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Abstract— Automatic facial expression recognition (FER) is
a challenging computer vision problem that finds a number of
applications in human-computer interaction. Most recent FER
approaches are deep-learning based and involve the extraction
of two types of features from face images: geometric features
(e.g. distances between aligned facial landmarks) and appear-
ance features extracted using convolutional neural networks
applied on patches extracted around each landmark. In this
paper, we explore the use of gating networks to learn an optimal
combination of these two modalities (modal gate). Furthermore,
we also design landmark-wise gates to adaptively weight each
landmark as well as the corresponding patch contribution.
The proposed MoDuL architecture achieves state-of-the-art
results on several FER databases with negligible computational
overhead.

I. INTRODUCTION

Facial expression is a fundamental way for human beings
to communicate their emotions and feelings. Automatic
expression analysis is a challenging problem and impacts
important applications such as human-computer interaction
[1], health-care [12], surveillance [14], self-driving cars [18],
etc. Nevertheless, recognizing facial expressions with a high
accuracy is not an easy task due to the complexity and
variability of facial expressions and their interpretation which
can be quite subjective [30].

Most of classical and deep learning oriented approaches
rely on two kinds of features. On the one hand, geometric
features that are based on facial landmarks positions, provide
information about head pose and facial expression variations.
These features are thus essential to recognize facial expres-
sion, but they mainly depend on the reliability of the facial
landmarks tracker. Moreover, they does not contain all the
needed information. On the other hand, appearance features
capture information relative to the image texture and can
provide complementary information. For example, a frown
is not only characterized by the displacement of the eyebrows
landmarks with respect to the eyes position, but also by the
appearance of glabella wrinkles.

Given the small number of available data to train models
to recognize facial expressions, methods based on hetero-
geneous features still lead to the best results. This implies
to carefully weight the contribution of each kind of features
depending of the emotion to predict. Furthermore, each land-
mark do not have the same relevance in order to recognize
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Fig. 1. Architecture of the proposed method. For each landmark point, a
patch is extracted as long with the distances with the other landmark points.
Those inputs are weighed differently by the outputs of a patch-wise gate
and a landmark wise gate. Finally, before the concatenation of both subnets,
we weigh another time with a modal gate.

a given expression (e.g. recognizing happiness will mostly
rely on the occurrence of a smile in the lower part of the
face).

In this paper, we introduce MoDuL, a deep neural network
that uses both adaptive region-weighting via landmark/patch-
wise gates and modality combination using a modal gating
scheme, as illustrated on Figure 1. To sum it up, the
contributions of this work are three-fold:

• A landmark-wise gate that allows to flexibly weight the
contribution of each face region for sub-networks that
processes geometric and appearance features.

• A modal gate that weights these two heterogeneous
modalities, allowing to better capture the complemen-
tarity between appearance and texture information.

• We empirically show that MoDuL achieves state-of-the-
art on several FER datasets with very little computa-
tional overhead.

II. RELATED WORK

One of the most challenging step for automatic facial
expression recognition is to extract discriminative features
that best describe the appearance and the geometry changes
during the emotion production. Histogram of Oriented Gra-
dients (HOG) [6], histograms of Local Binary Patterns
(LBP) [27], Gabor wavelets [2], among others, are the most



efficient features designed by humans when it comes to
appearance, and can deal with challenging issues of FER
such as illumination changes and face occlusion [31]. They
have been implemented a lot with classical machine learning
frameworks such as SVM [22] or Random Forests [5].
Appearance features have often be combined with geometric
features extracted from facial landmarks. Different fusion
schemes have been proposed to combined these heteroge-
neous features, ranging from feature concatenation and late
fusion to more elaborate strategies (e.g. 2K-SVM [23] or
MK-SVM[26])

But most of current state of the art methods use deep
learning in order to perform high accuracy facial expression
recognition, as shown in the following survey [17]. Among
the deep-based methods, convolutionnal neural networks
(CNNs) are the most popular. Indeed, instead of handcrafting
predetermined features, CNN can learn from the data collec-
tion which patterns are the most relevant for a specific task.
Two different approaches exist: the hollistic methods and the
patch-based ones. In the former, the faces are treated as a
whole. Whereas in the latter, the face is divided into sub-
regions [25]. In this case, the face can be divided into equal
parts around facial landmarks, or it is possible to get those
patches through a particular sampling strategy [31].

One of the major difficulty of the FER domain is related
to the high intra-class (e.g. two different persons can express
sadness very differently) and low inter-class (e.g. fear can be
interpreted as disgust depending on the context) variances.
This problem is especially worsened as the number of
training samples is low with noisy labels. To address this
issue, IL-CNN [3] substitutes traditional softmax loss for
the handcrafted Island Loss. With a quite simple holistic
approach composed of 3 convolutions, IL-CNN showed very
high accuracy performance. Following the same purpose,
Identity-Aware Convolutional Neural Network (IACNN [24])
uses a metric learning inspired approach based on pairwise
images to reduce inter-subject variations. This kind of ap-
proach focus on one particular source of variation to the
detriment of other sources such as illumination and pose.

Other approaches seek to be more robust to these vari-
ations either with data augmentation [20], or by combining
model predictions [30], [15], [19]. For example, IPA2LT [30]
trained multiple networks with heterogeneous images and
labels. A last deep neural network is used to combine the
decision arising from these heterogeneous networks.

Compared to these methods, [13] and [11] rely on dif-
ferent modalities, namely the raw image and the landmark
positions, to infer the emotions. DTAGN [13], for instance,
uses two deep networks. They each receive an image se-
quence along with the facial landmarks as inputs. The first
network focuses over appearance and the second one over
the geometry between the different facial landmarks. Finally,
the output of these networks are integrated using a weighted
summation.

In the same vein, our model rely on complementary
modalities. In particular we introduce a gate-based end-to-
end multimodal fusion scheme that is trained to combine

geometric and appearance information according to the input
image. It also uses a patch-based approach and weights the
importance of each subregions, depending on its informative-
ness computed from the input face image. Those different
weighting methods, implemented as gates, also allows to
interpret easily the results by helping to visualize on which
part the model focuses to perform the task.

Other existing approaches combine geometric and local
appearance features [32], [33]. However, in these works,
importance of each features is estimated during the training
phase and remains constant for each prediction. On the
contrary, in [6] weights are dynamically adjusted according
to the current image. The weighting strategy is handcrafted
(the weights are outputted by external auto-encoders that
indicates whether the landmark is occluded or not, or at
least, very different from its classical appearance). Weights
are used to modulate the posterior prediction of each local
prediction tree. Thus it gives no clues about the impact of
each geometric and appearance features. In contrast, our
approach learn to dynamically modulate the input features.
The gating strategy is learned in a end to end manner and
depends on both the appearance of the current image and the
prediction of the network.

III. OVERVIEW OF MODUL

An overview of MoDuL is provided on Figure 1. Similar
to what is done in the literature, MoDuL is composed of
a joint network between a fully-connected network (FCN
- Section III-A.1) based upon geometric features extracted
from facial landmarks and appearance features provided by
a CNN indexed by these landmarks (Section III-A.1). In
Section III-B we describe our landmark-wise gate for both
networks. Then, beyond a plain joint network, these primary
networks can be combined using a third modal gate III-C.
All the primary and gating networks are illustrated on 2.

A. Primary networks

As a preprocessing, we extract facial feature points using
an off-the-shelf IntraFace [28] tracker that provides the
location of Nl landmarks denoted as {fi}i=1,...,Nl

. Also, in
what follows, the whole face image is denoted as I.

1) Distance FCN (Figure 2-left): The first part of the net-
work consists of fully-connected layers whose inputs consist
in the Nl(Nl − 1)/2 distances between facial landmarks fi
and fj , normalized by the inter-ocular distance (iod, i.e. the
distance between the average of all landmarks belonging to
left and right eyes). These features are intrinsically invariant
to in-plane rotations and scaling. We denote Di,j the distance
matrix defined as:

Di,j(I) =
‖fi − fj‖2
iod(F)

,∀i, j ∈ [ 0, Nl − 1] 2 (1)

Then Distance FCN is a function F dist : D(I) 7→
F dist(D(I)) ∈ R+n where n is the number of output
neurons. In practice, we model F dist using a number of
fully-connected layers with ReLU activation. Also, as matrix
D is symetric we only extract the upper triangular elements
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Fig. 2. Hyperparameters of each component of MoDuL. The Distances FCN applies a number of fully-connected layers with ReLU activation to
extract geometric features. The Patch FCN processes the crops around each landmark with CNN and FCN to extract appearance features. The gates
processes the whole face crop. The gate networks take as input the whole image and return weights for each modality (modal gate) and landmark
(landmark-wise/patch-wise gate)

and reshape them into a vector to feed F dist. Such model
using only geometric information may lack the capacity to
discriminate most subtle expressions, e.g. anger vs sadness,
hence the need to incorporate appearance information.

2) Patch CNN (Figure 2-right): In order to do so, we
crop the faces images around each landmark with a window
size of 30% of the iod of the face image, then we rescale
those crops to a constant size of 30×30 pixels. The patches
are denoted as P = {P}i(I),∀i ∈ [ 0, Nl − 1] Thus, each
input image consist of a 30x30 image with Nl channels, each
channel corresponding to a specific landmark.

We then define our other primary network, namely the
Patch CNN, as a function F patch : P(I) 7→ F patch(P(I)) ∈
R+n. F patch is then modeled using a number of CNN
followed by FC layers. Appearance information helps de-
cipher subtle expressions, however, for both the primary
networks, the information extracted within the features is
highly redundant and these networks may struggle to extract
relevant features. For that matter, we propose an adaptive
region contribution weighting scheme.

B. Adaptive region contribution weighting

We propose to weight the input of each basic network
using gating functions. Gating functions for the distance
FCN and Patch CNN take the face image I as input and
are defined as:

Gdist : I 7→ Gdist(I) ∈ [0, 2]Nl (2)

and

Gpatch : I 7→ Gpatch(I) ∈ [0, 2]Nl (3)

respectively.
These functions are illustrated on Figure 2 (2nd from left),

and output a weight for each landmark: in practice, they
consist of CNN and FCN layers with ReLU activation, except

for the last layer that has sigmoid activation to scale the gate
outputs. Note that the gate sigmoid activation had mean 0.5,
we multiply its output by 2 so that the expected value of
the output remains the same with or without the gate. For
the distance FCN, we multiply matrix Di,j(I) by the gate
vector. The weighted distance FCN can thus be written as:

F dist
w = F dist(D(I)Gdist(I)) (4)

For the Patch-CNN we multiply each input channel (i.e.
the crop extracted around one landmark) by the gate output
corresponding to this landmark:

F patch
w = F patch(P(I)�Gpatch(I)) (5)

Where � stands as the replicated Hadamard product
accross spatial dimensions of the crops. Note that the primary
networks F dist and F patch, as well as the corresponding
gating networks Gdist and Gpatch are learned jointly in an
end-to-end manner, allowing to find an optimal landmark
weighting in both cases.

C. Joint network with adaptive modality weighting

Mixing the two primary networks gives a more accurate
and robust network. A naive way to do so consists in
concatenating the last hidden layer of both networks before
the output layer:

F joint(I) = F dist(D(I))||F patch(P(I)) (6)

We can also use the region-weighted networks by apply-
ing:

F joint
w (I) = F dist

w (D(I))||F patch
w (P(I)) (7)

Where || denotes the concatenation operator. The caveat of
such naive design is that the two modalities are not equally



informative: hence, the joint network can have a tendency
to rely too heavily on one type of feature, preventing to
correctly learn the other sub-network. To avoid this, we
advocate the use of another gating function that we call the
modal gate. As before, the modal gate is defined as:

Gmod : I 7→ Gmod(I) ∈ [0, 1]2 (8)

Gmod, however, has a softmax activation in its last layer.
The equation of the naive joint network where only the two
final modalities are weighted is thus:

Fmod(I) = Gmod(0)F dist(D(I))||Gmod(1)F patch(P(I))
(9)

This so-called modal gate is illustrated on Figure 2 (3rd

from left. The final MoDuL equation that uses both modal
gate and region contribution weighting can be written as:

FMoDuL(I) = Gmod(0)F dist
w (D(I))||Gmod(1)F patch

w (P(I))
(10)

with F dist
w and F patch

w both defined in Section III-B. In
what follow, we compare the accuracy of all these networks,
namely the primary networks F dist and F patch, their region-
weighted counterparts F dist

w and F patch
w , as well as the joint

networks F joint, Fmod, F joint
w and FMoDuL. For each of

these networks, we append at softmax layer with as many
output units as the number of FEs to predict after the last
hidden layer.

IV. EXPERIMENTS

In this Section, we introduce FER databases IV-A and
experimental setup to ensure reproducibility of the results
IV-B. We then perform ablation study in Section IV-C to
highlight the contribution of each component of MoDuL. In
Section IV-D we compare our method to existing approaches,
showing that it provides state-of-the-art results. Finally, in
Section IV-E we provide insight on the model behavior.

A. Databases

We validate our MoDuL approach on three databases from
different applicative contexts and annotation.

The CK+ or Extended Cohn-Kanade databse [21]
contains 123 subjects, each recorded producing various ex-
pressions. Those records contain an evolution from neutral
to one of the 6 universal emotions described by Ekman [8].
From those records we extracted 309 sequences, each one
corresponding to one of the six basic expressions, and use
the three first and last frames from the records for training.

The BU-4DFE database [29] contains 101 subjects, each
one recorded producing the six basic emotions with mod-
erate head pose variations. Expressions usually have lower
intensity and greater variability than in CK+. We manually
selected neutral and apex of expression frames, for a total of
8219 examples for training.

The JEMImE-Paris and JEMImE-Nice databases [10]
contains respectively 1458 and 2323 examples labeled

with FE quality. The concatenated database is referred as
JEMImE-All and contains 3781 examples. For the classi-
fication task, we decided to keep only the samples whose
quality is higher than 7 over 10, making respectively 534
and 1312 examples from Nice and Paris.

B. Experimental setup

We trained 7-class networks (neutral and the six basic FEs)
on CK+ and BU-4DFE databases and 4-classes networks on
JEMImE-All with FEs neutral, happiness, anger and sadness.

Models are evaluated using the (unweighted) overall ac-
curacy over the test set, along with the average per class
accuracy (trace of the confusion matrix) to take into account
the discrepancies in class repartition in the test sets. As it is
classical in the literature, we implemented 10-fold subject-
independent cross validation. Furthermore, on each dataset,
we have more examples of FEs neutral and happiness than
any other expressions. In order to handle class imbalance at
train time, we trained our models using a rejection resam-
pling method: at each beginning of an epoch during the train
phase, we equilibrate each class by downsampling examples
belonging to the majority classes and oversampling examples
of the minority classes. As compared to alternative solutions,
such as class weighting, this method leads to similar results,
with reduced computation time, as explained in [4].

Optimization is applied with ADAM optimizer [16] with
batch size 16 and β1 = 0.9, the learning rate follows a
polynomial decay with power 0.9. For MoDuL as well as
the joint region-weighted networks we applied 25000 steps
with a base learning rate of 0.001. For the other networks
we applied 20000 updates with base learning rate 0.01, as it
provided better results in practice.

Finally, it is important to notice that all our networks were
trained from scratch without any pre-training.

C. Ablation study

a) Performance assessment:: in order to walidate the
contribution of each separate component of MoDuL we
conducted an ablation study on CK+ database. The results
are summarized in table I.

TABLE I
UNWEIGHTED (UW) AND WEIGHTED (W) ACCURACY ON CK+

DATABASE. BEST RESULT IN BOLD, SECOND BEST UNDERLINED.

Model uw. acc(%) w. acc(%)
Distances 88.51 84.11
Patches 88.79 82.97
Joint 91.81 90.27
Joint, modal gate 93.25 91.25
Distances, Region-weighted 91.16 87.72
Patches, Region-weighted 88.56 86.31
Joint, Region-weighted 93.76 93.08
MoDuL 94.09 93.22

First, the region-weighted networks are more efficient than
their unweighted counterparts. The region-weighted patch
CNN, for instance, is equivalent to the basic patch CNN
in terms of unweighted accuracy, however it is significantly



TABLE II
CONFUSION MATRIX ON CK+ DATABASE FOR JOINT NETWORK.

Joint Ne Ha An Sa Fe Di Su
Ne 91.6 1 3.2 1.9 0 2.3 0
Ha 0.4 99.6 0 0 0 0 0
An 13.9 0 79.9 3.6 0 2.5 0
Sa 12.3 0 6.8 78.6 2.2 0 0
Fe 7.6 0 0 0 91.7 0 0.7
Di 4.1 0 3.1 0 0 92.8 0
Su 2.5 0 0 1.3 0 0 96.2

TABLE III
CONFUSION MATRIX ON CK+ DATABASE FOR MODUL.

MoDuL Ne Ha An Sa Fe Di Su
Ne 95.1 0 1.9 1.6 0.7 0.7 0
Ha 0.9 99.1 0 0 0 0 0
An 11.6 0 82.6 4.5 0 1.3 0
Sa 9.3 0 3.1 87.6 0 0 0
Fe 3.1 3.3 0 0 92.9 0 0.7
Di 3.1 0 0 0 0 96.9 0
Su 2.5 0 0 0 0 0 97.5

better in terms of weighted accuracy. The region-weighted
distance FCN is better that the distances FCN both in terms
of unweighted and weighted accuracy. This holds for both
the joint and joint modal networks. This indicates that the
proposed region-weighting method helps to discriminate FEs
by allowing to flexibly put emphasis on certain face regions.

Second, the Joint network is more accurate than the single
modality (distance and patch) networks. The addition of the
modal gate increases both accuracy metrics, showing that
it allows to better capture the inter-modal complementarity.
Finally, MoDuL is the best performing network in terms of
both unweighted and weighted accuracy. Table II and III
shows the confusion matrices for both the joint network and
MoDuL, respectively. As one can see, the addition of both
the landmark/patch-wise and modal gates allows to better
discriminate the FEs, and particularly subtle FEs such as
neutral, anger and sadness.

TABLE IV
NUMBER OF PARAMETERS FOR EACH MODEL.

Model # parameters (M)
Distances 1.77
Patches 2.79
Joint 5.76
Joint, modal gate 5.82
Distances, Region-weighted 3.20
Patches, Region-weighted 3.02
Joint, Region-weighted 6.22
MoDuL 6.27

b) Number of parameters:: we also reported the num-
ber of parameters for each model in table IV. The modal gate
only increases the number of parameters by 0.9% while the
dual landmark-wise gate increases this number by 7.9%. We
also have to take into consideration that this last augmenta-
tion is mostly due to the fact that the number of inputs for the
distances subnetwork has doubled. Thus, this improvement

of performance only represents an augmentation of 8.8% of
the number of parameters between our baseline and our best
model, which is quite reasonable. Last but not least, notice
how our network has few parameters compared to state-
of-the-art network [24] that employs bigger networks (e.g.
ResNet): in what follows, we show that despite having fewer
parameters, MoDuL provide satisfying accuracy on multiple
datasets.

D. Comparison with state-of-the-art approaches

In this section, we evaluate our MoDuL network on several
datasets and compare the performance with recent state-of-
the-art facial expression recognition methods.

Compared to CK+, BU4-DFE images depict more subtle
and challenging samples. Moreover, we test our model on
the JEMImE dataset as it constitutes a testbed for our model
on a different domain (children vs adult).

Table V summarizes the comparison between MoDuL and
other state of the art approaches. We can notice that MoDuL
outperforms approaches on CK+ such as IPA2LT (91.67%,
overall accuracy) [30], which specifically address the inter-
subject variance issue. The overall accuracy of IACNN is
95.35% but is hardly comparable with our approach as
IACNN uses twice as much data (it pre-traines the CNN
on FER-2013 dataset [9]).

TABLE V
COMPARISON WITH STATE-OF-THE-ART METHODS. REPORTED SCORE

WITH (*) INDICATES UNWEIGHTED ACCURACY.

Method CK+ BU-4DFE JEMImE-All
IPA2LT [30] 91.67 - -
WLS-RF [6] 94.3* 75.0 -
IACNN [24] 95.35* - -
RF [7] - - 81.9

Joint 91.81 70.95 80.55
MoDuL 93.22 80.73 82.51

Similarly, MoDuL clearly outperforms WLS-RF [6] on
BU-4DFE by more than 5%, which was still the best score
over this dataset, to the best of our knowledge. In addition,
WLS-RF uses a leave-one-person-out methodology, which
tends to give better results than our 10-fold subject indepen-
dent cross validation.

We can observe more precisely the behavior of the model
through the confusion matrices for BU-4DFE and JEMImE
datasets in Table VI and Table VII respectively. It shows that
our framework has way better results for subtle expressions:
anger, fear and disgust.

Thus, by wisely weighting the different sub-regions and
feature modalities, our framework easily deals with the inter
and intra-class variance issue of FER, hence outperforming
state of the art approaches over the most subtle FEs, which
are the hardest to recognize with automatic methods. Further-
more, MoDuL substantially enhances the accuracy compared
to the nave Joint approach in all cases, thus appears as
an interesting solution to fuse heterogeneous modalities for
FER, such as distance and patches.



TABLE VI
CONFUSION MATRIX ON BU-4DFE DATABASE FOR MODUL.

MoDuL Ne Ha An Sa Fe Di Su
Ne 87.4 1.1 4.7 3.7 1.7 0.7 0.7
Ha 6.4 87.6 1.1 0.3 3.3 0.3 1
An 11.8 0.9 74.9 6.5 0.2 5.8 0
Sa 19 1.1 14.7 62.5 1.7 0.7 0.2
Fe 14.9 4.6 2.3 4.6 52.8 13 7.8
Di 4.7 0.9 7.7 2.5 7.8 74.6 1.7
Su 1.5 1.1 1.1 0 2.3 1.2 92.8

TABLE VII
CONFUSION MATRIX ON JEMIME DATABASE FOR MODUL.

MoDuL Ne Ha An Sa
Ne 83.7 2.3 6.5 7.6
Ha 3.3 90.4 1.9 4.4
An 8.9 4.8 78 8.3
Sa 12.2 6.4 10.7 70.6

E. Gate behavior introspection

In this section, we introspect the models to show the model
behavior. To this end, we pass each test example through the
models and record the average gate values (for modal gate
and region weighting) for each expression class on CK+.

TABLE VIII
VALUES FOR THE MODAL GATE FOR EACH FE ON CK+ DATABASE.

distance patch
neutral 0.244 0.756
happiness 0.491 0.509
anger 0.312 0.688
sadness 0.231 0.769
fear 0.254 0.746
disgust 0.388 0.612
surprise 0.291 0.709

1) Modal gate introspection: Table VIII provides the
average values outputted by the modal gate. As one can see,
for FEs happiness and disgust, which involve large facial
deformations, the distances FCN is given a lot of weight,
whereas this is not the case for more subtle FEs, such as
neutral, anger, sadness or fear. Overall, the distance FCN
is given much less weight than the patch CNN: as such
the relative performance of e.g. MoDuL as compared to the
region-weighted joint model can be explained by the fact
that the modal gate allows to give more weight to the patch
CNN, whose extracted appearance features allows to more
efficiently disentangle the more subtle FEs.

2) Region weighting introspection: Figure 3 provides a
visualization of the facial landmarks importance, per type
of feature and emotion, outputted by the region-weighted
gates. Happiness is mostly characterized by distances related
to the mouth. The interpretation is quite straightforward as
happiness is mainly characterized by smiles. This observation
also applies to surprise that his distinguishable by the raising
of eyebrows and the mouth opening.

For more subtle and challenging facial expression such as
anger, the information is more spread all over the face and
across the geometry and the appearance.

V. CONCLUSION

In this work, we introduce MoDuL, a deep neural network
that uses adaptive weighting scheme via multiplicative gating
functions to more efficiently select relevant face region con-
tributions and modalities from networks that extracts infor-
mation from heterogeneous features, such as face landmarks
and patches. MoDuL has a simple and straight-forward
implementation and competes with other state of the art
approaches and can be learned from scratch.

The different gating schemes that we presented could
easily be used over other applications than FER. Especially,
we propose an easy to implement way to merge hetero-
geneous modalities and better capture the complementarity
thereof. These modalities can consist of images coming from
heterogeneous sensors such as LIDAR or depth cameras,
or data generated via high-level processing such as face
landmarks, body pose estimation, or high-level contextual
information such as image quality or environmental lighting.
In the same vein, the idea to weight the input features could
be applied in a more generic way to weight certain regions
of an input image or feature map, which is also a direction
that we would like to explore in future work.
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