, thus leading to a challenging path for
researchers in agent-oriented software engineering.

➥ Engineering Multiagent Systems
➥ Coordination, Organisations, Institutions, and Norms

2.3 Resource allocation and fair division
When an EOS constellation is used by several stakeholders, it can be
required that its exploitation is equitable or fair, e.g. according to the
financial investment of each user in the constellation funding. The
literature distinguishes the case in which goods are divisible and the case
they are not. This problem falls into theMultiAgent Resource Allocation
(MARA) domain [20]. For EOS constellations, users or clients can share
different types of goods, such as orbits, that can be seen as divisible
goods, and get exclusivity on portions of orbit allocated to them. In
that case, users have their own mission center and can operate EOS on
portions allocated to them. Users can also share EOS by requesting some
observation of a geographical zone. In that case, requests are seen as
indivisible goods and the requests from a given user that are actually
scheduled on the constellation can be seen as the bundle for this user.
Note that orbit sharing and requests sharing are not exclusive to each
other. For [14], fair division case raises several challenges. First, fairness is
intricately linked to user preferences as it is required to compare bundles
that can be allocated to each user. Representing preferences in a compact
way while being able to reason efficiently on them is challenging (e.g.
CP-net [13] for ordinal preferences). In the context of EOS,many features
of requests could be used to define request utility: its priority, area of
observation, uncertainty about weather, etc. Such features are described
in [60] to score requests. Most of preferences formalisms suppose that
the utility of a bundle is the sum of the utilities of the elements in the
bundle. In the space domain, utility of observation requests might not
be independent from each other or could be quite complex (e.g. periodic
requests). A second challenge would be to go beyond additivity and
consider more realistic hypotheses. Furthermore, there exist several
concepts of fairness. Two classical definitions are envy-freeness and
maxmin. An allocation is envy-free if each user prefers its bundle to the
bundle of any other user. An allocation ismaxmin fair if it maximizes the
utility of the poorest user. A few works take fairness into account when
scheduling EOS. In [37], the authors define fairness as a proportionality
with regards to the financial contribution in the constellation funding. In
[59] and [33], fairness is defined asmaxmin fairness. Moreover, fairness
is generally not the only criteria to be taken into account and a trade-
off between several criteria is necessary (e.g. between efficiency and
fairness). [37] studied several procedures characterizing efficient and
fair allocations for EOS, and in [59] fairness is part of a bi-objective
criteria. Finding procedures, centralized or decentralized, that return



optimal or good quality allocation is a challenge by itself. In the case
of EOS in which orbits are shared between several users, one could for
instance consider auctionmechanisms [9, 20]: users submit their bidding
(i.e. report their preferences) publicly or privately, there can be one or
several rounds and the allocation is made by the auctioneer.

Thus, EOS applications open challenges with regards to MARA [20,
42], since they require handling different types of shared resources,
complex preferences, fairness can be defined following several ways and
in the same time, the allocation procedures need to be reactive in order
to integrate last-minute demands.
➥ Social Choice and Cooperative Game Theory
➥ Markets, Auctions, and Non-Cooperative Game Theory

3 OFFLINE OPERATION CHALLENGES
Once a constellation is operational, mission centers compute offline
plans for each EOS, given an order book. Beside acquisition scheduling,
these plans should also specify when EOSs download the result of their
activity to accessible ground stations as to save their limited memory to
store acquisitions, resulting in hard large-scale problems to solve.

3.1 Scheduling observations
Such problems are structurally distributed by nature, and thus partially
or fully decomposable. This opens the door to MAS techniques for
problem solving. For instance, [48] consider the different components
of the systems being part of a market place to find agreements on
scheduling tasks, and propose an extended Contract Net Protocol to
solve a multi-satellite mission scheduling problem. Distributed constraint
optimization techniques (DCOP) [26] may also be efficient solution
methods to address constellation taskallocationproblems,wheredecision
variables and constraints are distributed amongst a set of agents. For
instance, Distributed Large Neighborhood Search (DisLNS) [26] could
be applied to multi-satellite scheduling, that [29] propose to solve using
its centralized counterpart. Adding distribution will bring explainability
(by identifying where hard conflicts appear), speedup (by splitting the
search process into several concurrent subprocesses), and privacy (in case
some tasks/slots are secret). Yet, scalability of DCOP solution methods,
and the presence of mixed-integer decision variables (e.g. deciding a
satellite to perform an acquisition and choosing its time slot), are open
challenges to be addressed, as recently investigated in DCOPs with
continuous variables [31]. Even more generally, constellation scheduling
problems can be modelled as multi-objective (e.g. minimizing power
consumptionwhilemaximizing successful observations) [8, 39, 40, 59, 68],
asymmetric (e.g.usersmaynot have the same reward if some observation
is performed) problems, which are still challenging models concerning
the efficiency of distributed solution methods [22, 28]. Finally, since
these scheduling problems are very large-scale, Distributed heuristics
and self-organization, like [12] which is based on self-adapting time
schedules, could provide solutions in a fast, reactive and anytimemanner.
However, such techniques don’t provide quality guarantees, which are
strong pre-requisites to be adopted by space agencies.
➥ Knowledge Representation, Reasoning, and Planning

3.2 Scheduling under uncertainties
EOS systems are subject to two main types of uncertainties. First, some
clouds can be present when making an observation. If the cloud cover
fraction of the observation is larger than themaximal cloud cover fraction

associated to the request then the observation is not valid. Moreover,
since the plan is computed some time before the acquisition is actually
made, this uncertainty is irreducible. For instance, the expectation of the
absolute value of the difference between predicted and actual cloud cover
fractions increase rapidly with the forecast horizon reaching 0.4 for a
one hour horizon [70]. Considering that fractions are between 0 and
1, this value reflects a large uncertainty. Thus, there is a not neglectful
uncertainty concerning the success of each planned observation. Second,
observations are stored in the memory of satellites in a compressed form
and the compression ratio is specific to each observation and not known
beforehand. For instance, compression ratios varying from 3 to 6 are
observed on a small set of images [69]. Thus, there is an uncertainty
about the amount of memory that is taken by each observation before
its download to a ground station and about the download time of each
observation. Moreover, download times are also impacted by bit rate
variability and recovery from transmission errors. The first type of
uncertainty is directly related to the reward while the second one is a
feature of the state transition.Multiagent planning under uncertainties
[55] and more specifically decentralized partially observable Markov
decision processes (DEC-POMDP) [7] can be relevant in this context.
Nevertheless algorithms providing DEC-POMDP solutions do not scale
and the challenge here is to design simpler solutions. Besides, Markov
decision-based model approaches, distributed optimization techniques
handling uncertainties recently led to the development of Probabilistic
DCOPs (P-DCOPs), like [5, 47, 56] which propose to extend classical
DCOPs by augmenting the outcome of the cost functions with stochastic
properties, and [36, 66] which introduce random variables as input to
the cost functions, to simulate exogenous uncontrollable traits of the
environment, and thus optimize the expected outcome.However, it is also
important to note that the prediction of uncertainty measures associated
to observation success is a problem in terms of scope of the MAS under
study, i.e. is the predictor agent inside or outside the MAS, and in terms
of type of uncertainty measure, i.e. almost all satellite planning are
based on probabilities but a better robustness could be obtained using
imprecise probabilities or Possibility Theory [25]. Finally, the definition
of a deterministic reward that considers requests of different types and
priorities and that can easily be combined to the chosen uncertainty
measure is an issue in itself.
➥ Knowledge Representation, Reasoning, and Planning

3.3 Deconflicting user requests
Satellite constellations involve many actors, like satellite owners, satellite
operators, service clients requestingobservations, governmental agencies,
ormilitary operators. Sharing the constellation resources between agents
having different objectives and agendas implies that some conflicts may
arise, that cannot be solved in a centralized manner as to guarantee
decision autonomy and privacy preservation. This last point is crucial:
EOSs can be used for defence and security purposes and most of the
actors do not want the others to be informed of the way they are using
the satellites. For instance, one operator from a country may allow
some client from another country to use its satellite to perform some
observation, butmay not allow to capture some image of its own country
or to know what are the observations planned before and after the
requested observation. This means that the different users have to solve
a problem whose sub-components (decision variables, constraints, or
parameters) are owned and private. Distributed optimization techniques



like DCOP can be considered again, when users aims to a common
objective (e.g.maximizing the number of scheduled observations), as
proposed in [54]. In case of diverging vision, one may also consider
Consensus optimization as in [15, 45, 46],where users build agreements on
some shared decision variables, Here again, the presence of discrete and
continuous decision variables makes the application of such techniques
even more challenging [58]. In more conflicting and non-cooperative
settings, Game Theory may also provide coordination schemes to solve
this conflicting situations, as proposed in recent works like [57], or to
design markets [23].
➥ Knowledge Representation, Reasoning, and Planning
➥ Markets, Auctions, and Non-Cooperative Game Theory

4 ONLINE OPERATION CHALLENGES
EOS constellations are dynamic systems deployed in dynamic envi-
ronments. Offline planning is not sufficient to ensure a fully efficient
operation, especially when weather may degrade the quality of the
captured images or when last-minute requests arrive. Autonomy is thus
a major dimension to consider as to equip satellites with some routines
for on-the-fly adaptation in response to unpredicted events.

4.1 Dynamics and rescheduling
Because image acquisition can fail due to the presence of clouds, or be-
cause last-minute request can occur, being capable of rescheduling some
observations is of high importance. Rescheduling might be considered
either on-ground or on-board. On-ground plan repair is triggered once
EOSs have downloaded data, and that its bad quality is discovered by
validation centers, that can then request rescheduling. Here classical
centralized plan repair techniques can be considered to dynamically
add tasks [63] but requires to be fast enough so that the revised plan
is pushed as soon as possible to the next EOS able to perform the task.
This repair should be provided as reactively as possible compared to full
scheduling. Considering a partially or fully on-board decision-making,
MAS techniques exist to cope with dynamic problems, like in Dynamic
Distributed Constraint Optimization (DynDCOP), agents cooperate to
optimize a series of problems instead of a single instance at a given
point in time [30], or to be able to solve problems which are changing at
runtime [50]. One may also consider,Multiagent plan repair techniques
like [34] for on-board repair, which only consider changing some part
of the plan for impacted agents instead of rescheduling from scratch.
However, while providing good quality plans, such techniques still suffer
limited scalability, and requires reliable communications. In our case,
communication may not be persistent (e.g. ground stations are not ac-
cessible at any time or satellites may not be able to directly or indirectly
interact) [33]. [62] also propose a distributed learning scheme to repair
multi-satellite plans, noticing that the historical information of coop-
erative task planning will impact the latter planning results. Another
family of candidate techniques are those relying on Consensus [27, 41],
where agents negotiate as to agree on some decision variables (e.g. the
choice of the tasks to perform) while being resilient to environment
disturbances and asynchronicity [24, 50]. Moreover, EOSs have limited
computation capacity which limits the range of optimization techniques
that can be performed on-board. Thus, self-organization techniques, only
relying on limited communication and requiring limited computations,
appears being be good candidates for providing plan adaptation at run-
time [12, 33, 50], that might not provide optimal solutions, but could

arbitrate between requests based on simple criteria (priority) and may
transfer requests from EOS to EOS. However, pushing such autonomy
and decision on-board remains a real challenge, that still requires strong
research efforts in Artificial Intelligence and Robotics to be certified and
then embedded in operational systems.
➥ Knowledge Representation, Reasoning, and Planning
➥ Learning and Adaptation
➥ Robotics

4.2 Interaction and protocols
When dealing with multiagent online operations, considering communi-
cation opportunities is a key point for improving the performance of the
system. For EOS, direct communications are obviously used between a
mission center and the satellites, but many other kinds of communica-
tions can be used as well, such as direct communications between two
satellites through an inter-satellite link, direct communication between
two mission centers managing different parts of the constellation, indi-
rect communications through geostationary relay satellites or drones,
and more generally indirect communications through a network of com-
munication links. Considering all such potential communication links
for future constellations raises many challenges for online operations,
such as "which communication protocol should be used?", "when to
communicate?", "which data to communicate and to who?", or "what
is the value of an information?", to name just a few. Some proposals
have already been made to address such questions. For instance, in [43],
the authors use the so-called Delay Tolerant Network (DTN) protocol to
build a system where a given satellite can warn other satellites about
Earth points where a ground phenomenon has been detected. In [11],
an epidemic communication protocol between satellites is employed
and each satellite maintains an estimation of the knowledge of the other
satellites. In [3, 52], communication is used for negotiation and coordi-
nation between spacecraft agents. In [17], communications are used to
route observation data from one satellite to a ground reception station
through inter-satellite links, so as to decrease the time at which users
can get their images. These few examples show that communications
might be used both for epistemic reasons (to bring an information that
can help in making better decisions or implementing some coordination
protocol) and for outcome reasons (to communicate observation data
and get an immediate reward from the users), one common goal being
to get either better reactivity or better task sharing between the agents.
➥ Coordination, Organisations, Institutions, and Norms
➥ Robotics

5 CONCLUDING REMARKS
In this paper, we identified several open challenges with regards to Earth
observation satellite constellations and related applications, addressed to
the AAMAS community. Indeed, designing, deploying and operating
such systems composed of several actors and resources are perfect
fit for multiagent-based approaches. However, the hardness of these
problems, and their novelty, are still challenging for the existingmethods,
which opens new research tracks for the years to come, especially
in the identified AAMAS areas of interest, ranging from Engineering
Multiagent System to Robotics by way of Knowledge Representation,
Reasoning, and Planning.
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