
HAL Id: hal-03181853
https://hal.science/hal-03181853

Submitted on 25 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic pose-robust facial expression recognition by
multi-view pairwise conditional random forests

Arnaud Dapogny, Kevin Bailly, Séverine Dubuisson

To cite this version:
Arnaud Dapogny, Kevin Bailly, Séverine Dubuisson. Dynamic pose-robust facial expression recogni-
tion by multi-view pairwise conditional random forests. IEEE Transactions on Affective Computing,
2019, 10 (2), �10.1109/TAFFC.2017.2708106�. �hal-03181853�

https://hal.science/hal-03181853
https://hal.archives-ouvertes.fr


1949-3045 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAFFC.2017.2708106, IEEE
Transactions on Affective Computing

1

Dynamic Pose-Robust Facial Expression
Recognition by Multi-View Pairwise Conditional

Random Forests
Arnaud Dapogny1 and Kevin Bailly1 and Séverine Dubuisson1
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Abstract—Automatic facial expression classification (FER) from videos is a critical problem for the development of intelligent
human-computer interaction systems. Still, it is a challenging problem that involves capturing high-dimensional spatio-temporal
patterns describing the variation of one’s appearance over time. Such representation undergoes great variability of the facial
morphology and environmental factors as well as head pose variations. In this paper, we use Conditional Random Forests to capture
low-level expression transition patterns. More specifically, heterogeneous derivative features (e.g. feature point movements or texture
variations) are evaluated upon pairs of images. When testing on a video frame, pairs are created between this current frame and
previous ones and predictions for each previous frame are used to draw trees from Pairwise Conditional Random Forests (PCRF)
whose pairwise outputs are averaged over time to produce robust estimates. Moreover, PCRF collections can also be conditioned on
head pose estimation for multi-view dynamic FER. As such, our approach appears as a natural extension of Random Forests for
learning spatio-temporal patterns, potentially from multiple viewpoints. Experiments on popular datasets show that our method leads to
significant improvements over standard Random Forests as well as state-of-the-art approaches on several scenarios, including a novel
multi-view video corpus generated from a publicly available database.

Index Terms—Spontaneous facial expression recognition, Dynamics, Transition classification, Conditional Random Forest, Decision
Tree, Video, Multi-view, Pose-robust, Real-time.

F

INTRODUCTION

Over the last decades, automatic facial expression recognition
(FER) has attracted an increasing attention [1], [2], as it is a
fundamental step of many applications such as human-computer
interaction, or assistive healthcare technologies. The rationale be-
hind those works is that decrypting facial expressions can serve as
an unobtrusive way of analyzing one’s underlying emotional state.
Towards this end, a rich background literature has been developed
by the psychological community in order to define models that
can accurately and exhaustively represent facial expressions.

One of the most long-standing and widely used model is
the discrete categorization proposed in the cross-cultural studies
conducted by Ekman [3], which introduced six basic expressions
that are universally recognized: happiness, anger, sadness, fear,
disgust and surprise. This has been used to build as an underlying
expression model for most attempts for prototypical expression
benchmarking and recognition scenarios [4], [5], [6], as the anno-
tation process is quite intuitive. It can however show limitations
for dealing with spontaneous expressions [7], as many of our daily
affective behaviors are not covered by such prototypical emotions.

Another popular approach is the continuous dimensional rep-
resentation of affect [8], which consists in describing expres-
sions in terms of a small number of latent variables rather than
discrete categorical attributes. Perhaps one of the most widely
used model is the valence/activation (relaxed vs. aroused)/power
(feeling of control)/expectancy (anticipation) model. This model is
often further simplified as a 2D valence-activation representation.
However, the projection of complex emotional states into such

a low-dimensional embedding may result in loss of information.
As a consequence, some expressions such as surprise cannot be
represented correctly whereas some others can not be separated
efficiently (fear vs. anger). Finally, the annotation process is less
intuitive than with the categorical representation.

An alternative representation of facial expressions has been
proposed under the form of the Facial Action Coding System
(FACS) [9]. Here, facial expressions are decomposed as a com-
bination of 44 facial muscle activations called Facial Action Units
(AUs). AUs provide an intermediate face representation that is
independent from interpretation and can in theory be combined in
accordance with the so-called Emotional FACS (EMFACS) rules
to describe any prototypical or spontaneous expression display.
Unfortunately, the main drawback of this approach is that FACS-
coding is generally cumbersome, and raters generally have to be
highly trained, thus limiting the quantity of available data.

For those reasons, in this work we focus on categorical
facial expression classification. However, there is nothing in our
method that would prevent us from adapting our code to either
the dimensional or FACS model, given appropriate data. More
specifically, we aim at designing a FER system that:

• is able to reliably distinguish subtle expressions (e.g. anger
or sadness). Because using dynamics of the expression
helps disentangle the factors of variation [10], such system
needs to exploit the temporal variations in videos rather
than trying to perform recognition on still images. For that
matter, we focus on combining the benefits of frame-based
and dynamic classifications;
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• is robust to contextual factors (e.g. lighting conditions)
and can perform recognition from arbitrary viewpoints,
depending on head pose variation or camera position;

• can be learned from available data and work in real-time
on a standard computer with any basic webcam plugged in.
Particularly, we do not use high-resolution 3D face scans
because many approaches [11], [12] working on such data
seem to perform poorly when applied on consumer sensors
such as the Kinect. In addition, depth information may be
unavailable in many applicative scenarios.

1 RELATED WORK

In this section we review recent works addressing FER from video.
On the one’s hand, recent approaches for FER from a frontal view
can be divided in frame-based systems and dynamic ones. On the
other hand, multi-view FER is generally performed statically.

1.1 Frame-based FER
The first category of FER systems are the so-called frame-based
classifiers. For instance, Khan et al. [13] propose a human vision-
inspired framework that applies classification upon Pyramid His-
togram of Orientation Gradients (PHOG) features from salient
facial regions. Happy et al. [14] extract prominent facial patches
from the position of facial landmarks. A subset of discriminative
salient patches can then be used for FER.

This category of approaches typically aims at outputting an
expression prediction for each separate frame. Hence, they can
generally be applied to classify each frame of a video without
pre-segmentation. Unfortunately, they also suffer from a number
of drawbacks. First, they typically require frame-level annotations
for training, which can be a time-consuming process. Secondly,
frame-level approaches essentially ignore a part of the information
as they do not exploit the temporal evolution of the features. They
also do not use the temporal correlations at the semantic level
(e.g. is it plausible to predict sadness immediately after having
recognised happiness?). Recently, Meguid et al. [15] obtained
promising results by accumulating hybrid RF/SVM predictions
into histograms computed using a sliding window.

In order to disentangle facial morphology from expression,
other approaches explicitly normalize each image w.r.t. a neutral
face representation. Mohammadi et al. [16] use a constrained
smoothed l0-norm sparse decomposition to infer facial expressions
from differences of face images. However, the neutral face has
to be provided beforehand, limiting the applicability of these
methods. In order to circumvent this issue, the so-called dynamic
FER methods typically make use of spatio-temporal information.

1.2 Dynamic FER
Dynamic information of facial expressions can be used in several
ways: (a) at the feature-level, by using spatio-temporal image
descriptors, and/or (b) at the semantic level, by modelling relation-
ships between expressions or between successive phases (onset,
apex and offset) of facial events. Generally speaking, effectively
extracting suitable representations from spatio-temporal video
patterns is a challenging problem as expressions may occur with
various offsets and at different paces. There is no consensus either
on how to combine those representations flexibly enough so as
to generalize on unseen data and possibly unseen temporal vari-
ations. Common approaches employ spatio-temporal descriptors

defined on fixed-size windows, optionally at multiple resolutions.
Examples of such features include the so-called LBP-TOP [17],
[18] and HOG3D [19] descriptors, which are spatio-temporal
extensions of LBP and HOG features respectively. Authors in [20]
use histograms of local phase and orientations. However, those
kind of representations may lack the capacity to generalize to
facial events that differ from training data on the temporal axis.

Approaches trying to address (b) aim at establishing rela-
tionships between high-level features and a sequence of latent
states. Wang et al. [21] integrate temporal interval algebra into a
Bayesian network to capture complex relationships among facial
muscles. Sikka et al. [22] propose a novel latent ordinal model
that allows weakly supervised learning. Such approaches generally
require explicit dimensionality reduction techniques such as PCA
or k-means clustering for training. In addition, training at the
sequence level reduces the quantity of available training and
testing data as compared to frame-based approaches, as there is
only one expression label per video. Finally, these approaches
require continuity of the sequences for both training and testing,
and may lack the flexibility to handle failure cases.

In a previous work [23], we trained Random Forests upon
pairs of images representing expression transition patterns. Those
forests were conditioned on the expression label of the first frame
to help reducing the variability. Although we obtained promising
results for dynamic FER from frontal views of the videos, the
proposed approach did not handle head pose variations.

1.3 Multi-view FER

Many approaches for multi-view FER consist in training a single
classifier to describe every viewpoint. Zheng et al. [24] introduce
a regional covariance matrix representation of face images to infer
static facial expressions on a corpus constructed from the BU-
3DFE database [5] with 35 different head poses up to ±45 yaw
and ±30 pitch. Tariq et al. [25] address the same problem by
using a translation invariant sparse coding of dense SIFT features.
Eleftheriadis et al. [26] employ discriminative shared Gaussian
processes to implicitly exploit the redundancy between multiple
views of the same expressive images. However, such approach
can struggle to capture the variability of the facial expressions
when the number of training samples becomes important.

Alternatively, it is possible to learn a projection of a non-
frontal views of a face image on a frontal one. Recently, Vieriu
et al. [11] proposed to project 3D data of the face onto a
head pose-invariant 2D representation. The visible fraction of the
projected face is then used within a voting scheme to decipher
the expression. FER can thus be performed using an off-the-
shelf algorithm. In addition, the authors were able to perform
FER under a broader range of poses, up to ±90 yaw and ±60
pitch. However, the proposed method requires high-resolution 3D
face data that may not necessarily be available in multiple human-
computer interaction scenarios, for instance when using images
acquired with consumer sensors such as the Kinect.

Last but not least, some other works choose to learn one
specific classifier per face view. During testing, the head pose
is first estimated, then the best pose-specific expression classifier
is applied. For instance, Moore et al. learn multi-class SVMs
upon LBP features for multiple viewpoints. Such approaches
offer several advantages over the previous ones: first, learning
classifiers upon separate and more homogeneous face view data
allows to considerably reduce the variability. As a consequence the
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classifiers can, in theory, more efficiently capture the subtle facial
deformations between the expressions. Secondly, the runtime is
the same as in the case of a single frontal view classifier, which
may be a critical point for systems that try to project a given
view on a frontal one. Finally, splitting the training data offers the
advantage to reduce the memory usage, which can be important
for learning on large databases. Those methods also face some
impediments, such as the fact that (a) they require a reliable facial
landmark alignment and head pose estimation, and (b) it implies
dividing the data into several subsets. Nevertheless, (a) is barely
a problem given that recent advances [27], [28], [29] for face
alignment provide excellent results for head poses up to ±45
yaw and ±30 pitch, which is sufficient for most human-computer
applications. Furthermore, (b) can be circumvented by the use of
3D face scans [6] from which we can generate a large corpus of
videos for training multi-view dynamic classifiers.

2 OVERVIEW OF PROPOSED APPROACH

In this paper, we introduce the Multi-View Pairwise Conditional
Random Forest (MVPCRF) algorithm, which is a new formulation
for training trees using low-level heterogeneous static (spatial) and
dynamic (spatio-temporal derivative) features within the Random
Forest (RF) framework. Conditional Random Forests have recently
been used by Dantone et al. [30], Yang et al. [31] as well as
Sun et al. [32] in the field of facial alignment and human pose
estimation, respectively. They generated collections of trees for
specific, quantized values of a global variable (such as head pose
[30] and body torso orientation [32]) and used prediction on
this global variable to draw dedicated trees, resulting in more
accurate predictions. As depicted on Figure 1, we propose to
condition pairwise trees on specific expression labels to reduce the
variability of ongoing expression transitions from the first frame
of the pair to the other one. Furthermore, similarly to [30], we
can further condition the pairwise trees on a head pose estimation
to add robustness towards head pose variations. When evaluating
a video frame, each previous frame of the sequence is associated
with this current frame to give rise to a pair. Pairwise trees are thus
drawn from the dedicated PCRFs w.r.t. prediction for the previous
frame. In Extenso, a head pose estimate can be used to draw
trees from MVPCRFs for pose-robust FER. Finally, predictions
outputted for each pair are averaged over time to produce a robust
prediction for the current frame. Contributions of this work are
listed below.

• A method for training pairwise random trees upon high-
dimensional heterogeneous static and spatio-temporal
derivative feature templates, with a conditional formula-
tion that reduces the variability of the transition patterns.

• An extension of the traditional RF model averaging, that
consists in averaging over time pairwise predictions to
flexibly handle temporal variations.

• A method for performing multi-view dynamic FER that
consists in further conditioning pairwise trees on a pose
estimate. A tree sampling probability distribution is con-
structed from the data to allow a continuous shift between
the pose-specific PCRF models.

• A new multi-view video corpus, that includes a method
for aligning facial feature points on non-frontal sequences
using an off-the-shelf feature point tracker. We provide
source code for generating the data from 3D models using
an available database [6].

• A complete PCRF framework that performs fully auto-
matic dynamic FER with a multi-view extension, that
can work on low-power engines thanks to an efficient
implementation using integral feature channels.

The rest of the paper is organized as follows: in Section 3 we
describe our adaptation of the RF framework to learn expression
patterns on still images from high-dimensional, heterogeneous
(geometric/appearance) features. In Section 4 we present the
MVPCRF framework for capturing spatio-temporal patterns that
represent facial expressions from multiple viewpoints. In Section
5 we explain how we generate a multi-view dynamic database
for training and testing the models. In Section 6 we show how
our PCRF algorithm improves the accuracy on several FER
datasets compared to a static approach as well as state-of-the-art
approaches. In Section 6.3 we report results from frontal view FER
and in Section 6.4 we report accuracy for non frontal head poses
and FER in the wild, showing that our formulation substantially
increases the robustness to pose variations. In Section 6.5 we
report the ability of our framework to run in real-time. Finally,
we give concluding remarks on MVPCRF for FER and discuss
upcoming perspectives.

3 RANDOM FORESTS FOR FER
3.1 Random Forests

Random Forests (RFs) is a popular learning framework introduced
in the seminal work of Breiman [33]. They have been used to
a significant extent in computer vision and for FER tasks in
particular due to their ability to handle high-dimensional data such
as images or videos as well as being naturally suited for multiclass
classification tasks. They combine random subspace and bagging
methods to provide performances similar to the most popular
machine learning methods, such as SVM or neural networks.

RFs are classically built from the combination of T decision
trees grown from bootstraps sampled from the training dataset. In
our implementation, we downsample the majority classes within
the bootstraps in order to enforce class balance. As compared to
other methods for balancing RF classifiers (i.e. class weighting
and upsampling of the minority classes), downsampling leads to
similar results while substantially reducing the computational cost,
as training is performed on smaller data subsets.

Individual trees are grown using a greedy procedure that
involves, for each node, the measure of an impurity criterion Hφ,θ

(which is traditionally either defined as the Shannon entropy or
the Gini impurity measurement) relatively to a partition of the
images x with label l ∈ L, that is induced by candidate binary
split functions {φ, θ} ∈ Φ. More specifically, we use multiple
parametric feature templates to generate multiple heterogeneous
split functions, that are associated with a number of thresholds
θ. In what follows, by abuse of notations we will refer to φ(i)

as the ith feature template and k(i) as the number of candidates
generated from this template. The “best” binary feature among all
features from the different templates (i.e. the one that minimizes
the impurity criterion Hφ,θ) is set to produce a data split for the
current node. Then, those steps are recursively applied for the
left and right subtrees with accordingly rooted data until the label
distribution at each node is homogeneous, where a leaf node is set.
This procedure for growing trees is summarized in Algorithm 1.

During evaluation, an image x is successively rooted left or
right of a specific tree t according to the outputs of the binary
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Fig. 1. Flowchart of our MVPCRF FER method. When evaluating a video frame indexed by n, pairs are created between this current frame and
previous frames n−m1, n−m2, .... Randomized trees trained upon a pairwise dataset are then drawn conditionally to head pose estimation as well
as expression probabilities for the previous frames. Finally, predictions outputted for each pair are averaged over time to give rise to an expression
probability pn for the current frame. This prediction is used as a tree sampling distribution for classifying the following frames. Best viewed in color.

Algorithm 1 Tree Growing algorithm treeGrowing

input: images x with labels l, root node n, number of candidate
features {k(i)}i=1,2,3 for templates {φ(i)}i=1,2,3

if image labels are homogeneous with value l0 then
set node as terminal, with probabilities pt to 1 for l0, 0

elsewhere
else

generate an empty set of split candidates Φ
for all feature templates i do,

generate a set Φ(i) of k(i) candidates {φ(i), θ}
Φ← Φ ∪ Φ(i)

end for
for {φ, θ} ∈ Φ do

compute the impurity criterion Hφ,θ(x)
end for
split data w.r.t. arg min{φ,θ}{Hφ,θ(x)} in left and right

subsets xl and xr
create left (nl) and right (nr) children of node n
call treeGrowing(xl,nl,{k(i)}i=1,2,3)
call treeGrowing(xr ,nr,{k(i)}i=1,2,3)

end if

tests, until it reaches a leaf node. The tree thus returns a probability
pt(l|x) which is set to either 1 for the represented class, or to 0.
Prediction probabilities are then averaged among the T trees of
the forest (Equation (1)).

p(l|x) =
1

T

T∑
t=1

pt(l|x) (1)

Note that the robustness of the RF prediction framework comes
from (a) the strength of individual trees and (b) the decorrelation
between those trees. By growing trees from different bootstraps
of available data and with the random subspace algorithm (e.g.
examining only a subset of features for splitting each node)
we generate weaker, but less correlated trees that provide better
combination predictions than CART or C4.5 procedures [34].

3.2 Heterogeneous feature templates
Feature templates φ(i) include both geometric (i.e. computed from
previously aligned facial feature points) and appearance features.

Each of these templates have different input parameters that are
randomly generated during training by uniform sampling over
their respective variation range. Also, during training, features are
generated along with a set of candidate thresholds θ to produce
binary split candidates. For each template φ(i), the upper and
lower bounds are estimated from the training data and candidate
thresholds are drawn from uniform distributions within this range.

We use two different geometric feature templates which are
generated from the set of facial feature points f(x) aligned on
image x with SDM [27]. The first geometric feature template φ(1)

a,b
is the distance between feature points fa and fb, normalized w.r.t.
inter-ocular distance iod(f) for scale invariance (Equation 2).

φ
(1)
a,b(x) =

||fa − fb||2
iod(f)

(2)

Because the feature point orientation is discarded in feature
φ(1) we use the angles between feature points fa, fb and fc as our
second geometric feature φ(2)

a,b,c,λ. In order to ensure continuity
for angles around 0, we use the cosine and sine instead of the raw
angle. Thus, φ(2) outputs either the cosine or sine of angle f̂afbfc,
depending on the value of the boolean parameter λ (Equation (3)):

φ
(2)
a,b,c,λ(x) = λ cos(f̂afbfc) + (1− λ) sin(f̂afbfc) (3)

We use Histogram of Oriented Gradients (HOG) as our appear-
ance features for their descriptive power and robustness to global
illumination changes. In order to ensure fast feature extraction, we
use integral feature channels as introduced in [35]. First, images
are rescaled to a constant size of 250×250 pixels. Then, we com-
pute horizontal and vertical gradients on the image and use these
to generate 9 feature maps, the first one containing the gradient
magnitude, and the 8 remaining correspond to a 8-bin quantization
of the gradient orientation. Then, integral images are computed
from these feature maps to output the 9 feature channels. Thus, we
define the appearance feature template φ(3)

τ,ch,s,α,β,γ as an integral
histogram computed over channel ch within a window of size
s normalized w.r.t. the inter-ocular distance. Such histogram is
evaluated at a point defined by its barycentric coordinates α, β
and γ w.r.t. vertices of a triangle τ defined over feature points
f(x). Also, we store the gradient magnitude in the first channel to
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normalize the histograms. Thus, HOG features can be computed
with only 4 access to the integral channels (plus normalization).

However, the proposed static RF does not use the dynamics of
the expressions, which is the purpose of the next section.

4 LEARNING TEMPORAL PATTERNS FROM MULTI-
PLE VIEWPOINTS

4.1 Learning PCRF with heterogeneous derivative fea-
ture templates
In this section we now consider pairs of images (x′,x) to train trees
t that aim at outputting probabilities pt(l|x′, x, l′) of observing
label l(x) = l given image x′ and subject to l(x′) = l′, as shown
in Figure 2. More specifically, for each tree t among the T trees
of a RF dedicated to transitions starting from expression label l′,
we randomly draw a fraction of subjects S̃ ⊂ S . Then, for each
subject s ∈ S̃ we randomly draw images x′s that specifically
have label l′. We also draw images xs of every label l and create
the pairs (x′s, xs) with label l. Note that the two images of a
pair need to belong to the same subject, but not necessarily to
the same video. Indeed, we create pairs from images sampled
across different sequences for each subject to cover all sorts
of ongoing transitions. We then balance the pairwise bootstrap
by downsampling the majority class w.r.t. the pairwise labels.
Eventually, we construct tree t by calling Algorithm 1. Those steps
are summarized in Algorithm 2.

Algorithm 2 Training a PCRF
input: images x with labels l, number of candidate features
{k(i)}i=1,...,6 for templates {φ(i)}i=1,...,6

for all l′ ∈ L do
for t = 1 to T do

randomly draw a fraction S̃ ⊂ S of subjects
pairs← {}
for all s ∈ S̃ do

draw samples x′s with label l′

draw samples xs for each label l
create pairwise data (x′s, xs) with label l
add element (x′s, xs) to pairs

end for
balance bootstrap pairs with downsampling
create new root node n
call treeGrowing(pairs,n,{k(i)}i=1,...,6)

end for
end for

Fig. 3. Static (left) and pairwise (right) feature templates.

As shown on Figure 3, candidates for splitting the nodes
are generated from an extended set of 6 feature templates

{φ(i)}i=1,...,6, three of which being the static features described
in Section 3, that are applied to the second image x of the pair
(x′, x), for which we want to predict facial expressions. The three
remaining feature templates are dynamic features defined as the
derivatives of static templates φ(1), φ(2), φ(3) with the exact same
parameters. Namely, we have:



φ
(1)
a,b(x

′, x) = φ
(1)
a,b(x)

φ
(2)
a,b,c,λ(x′, x) = φ

(2)
a,b,c,λ(x)

φ
(3)
τ,ch,s,α,β,γ(x′, x) = φ

(3)
τ,ch,s,α,β,γ(x)

φ
(4)
a,b(x

′, x) = φ
(1)
a,b(x)− φ(1)

a,b(x
′)

φ
(5)
a,b,c,λ(x′, x) = φ

(2)
a,b,c,λ(x)− φ(2)

a,b,c,λ(x′)

φ
(6)
τ,ch,s,α,β,γ(x′, x) = φ

(3)
τ,ch,s,α,β,γ(x)− φ(3)

τ,ch,s,α,β,γ(x′)
(4)

As in Section 3, thresholds for the derivative features φ(4),
φ(5), φ(6) are drawn from uniform distributions with new dynamic
template-specific ranges estimated from the pairwise dataset.

Note that, as compared to a static RF, a PCRF model is
extended with new derivative features that are estimated from a
pair of images. When applied on a video, predictions for several
pairs are averaged over time in order to produce robust estimates
of the probability predictions.

4.2 Model averaging over time
We denote by pn(l) the prediction probability of label l for a video
frame xn. For a purely static RF classifier this probability is given
by Equation (5):

pn(l) =
1

T

T∑
t=1

pt(l|xn) (5)

In order to use spatio-temporal information, we apply pairwise
RF models to pairs of images (xm, xn) with {xm}m=n−1,...,n−N
the previous frames in the video. Those pairwise predictions are
averaged over time to provide a new probability estimate pn that
takes into account past observations up to frame n. Thus, if we
do not have prior information for those frames the probability pn

becomes:

pn(l) =
1

NT

n−1∑
m=n−N

T∑
t=1

pt(l|xm, xn) (6)

In what follows, Equation (5) and Equation (6) will respec-
tively be referred to as the static and full models. Trees from the
full model are likely to be stronger that those of the static one
since they are grown upon an extended set of features. Likewise,
the correlation between the individual trees is also lower thanks
to the new features as well as the averaging over time. However,
spatio-temporal information can theoretically not add much to the
accuracy if the variability of the pairwise data points is too large.

In order to decrease this variability, we assume that there exists
a probability distribution pm0 (l′) to observe the expression label l′

at frame m. Note that those probabilities can be set to purely
static estimates (which is necessarily the case for the first video
frames) or dynamic predictions estimated from previous frames. A
comparison between those approaches can be found in Section 6.3.
In such a case, for framem, pairwise trees are drawn from the trees
collections (each one being conditioned to one expression label
for the first frame of the pair) by sampling the distribution pm0 ,
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Fig. 2. Expression recognition from pairs of images using PCRF. Expression probability predictions of previous images are used to sample trees
from dedicated pairwise tree collections (one per expression class) that are trained using subsets of the (pairwise) training dataset, with only
examples of ongoing transitions from a specific expression towards all classes. The resulting forest thus outputs an expression probability for a
specific pair of images.

as shown in Figure 2. More specifically, for each expression label
l′ we randomly select N (l′) trees over a PCRF model dedicated
to transitions that start from expression label l′, trained with the
procedure described in Section 4.1. Equation (6) thus becomes:

pn(l) =
1

NT

n−1∑
m=n−N

∑
l′∈L

N (l′)∑
t=1

pt(l|xm, xn, l′) (7)

Where N (l′) ≈ Tpm0 (l′) and T =
∑
l′∈LN (l′) are the

number of trees dedicated to the classification of each transition,
which can be set in accordance with CPU availability. In our
experiments, we will refer to Equation (7) as the conditional
model. This conditional formulation helps to reduce the variability
of the derivative features for each specialized pairwise RF. When
predicting expression for a frame of a video, we can effectively
use robust sequence-level expression estimates by averaging over
time predictions conditioned on multiple, independent previous
frames. Section 6 shows that using PCRF models for FER leads
to significant improvements over both static and full models.

4.3 Multi-view formulation
In order to design a pose-robust recognition framework, we
propose to condition the models w.r.t a head pose estimate ω(xn)
for frame n. For that matter we quantize the pose space Ω in
k = Γ × B pose bins {Ωi = Ωγi,βi

}i=1,...,k, that are defined
around yaw and pitch angles γi and βi, respectively. We can thus
rewrite Equation 5 as a static multi-view model (MVRF):

pn(l) =
1

T

∑
Ωi∈Ω

N (Ωi)∑
t=1

pt(l|xn,Ωi) (8)

At frame n, the head pose ω(xn) is estimated first using an off-
the-shelf posit algorithm [36]. Then, for each pose bin Ωi, a num-
ber N (Ωi) of trees are selected based on a pose sampling prob-
ability distribution PΩi

(ωn) that we construct from the training
data repartition, as it will be explained in Section 5. Furthermore,

we adapt Equation (7) by conditioning the expression-conditional
model on pose estimation ω(xn) (Equation (9)):

pn(l) =
1

T

n−1∑
m=n−N

∑
Ωi∈Ω

∑
l′∈L

N (l′,Ωi)∑
t=1

pt(l|xn, xm,Ωi, l′) (9)

In what follows, we refer to this model as the multi-view PCRF
(MVPCRF) model. In this formulation, for computing the pairwise
probability between frames n and m, we first estimate the head
pose for frame n. Then, for each pose bin Ωi and expression label
l′, we select a number of trees equal toN (l′,Ωi) (Equation (10)):

N (l′,Ωi) ≈ TPΩi(ω(xn))pm0 (l′) (10)

The number of trees allocated to classify each transition is:

T =
∑

Ωi∈Ω

∑
l′∈L
N (l′,Ωi) (11)

Note that the tree sampling distribution proposed in Equation
10 supposes that the head pose estimate do not vary that much
between frames n−N and n. Should that be the case, MVPCRF
can be trained from pairs of images from different viewpoints.
It also assumes the independence of head pose and expression
prior, which is not problematic for training on posed expression
data. However, such assumption may not hold for spontaneous
datasets for which expressions as surprise or fear may involve
specific head motion (e.g. recoil). In such case, prior conditionals
may be estimated from the training corpus beforehand. Also, as
stated in [30], [32] using conditional models usually involves one
major pitfall, which lies in the reduction of the number of training
examples used to train each separate classifier. This is barely a
problem for the training of a PCRF model, as naturally many
examples of each ongoing transition can be sampled from the
datasets. Furthermore, for the MVPCRF model we can generate
a new database that contains a large number of training examples
for each pose bin using the high-resolution 3D-models from the
BU-4DFE database [6].
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Fig. 4. Boot process for multi-view data generation with aligned feature points
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Fig. 5. Data repartition across the 15 generated pose bins. Blue circles:
angles associated to the sequences (γsi ,βs

j ), red: individual frames
Fig. 6. Pose sampling probability distributions PΩi

(ωn) constructed by
smoothing the data repartition for each pose bin

5 MULTI-VIEW DATABASE GENERATION

Each texture frame of the BU-4DFE database is associated with
a high-resolution 3D VRML model containing approximately
35000 vertices, that we use to train our MVPCRF classifier as
well as to design a new dataset for multi-view video FER. Many
approaches [25], [11] present results for static multi-view FER
using the BU-3DFE database [5]. To do that, for each static image,
the authors typically render 3D meshes from a viewpoint with
fixed yaw and pitch rotation angles. However, for video FER, head
pose does not necessarily remain constant throughout a video.
Furthermore, from the perspective of a fully automatic multi-view
FER system, we typically aim at covering a specific head pose
range rather than a discrete, arbitrary set of viewpoints. Hence,
we propose to generate rotated versions of the videos by assigning
each sequence a yaw-pitch variation from the frontal video. More
specifically, our goal is to cover the same “useful” range as in
[25], [11] (i.e ±45 yaw, ±30 pitch). We thus generate k = 5× 3
bins {Ωi = Ωγi,βi

}i=1,...,k with {γi} = {0,±17.5,±35} and
{βi} = {0,±25} the mean rotation angles respectively in yaw
and pitch. Each sequence s is thus associated with rotation angles:{

γsi = γi + γ′

βsj = βj + β′
(12)

Where γ′ and β′ are random variations uniformly drawn
from the ranges [−σγ , σγ ] and [−σβ , σβ ], respectively. σγ and
σβ respectively denote the expected yaw and pitch width of the
pose bins. In order to set those values, we measure the standard
deviation of the head pose angles on the frontal view (3.6 and 5.9

in yaw and pitch respectively). We then set σγ = σβ = 5 deg
to allow a small overlap, thus a smoother interpolation between
adjacent pose bins. The data distribution among the generated pose
bins can be seen in Figure 5. For each frame of each sequence s,
we generate 15 frames by rotating the camera (position, direction
and up vector). We also turn off the camera headlight and add an
ambient light node to the VRML virtual environment.

The next step is to align facial feature points on the rotated
sequences. However, the standard pipeline of applying a frontal
or full profile face detection before aligning the feature points
from the output face rectangle is bound to fail when the yaw/pitch
becomes important and only a few images can correctly be
aligned. In order to circumvent those issues, we generate “boot”
sequences using the first image of each video. Those sequences
contain 20 frames and show a very progressive rotation of the first
frame starting from a frontal view and ending on the expected
viewpoint. We apply the OpenCV Viola-Jones face detector [37]
on the first frame of the boot sequence (frontal view). Then we
align facial feature points with the SDM tracker [27] on the
retrieved face rectangle. Feature points are then tracked throughout
the boot sequence. Once the boot is completed, feature points are
tracked on all the frames of the rotated expression videos (Figure
4). Finally, we crop the facial images to a constant size based on
the feature point location and generate a total of 906030 images.

Lastly, we construct our multi-view training set by manually
selecting the neutral and apical frames using the same subsets as
in the frontal case. Because precisely identifying such frames is
difficult in the general case, we select 3 images before and after
each peak frame for training to ensure robustness to small errors
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in the localization of those apex frames. Also, in order to filter
out the incorrectly aligned frames, we automatically discard the
frames for which more than 5 feature points do not lie on the
facial mesh. Our final training set thus consists of 122623 face
images. Note however that we did not apply any manual check
to remove the misaligned frames, or the ones for which the 3D
models contain some distortions. The image generation process
took about 5 days to complete on an I7-4770 CPU on a Matlab
environment. In order to ensure reproducibility of the results as
well as to facilitate further research, we plan on releasing the
peak frame annotation used for training the classifiers as well
as the code for rendering the files and generating the boot and
expression videos. For each of the retrieved frames, we use the
posit algorithm [36] to estimate head pose from the feature points.
Such setting allows to use the same head pose estimation for
training and testing, as compared to, e.g. constructing the pose
sampling distribution from the ground truth generated positions.
Then, we compute the pose sampling probability distribution for
each pose bin PΩi

(ω(xn)) by applying a Gaussian smoothing on
the training data repartition in the yaw/pitch space (Figure 6).
Thanks to the booting procedure discussed above, the number
of training samples between the different pose bins is roughly
equivalent. However, this might not be the case for other datasets,
where constructing a sampling probability from the data offers the
advantage to implicitly downweight the sampling of pose-specific
trees relatively to the amount of training data.

6 EXPERIMENTS

In this section, we report accuracies obtained on two different
FER scenarios. In Section 6.3 we report comparisons between
different classification models on two well-known frontal FER
databases, the Extended Cohn-Kanade and BU-4DFE databases.
Furthermore, in order to evaluate the capabilities of the learned
models to generalize on spontaneous FER scenarios, we report
classification results for cross-database evaluation on two sponta-
neous databases, namely the FG-NET FEED and BP4D databases.
We highlight that our conditional formulation of dynamic inte-
gration increases the recognition accuracy on such difficult tasks.
Furthermore, in Section 6.4 we also evaluate our approach on
multi-view video FER as well as FER in the wild. Finally, in
Section 6.5 we show the real-time capability of our system.

6.1 Databases
The CK+ or Extended Cohn-Kanade database [4] contains 123
subjects, each one associated with various numbers of expression
records. Those records display a very gradual evolution from a
neutral class towards one of the 6 universal facial expressions
described by Ekman [3] (anger, happiness, sadness, fear, digust
and surprise) plus the non-basic expression contempt. Expressions
are acted with no head pose variation and their duration is about
20 frames. From this dataset we use 309 sequences, each one
corresponding to one of the six basic expressions, and use the three
first and last frames from these sequences for training. We did not
include sequences labelled as contempt because CK+ contains too
few subjects performing contempt and other expressions to train
the pairwise classifiers.

The BU-4DFE database [6] contains 101 subjects, each one
displaying 6 acted facial expressions with moderate head pose
variations. Expressions are still prototypical but they are generally
exhibited with much lower intensity and greater variability than

in CK+, hence the lower baseline accuracy. Sequence duration is
about 100 frames. As the database does not contain frame-wise
expression annotations, we manually selected neutral and apex of
expression frames. More specifically, we select 3 images before
and after each peak frame, making a total of 8219 frames for
training. Each frame is associated with high-resolution 3D model
data recorded using a Di3D device, that we use in our experiments
to generate expression videos from multiple viewpoints.

The BP4D database [7] contains 41 subjects. Each subject
was asked to perform 8 tasks, each one supposed to give rise to
one of the 8 spontaneous expressions (anger, happiness, sadness,
fear, digust, surprise, embarrassment or pain). In [7] the authors
extracted subsequences of about 20 seconds for manual annota-
tion, since these subsets contain the most expressive behaviors.

The FG-NET FEED database [38] contains 19 subjects,
each one recorded three times while performing 7 spontaneous
expressions (the six universal expressions, plus the neutral one).
The data contain low-intensity emotions, very short expression
displays, as well as moderate head pose variations.

The AFEW database [39] has been collected from movies,
displaying expressions in unconstrained conditions. As the test set
is unreleased, we report accuracies on the validation set, which
contains 410 videos, each containing 60 frames on average.

6.2 Experimental setup
7-class RF (static) and PCRF (full and conditional) models are
trained on the CK+ and BU-4DFE datasets using the set of
hyperparameters described in Table 1. Note however that extensive
testing showed that the values of these hyperparameters had a
very subtle influence on the performances. This is due to the
complexity of the RF framework, in which individually weak trees
(e.g. that are grown by only examining a few features per node)
are generally less correlated, still outputting decent predictions
when combined altogether. Nevertheless, we report those settings
for reproducibility concerns. Also, for a fair comparison between
static and pairwise models, we use the same total number of
feature evaluations for generating the split nodes. For every test,
we report results averaged over 5 different runs, with a standard
deviation lower than 0.25% between each run.

TABLE 1
Hyperparameter settings

Hyperparameters value(RF) value(PCRF)
Nb. of φ(1) features 40 20
Nb. of φ(2) features 40 20
Nb. of φ(3) features 160 80
Nb. of φ(4) features - 20
Nb. of φ(5) features - 20
Nb. of φ(6) features - 80
Data ratio per tree 2/3 2/3
Nb. of thresholds 25 25
Total nb. of features 6000 6000
Nb. of trees 500 500

During the evaluation, the prediction is initialized in a fully
automatic way from the first frame using the static classifier. Then,
for the full and conditional models, probabilities are estimated
for each frame using transitions from previous frames only,
bringing us closer to a real-world scenario. However, although it
uses transitional features, our system is essentially a frame-based
classifier that outputs an expression probability for each separate
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video frame. This is different from, for example, a HMM, that
aims at predicting a probability related to all the video frames.
Thus, in order to evaluate our classifier on video FER tasks, we
acknowledge correct classification if the maximum probability
outputted for all frames corresponds to the ground truth label.
This evaluates the capability of our system to retrieve the most
important expression mode in a video, as well as the match
between the retrieved mode and the ground truth label.

For the tests on CK+ and BU-4DFE databases, both static and
transition classifiers are evaluated using the Out-Of-Bag (OOB)
error estimate [33]. More specifically, bootstraps for individual
trees of both static and pairwise classifiers are generated at the
subject level. Thus, during evaluation, each tree is applied only
on subjects that were not used for its training. The OOB error
estimate is an unbiased estimate of the true generalization error
[33] which is faster to compute than Leave-One-Subject-Out or
k-fold cross-evaluation estimates. Also, it has been shown to be
generally more pessimistic than traditional error estimates [40],
further empathizing the quality of the proposed contributions.

6.3 FER from frontal view videos
6.3.1 FER on prototypical data
In order to validate our approach on frontal view videos, we
compared our conditional model to a purely static model and a full
model, for a variety of dynamic integration parameters (the length
of the temporal window N and the step between those frames
Step) on the BU-4DFE database. We also evaluated the interest
of using a dynamic probability prediction for previous frames (i.e.
the output of the pairwise classifier for those frames) versus a
static one. Average results are provided in Figure 7. For CK+
database, sequences are generally too short to show significant
differences when varying the temporal window size or the step
size. Thus we only report accuracy for full and conditional models
with a window size of 30 and a step of 1. Per-expression accuracies
and F1-scores for both Cohn-Kanade and BU-4DFE databases are
shown in Figure 8.

Fig. 7. Average accuracy rates obtained for various temporal integration
parameters on the BU-4DFE database

Figure 8 reveals that facial expressions involving large de-
formations (e.g. surprise and happy) are recognized with very
high accuracies. Disgust is also recognized quite well for both
databases and for all the models. However, more subtle ex-
pressions such as anger and sadness rank among the lowest.
For those expressions, the addition of spatio-temporal allows to
increase the recognition accuracy as compared to a static RF
model. As in many other works on facial expressions, accuracies
for fear are lower than for the other expressions, as it can be quite
subtle in some cases where the eyes are open a little bit wider.

Moreover, this expression also displays larger variability than the
others on these databases. Overall, modelling transition patterns
through PCRF allows to significantly increase the recognition
accuracy as well as the balanced F1-score, for all expressions
on both CK+ and BU-4DFE databases. We believe that this is due
to the extra dynamic features that provide both robustness and
decorrelation of the individual decision trees.

Figure 8 also shows that the conditional model outperforms
the full model on both databases, which is probably due to
the fact that using only a restricted set of ongoing expression
transitions for training allows to better capture the variability of the
spatio-temporal features for the dedicated pairwise forests. This
is particularly true on the CK+ database, where the number of
pairwise data points is not enough for the full model to capture
the variability of all possible ongoing transitions, hence justifying
the lower accuracy. Table 7 also shows that it is better to look
backward for more frames in the sequence (N = 60) with less
correlation between the frames (Step = 3 or 6). Again, such setting
allows to take more decorrelated paths in the individual trees,
giving a better recombination after averaging over time.

A compilation of comparisons to other state-of-the-art ap-
proaches for FER can be found in Table 2. On the CK+ dataset, we
compare our algorithms with recent works reporting results on the
same subset of sequences (i.e. not including contempt). Such com-
parisons are to be put into perspective as the evaluation protocols
differ between the methods. Nevertheless, PCRF provides slightly
better results than those reported in [16] (+3.2%) as well as in
[20] (+1.9%), [14] (+2.3%) and [41] (+3.2%). Finally, Liu et
al. [42] obtain slightly better results than ours (+0.3%), but their
method aim at classifying the last frame of the video specifically,
whereas ours automatically retrieves the apex as the maximum
probability image throughout the sequence.

Moreover, to the best of our knowledge, our approach gives
the best results on the BU-4DFE database for automatic FER from
videos using 2D information only. It provides better results than
the dynamic 2D approach [43] (+9.1%), as well as the LBP-TOP
approach presented in [18] (+4.5%). Recently, Meguid et al. [15]
obtained satisfying results using an original hybrid RF/SVM sys-
tem. They trained on the static BU-3DFE database [5] and employ
a post-classification temporal integration scheme. However our
PCRF method achieved a significantly higher accuracy (+3%)
which shows the benefits of using dynamic information at the
feature level.

TABLE 2
Comparisons with state-of-the-art approaches on prototypical data.
The first and second best methods are highlighted in red and blue,

respectively.

CK+ database Accuracy
Mohammadi et al. [16] 93.2
Happy et al. [14] 94.1
Shojaeilangari et al. [20] 94.5
Mollahosseini et al. [41] 93.2
Liu et al. [42] 96.7
This work, RF 93.2
This work, PCRF 96.4
BU-4DFE database Accuracy
Sun et al. [43] 67.0
Hayat et al. [18] 71.6
Meguid et al. [15] 73.1
This work, RF 70.0
This work, PCRF 76.1
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Fig. 8. Per-class recognition accuracy rates and F1-scores on CK+ and BU-4DFE databases

6.3.2 Cross-database FER on spontaneous data

In Table 3 we report results for cross-database evaluation (with
training on the BU-4DFE database) on the FEED database. In
order to provide a fair comparison between our approach and the
one presented in [15], we used the same labelling protocol (top
2 accuracy, i.e. we ackowledge correct classification if one of the
top 2 proposals outputted by the system matches the ground truth
label). The performances of their system are better than those
of our static RF model, which can be attributed to the fact that
they use a more complex classification and posterior temporal
integration flowchart. Nevertheless, our PCRF model provides a
substantially higher accuracy (+3.4%), which, again, is likely
to be due to the use of spatio-temporal features as well as an
efficient conditional integration scheme. Furthermore, modelling
spatio-temporal patterns for every possible transition (i.e. across
the videos) allows to gather more training data than using spatio-
temporal descriptors [17], [19] learnt on separate videos.

TABLE 3
Comparisons with state-of-the-art approaches on spontaneous data.
The first and second best methods are highlighted in red and blue,

respectively.

FEED database (Cross-db) Accuracy
Meguid et al. [15] 53.7
This work, RF 51.9
This work, PCRF 57.1
BP4D database (Cross-db) Accuracy
Zhang et al. [7] 71.0
This work, RF 68.6
This work, PCRF 76.8

We also performed cross-database evaluation on the BP4D
database. Again, for a fair comparison, we used the same protocol
as in [7], with training on the BU-4DFE database and using
only a subset of the tasks (i.e. tasks 1 and 8 corresponding to
expression labels happy and disgust respectively). However, we do
not retrain a classifier with a subset of 3 expressions as it is done
in [7], but instead use our 7-class static and PCRF models with a
forced choice between happiness (probability of class happiness)
and disgust (probability sum of classes anger and disgust). Such
setting could theoretically increase the confusion in our condi-
tional model, resulting in a lower accuracy. However, as can be

seen in Table 3, using dynamic information within the PCRF
framework allows to substantially increase the recognition rate as
compared to a static RF framework (+8.2%). We also overcome
the results reported in [7] by a significant margin (+5.8%), further
showing the capability of our approach to deal with complex
spontaneous FER tasks. Also note that in [7], the authors used
the so-called Nebulae 3D polynomial volume features which are
by far more computationally expensive than our geometric and
integral HOG 2D features. All in all, we believe our results show
that the PCRF approach provides significant improvements over
a traditional static classification pipeline that translates very well
to more complicated spontaneous FER scenarios, where a single
video may contain samples of several expressions.

6.4 Multi-view experiments
To the best of our knowledge, there is no publicly available bench-
mark for specifically evaluating dynamic FER methods under head
pose variations. We thus propose a new evaluation protocol using
the rotated videos generated in Section 5.

6.4.1 Transition classification

Fig. 9. Accuracies for the classification of transitions going from classes
l′ to classes l, for every head poses.

First, we evaluate the capacities of our method for transition
classification. Specifically, for each pose bin Ωi and each starting
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expression label l′, we report on Figure 9 the capabilities of a
pairwise classifier trained on transitions starting with expression l′

and pose Ωi to distinguish between all expressions l.
One can see that the accuracy is close to 100% on all

expressions, in the case where l′ = l. This is due to the fact that
all transitions that stays into an expressive state are characterized
by very small deltas of the pairwise features. Transitions towards
fear are the least successfully recognized, as this class is inherently
more subtle and often close to surprise (As highlighted in Section
6.3.1). Furthermore, transitions towards classes anger and sadness
are also are also well separated, particularly when the starting
expression differ subtly from those expressions (e.g. neutral, anger
and sadness), indicating that the pairwise features can successfully
capture the subtle differences between those expressions. Finally,
transition classification accuracies are generally lower for negative
pitches, as it is the case for FER from video.

6.4.2 FER on prototypical data
To perform FER from video, we first estimate the head pose ω(xn)
for each frame n using the set of aligned feature points. Then,
trees from the MVPCRF collections are sampled according to the
values PΩi

(ω(xn)) for each pose bin Ωi. We compare the average
accuracies outputted by RF, PCRF, MVRF and MVPCRF. RF and
PCRF were trained on the central (frontal view) bin only. For
PCRF and MVPCRF, we set the temporal integration parameters
N = 60 and Step = 6 as it provided satisfying results in the
frontal case (Figure 7). As in Section 6.3, a video is considered
correctly classified if the dominant expression mode (i.e. the maxi-
mum probability expression throughout the sequence) corresponds
to the ground truth label for that video.

Table 4 displays per-expression accuracies averaged over the
15 pose bins for the three models. For all expressions, MVPCRF
outperforms RF and PCRF by a significant margin. MVPCRF also
outperforms the static multi-view MVRF on all expressions but
sadness and fear. However, Table 5 reveals that the F1-score is
a little higher for MVPCRF on those expressions, indicating that
the static MVRF is more biased toward those expression classes.
This seems particularly relevant in the positive pitch case, where
using spatio-temporal information helps to disambiguate anger
from sadness, which in some case differ only by a very subtle
eyebrow frown or lip raiser. Also, fear appears as the most subtle
expression as already reported in other works [15]. This is due
to the fact that subjects often smile during the sequence, thus
the videos may be misclassified as happiness. For this reason,
many other approaches such as the one in [12] use a restricted
number of subjects. However, we use the 101 subjects to ensure
reproducibility of the results.

The overall classification accuracy is 72.2% against 76.1%
for the benchmarks of Section 6.3 on frontal view video. This
performance drop comes from a greater variability in face ap-
pearance as well as the feature point misalignment for non-
frontal poses, as discussed in [44]. Classification rates are also
a little lower than the static FER baseline [25], [11] on the BU-
3DFE database. However, fully automatic FER from video is a
much more difficult setup, as it involves the retrieval of the apex
frames and expression classification on those frames. Furthermore,
many approaches operate on high-resolution 3D data and require
expensive projections on a frontal view, thus can not be applied
easily to real-time FER from consumer camera.

Figure 10 shows the per-pose bin accuracy rates averaged over
the six expressions. On the one’s hand, RF performances seems to

drop dramatically when we move away from the central bin (from
70.4% to 44.7%). Interestingly, PCRF performs significantly
better than RF on every pose bin, which proves that the captured
dynamics generalize well on unseen data, as already shown on
the cross-database settings. PCRF performance also drops signif-
icantly on off-center pose bins. On the other hand, MVPCRF
performs significantly better on those bins: accuracy is nearly
symetrical for negative and positive yaws, as already reported by
[25] for static multi-view FER. Furthermore, as stated in [25], [11]
we observe lower classification rates on negative pitches (68.3%
as compared to 74.1% on average for positive pitch). Our take
is that the mouth area may be the most informative one for FER
tasks: as such, the classifiers can struggle to disambiguate certain
expressions (e.g. anger from sadness) when the mouth features
become more subtle and difficult to capture.

Figure 11 shows the confusion matrices obtained for RF,
PCRF, MVRF and MVPCRF. For each expression, results are
divided between the different pose bins to highlight which com-
binations of view and expressions are well recognized or not.
One can see both RF and PCRF struggle to disambiguate the
expressions in the case of negative pitches. Using MVRF and
MVPCRF allows to compensate for that to an extent, particularly,
for instance, in the case of high/low pitches values and expressions
sadness and anger. Still, expressions such as sadness and fear are
better recognized for positive pitches, as they specifically involve
subtle mouth movements as well as eyebrow raising. Conversely,
anger and disgust are characterized by eyebrow frowning that
is better recognized on negative pitch views. Finally, happiness
and surprise are expressions with the highest overall classification
rates. They are typically better recognized on frontal views or for
negative pitches, where the corresponding mouth motions are less
frequently misclassified as fear.

TABLE 4
Per-expression accuracies averaged over all pose bins

Expression RF (%) PCRF (%) MVRF (%) MVPCRF (%)
Happy 57.8 73.4 83.3 87.8
Angry 59.2 73.3 71.9 80.4

Sad 56.0 52.2 70.8 64.4
Fear 29.6 25.7 34.8 33.0

Disgust 48.4 63.9 63.5 74.3
Surprise 81.6 88.3 85.3 92.4
Average 55.4 62.8 68.3 72.1

TABLE 5
Per-expression F1-scores averaged over all pose bins

Expression RF (%) PCRF (%) MVRF (%) MVPCRF (%)
Happy 62.6 74.4 80.7 84.2
Angry 48.6 61.5 62.9 68.0

Sad 46.2 48.8 65.4 66.1
Fear 34.7 34.7 43.8 44.8

Disgust 56.3 66.2 67.9 73.1
Surprise 71.4 77.6 83.6 87.3
Average 53.3 60.6 67.4 70.6

6.4.3 Cross-database FER “in the wild”
In order to evaluate the capabilities of MVPCRF for FER in
unconstrained scenarios, we report in Table 6 the accuracies
obtained for cross-database evaluation on the validation set of
AFEW, with training on the BU-4DFE database. We report top 1
accuracy for comparison with the challenge baseline [45], as well
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Fig. 10. Per-pose bin accuracy rates averaged over all expressions

Fig. 11. Per-expression, per-pose bin classification accuracy rates

as top 2 accuracy for comparison with Meguid et al. [15], who also
perform a cross-database evaluation. Even though the accuracies
are very low, particularly in the case of top 1 evaluation, the
results are above those of a baseline (LBP-TOP) system trained on
AFEW. The top 2 accuracy is also better than the one reported in
[15]. Interestingly, due to the difficulty of the task, more than 20%
of the total number of video frames were missed by the feature
point tracker (and many more were badly aligned). This reflects
the advantage of using pairwise classification, which allows to
process discontinuous sequences and flexibly handle failure cases,
as discussed in Section 6.6.

TABLE 6
Evaluation on the AFEW database (%)

Expression top 1 Baseline [45] top 2 Meguid et al. [15]
Neutral 16.7 63.6 50.0 28.6
Happy 38.7 25.8 50.0 40.0
Angry 18.7 44.1 30.5 56.3

Sad 30.7 7.8 51.6 29.3
Fear 11.1 5.6 51.9 56.9

Disgust 32.0 0.0 54.0 65.1
Surprise 27.5 5.8 41.2 35.6
Average 25.1 22.2 47.1 44.0

6.5 Complexity analysis

An advantage of using conditional models is that with equivalent
parallelization they are faster to train than a full model learnt on
the whole dataset. According to [46] the average complexity of
training a RF classifier with M trees is O(MKN log2N), with
K being the number of features to examine for each node and
N the size of (2/3 of) the dataset. Thus if the dataset is equally

divided into P bins of size Ñ upon which conditional forests
are trained (and such that N = PÑ ), the average complexity of
learning a conditional model now becomes O(MKN log2 Ñ).
Same considerations can be made concerning the evaluation, as
trees from the full model are bound to be deeper than those from
the conditional models. Table 7 shows an example of profiling a
MVPCRF on one video frame with an averaging over 60 frames
and a step of 6 frames. We experiment with various total numbers
of trees M to show that the proposed framework can perform
real-time FER.

TABLE 7
Profiling of total processing time for one frame (in ms)

Step Time (ms)
Facial alignment 10.0
Integral HOG channels computation 2.0
MVPCRF evaluation (M = 500) 2.6
MVPCRF evaluation (M = 1000) 4.8
MVPCRF evaluation (M = 2000) 7.8
MVPCRF evaluation (M = 6000) 19.0

This benchmark was conducted on a I7-4770 CPU within a
C++/OpenCV environment, without any code parallelization. As
such, the algorithm already runs in real-time. Furthermore, evalua-
tions of pairwise classification or tree subsets can be parallelized to
fit real-time processing requirements on low-power engines such
as mobile phones. In addition, the facial alignment step can be
performed at more than 300 fps on a smartphone with similar
performances using the algorithms from [28].
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6.6 Discussion
The novel approach introduced in this work, which consists in
combining the output predictions of pairwise classifiers, offers
some advantages over traditional methods, and also suffers from a
number of limitations.

First, even though testing can be performed in a fully auto-
matic fashion, peak frame annotations are mandatory for train-
ing. In our work, we used images around manually highlighted
peak frames to train our system. Hence, the proposed transition
modelling approach is robust to noise in the peak frame selection
process to a certain extent. As is, requiring more precise labelling
for training is a recurrent drawback of frame-based classifiers as
compared to sequence-level ones (e.g. HMMs, CRFs) and thus
could not be solved easily. However, it would be interesting to
study the use of weakly-labelled conditional transition classifiers
to alleviate this problem (for example, cluster the images based
on the automatically retrieved mouth opening). Also note that
using only a subset of the videos for training allows to limit the
memory usage, which is particularly relevant when training multi-
view classifiers upon large databases. Moreover, an advantage
of integrating spatio-temporal information under the form of
transition modelling is that it does not require continuity of the
sequence, as showed in Section 6.4.3. Hence, it has no problem
handling failure from the detection or feature point alignment
pipelines, as opposed to other spatio-temporal descriptors [17],
[19] and graphical models such as HMMs or LOMO [22].

Secondly, in order to build PCRF and MVPCRF we need
examples for each combination of facial expression and head
pose. This can be a hindrance when training on highly unbalanced
datasets (as in CK+ with contempt expression class). In this
paper, we circumvented this problem by using high-resolution 3D
models to generate training examples. Should this data not be
available, the number of subdivisions could in theory be limited.
In such a case, for example, the transition classifiers could be
conditioned on a restricted set of coarser clusters involving closely
related expressions (fear and surprise together, neutral, anger
and sadness) or merged adjacent head poses. Moreover, even
though using conditional models results in more memory usage,
the system benefits from lower runtimes for both training and
testing, as showed in Section 6.5.

CONCLUSION

In this paper, we presented an adaptation of the Random Forest
framework for automatic dynamic pose-robust facial expression
recognition from videos. We also introduced a novel way of
integrating spatio-temporal informations by considering pairwise
RF classifiers. This formulation allows the efficient integration of
high-dimensional, low-level spatio-temporal information through
averaging over time pairwise trees. These trees are conditioned
on predictions outputted for the previous frames to help reducing
the variability of the ongoing transition patterns. In addition,
we proposed an extension of the PCRF framework to efficiently
handle head pose variation in an expression recognition system.
We showed that our models can be trained and evaluated efficiently
given appropriate data, and lead to a significant increase of perfor-
mances compared to a static RF. We also introduced a new multi-
view video corpus generated using the BU-4DFE database to
assess the pose-robustness of the proposed system. The Matlab
code used to render the images that we used for training and testing
the classifiers will be made publicly available. Finally, we showed

that our method works on real-time without specific optimization
schemes, and could be run on low-power architectures such as
mobile phones by using appropriate paralellization scheme.

As such, future works will consist in addressing occlusions
to better adapt MVPCRF for FER in the wild [39]. As 3D
models have already been very useful for generating data for a
variety of problems, we believe that robustness to self-occlusions
could also benefit from such data. Furthermore, we would like
to investigate applications of transition modelling for other video
classification/regression problems such as Facial Action Unit in-
tensity prediction or body and hand gesture recognition.
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