
HAL Id: hal-03181789
https://hal.science/hal-03181789

Submitted on 25 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analysis of resilience for a State Estimator for Linear
Systems

Alexandre Kircher, Laurent Bako, Eric Blanco, Mohamed Benallouch, Anton
Korniienko

To cite this version:
Alexandre Kircher, Laurent Bako, Eric Blanco, Mohamed Benallouch, Anton Korniienko. Analysis of
resilience for a State Estimator for Linear Systems. 2020 American Control Conference (ACC), Jul
2020, Denver, United States. pp.1495-1500, �10.23919/ACC45564.2020.9147418�. �hal-03181789�

https://hal.science/hal-03181789
https://hal.archives-ouvertes.fr


Analysis of resilience for a State Estimator for Linear Systems

Alexandre Kircher1, Laurent Bako1, Éric Blanco1, Mohamed Benallouch2, Anton Korniienko1

Abstract— This paper proposes to analyze the resilient prop-
erties of a specific state estimator for LTI discrete-time systems.
The dynamic equation of the system is assumed to be affected
by a bounded process noise. As to the available measurements,
they are potentially corrupted by a noise of both dense and
impulsive natures. In this setting, we define an estimator as
the map which associates to the measurements, the minimizing
set of an appropriate (convex) performance function. It is
then shown that the proposed estimator enjoys the property
of resilience, that is, it induces an estimation error which,
under certain conditions, is independent of the extreme values
of the (impulsive) measurement noise. Therefore, the estimation
error may be bounded while the measurement noise is virtually
unbounded. Moreover, the expression of the bound depends
explicitly on the degree of observability of the system being
observed and on the considered performance function. Finally,
a few simulation results are provided to illustrate the resilience
property.

Index terms—Secure state estimation, sensor attacks, outliers,
resilient estimators, Cyber-physical systems.

I. INTRODUCTION

We consider in this work the problem of designing state
estimators which would be resilient against an (unknown)
sparse noise sequence affecting the measurements. By sparse
noise we refer here to a signal sequence which is of impulsive
nature, that is, a sequence which is most of the time equal to
zero, except at a few instants where it can take on arbitrarily
large values. The problem is relevant for example, in the su-
pervision of Cyber-Physical Systems [5]. In this application,
the supervisory data may be collected by spatially distributed
sensors and then sent to a distant processing unit through
some communication network. During the transmission, the
data may incur intermittent packet losses or adversarial
attacks consisting in e.g., the injection of arbitrary signals.

This estimation problem was investigated through many
different approaches. Since the measurements are assumed
to be affected by a sequence of outliers which is sparse in
time, a natural scheme of solution to the state estimation
problem may be to first detect the occurrences of the nonzero
instances of that sparse noise, remove the corrupted data
and then proceed with classical estimation methods such
as the Kalman filter or Luenberger type of observer [15],
[17]. Another category of approaches, which are inspired by
some recent results in compressive sampling [4], [9], rely on
sparsity-inducing optimization techniques. A striking feature
of these methods is that they do not treat separately the
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tasks of detection, data cleaning and estimation. Instead, an
implicit discrimination of the wrong data is induced by some
specific properties of the to-be-minimized cost function.
One of the first works that puts forward this approach for
the resilient state estimation problem is the one reported
in [8]. There, it is assumed that only a fixed number of
sensors are subject to attacks (sparse but otherwise arbitrary
disturbances) in an offline estimation setting. The challenge
then resides in the fact that at each time instant, one does
not know which sensor is compromised. Note however that
the assumptions in [8] were quite restrictive as no process
noise or measurement noise (other than the sparse attack
signal) was considered. These limitations open ways for later
extensions in many directions. For example, [21] suggests
a reformulation which reduces computational cost by using
the concept of event-triggered update; [16] considers an
observation model which includes dense noise along with the
sparse attack signal. In [6], the assumption of a fixed number
of attacked sensors is relaxed. Finally, the recent paper
[12] proposes a unified framework for analyzing resilience
capabilities of most of these optimization-based estimators.
Although a bound on the estimation error was derived in this
paper, it is not quantitatively related to the properties (e.g.,
observability) of the dynamic system being observed.

The goal of the current paper is to study, in a new way, the
resilient properties of a specific (convex) optimization-based
estimator for LTI discrete-time systems. The available model
of the system assumes bounded noise in both the dynamics
and the observation equation with the latter being possibly
affected by an unknown but sparse attack signal. Contrary to
the settings in some existing works, we did not impose here
any restriction on the number of sensors which are subject
to attacks, that is, any sensor can be compromised at any
time. Our main theoretical result states that the estimation
error associated with the proposed estimator is, under certain
circumstances, insensible to the amplitude of the attack
signal. We obtain an upper bound on this estimation error
which, although necessarily conservative, has the important
advantage of being explicitly expressible in function of the
properties of the considered dynamic system. This makes
it a valuable qualitative tool for assessing the impact of the
estimator’s design parameters and that of the system matrices
on the quality of the estimation. For example, it reflects the
intuition that the more observable the system is, the larger
the number of instances of gross values (of the output noise)
it can handle and the smaller the error bound.

Outline. The rest of the paper is organized as follows. The
estimation setting is defined in Section II. In Section III
we elaborate on the proposed optimization-based estimator:



Necessary technical tools are introduced in Section III-A for
the statement and the proof of the main result in Section III-
B. Section IV illustrates the performance of the estimation
method in simulation; Section V provides some concluding
remarks.

Notations. Throughout this paper, R≥0 (respectively R>0)
designates the set of nonnegative (respectively positive) reals.
We note Ra the set of (column) vectors with a real elements
and for any vector z in Ra, zi with i in {1, ..., a} is the
i-th component of z. Moreover, Ra×b is the set of real
matrices with a rows and b columns. If M ∈ Ra×b, then
M> will designate the transposed matrix of M . Notation
‖·‖ will represent a given norm over a given set (which will
be specified when necessary). ‖·‖2 is the Euclidean norm,
defined by ‖z‖2 =

√
z>z for all z in Ra. ‖·‖1 will designate

the `1-norm, defined by ‖z‖1 =
∑a
i=1 |zi| for z ∈ Ra. For

a finite set S, the notation |S| will refer to the cardinality of
S.

II. THE ESTIMATION PROBLEM

Consider the following discrete-time Linear Time-
Invariant (LTI) system

Σ :

{
xt+1 = Axt + wt
yt = Cxt + ft

(1)

where xt ∈ Rn is the state vector at time t, yt ∈ Rny is
the output vector at time t; A ∈ Rn×n the dynamic matrix
of the system and C ∈ Rny×n is the observation matrix.
wt ∈ Rn and ft ∈ Rny model respectively the process
noise and the output noise, both of which are unknown.
The estimation setting considered in the current paper is
similar to the one in [14]. It is assumed that the noise
sequence {wt} is bounded. As to the noise sequence {ft}
can take on potentially arbitrarily large values, that is, no
explicit bound is imposed on its amplitude. This type of
noise can model for example, ordinary measurement noise
together with faulty measurements, attack signals or packet
losses on data transmitted over a communication network.
For convenience, one can also view ft as the sum of two
noise components

ft = vt + st, (2)

vt being a dense noise induced by the sensors, which can be
bounded or gaussian, and st being a sparse noise sequence,
i.e. a noise whose instances are equal to zero most of the time
but whose non-zero elements can take on arbitrary values.

Problem. The problem considered in this paper is one of
estimating the states x0, . . . , xT−1 of the system (1) on a
time period T given T measurements y0, ..., yT−1 of the
system output. We shall seek an accurate estimate of the state
despite the uncertainties in the system equations (1) modeled
by wt and ft the characteristics of which are described above.
In particular, we would like the to-be-designed estimator to
produce an estimate such that the estimation error is, when
possible, independent of the maximum amplitude of {ft}.
Such an estimator will then be called resilient.

III. RESILIENT OPTIMIZATION-BASED ESTIMATOR

We propose a convex optimization-based solution to the
state estimation problem defined above. Given the system
matrices A and C and T output measurements y0, ..., yT−1,
consider a performance function F : Rny×T×Rn×T → R≥0

defined by

F (Y,Z) = λ
∑
t∈T ′
‖zt+1 −Azt‖22 +

∑
t∈T
‖yt − Czt‖1 , (3)

with T = {0, . . . , T − 1}, T ′ = {0, . . . , T − 2} and
Z =

(
z0 · · · zT−1

)
, i.e., the vectors zt ∈ Rn are the

columns of the matrix Z. Z represents a state trajectory
candidate (optimization variable) for the system. Here, λ > 0
is a user-defined parameter which aims at balancing the
contributions of the two terms involved in the expression of
the performance index F . This idea of weighting the terms
contained in F could also be done differently depending on
the time index, for example by taking terms of the form
‖Wt(zt+1−Azt)‖22 and ‖Vt(yt−Czt)‖1, where Wt and Vt
would be positive-definite weighting matrices.

Let P(Rn×T ) denote the collection of all subsets of Rn×T .
Then the proposed estimator is defined as the set-valued
map Ψ : Rny×T → P(Rn×T ) which maps the available
measurements Y ,

(
y0 · · · yT−1

)
to the subset Ψ(Y ) of

Rn×T defined by

Ψ(Y ) = arg min
Z∈Rn×T

F (Y, Z). (4)

By assuming that the pair (A,C) is observable, it
can be checked that F is coercive, i.e. it satisfies
lim‖Z‖→+∞ F (Y, Z) = +∞ for any norm ‖·‖ on Rn×T
and for all Y in Rny×T . It follows that the estimator
Ψ expressed in (4) is well-defined in the sense that the
underlying optimization problem in (4) admits a solution [19,
Thm 1.9, Cor 3.27]). Note however that the minimizer need
not be unique. Moreover, since the objective function F is
convex with respect to Z, the elements of the so-defined state
estimator Ψ(Y ) can be determined efficiently for a given Y .
Many numerical solvers can be used for this purpose, see
e.g. [11], [1], [22] for the computational aspects.

We note that similar estimators to (4) have been studied
in the literature [7][14]. However, the focus of the paper
is about assessing the resilience properties of the estimator
(4) in a new framework. For this purpose we need some
preliminary technical results.

A. Preliminaries

To begin with the analysis, we introduce some useful
technical tools, the first of which is the class of K∞ functions
(see, e.g., [13]). This class of functions will be used to
measure the increasing rate of the estimation error.

Definition 1 (class-K∞ functions). A function α : R≥0 →
R≥0 is said to be of class-K∞ if it is continuous, zero at
zero, strictly increasing and satisfies lims→+∞ α(s) = +∞.

Using this definition we can state a technical lemma which
will play an important role in the analysis.



Lemma 1. Let G : Rn×m → R≥0 be a nonnegative
continuous function satisfying the following properties:
• Positive definiteness: G(S) = 0 if and only if S = 0
• Relaxed homogeneity: There exists a K∞ function σ

such that G(S) ≥ σ( 1
η )G(ηS) for all η ∈ R>0.

Then for any norm ‖·‖ on Rn×m, there exists d > 0 such
that for all S ∈ Rn×m, G(S) ≥ dσ(‖S‖).

Proof. We start by observing that the unit hypersphere D =
{S ∈ Rn×m : ‖S‖ = 1} is a compact set in the topology
induced by the norm ‖·‖. By the extreme value theorem [18,
Thm 3.9], G being continuous, admits necessarily a mini-
mum value on D, i.e., there is S? ∈ D such that G(S) ≥
d , G(S?) > 0 for all S ∈ D. For any nonzero S ∈ Rn×m,
S

‖S‖ ∈ D so that G(
S

‖S‖ ) ≥ d. On the other hand, by the

relaxed homogeneity of G,

G(S) ≥ σ(‖S‖)G(
S

‖S‖ ) ≥ dσ(‖S‖).

Moreover, this inequality holds for S = 0. It therefore holds
true for any S ∈ Rn×m.

For future uses in the paper, consider now the function
H : Rn×T → R≥0 defined by

H(Z) =
λ

2

∑
t∈T ′
‖zt+1 −Azt‖22 +

∑
t∈T
‖Czt‖1 (5)

H is a function that will be of use in the later theoretical
developments of the paper. Note that although F (Z) and
H(Z) resemble each other, there are indeed different. A key
property of H which will help the analysis is how it can be
lower bounded, as stated in the following lemma:

Lemma 2 (Lower Bound on H). Let ‖·‖ be a norm on
Rn×T . Consider the function H defined in (5) under the
assumption that (A,C) is observable. Then

H(Z) ≥ Dq(‖Z‖) ∀Z ∈ Rn×T (6)

where q : R≥0 → R≥0 is the function defined by

∀α ∈ R≥0, q(α) = min(α, α2) (7)

and
D = min

‖Z‖=1
H(Z) > 0. (8)

Proof. The idea of the proof is to check that H satisfies the
conditions of Lemma 1 and then apply that lemma to con-
clude. First, note that continuity and nonnegativity of H are
obvious. As to the relaxed homogeneity property, it can be
checked straightforwardly that it holds with σ = q. Finally,
setting H(Z) = 0 implies that zt+1 = Azt and Czt = 0 for
all t = 0, . . . , T − 1. It immediately follows that CAtz0 = 0

and so, Oz0 = 0 where O =
(
C> · · · (CAn−1)>

)>
is

the observability matrix of the system. By the observability
assumption, we get that z0 = 0 and consequently, that Z = 0.
Therefore H is positive-definite. The statement of the lemma
now follows by applying Lemma 1.

To proceed further, let us introduce a few notations. We use
the notation I = {1, . . . , ny} to denote a label set for the

sensors described by the observation equation in (1). For
i ∈ I, c>i denotes the i-th row of the observation matrix C.
The next definition introduces a parameter to gauge the
resilience properties of an estimator of the form defined in
(4).

Definition 2 (r-Resilience index pr). Let r be a nonnegative
integer. Assume that the system Σ in (1) is observable. We
define the r-Resilience index of the estimator Ψ in (4) (when
applied to Σ) as the real number pr given by

pr = sup
Z 6=0

Z∈Rn×T

sup
Λr⊂I×T
|Λr|=r

∑
(i,t)∈Λr

∣∣c>i zt∣∣
H(Z)

(9)

where H is as defined in (5). The supremum is taken here
over all nonzero Z in Rn×T and over all subsets Λr of I×T
with cardinality r.

The index pr can be interpreted as a quantitative measure of
the observability of the system Σ. The observability is needed
here to ensure that the denominator H(Z) of (9) is different
from zero whenever Z 6= 0 (see the positive definiteness
proof of H in the proof Lemma 2 above). Furthermore, it
should be remarked that

∑
(i,t)∈Λr

∣∣c>i zt∣∣ ≤ H(Z) for any
Λr ⊂ I × T , which implies that the defining suprema of
pr are well-defined. The lower pr is, the more resilient the
estimator is expected to be. The next section gives more
background to the introduction of pr and which role it plays
in the resilience analysis of the estimator.

Obtaining pr requires solving a combinatorial optimiza-
tion problem which is also nonconvex. This is indeed a
common characteristic of the concepts which are usually
used to assess resilience; for example the popular Restricted
Isometry Property (RIP) constant [3] is comparatively as
hard to evaluate. Nevertheless, if we restrict our attention to
estimation problems where the process noise {wt} would be
identically equal to zero, then by adding in (9) the additional
constraint that zt+1 = Azt, pr can be exactly computed using
the method in [20] or more cheaply overestimated using the
one in [2].

Remark. The case where only a known set of sensors is
affected by ft is a special case of the current framework:
indeed, this information would restrict the search set of Λr
from I × T to I ′ × T with I ′ the set of attacked sensors.

B. Characterization of the resilience property

The main result of this paper consists in the characteriza-
tion of the resilience property of the state estimator (4). More
specifically, our result states that the estimation error, i.e., the
difference between the real state trajectory and the estimated
one, is upper bounded by a bound which does not depend
on the amplitude of the outliers contained in {ft} provided
that the number of such outliers is below some threshold.

Before stating the main theorem, let us introduce a last
notation to be used in the analysis. Let ε ≥ 0 be a given
number. For any sequence {ft}t∈T in (1), we can split the
index set I × T into two disjoint label sets,

Jε = {(i, t) ∈ I × T : |fit| ≤ ε} , (10)



indexing those fit
1 which are bounded by ε and J cε =

{(i, t) ∈ I × T : |fit| > ε} indexing those fit which are
possibly unbounded. It is important to keep in mind that
ε is just a parameter for decomposing the noise sequence in
two parts in view of the analysis (and not a bound on fit).
The particular situation where ε = 0 reflects the approach
where one would view any nonzero fit as an outlier.

Theorem 1 (Upper bound on the estimation error). Consider
the system Σ defined by (1) with output measurement Y and
consider the estimator (4). Let ε ∈ R≥0 and r = |J cε |.
If Σ is observable and pr < 1/2, then for all X̂ =(
x̂0 · · · x̂T−1

)
∈ Ψ(Y ),

‖E‖ ≤ h
(

2βΣ(ε)

D(1− 2pr)

)
(11)

where E =
(
x̂0 − x0 · · · x̂T−1 − xT−1

)
, ‖·‖ is any given

norm on Rn×T , βΣ(ε) is defined by

βΣ(ε) = λ
∑
t∈T ′
‖wt‖22 +

∑
(i,t)∈Jε

|fit|, (12)

the function h : R≥0 → R≥0 is defined by

∀α ∈ R≥0, h(α) = max
(
α,
√
α
)

(13)

and D is given as in (8) from the norm ‖·‖.
Proof. By definition (4) of the estimator Ψ, it holds that for
all X̂ ∈ Ψ(Y ), F (Y, X̂) ≤ F (Y,X), that is,

λ
∑
t∈T ′
‖x̂t+1 −Ax̂t‖22 +

∑
t∈T
‖yt − Cx̂t‖1

≤ λ
∑
t∈T ′
‖xt+1 −Axt‖22 +

∑
t∈T
‖yt − Cxt‖1

= λ
∑
t∈T ′
‖wt‖22 +

∑
t∈T
‖ft‖1 .

(14)

Next, we derive a lower bound on the left hand side of (14).
For every t in T , let et = x̂t − xt. Then

‖x̂t+1 −Ax̂t‖22 = ‖x̂t+1 − xt+1 −A(x̂t − xt) + wt‖22
≥ ‖et+1 −Aet + wt‖22
≥ 1

2
‖et+1 −Aet‖22 − ‖wt‖22.

(15)
The last inequality uses Lemma 3 in Appendix A which
yields, with G = ‖·‖22,

‖z1 − z2‖22 ≥
1

2
‖z1‖22 − ‖z2‖22 ∀(z1, z2) ∈ Rn × Rn. (16)

Similarly, we can write

‖yt − Cx̂t‖1 = ‖yt − Cxt − C(x̂t − xt)‖1
= ‖ft + Cet‖1

As a consequence, the second term of the left-hand-side of
(14) is expressible as∑

t∈T
‖yt − Cx̂t‖1 =

∑
(i,t)∈I×T

∣∣fit + c>i et
∣∣ .

1fit denotes the i-th entry of the vector ft.

Now, depending on if the couple (i, t) belongs to Jε or
not, we apply the triangle inequality property of the absolute
value differently, the two cases being

∀(i, t) ∈ Jε,
∣∣fit + c>i et

∣∣ ≥ |c>i et| − |fit|
∀(i, t) ∈ J cε ,

∣∣fit + c>i et
∣∣ ≥ |fit| − |c>i et|

It follows that∑
t∈T
‖yt − Cx̂t‖1 ≥

∑
(i,t)∈Jε

|c>i et| −
∑

(i,t)∈J c
ε

|c>i et|

−
∑

(i,t)∈Jε

|fit|+
∑

(i,t)∈J c
ε

|fit|.

Combining this with (14) and (15) and re-arranging, yields

λ

2

∑
t∈T ′
‖et+1 −Aet‖22 +

∑
(i,t)∈Jε

|c>i et| −
∑

(i,t)∈J c
ε

|c>i et|

≤ 2
(
λ
∑
t∈T ′
‖wt‖22 +

∑
(i,t)∈Jε

|fit|
)

(17)

On the right hand side of (17), we recognize 2βΣ(ε) as
in (11). As to the term on the left hand side, it is equal
to H(E)− 2

∑
(i,t)∈J c

ε
|c>i et|.

Independently, |J cε | = r so by definition (9) of the index
pr, ∑

(i,t)∈J c
ε

|c>i et| ≤ prH(E) (18)

Consequently, it follows from (17) and (18) that

(1− 2pr)H(E) ≤ H(E)− 2
∑

(i,t)∈J c
ε

|c>i et| ≤ 2βΣ(ε).

Since pr is assumed to be smaller than 1/2, 1 − 2pr > 0.
Therefore, we can write

H(E) ≤ 2βΣ(ε)

1− 2pr
(19)

Thanks to Lemma 2, we have H(E) ≥ Dq(‖E‖) for any
given norm ‖·‖ on Rn×T . This implies that

q(‖E‖) ≤ 2βΣ(ε)

D(1− 2pr)

Now observe that the function h defined in (13), is the inverse
function of q, meaning that for every λ ∈ R≥0, h(q(λ)) = λ.
Moreover, h is an increasing function. Applying h to both
members of the previous inequality gives the desired result.

The resilience property of the estimator (4) lies here in
the fact that, under the conditions of Theorem 1, the bound
in (11) on the estimation error does not depend on the
magnitudes of the extreme values of the noise sequence
{fit}(i,t)∈I×T . Considering in particular the function βΣ(ε),
we remark that it can be overestimated as follows

βΣ(ε) ≤ λ
∑
t∈T ′
‖wt‖22 + |Jε|ε. (20)

We recognize two terms in the upper bound of βΣ(ε): (i)
the first one is a sum which simply represents the uncertainty
brought by the (bounded) dense noise wt over the whole state



trajectory and which does not depend on ε; (ii) the second
one is a bound on the sum of those instances of fit whose
magnitude is smaller than ε.
Because βΣ is a function of ε, the bound in (11) represents
indeed a family of bounds parametrized by ε. The theorem
holds true for any ε > 0 as long as the system is resilient
enough, i.e. pr is smaller than 1/2 for r = |J cε |. Since ε is
a mere analysis device, a question would be how to select it
for the analysis to achieve the smallest bound. Such values,
say ε?, satisfy

ε? ∈ arg min
ε≥0

{
h
( 2βΣ(ε)

D(1− 2pr)

)
: r = |J cε |, pr < 1/2

}
.

As already mentioned, checking numerically the assump-
tion pr < 1/2 requires solving a hard combinatorial problem.
Nevertheless, one can retain the intuition that pr < 1/2 is
all the more likely to hold as the r is small (i.e., ε is large).

Another interesting point is that the inequality stated by
Theorem 1 holds for any norm on Rn×T . Note though that
the value of the bound depends (through the parameter D
defined in (8)) on the specific norm used to measure the esti-
mation error. Moreover, different choices of the performance-
measuring norm will result in different geometric forms for
the uncertain set, that is, the ball (in the chosen norm)
centered at the true state with radius equal to the upper bound
displayed in (11).

We also observe that the smaller the parameter pr is,
the tighter the error bound will be, which suggests that
the estimator is more resilient when pr is lower. A similar
reasoning applies to the number D which is desired to be
large here. These two parameters pr and D reflect properties
of the system whose state is being estimated. They can be
interpreted, to some extent, as measures of the degree of
observability of the system. In conclusion, the estimator in-
herits partially its resilience property from characteristics of
the system being observed. This is consistent with the well-
known fact that the more observable a system is, the more
robustly its state can be estimated from output measurements.

Finally, an interesting property of the estimator can be
stated in the absence of dense noise:

Corollary 1. Consider the system Σ defined by (1) and let
r = |J c0 | (which means that we consider every nonzero
occurrence of fit as an outlier). If pr < 1/2, and if wt = 0
for all t, then the estimator defined by (4) retrieves exactly
the state trajectory of the system.

Proof. This follows directly from the fact that βΣ(0) = 0 in
the case where there is no dense noise wt and ε = 0.

Therefore, we have the exact recoverability of every state
of the system (1) by the estimator when there is no process
noise. According to our analysis, the number of outliers
that can be handled by the estimator in this case can be
underestimated by

max
{
r : pr < 1/2

}
. (21)
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Fig. 1: State of the system and its estimates (x̂ through the
resilient estimator and x̂L through the smoother) in absence

of sparse noise

IV. SIMULATION RESULTS

In this section, we present the simulation results in two
cases, with and without a sparse component in ft. The
structure of the studied system is identical to (1) with

A =

(
−0.11 −0.34
−0.34 0.46

)
, C =

(
1.4 −0.94

)
The system is simulated on a time-horizon equal to T =
100, wt is the realization of a uniform random variable over
[−2; 2], vt is a gaussian white noise of signal-to-noise ratio
equal to 30dB, and the initial state of the system is a gaussian
random variable of unit vaiance. The estimated states were
then obtained by directly solving the optimisation problem
defined in (4) with λ = 1/5 through CVX [11].
Simulation without st. This case aims at showing the good
results of the resilient estimator in an unattacked setting.
To give a basis for comparison, we also estimated the
state of the system through a Rauch-Tung-Striebel (RTS)
smoother which is an extension of the Kalman filter to offline
estimation [10]. Figure 1 presents the results obtained, i.e. the
real state x, the state x̂ estimated through (4) and the state
x̂L estimated through the RTS smoother. Estimator Ψ(Y )
provides similar results to the RTS Smoother in this example,
which is very interesting given that it was designed to deal
with attacks in the first place.
Simulation with st. In this case, st is nonzero: the time
indexes when st is non-zero are uniformly randomly chosen
to fit a ratio of 20% non-zero values. Each value is then
decided by a uniform random variable between −50 and 50.
Figure 2 now presents the results associated with this case.
We provided ywt = Cxt + vt, the unattacked output of the
system, and st on the same graph (bottom) to showcase the
difference in values. In this setting, the Mean Square Error2

of the RTS smoother is equal to 70 for the first state and 27
for the second state: this explains why it is not represented
on Figure 2, given it strongly diverges. In comparison, the
resilient estimator (4) has a MSE of 0.5 and 1 for first and
second states respectively: even in the presence of corrupted
measurements of arbitrarily large magnitude, the estimator

2We define the Mean Square Error (MSE) associated with the i-th state
as mi = 1/T ·

∑T−1
t=0 (xit − x̂iLt)

2
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Fig. 2: State, estimated state x̂ through resilient estimation
and output of the system in presence of sparse noise

still manages to efficiently track the trajectory of the real
states, showing that its performance are not really degraded
in that case.

V. CONCLUSION

In this paper, we considered the problem of estimating
the state of linear discrete-time systems in the face of
uncertainties modeled as process and measurement noise
in the system equations. The measurement noise sequence
assumes values of possibly arbitrarily large amplitude which
occur sparsely in time and between sensors. To address this
problem, we introduced an estimator based on the resolution
of a convex optimization problem and then analyzed its
resilience properties in a new framework. In particular, we
proved that the resulting estimation error is bounded by a
bound which is independent of the extreme values of the
measurement noise given that the number of occurrences
(over time and over the whole set of sensors) of such
extreme values is limited with regards to a parameter linked
to the observability of the system. Future works will aim at
generalizing this analysis of resilient properties to a wider
class of estimators and applying the estimation framework
to relevant practical cases.
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APPENDIX

A. Additional elements to the proof of Theorem 1

Lemma 3. Let G : Rn×m → R≥0 be a convex nonnegative
continuous function satisfying the properties of positive def-
initeness and relaxed homogeneity (for a given K∞ function
σ) as both defined in Lemma 1. Then, for all (S1, S2) ∈
Rn×m × Rn×m,

G(S1 − S2) ≥ 2σ(1/2)G(S1)−G(S2) (22)

Proof. As G is convex,

G ((S1 − S2)/2 + S2/2) ≤ G(S1−S2)/2 +G(S2)/2 (23)

which can be rewritten as

G(S1 − S2) ≥ 2G(S1/2)−G(S2) (24)

Moreover, by assumption, G verifies the relaxed homogene-
ity property with a K∞ function σ: it entails that ∀S1 ∈
Rn×m, G(S1/2) ≥ σ(1/2)G(S1) which, when injected
in (24), gives the desired result.

REFERENCES

[1] M. ApS. The MOSEK optimization toolbox for MATLAB.
[2] L. Bako. On a class of optimization-based robust estimators. IEEE

Transactions on Automatic Control, 62(11):5990–5997, 2017.
[3] E. J. Candes. The restricted isometry property and its implications for

compressed sensing. Comptes rendus mathematique, 346(9-10):589–
592, 2008.

[4] E. J. Candès and M. B. Wakin. An introduction to compressive
sampling. IEEE Signal Processing Society, 25:21–30, 2008.

[5] A. Cardenas, S. Amin, and S. Sastry. Secure control: Towards
survivable cyber-physical systems. In International Conference on
Distributed Computing Systems Workshops, Beijing, China, pages
495–500, 2008.

[6] Y. H. Chang, Q. Hu, and C. J. Tomlin. Secure estimation based kalman
filter for cyber–physical systems against sensor attacks. Automatica,
95:399–412, 2018.

[7] S. Farahmand, G. B. Giannakis, and D. Angelosante. Doubly robust
smoothing of dynamical processes via outlier sparsity constraints.
IEEE Transactions on Signal Processing, 59(10):4529–4543, 2011.

[8] H. Fawzi, P. Tabuada, and S. Diggavi. Secure estimation and
control for cyber-physical systems under adversarial attacks. IEEE
Transactions on Automatic Control, 59(6):1454–1467, 2014.

[9] S. Foucart and H. Rauhut. A mathematical introduction to compressive
sensing. Birkhäuser, 2013.

[10] A. Gelb. Applied optimal estimation. MIT press, 1974.
[11] M. C. Grant and S. P. Boyd. CVX: Matlab software for disciplined

convex programming, version 2.1. 2017.
[12] D. Han, Y. Mo, and L. Xie. Convex optimization based state estimation

against sparse integrity attacks. IEEE Transaction on Automatic
Control , 64(6): 2334–3303, 2019.

[13] C. M. Kellett. A compendium of comparison function results.
Mathematics of Control, Signals, and Systems, 26:339–374, 2014.

[14] J. Mattingley and S. P. Boyd. Real-time convex optimization in signal
processing. IEEE Signal processing magazine, 27(3):50–61, 2010.

[15] S. Mishra, Y. Shoukry, N. Karamchandani, S. N. Diggavi, and
P. Tabuada. Secure state estimation against sensor attacks in the
presence of noise. IEEE Transactions on Control of Network Systems,
4(1):49–59, 2017.

[16] M. Pajic, I. Lee, and G. J. Pappas. Attack-resilient state estimation for
noisy dynamical systems. IEEE Transactions on Control of Network
Systems, 4(1):82–92, 2017.

[17] F. Pasqualetti, F. Dorfler, and F. Bullo. Attack detection and identi-
fication in cyber-physical systems. IEEE Transactions on Automatic
Control, 58(11):2715–2729, 2013.

[18] M. H. Protter, C. B. Morrey A First Course in Real Analysis New
York: Springer, 1977, p. 57.

[19] R. T. Rockafellar, and J.-B. Wets. Variational Analysis. 3rd ed., Berlin
Heidelberg: Springer Verlag, 2009, pp.11–92.

[20] Y. Sharon, J. Wright, and Y. Ma. Minimum sum of distances estimator:
Robustness and stability. In American Control Conference, St. Louis,
MO, USA, pages 524–530, 2009.

[21] Y. Shoukry and P. Tabuada. Event-triggered state observers for
sparse sensor noise/attacks. IEEE Transactions on Automatic Control,
61(8):2079–2091, 2016.

[22] J. F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization
over symmetric cones. Optimization methods and software, 11(1-
4):625–653, 1999.


