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Abstract—Robust and precise face tracking under uncon-

strained imaging conditions is still a challenging task. Recently,

the Constrained Local Model (CLM) framework has proven to be

very powerful to track frontal and near frontal facial movements.

In this paper, we introduce a Pose-Adaptive CLM which is

able to accurately track large 3D head rotations. This model

relies on two main parts: (1) an adaptive 3D Point Distribution

Model that ensures consistency between a tracked point in the

image and the corresponding point in the shape model and

(2) an adaptive appearance model that deals with appearance

variation of a point under different viewing angle. We present

comparative experimental results highlighting the improvement

in both robustness and accuracy of our method. We also introduce

a new challenging dataset with accurate head pose annotation.
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I. INTRODUCTION

Head pose is a crucial step in many facial processing
applications such as human-machine interaction, social signal
processing, biometrics or media analysis. While it has received
extensive attention in the last two decades, robust and accu-
rate head pose estimation in real life applications remains a
challenging task as the tracker has to deal with occlusions,
illumination changes, facial expression...

Numerous approaches have been suggested to recover the
3D head pose motions [1] including detector arrays [2][3] and
nonlinear regression [4] [5]. They greatly differ in term of
accuracy, processing time and robustness. Recently, a large
part of head pose estimation methods are explicitly based on
shape models of the face. They differ in the complexity of the
underlying model that may be a simple plane [6], an ellipse [7]
or extracted from actual human faces [8] and in the way they
track the global appearance of the face, e.g.particule filtering
[9], [7] or iteratively reweighted least-squared [10], [8].

Among these methods, Parameterised Appearance Models
have demonstrated particularly good performances. First devel-
oped by Cootes and Taylor, Active Shape Models (ASM) [11]
established the basis of this framework, in which a 2D Point
Distribution Model (PDM) is fitted into the image under local
constraints. Active Appearance Models [12] further improved
the ASM by conveying a coherent way to jointly optimize
the shape and the appearance models parameters. Additional
improvements have been made to these pioneering works:

3D-AAM [13] and 3D-Morphable Models [14][15] used 3D-
shapes of the face while the ASM and AMM work only on
the alignment of 2D-shapes in the image frame.

More recently, the Constrained Local Model (CLM) [16]
and Subspace Constrained Mean-Shifts (SCMS) [17] have
shown to be able to robustly and efficiently track local facial
landmarks. CLM implements a two-step strategy: Firstly a
local and exhaustive search of each landmark is performed
using dedicated landmark detectors and secondly, parameters
of a PDM are jointly optimized over all the detector responses.
The local support of the appearance model, combined with
a global shape constrained regularization makes CLM very
robust to identity, illumination and occlusion.

Unfortunately, this approach has two severe limitations
to track large pose variation. Let consider the tracking of a
particular point on the jawline using a 3D PDM. If the face
is frontal, the point is visible and easily tracked. If the head
performs a rotation along the vertical axis, the target point
will be occluded and the appearance model will hardly cope
with this change. In this case, the point tracked by the CLM
tends to be located on the edge of the cheek rather than to
its actual position on the jawline. In order to address the
inconsistency issue between the tracked point in the image
and the corresponding point of the PDM, we propose a pose-
adaptive 3D PDM which is dynamically updated.

The second main limitation relates to the local landmark
detectors. The appearance of landmarks drastically changes
according to the viewing angle. If detectors are only trained
using near frontal samples, the CLM will accurately track these
landmarks in the same condition but will fail to track them
under large 3D rotations. Conversely, to train a unique detector
per landmark with frontal and profile landmark samples will
lead to inaccurate detections because it will be difficult to
capture the heterogeneity of the landmark appearance. We
overcome this limitation by using pose specific appearance
model: dedicated detectors are trained for different groups of
pose and during the tracking phase, detectors are selected and
combined according to the current estimate of the pose.

Evaluations are carried out on two publicly available
datasets: the Biwi Kinect head pose database (Biwi) [18], [19]
and our new Head Pose Database (this dataset will be referred
as ISIR-Eikeo Database in the rest of the article).

The remaining paper is organized as follows: Section



II briefly explains the general CLM framework. Section III
presents our Pose-Adaptive CLM approach. In particular, we
focus on the pose-adaptive PDM (III-A) and the pose specific
appearance model (III-B). Section IV presents our new head
pose dataset and the performance of our method in this
challenging context.

II. CONSTRAINED LOCAL MODELS

CLM fitting consists mainly in a joint optimization of the
PDM parameters to minimize the misalignment error over all
landmarks constituting the PDM. Recent works falling into the
CLM framework [20][17][21][22] demonstrate overall good
performances, all taking advantage of a two-stage implemen-
tation: local response maps are firstly computed around each
landmark support. Optimization is then performed over these
response maps. Saragih et al.[17] draw a comparison between
sophisticated strategies that can be used and further propose a
fitting by Regularized Landmark Mean-Shift (RLMS). Among
them we choose this last method which shows particularly
good results and has been extended to RGB-D images [21].

The Point Distribution Model we use describes an explicit
3D-Model coming under a weak perspective parameterization.
Let xi be the projection in the image of one landmark of the
PDM given by:

xi(q) = sR(x̄i + ip) + T , (1)

where x̄i denotes the mean shape of the face model and
q = {s,R,p,T } determines the current state of the model
where s is a global scaling, R and T are the 3D rigid
transformation parameters, and p account for the non rigid
deformation along the eigenvectors  i of the shape model.

In a probabilistic framework, the fitting consist in maxi-
mizing the posterior probability over the PDM parameters:

p(q | {li = 1}ni=1 , I) / p(q)p({li = 1}ni=1 | q, I) (2)

where li is a discrete variable accounting for the alignment of
the ith landmark. Considering the conditional independence
on detections for each landmark, this equation can be written
as:

p(q | {li = 1}ni=1 , I) / p(q)
nY

i=1

p(li = 1 | xi, I) (3)

The likelihood p(li = 1 | xi, I) refers to the local appear-
ance model and will be detailed further (section III-B). Follow-
ing the RLMS Strategy1, the likelihood maps are approximated
by means of Kernel Density Estimates, offering a good trade
off between a smooth estimation of the response map, which
is often noisy and multi-modal, and precision about the true
landmark position. An Expectation-Maximization algorithm is
then used for maximizing the MAP term of (3). Please refer
to [23] for a detailed description of this process.

1An Implementation of the RLMS algorithm is freely available at
https://github.com/kylemcdonald/FaceTracker (accessed Dec. 2013)

III. POSE-ADAPTIVE CONSTRAINED LOCAL MODEL

A. Pose-Adaptive Point Distribution Model

The CLM-class methods appeared to be effective to address
alignment problems based either on a 2D modeling [16][17] or
on a 3D Point Distribution Model [24]. All the methods that
run under this paradigm must cope with the necessary consis-
tency between the PDM and the tracked 2D facial landmarks.
Three main kinds of facial landmarks can be distinguished.

The first category includes landmarks that are stable both
in appearance and semantically. By semantic stability we mean
that each point of the PDM corresponds to a well identified
real-world feature such as the of the mouth and eyes. These
landmarks are really useful but not sufficient to infer the 3D
head pose for two reasons. First, they are mostly located
in the frontal plane and any estimate only based on such
points tends not to be accurate enough and, second, landmarks
with a discriminative appearance tends to be located on the
deformable parts of the face.

To overcome this limitation, it is important to include out
of the frontal plane landmarks such as those located along the
jaw. This second category of points are semantically stable but,
unfortunately, their appearance varies greatly depending on the
orientation of the head and are often self-occluded.

For this reason, we are interested in the last category
that includes semantically weak landmarks with a stable and
discriminant appearance such as points remaining along the
visible edge of the cheek (see Fig. 1).

Fig. 1. The Pose Adaptive Point Distribution Model. Given a pose hypothesis,
the PDM continuously describes a set of visible points among which the
”limbs” remain along the visible edge of the cheek

These points are not related to existing points in the
classical 3D PDM and we have to introduce a pose adaptive
form for the PDM. The sparse set of points along the cheek
is dynamically updated using a 3D dense model according to
the current estimate of the pose:

xi(q) = sR(x̄i(eR) + i(eR)p) + T , (4)

where R̃ corresponds to the estimate of the current pose.
R̃ is initialized with the value in the previous frame and is
dynamically updated during the fitting process.

Using this new PDM, the Jacobian matrix involved in the
M step of the EM optimization is modified. An analytical



expression for x̄i(eR) and  i(eR) is not available and therefore
the contribution of the PDM to the new Jacobian matrix is
numerically estimated all along the fitting process.

B. Pose-Adaptive Appearance Model

The appearance of a landmark varies over different head
poses. For this reason, we decided to train one specific
landmark detector per class of pose R

k. The probability of
alignment at a particular landmark location x is given by:

p(li = 1 | x,Rk, I) = 1

1 + e(aCi(x;Rk,I)) (5)

where Ci(x;Rk, I) is a classifier that discriminates aligned
from misaligned locations and a is the regression coefficient
evaluated by cross validation. In this study, we use the same
regressor as [20] and [17]:

Ci(x;R
k, I) = w

T
i (R

k)F(x; I) + bi(R
k) (6)

where w

T
i (R

k) and bi(Rk) are the gain and the bias of
the classifier and F(x; I) are the features extracted from pixels
in the neighborhood of the landmark location x. In our case,
grey levels are concatenated with intensity gradients and edge
directions in order to enhance the discriminative power of our
patches.

During testing, the head pose is roughly estimated,
(e.g.using the pose of the previous frame) and the responses
of the two regressors corresponding to the closest poses are
linearly combined. Since the two detectors are linear classi-
fiers, this is equivalent to interpolate the bias and the gain of
a classifier for current pose using the selected two classifiers.
Let Rk1 and R

k2 be the two closest poses of the current pose
estimate R, the interpolated classifier is defined by:

w

T
i (R) = ↵wT

i (R
k1) + (1� ↵)wT

i (R
k2) (7)

bi(R) = ↵bi(R
k1) + (1� ↵)bTi (R

k2) (8)

The ↵ coefficient defines the impact of each pose class on
the final classifier. In this study, ↵ is computed using only the
pan angle.

IV. EXPERIMENTS

To evaluate the improvement of our approach over CLM,
we conducted experiments on two publicly available databases
and we assessed the improvement brought by each element of
the method.

A. Datasets

a) Biwi Kinect Head Pose Database: It consists of 24
video sequences collected using the Microsoft Kinect sensor.
The head pose range covers about ±75 degrees pan, ±60
degrees tilt and ±50 degrees roll. The head pose ground truth
is obtained using a state-of-the-art template-based head tracker.
The authors estimate that the mean rotation errors were around
1 degree. As pointed out by Fanelli et al.[18] and Baltrušaitis
et al.[21] some consecutive frames are missing. Strong pose
variations combined with missing frames make this dataset
really challenging, especially for tracking based methods.

b) ISIR-Eikeo Database: In order to conduct extensive
head pose tracking evaluation with a very precise ground truth,
we decided to create a new database. This dataset includes 40
sequences of 20 different subjects. They were completely free
of their movements and they were asked to move an object
from one place to another to collect behaviors as natural as
possible. For each subject, the first sequence is acquired with
a ambient light of 112 lux and the second one with a lateral
illumination of 215 lux. Image sequences are recorded with a
HD camcorder at a framerate of 24 fps and the ground truth is
obtained by a Codamotion system2. It results in a set of video
sequences with a wide variety of poses, lightings, occlusions,
identities and a precise ground truth as illustrated in figure 3.
This database will be freely distributed on request.

B. Evaluation protocol and implementation details

Tests are carried out on the same 4 Biwi video sequences as
in [21] and 4 video sequences of ISIR-Eikeo Database. We se-
lected sequences with representative sources of variations. For
each sequence, the model is automatically initialized using the
Viola Jones frontal face detector (OpenCV implementation).
At each frame, the quality of the alignment is checked by
computing the response of each local landmark detector at the
final position of the model. If the sum of these responses is
lower than a threshold estimated by a cross validation process,
the tracking is stopped and reinitialized when the face is
detected again. For each frame, we measure the Mean Absolute
Error (MAE) for each Euler angle.

Four systems are evaluated and compared. In this paper,
the CLM refers to the freely available implementation of
RMLS provided by Jason Saragih3. To obtain a fair comparison
between our approach and CLM, we slightly modified the
original CLM in two ways: (1) landmark detectors are retrained
using the same features and the same training samples as
our model and (2) each self-occluded landmark is removed
from the model and the regression of the model is only
performed based on the remaining points. This implemen-
tation will be refered as modified CLM. The third system,
referred as PA-PDM is a modified CLM with a Pose-Adaptive
Point Distribution Model (III-A). PA-CLM is our final system,
which combines the two proposed improvements, the PA-PDM
(III-A) and the pose adaptive appearance model (III-B).

The local landmark detectors were trained using 1200
images from the ALFW database [25] and 100 profile images
from PIE database [26]. The database was split into five classes

2http://www.codamotion.com/systems/indoor-3d-motion-capture.html
3http://jsaragih.org/



Fig. 2. Example frames from the ISIR-Eikeo Database.

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100
Cumulative error on our database

Mean absolute angle error (degrees)

P
ro

p
o

rt
io

n
 o

f 
im

a
g

e
s 

(%
)

 

 

PA−CLM

PA−PDM

Modified CLM

CLM

Fig. 3. Cumulative error on ISIR-Eikeo Database

of pose ranging from -80 to +80 degrees pan to train the
pose-dependent local detectors. For each landmark, 20 positive
and negative training patches were generated per image using
random similarity transforms. Faces detected by Viola Jones
detector are resized to 50⇥ 50 pixel images and the landmark
localization is performed using 11⇥ 11 pixel patch experts on
a 21⇥ 21 pixel search window per landmark.

C. Results and comparisons

Figure 3 provides a detailed analysis of the error distri-
bution. Besides the clear improvement of the modified CLM
over the original CLM, both pose-adaptive versions of this
algorithm tend to improve the proportion of well-tracked
images by 5 to 10 % for different MAE angle thresholds.

TABLE I. HEAD POSE ESTIMATION RESULTS ON THE BIWI DATASET.
MEASURED IN MEAN ABSOLUTE ERROR.

Method Mean Pan Tilt Roll

Modified CLM 6.74 6.68 9.26 4.29
PA-PDM 6.02 5.59 8.81 3.65
PA-CLM 6.36 5.30 9.16 4.62

TABLE II. HEAD POSE ESTIMATION RESULTS ON THE ISIR-EIKEO
DATASET. MEASURED IN MEAN ABSOLUTE ERROR.

Method Mean Pan Tilt Roll

Modified CLM 7.97 10.94 6.49 6.48
PA-PDM 6.97 7.21 7.22 6.47
PA-CLM 6.66 7.05 6.42 6.50

As all systems do not always diverge at the same time,
it can be difficult to compare mean errors which have not
been calculated on the same frames. For a fair comparison,
we decided to compute the mean error on the frame that have
been tracked by the three systems: the modified CLM, the PA-
PDM and the PA-CLM. Table I and II shows the MAE per
angle of the different approaches. Again, we see that both the
pose adaptive shape model and the pose adaptive appearance
model improve the results obtained by the modified CLM.
This is especially true for the pan angle with an improvement
of 1.3 and 3.9 degrees on the BIWI and ISIR-Eikeo datasets
respectively.

V. CONCLUSION

In this paper, we have presented a Pose Adaptive Con-
strained Local Model which is well suited to track faces
under large pose variations. We improve traditional CLM
in two ways. First, we propose a new Pose Adaptive Point
Distribution Model (PA-PDM) that insures the consistency



Fig. 4. Examples of head pose tracking on Biwi and ISIR-Eikeo datasets. Top row CLM, bottom row PA-CLM.

between the points of the 3D model and the correspond-
ing landmarks in the image. Second, we propose a Pose-
Adaptive Appearance Model, (PA-AM) that combines decision
of multiple classifiers depending on the head pose estimate.
Evaluations were performed on two datasets and we see that
our approach improves the accuracy of the head pose tracker.
Moreover, we present a new challenging head pose database
with a precise ground truth which exhibits a wide variation of
poses, occlusions and illumination changes
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