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Abstract: Europium (Eu)-doped silica nanoparticles have attracted great interest for different ap-
plications, in particular in biomedicine as biosensors or for tissue regeneration. Sol-gel is the most
common process used to prepare those particles, with size varying from tens to hundreds of nanome-
ters. In this article, we focus our attention on the comparison between two commonly used sol-gel
derived methods: reverse microemulsion (for particles smaller than 100 nm) and Stöber method
(for particles larger than 100 nm). Europium concentration was varied between 0.2 and 1 mol%,
and the nanoparticle diameters were 10, 50 and 100 nm. The link between the local environment
of europium ions and their optical properties was investigated and discussed. Using Transmission
Electron Microscopy, nitrogen sorption, X-ray diffraction, Fourier-Transform Infra-Red and pulsed
doubled Nd:YAG laser, we confirmed that fluorescence lifetime was improved by thermal treatment
at 900 ◦C due to the elimination of aqueous environment and modification of structure disorder.
The size of nanoparticles, the amount of europium and the thermal treatment of obtained materials
influence the emission spectra and the decay curves of Eu3+.

Keywords: luminescent materials; silica nanoparticles; rare-earth ions; europium; sol-gel; photolumi-
nescence

1. Introduction

For decades, silica glass doped with rare-earth ions has become a material of prime
importance to support the science of photonics [1–4]. The choice of this glass is strategic
because it combines the mechanical and chemical advantages of silica, compared to other
glasses, and the exceptional spectroscopic properties of rare-earth ions arising from their 4f
intra-configurational electronic transitions. By judiciously choosing the appropriate rare-
earth ion, it is possible to engineer absorption and emission properties in the UV, visible
and infra-red regions [5]. For instance, many studies have been devoted to rare-earth ions
such as erbium, ytterbium and thulium ions due to their ability to emit in the low-loss
window of silica glass (around 1.5 µm), of interest for fiber lasers and amplifiers [6].

The development of nanotechnology also raises interest in silica-based nanoparticles,
in particular for europium-doped silica nanoparticles. Europium ion, in its trivalent state,
emits in the red part of the visible spectrum, and it is extensively used for phosphors. This
ion is also well known as a structural probe to analyze matrix material structures [7,8].
Indeed, the 5D0→ 7F2 transition probability is very sensitive to the crystalline field around
this ion, i.e., to relatively small changes in the chemical surroundings of the Eu3+ ion. It
has been proposed that Eu-doped silica nanoparticles be embedded into polymer fibers for
luminescent properties [9]. Over the past two decades, Eu-doped silica nanoparticles have
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attracted tremendous interest in biology where they can be used as biosensors [10] or for
tissue regeneration [11] due to their biocompatibility.

Different fabrication processes have been reported to prepare such Eu-doped silica
nanoparticles: microwave assisted combustion [12], mechanochemical solid-state reac-
tion [13] and sol-gel [14–16]. The latter is the most common process as it allows the
preparation of nanoparticles smaller than 100 nm with the reverse micro emulsion method,
and particles larger than 100 nm with the Stöber one. However, despite the interest in these
nanoparticles, direct comparison of the structural and optical properties of nanoparticles
prepared with both processes is lacking in the literature.

Therefore, we focus this paper on the preparation of silica nanoparticles (SiNP) pre-
pared by the sol-gel route with the reverse micro emulsion and Stöber methods, doped with
different molar percentages of europium, as well as the study of their different structural
and photoluminescent properties. The europium concentration (0.2, 0.5 and 1 mol%) was
chosen in accordance with luminescent and biological applications [13]. Moreover, to study
the effect of SiNP size on optical properties, different sizes were prepared and studied (10,
50 and 100 nm). In addition, thermal treatment is usually applied to remove unwanted
species. This step may alter the structure of the silica, such as favoring SiO2 condensation
in a three-dimensional network leading to a more organized structure after decreasing
the concentration of silanol groups (Si-OH) [17–20]. The study of the influence of thermal
treatment at 900 ◦C for 5 h on their different properties is presented and discussed.

2. Sample Preparation

Two sol-gel methods were applied to prepare silica nanoparticles named SiNPX:YEu,
where X is the nanoparticles size and Y is the amount of europium. Their starting composi-
tions and nomenclatures are given in Table 1. Stöber method [21,22] was used to synthesize
the larger SiNP (~100 nm, while we used the sol-gel process in reverse microemulsion
to prepare the smaller SiNP (10 and 50 nm) based on the works of Yang et al. [23] and
Touisni et al. [24], respectively. To study the effect of the thermal treatment, half of the
obtained powder of each sample was heated at 900 ◦C for 5 h using a heating rate of
10 ◦C/min and named SiNPX:YEu@900.

Table 1. Starting compositions and nomenclatures of europium-doped silica nanoparticles.

Sample Size (nm) Amount of EuCl3.6H2O (mol %)

SiNP10:0.2Eu 10 0.2
SiNP10:0.5Eu ~10 0.5
SiNP10:1Eu 10 1

SiNP50:0.2Eu 50 0.2
SiNP50:0.5Eu ~50 0.5
SiNP50:1Eu 50 1

SiNP100:0.2Eu 100 0.2
SiNP100:0.5Eu ~100 0.5
SiNP100:1Eu 100 1

2.1. Synthesis of Europium-Doped 10 nm Silica Nanoparticles by Sol-Gel in Reverse Micro-emulsion

The appropriate amounts of EuCl3.6H2O (99.9%, Sigma-Aldrich, Saint-Quentin-Fallavier,
France) were dissolved in 2.7 mL of ultra-pure water. After their total dissolution, 0.9 mL
of NH4OH 27% and then 46.5 mL of cyclohexane (anhydrous, 99.5%, Sigma-Aldrich, Saint-
Quentin-Fallavier, France) were added. Afterwards, 22.5 mmol of tetramethylorthosilicate
TMOS (98%, Sigma-Aldrich, Saint-Quentin-Fallavier, France) were added dropwise. The
obtained mixture was stirred for 10–15 min at room temperature. Then, 50.45 mL of
Triton X-100 (laboratory grade, Sigma-Aldrich, Saint-Quentin-Fallavier, France), 18.8 mL
of Hexan-1-ol (anhydrous, ≥99%, Sigma-Aldrich, Saint-Quentin-Fallavier, France) and
12 mL of ultra-pure water were added. The reaction was maintained for 24 h. After that,
the solution was centrifuged for 30 min at a speed of 20.000 rpm. The nanoparticles were
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washed twice, once with a mixture of water and ethanol (1:2) and once with pure ethanol.
A second centrifugation took place for 30 min at a speed of 20.000 rpm followed by two
washes with pure ethanol. The nanoparticles were heated to 80 ◦C under air for 24 h to
ensure the total evaporation of all solvents. White powders were finally obtained.

2.2. Synthesis of Europium-Doped 50 nm Silica Nanoparticles by Sol-Gel in Reverse Micro-emulsion

Micelles were prepared, firstly by mixing 42.4 mL of Triton X-100, 43.2 mL of Hexan-1-
ol, 100 mL of cyclohexane and 4.5 mL of ultra-pure water at room temperature. The mixture
was stirred for 15 min so that the reverse micelles could form. A transparent solution was
finally obtained. The appropriate amounts of EuCl3.6H2O were dissolved in 4.5 mL of
ultra-pure water, then added to the initial mixture and the combination was stirred for
10 min. Next, 21.72 mmol of tetramethylorthosilicate TMOS were added dropwise on the
reverse microemulsion. The mixture was stirred vigorously for 15 min to ensure good
contact between the TMOS and the aqueous phase in the core of reverse micellar droplets.
Then, 3.2 mL of NH4OH 27% were added and the reaction was maintained for 24 h. Finally,
the same centrifuging, washing and drying protocols described above were applied.

2.3. Synthesis of Europium-Doped 100 nm Silica Nanoparticles by Sol-Gel with Stöber Method

The appropriate amounts of EuCl3.6H2O were dissolved in 36 mL of ultra-pure water.
After their total dissolution, 100 mL of methanol were added, followed by 13.9 mL of
NH4OH 27%. The obtained mixture was stirred for 10–15 min at room temperature. Then,
28 mmol of tetraethylorthosilicate TEOS (99.999%, Sigma-Aldrich, Saint-Quentin-Fallavier,
France) were added slowly. TEOS is used for the Stöber method because of its slower
initiation reaction than TMOS (used for the reverse micro-emulsion process). The reaction
was maintained for 60 min. Finally, the same centrifuging, washing and drying protocols
described above were applied.

3. Characterization Techniques

Inductively-coupled plasma—optical emission spectrometry (ICP-OES) analysis was
carried out using Perkin-Elmer Optima 7000 DV (Waltham, MA, USA), and sample min-
eralization was performed by wet acid in polytetrafluoroethylene (PTFE) beakers at a
temperature between 250 and 280 ◦C. Transmission electron microscopy (TEM) images
were taken using a 1200EX2 electron microscope (JEOL, Tokyo, Japan) at an acceleration
tension of 100 kV equipped with an EMSIS camera mounted with an 11-megapixel CCD
sensor (EMSIS GmbH, Muenster, Germany). N2 Physisorption experiments were carried
out at −196 ◦C on a TriStar 3000 instrument (Micromeritics, Norcross, GA, USA). Samples
were outgassed under vacuum at 150 ◦C overnight. Equivalent BET specific surface areas
were determined in the relative pressure range P/P0 from 0.01 to 0.3 using 74 points. The
total pore volume was measured at P/P0 > 0.985. X-ray Diffraction (XRD) experiments
were performed using an X’Pert MPD θ-θ diffractometer (Philips, Amsterdam, The Nether-
lands) with Cu Kα radiation (λ = 1.5418 Å). It was equipped with the X’Celerator detector
and nickel filter. Analyses were carried out between 12◦ and 60◦ at intervals with a step
size of 0.033. Fourier-Transform Infra-Red (FTIR) analysis was carried out in the range
400–4000 cm−1 using a Spectrum Two™ spectrometer (Perkin Elmer, Waltham, MA, USA)
in Attenuated Total Reflectance (ATR) mode. The spectra were obtained from the accumula-
tion of 10 scans at a resolution of 2 cm−1. Elementary analysis was carried out with a Vario
Micro Cube (Elementar, Munich, Germany) equipped with a UMX5 Comparator (Mettler
Toledo, Zurich, Switzerland) balance with 0.1 µg precision. The samples were combusted
at 1150 ◦C to form an H2O gas. The mass percentages measurement of hydrogen was
detected by a thermal conductivity detector (TCD) katharometer (Elementar Americas
Inc., Ronkonkoma, NY, USA). A pulsed doubled Nd:YAG laser (Spectra-Physics, Santa
Clara, CA, USA) emitting at 532 nm with 10 Hz frequency was used as excitation source
for the photoluminescence and lifetime measurements of europium. All measurements
were performed with a photon-counting device (Stanford Research Systems, Sunnyvale,
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CA, USA) at room temperature. The decay curves were carried out around the maximum
of the emission line of europium, with a temporal window width of 10.24 µs [25].

4. Results and Discussion

Figure 1 shows the TEM images before and after thermal treatment. We present as an
example the 1% europium-doped silica nanoparticles (SiNP). The images show dispersed
SiNP for all the samples before thermal treatment (Figure 1a,c,e). The latter affects the
SiNP of a size less than 50 nm prepared by sol-gel in inverse microemulsion, where
the nanoparticles lose their spherical form and coalesce (Figure 1b,d), while SiNP larger
than 100 nm prepared by Stöber method keep their spherical shape and size without any
coalescence. Surfactants were used during the reverse micro emulsion process to prepare
the smallest SiNPs (10 and 50 nm). Those surfactants may react during heat treatment and
may favor the melting of SiNPs with size less than 50 nm.
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Figure 1. TEM images of: (a) SiNP10:1Eu; (b) SiNP10:1Eu@900; (c) SiNP50:1Eu; (d) SiNP50:1Eu@900; (e) SiNP100:1Eu; and
(f) SiNP100:1Eu@900.

Furthermore, the N2 adsorption isotherms of Eu-doped SiNP before thermal treatment
are Type II (Figure 2), characteristic of a non-porous or macroporous material, while
the isotherms of the materials after thermal treatment are Type III. While these are also
characterized by their non-porous or macroporous nature, the two types of isotherms differ
in the interactions between the material and the N2, which is lower in the case of isotherm
Type III [26]. In addition, the 1% europium-doped SiNP shown are representative. We
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note that the thermal treatment increased the adsorbed quantity of the N2 for the 10 nm
SiNP, whereas it was reduced for the SiNP of sizes close to 50 nm and greater than 100 nm,
which is related to the inter-grain porosity. Table 2 shows the surface areas measured by
the BET method and the pore volumes of the 1% Eu-doped SiNP and, for comparison,
those obtained for the 1% Eu-doped silica bulks studied and discussed earlier [25]. Before
thermal treatment, the surface area of the SiNP of 10 and 50 nm sizes was lower than with
100 nm SiNP, probably due to a higher agglomeration rate of the smallest particles.
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Table 2. Surface areas and pore volumes of SiNPX:1Eu and bulk SiO2:1Eu before and after thermal
treatment at 900 ◦C.

Sample BET Surface Area (m2/g) Pore Volume (cm3/g)

SiNP10:1Eu 58 0.16
SiNP10:1Eu@900 41 0.22

SiNP50:1Eu 55 0.27
SiNP50:1Eu@900 41 0.23

SiNP100:1Eu 232 0.18
SiNP100:1Eu@900 26 0.16

SiO2:1Eu 334 0.32
SiO2:1Eu@900 213 0.09

In comparison with the Eu-doped silica bulk, the thermal treatment induces the same
effect on the surface areas of the nanoparticles. For all silica nanoparticles, the thermal
treatment results in a reduction of the surface area of 30, 25 and 89% for SiNP10:1Eu,
SiNP50:1Eu and SiNP100:1Eu, respectively, which follows a similar line to the densifica-
tion observed by TEM for SiNP10:1Eu and SiNP50:1Eu. The large reduction of the surface
area of SiNP100:1Eu particles is attributed to their preparation with the Stöber method
which leads to softer particles. On the other hand, the pore volume decreases after thermal
treatment for all samples except for SiNP10:1Eu, where it increases, which explains the
difference for adsorbed N2 observed in the isotherms: it increases for SiNP10:1Eu and
decreases for the others.

Figure 3 shows the XRD patterns of 1% Eu-doped silica nanoparticles before and after
thermal treatment. For all the SiNP samples, the XRD patterns exhibit the same behavior as
those obtained for the europium-doped silica bulk. The peak is always the same, at 2θ ~44◦,
corresponding to an artifact due to the sample holder used, as well as the wide band at
2θ ~ 23◦ corresponding to the signature of the amorphous structure of the network [19,27].
However, thermal treatment does not cause crystallization of any sample. There is no
presence of peaks corresponding to Eu2O3 crystals, normally represented as an intense
diffraction peak around 2θ = 29◦ and two less intense peaks around 2θ = 33◦ and 47◦ [28,29].
This observation is consistent with a good dilution of europium ions in the SiNP. We also
note the offset of the position of the wide band towards lower 2θ (from 21.5◦ to 23◦) which
corresponds to the decrease in the disorder of the amorphous structure [19], also confirmed
by a decrease in the full width at half maximum (FWHM).
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In addition, we recorded the FT-IR spectra of all studied samples (Figure 4). All the
observed bands can be attributed to the SiO2 network and the presence of hydroxyl groups
(–OH). A first comparison of the spectra of Eu-doped SiNP shows some slight differences
in the intensity of certain spectra, which was due to the variation of the amount of material
used during the FT-IR measurements.
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Figure 4. FT-IR spectra at room temperature of all SiNP: (a) before thermal treatment; and (b) after thermal treatment.

Before and after thermal treatment, all SiNPs show the bands associated with the
movement of oxygen in the SiO2 network: the swing “Peak 1” [22], symmetrical elonga-
tion “Peak 2” [22] and asymmetrical elongation “Peak 4” [22], as well as the shoulder at
approximately 1200 cm−1, which is generally interpreted as an additional signature of
the amorphous SiO2 network [17]. Thermal treatment causes displacement of the main
peak at about 1100 cm−1 “Peak 4” to a higher wavenumber: 1059–1081, 1047–1078 and
1068–1079 cm−1 for SiNP10:YEu, SiNP50:YEu and SiNP100:YEu, respectively. This shift
is explained by a decrease in the structural disorder of the amorphous silica with a variation
of the bridging Si-O-Si bonding angle and a decreasing of the defects [18–20]. This decrease
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in disorder was also observed by DRX. In addition, we observed in all non-calcined sam-
ples the bands associated with the presence of OH groups. In addition, we can note that
“Peak 3” corresponds to the symmetrical elongation of the Si-OH bond [22] “Peak 5” to the
deformation of the OH bonds of the adsorbed water [22] and “Peak 7” to the overlap of the
elongation peak of the OH hydrogen bond from water molecules adsorbed by the samples
and the elongation peak of hydrogen from the silanol groups (Si-OH) within the glass [22].

Nevertheless, the SiNPs prepared by sol-gel in reverse microemulsion (10 and 50 nm)
show an additional peak, “Peak 6”, between 2870 and 2950 cm−1. This peak is attributed
to symmetrical and asymmetric elongation of CH2 and CH3 [30]. Moreover, “Peak 5” takes
a new associated form with the bending of CH3 [30]. These hydrocarbon groups come
mainly from the surfactant (Triton X-100), (Sigma Aldrich, Saint-Quentin Fallavier, France)
co-surfactant (1-Hexanol) (Sigma Aldrich, Saint-Quentin Fallavier, France) and solvent
(cyclohexane) used during the preparation of the reverse microemulsion. After thermal
treatment at 900 ◦C, the peaks attributed to OH and the hydrocarbon groups decrease
strongly or disappear, showing the strong reduction of these groups in the SiNP by thermal
treatment. These results are confirmed by the elemental analyses of hydrogen. These
analyses show 1.65, 4.63 and 1.81 wt.% for SiNP10:1Eu, SiNP50:1Eu and SiNP100:1Eu,
respectively, and 0.14, 0.17 and 0.18 wt.% after the thermal treatment for the respective
SiNP. Thus, we note a decrease of 91, 96 and 89 wt.% of hydrogen after calcination for
SiNP10:1Eu, SiNP50:1Eu and SiNP100:1Eu, respectively. The large amount of hydrogen
detected in SiNP50:1Eu is due to the use of a larger amount of surfactant, co-surfactant
and solvent during the synthesis compared to that used for the preparation of SiNP10:1Eu.
The origin of residual traces of hydrogen in the calcined samples could be due to water
adsorbed from the air during the preparation of the various analyses [31].

To determine the effects of the different parameters (thermal treatment, Eu3+ concen-
tration and nanoparticle size), emission spectra obtained under pulsed laser excitation at
532 nm are reported in Figure 5. All emission bands therein are characteristics of the radia-
tive transitions of Eu3+ and are attributed to the 5D0→ 7FJ=0,1,. . . ,6 multiplet transitions [32].
The 5D0 → 7F0 transition, at shortest wavelength, is spin-forbidden and only allowed by
J-mixing effects [32,33]. Both shape and peak wavelength are strongly influenced by the
local electrostatic field around the luminescent ion. The nature of the second transition,
5D0 → 7F1, is mainly magnetic dipolar. The crystal field does not modify its intensity, but
it influences splitting [32,34]. Information on the local environment around the rare-earth
ions can be retrieved from the analysis of the 5D0 → 7F1 band shape [35]. The intensity of
this band, insensitive to the local field, can be used to normalize and compare different
emission spectra. The characteristics of the 5D0 → 7F2 transition (intensity and five-fold
splitting) are extremely dependent on the crystal field strength [32,36]. The link between
those features and the structure of the luminescent site is therefore trickier to analyze. For
all Eu3+ concentrations investigated, the emission spectra of non-calcined SiNP are very
similar, and they resemble those of Eu-doped silica bulk where inhomogeneous broadening
is weak for emission bands 5D0 → 7F0 and 5D0 → 7F1. It is typically characteristic of the
luminescent ion in an aqueous medium where the occupied sites are similar and mainly
composed of OH groups [37].

Furthermore, the symmetry of the luminescent sites can be analyzed by comparing
the intensities of the 5D0 → 7F2 and 5D0 → 7F1 transitions. Indeed, mixing of different
parity states can occur when inversion symmetry is lowered, thus allowing electric dipolar
transitions. Consequently, high symmetry sites are characterized by the low value of
the peak intensity ratio R = I(5D0→7F2)/I(5D0→7F1), whereas different distorted sites
are attributed to high value of R. The maximum intensity is considered to be the highest
point of each peak. The obtained R values are presented in Table 3. The R values increase
significantly with the amount of Eu for SiNP10:YEu and SiNP50:YEu. This is explained
by a decrease in the symmetry of the sites occupied by the luminescent ions when their
quantity increases [37,38]. In the bulk sample, variations of R are weak, and there is almost
no variation of R for SiNP100:YEu. Since it is known that OH groups generate symmetrical
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aqueous environments for europium [39], increasing Eu3+ concentration seems to decrease
the number of these aqueous environments for the smallest SiNP.
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Figure 5. Emission spectra obtained under pulsed laser excitation at 532 nm at room temperature of Eu-doped silica 
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Figure 5. Emission spectra obtained under pulsed laser excitation at 532 nm at room temperature of Eu-doped silica
nanoparticles and bulk (a) before and (b) after thermal treatment at 900 ◦C (the intensities are normalized to the maximum
of the emission band 5D0 → 7F1).
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Table 3. Intensity ratio R of Eu-doped silica nanoparticles and bulk before and after thermal treatment
(T.T.) at 900 ◦C.

Sample Y (%Eu) R before T.T. R after T.T.

0.2 2.72 4.81
SiNP10:YEu 0.5 3.51 6.26

1 4.35 6.21
0.2 1.73 2.38

SiNP50:YEu 0.5 3.12 4.62
1 3.82 6.35

0.2 3.03 3.84
SiNP100:YEu 0.5 3.02 4.47

1 3.31 5.01
0.2 2.25 5.31

SiO2:YEu 0.5 3.34 5.09
1 3.66 5.76

The size of the silica nanoparticles has only a slight impact on the emission spectra
for the non-calcined samples, since spectra are globally very similar for the same dop-
ing concentration. However, one can observe slight differences between spectra of the
SiNP100:YEu sample and the others: 5D0 → 7F1 and 5D0 → 7F2 bands present a more sig-
nificant inhomogeneous broadening, which is an indication of a larger structural diversity
of the luminescent sites in the largest SiNP. Considering the R intensity ratio, the lowest
doping concentration would seem to be most affected by this trend.

Thermal treatment alters considerably the emission spectra for all samples. We can
observe that the treatment leads to an inhomogeneous broadening accompanied by an
increasing R ratio. This behavior is characteristic of solvent removal and is generally
interpreted as a shift from an aqueous environment to a cation-dominated environment
around the rare-earth ion: luminescent sites become more diverse and distorted with low
symmetry [37,38]. Before the heat treatment, OH groups act as fluorescence-quenching
centers due to energy transfer between Eu3+ and OH. The heat treatment removes the OH
groups and improves the integration of Eu3+ ions in the glassy structure leading to a better
fluorescence [40].

It can be assumed that the thermal treatment has a strong effect on the structure and/or
the structural diversity of the luminescent sites. This reinforces previously discussed results:
the IR spectra showing the elimination of water by calcination, as well as the elemental
analysis showing hydrogen content decreasing by 91, 96 and 89 wt.% after calcination
for SiNP10:1Eu (from 1.647 to 0.140 wt.%), SiNP50:1Eu (from 4.631 to 0.171 wt.%) and
SiNP100:1Eu (from 1.811 to 0.184 wt.%), respectively. Moreover, the variation of the
europium concentration has no influence other than that reported for the non-calcined samples.

Luminescence decay curves of the 5D0 level were recorded for all samples at the
maximum intensity of the emission band 5D0 → 7F2. Figure 6 shows these decay curves
before and after thermal treatment at 900 ◦C.

As in Eu-doped silica bulk [25], all samples show decays that are not simple expo-
nentials. Rather than trying to fit these curves by means of several exponentials, which
is difficult to interpret, we preferred to focus our attention on the comparison between
samples in evaluating an average lifetime for each of them. This lifetime τ was therefore
estimated according to the following Equation (1):

τ =
∫

I(t)tdt/
∫

I(t)dt, (1)

where I(t) is the intensity decay profile. The obtained values are reported in Table 4.
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Table 4. Lifetimes of Eu-doped silica nanoparticles and bulk before and after thermal treatment (T.T.)
at 900 ◦C.

Sample Y (%Eu) τ (ms)
before T.T.

τ (ms)
after T.T.

0.2 0.26 4.81
SiNP10:YEu 0.5 0.15 6.26

1 0.32 6.21
0.2 0.45 2.38

SiNP50:YEu 0.5 0.39 4.62
1 0.37 6.35

0.2 0.11 3.84
SiNP100:YEu 0.5 0.11 4.47

1 0.16 5.01
0.2 0.11 5.31

SiO2:YEu 0.5 0.12 5.09
1 0.13 5.76
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Aqueous environments and organic residues cause a quenching of the luminescence
of Eu3+ ions, providing a non-radiative relaxation pathway [38]. In addition, residual
hydroxyl groups and other organic groups can be eliminated by the thermal treatment,
thereby increasing both the efficiency and decay time of luminescence. Therefore, by
removing the quenching centers, the thermal treatment at 900 ◦C allows the lifetime for all
samples to be increased. In the range of Eu3+ concentration investigated, the decay profiles
and the average lifetimes are similar. This is in line with the observations made from the
emission spectra and confirms that, up to 1 mol.%, there is no luminescence quenching
by the effect of the concentration, which is generally attributed to the conjunction of a
rare earth group with energy transfers between ions grouped by a mechanism of cross
relaxation or a phonon-assisted energy transfer [41].

Before the thermal treatment, we notice that the average lifetimes are longer for
SiNP50:YEu than for the other SiNP. The largest SiNP (100 nm) have the shortest τ, which
are very close to those of the Eu-doped silica bulk. In SiNP50:YEu, the average lifetime τ

decreases as the europium concentration increases, while no clear trend is observed in the
smallest SiNP.

The influence of thermal treatment on the decay profiles is evident (Figure 6b), with a
notable increase in lifetime for all samples. In addition, for SiNP10:YEu and SiNP50:YEu,
the thermal treatment leads to similar lifetime values, which can be explained by the
agglomerated and densified structures obtained after calcination. On the other hand,
thermally treated SiNP100:YEu still have τ close to those of silica bulk, which are smaller
than those of 10 and 50 nm SiNP.

5. Conclusions

We studied europium-doped silica nanoparticles prepared according to two sol-gel de-
rived processes. Reverse microemulsion allows preparation of 10 and 50 nm particles, while
100 nm ones were prepared by the Stöber method. This article allows a direct comparison
between the processes to be made, for the first time. For the structural characterizations,
these SiNPs were characterized by BET, XRD and FT-IR. No significant effects of the amount
of Eu3+ in silica nanoparticles on emission spectra or decays were observed. Before the heat
treatment, luminescent properties of the nanoparticles prepared by reverse microemulsion
are almost comparable but differ from the larger nanoparticles, which are similar to the
silica bulk. The heat treatment at 900 ◦C reduces the aqueous environment around Eu ions
and its fluorescence lifetime improves by one order of magnitude. This article demonstrates
the potential of both sol-gel methods to prepare Eu-doped silica nanoparticles of controlled
size. However, nanoparticles prepared with the reverse microemulsion process tend to
melt when heated at high temperature. Future work will be devoted to improving the
stability of these nanoparticles.
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