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THE ISOPERIMETRIC PROBLEM FOR THE PERIMETER MINUS A
FRACTION OF A NONLOCAL APPROXIMATE PERIMETER IN 2D

BENOIT MERLET AND MARC PEGON

Abstract. We prove that unit area minimizers are disks for an isoperimetric problem in which the
standard perimeter P (E) is replaced by P (E)− γPε(E), where γ ∈ (0, 1) and Pε is a nonlocal energy
such that Pε(E)→ P (E) as ε vanishes.
More precisely, we show that in dimension 2, connected minimizers are necessarily convex, provided
that ε is small enough. In turn, this implies that minimizers have nearly circular boundaries, that is,
their boundary is a small Lipschitz perturbation of the circle. Then, using a Fuglede-type argument,
we prove that in arbitrary dimension n > 2, the unit ball in Rn is the unique unit-volume minimizer
of the problem among nearly spherical sets. As a consequence, up to translations, the unit disk is the
unique minimizer.
This isoperimetric problem is equivalent to a generalization of the so-called liquid drop model for the
atomic nucleus introduced by Gamow, where the nonlocal repulsive potential is given by a radial
kernel sufficiently integrable kernel. In that formulation our result states that above a critical mass
m0, the disk of area m > m0 is the unique minimizer of area m, up to translations.
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1. Introduction

Given a positive, radial, integrable kernel G : Rn → [0,+∞) with finite first moment (that is,
|x|G(x) ∈ L1(Rn)), we consider the so-called nonlocal perimeter functional PG (see e.g. [9, 5]) defined
on measurable subsets E ⊆ Rn by

PG(E) := 2
¨
E×(Rn\E)

G(x− y) dx dy =
¨

Rn×Rn
|1E(x)− 1E(y)|G(x− y) dxdy. (1.1)

Here 1E denotes the indicator function of E.
For ε > 0, we introduce the rescaled kernel Gε(x) := ε−(n+1)G(ε−1x), x ∈ Rn. As will be justified later,
the first moment of G is fixed to an explicit dimensional constant (see (H2)) so that PGε(E) converges
to P (E) as ε vanishes. Given γ ∈ (0, 1) and ε > 0, we study the minimization problem

min
{
P (E)− γ PGε(E) : |E| = |B1|

}
, (Pγ,ε)

over sets of finite perimeter E in Rn, where |E| denotes the volume of E, that is, its Lebesgue measure,
and B1 is the open unit ball of Rn.

Let us emphasize the competition between the two terms. The perimeter is an attractive term
minimized by balls under volume constraint. On the contrary, if G is radially decreasing, it is easy to
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see that, due to the negative sign, the nonlocal term is maximized by balls.1 This competition makes
the minimization problem nontrivial, even when it comes to existence of minimizers.

Let us introduce the “critical energies”
EGε := P − PGε = F1,Gε ,

and define the energies
Fγ,Gε(E) := (1− γ)P (E) + γEGε(E) = P (E)− γ PGε(E). (1.2)

Although the paper mostly deals with the “subcritical case” γ < 1, we focus on the critical energies in
Section 3.1, and show that they decrease by convexification. Finally, for any k ∈ N \ {0}, we denote by

IkG :=
ˆ
Rn
|x|k|∂k−1

r G(x)|dx

the k-th moment of the (k − 1)-th radial derivative of the kernel G, whenever it is well defined.
In the paper, starting from Section 2, we shall always implicitly assume that the kernel G

satisfies the following general assumptions:
(H1) G is nonnegative and radial, that is, there exists a measurable function g : (0,+∞)→ [0,+∞)

such that G(x) = g(|x|) for a.e. x ∈ Rn;
(H2) the first moment of G is finite and set to be

I1
G = 1

K1,n
,

where, for any ν ∈ Sn−1, the constant K1,n is defined by

K1,n = −
ˆ
Sn−1
|σ · ν|dH n−1

σ .

Starting from Section 4, we may explicitly use the extra assumption
(H3) G ∈W 3,1

loc (Rn \ {0}) and the moments IkG are finite for k ∈ {2, 3, 4}.
Note that those assumptions are in particular satisfied by so-called Bessel kernels, that is, fundamental

solutions of the operators (I − κ∆)α2 , for α, κ > 0 (see e.g. [28, § 3.2] or [18] for their definition and
properties).

We are interested in the asymptotic behavior of (Pγ,ε) as ε vanishes, especially in the planar case
n = 2, where we prove that the unit disk is the only minimizer, up to translations, provided that ε is
small enough. Note however that the intermediate results of Section 3.4 and Section 4 are obtained in
arbitrary dimension, that is, convex minimizers are so-called nearly spherical sets, and the unit ball of
Rn is the unique minimizer among nearly spherical sets whenever ε is small enough.

Let us elaborate on the motivation for studying problem (Pγ,ε). In fact, it is closely linked with
variations of Gamow’s liquid drop model for the atomic nucleus. Indeed, if in addition we assume that
G is integrable in Rn, then we may write

1
2 PGε(E) = ‖Gε‖L1(Rn)|E| −

¨
E×E

G(x− y) dxdy, (1.3)

so that, changing variables, we see that E is a minimizer of (Pγ,ε) if and only if the set F := ε−1E is a
minimizer of

min
{
P (F ) +

¨
F×F

G̃(x− y) : |F | = mε

}
, (1.4)

where mε := ε−n|B1| and G̃ := 2G. When n = 3 and G̃(x) = 1
8π

1
|x| , this is Gamow’s liquid drop model

(see [10] for a general overview); note however that in that case, the minimized functional cannot be
rewritten as the difference between the perimeter and a nonlocal perimeter, since G is not integrable
near the origin. As a prototypical model for various physical systems involving the competition between
short-range attractive forces and long-range repulsive ones, generalizations of this model have gained
increasing interest during the past decade, in particular generalizations in higher dimensions, where the
Coulomb potential is replaced with Riesz potentials, that is, G̃(x) = |x|α−n, α ∈ (0, n). Without being
exhaustive, it was shown that for every Riesz kernel, there exists a critical mass m0 > 0 such that, for
every m < m0, the ball of volume m is, up to translations, the unique minimizer of the liquid drop

1In fact, even if G is not radially decreasing, Gε “concentrates” near the origin when ε is small, heuristically making
(−PGε ) a repulsive term whenever G does not vanish identically.
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model (1.4) (see [20, 21, 19, 6, 13]). Conversely, for α ∈ [n− 2, n), there exists a critical mass m1 > 0
such that, for every m > m1, the problem admits no minimizer (see [6, 20, 21, 23, 14]). More general
kernels of Riesz-type were then studied e.g. in [8, 26], where the unit ball is shown to be the unique
minimizer in the small mass regime. The case of general compactly supported kernels has also been
addressed in [29], where the author shows existence of minimizers for all masses.

Between Riesz kernels, which are not integrable at infinity, where (1.4) does not admit minimizers
above a critical mass, and compactly supported kernels, where (1.4) always admits minimizers, it is
natural to wonder what happens with non-compactly supported but reasonably decaying kernels, such
as Bessel kernels. These kernels behave as Riesz potentials near the origin, but decrease exponentially at
infinity. They were suggested in [22] as a replacement for Riesz kernels for modeling diblock copolymers
when long-range interactions are partially screened by fluctuations in the background nuclear fluid
density. The study of the liquid drop model in the large mass regime with kernels satisfying assumptions
(H1) and (H2) (such as Bessel kernels), which is equivalent to the study of (Pγ,ε) when ε is small, has
been started by the second author in [28]. The existence of minimizers for any γ ∈ (0, 1) was established
therein for ε small enough, as well as the convergence of minimizers to the unit ball as ε vanishes. It
was conjectured there that the ball is actually the unique minimizer up to translations, for ε small
enough.

In this paper, we give a positive answer to this conjecture in dimension n = 2, with the extra
assumption (H3), which is still satisfied by Bessel kernels. The conjecture remains open in higher
dimensions. Note that the kernel G is assumed to be radial but not necessarily radially nonincreasing,
as is often the case. Let us also emphasize that, contrarily to the small mass regime for Riesz-type
potentials, where the nonlocal repulsive term vanishes compared to the attractive perimeter term, here
the nonlocal perimeter term does not vanish but rather localizes to a fraction of the standard perimeter.
Although the small mass regime has been extensively studied, the literature on large mass minimizers
for Gamow-type problem is still sparse, and existence is usually recovered by adding an extra attractive
potential such as in [2, 1, 17].

We shall now state the main result of the paper.

Theorem A (Minimality of the unit disk). Assume n = 2 and G satisfies (H1) to (H3). Then there
exists ε∗ = ε∗(G, γ) > 0, such that, for every ε < ε∗, the unit disk is the unique minimizer of (Pγ,ε), up
to translations.

The proof decomposes as follows. First we establish:

Theorem 1 (2D minimizers are convex). Assume n = 2 and G satisfies (H1) and (H2). Then there
exists ε1 = ε1(G, γ) > 0 such that, for every 0 < ε < ε1, (Pγ,ε) admits a minimizer, and every minimizer
is convex, up to a Lebesgue-negligible set.

The existence of minimizers for small ε was shown in [28], where the author also proved that they
are necessarily connected whenever ε is small enough. The idea for proving the convexity of minimizers
is to study the critical energy on the real line, and show that it decreases by convexification and by
expansion of segments, so that, by a slicing argument, the critical energy of a connected set in dimension
2 decreases after convexification. As a consequence, since the perimeter of a connected set is also
reduced by convexification, so is Fγ,Gε . This slicing argument is specific to the dimension 2, where a
line intersects a connected set if and only if it intersects its convex hull. This fails in higher dimension.

Note that this is not enough to conclude that minimizers are convex. Indeed, although for every
minimizer E ⊂ R2 with ε small enough, we have Fγ,Gε(co(E)) 6 Fγ,Gε(E), where co(E) denotes the
convex hull of E, the volume of co(E) is larger than |B1| if E is not convex. However, using the fact
that a minimizer E is already close to the unit ball by [28] and the convexity of co(E), we prove that,
if E is not convex, scaling down co(E) to make its volume equal to |B1| strictly decreases Fγ,Gε(E),
which contradicts the minimality.

The convexity of minimizers Eε allows us to improve the convergence of ∂Eε towards ∂B1 as ε goes
to 0, from the previously known Hausdorff convergence to Lipschitz convergence. We deduce that
minimizers are nearly spherical sets, whose definition we give just below.

Definition 1 (Nearly spherical sets). For t ∈ (0, 1
2 ), we say that E is a centered t-nearly spherical

set if ˆ
E

xdx = 0,
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and if there exists u ∈ Lip(Sn−1) with ‖u‖L∞(Sn−1) + ‖∇τ u‖L∞(Sn−1) 6 1 such that

∂E =
{(

1 + tu(x)
)
x : x ∈ Sn−1

}
.

In dimension n = 2, we use the terminology “t-nearly circular set” for “t-nearly spherical set”.

Theorem 2 (2D minimizers have nearly circular boundaries; see Proposition 3.11). Assume n = 2 and
G satisfies (H1) and (H2). There exist ε2 = ε2(G, γ) > 0 and a function t : (0, ε2)→ [0, 1

2 ) depending
only on G and γ vanishing in 0 such that, for every ε < ε2, any minimizer E of (Pγ,ε) is, up to
translation, a centered t(ε)-nearly circular set.

Theorem 2 is a direct consequence of Theorem 1 and the uniform convergence of minimizers already
shown in [28], using the geometric fact that the normal vectors to a convex set lying between two balls
Br and BR, r 6 1 6 R converge to those of the unit ball as r,R→ 1 (see [27, 15]).

We end the proof by showing that for ε and t small enough, any centered t-spherical minimizer of
(Pγ,ε) is the unit ball. This last result is not specific to dimension n = 2.

Theorem 3 (Minimality of the unit ball among nearly spherical sets; see Proposition 4.3). Assume
that G satisfies (H1) to (H3). Then there exist t∗ = t∗(n,G, γ) > 0 and ε3 = ε3(n,G, γ) > 0 such that,
for every t < t∗, if E is a t-nearly spherical set, then we have

Fγ,ε(B1) 6 Fγ,ε(E), ∀0 < ε < ε3,

and the inequality is strict if E 6= B1.

The proof relies on a Fuglede-type result [15] for the nonlocal perimeter PGε of nearly spherical sets
Et: more precisely, by a Taylor expansion we control PGε(Et)− PGε(B1) from above in terms of the
H1(Sn−1) norm of the perturbation u describing Et (see Lemma 4.2).

Theorem A is then an immediate consequence of Theorems 1 to 3.

Outline of the paper. The structure of the paper follows the strategy of the proof. In Section 2 we
recall some useful results from [28] on minimizers of (Pγ,ε) and some facts on nonlocal perimeters. In
Section 3, we show that 2D minimizers are convex and thus nearly circular sets for small ε, that is,
Theorem 1 and Theorem 2, where the latter is a consequence of Proposition 3.11. Finally, Section 4 is
dedicated to the proof of Theorem 3, which is a consequence of Proposition 4.3.

Notation.
Operations on sets. For any set E ⊆ Rn, Ec := Rn \ E denotes its complement, co(E) its convex hull
(that is, the intersection of all convex sets containing E), and |E| its Lebesgue measure, whenever E is
measurable. We write E t F for the union of two disjoint sets.

Hausdorff measures. We denote by H k the k-dimensional Hausdorff measure in Rn. When integrating
w.r.t. the measure H k in a variable x, we use the notation dH k

x instead of the more standard but less
compact dH k(x).

Balls and spheres. We denote by Br(x) the open ball in Rn of radius r centered at x. For brevity, we
write Br when x is the origin. The volume of B1 is ωn := |B1| = π

n
2

Γ(1+n
2 ) , and the area of the unit

sphere Sn−1 is H n−1(Sn−1) = nωn, which we also write |Sn−1| for simplicity.

Sets of finite perimeter. We denote by BV(Rn) the space of functions with bounded variation in Rn.
For any f ∈ BV(Rn) we let |Df | be its total variation measure, and set [f ]BV(Rn) :=

´
Rn |Df |. For a set

of finite perimeter E in Rn, we let 1E ∈ BV(Rn) be its characteristic function (i.e., 1E(x) = 1 if x ∈ E
and 0 otherwise), and define its perimeter by Pn(E) :=

´
Rn |D 1E |. When there can be no confusion,

we may drop the superscript and simply write P (E) for the perimeter functional in Rn. We denote by
µE := D 1E the Gauss–Green measure associated with the set of finite perimeter E, and by νE(x) the
outer unit normal of ∂∗E at x, where ∂∗E stands for the reduced boundary of E. We refer to e.g. [12,
Chapter 5] or [24] for further details on functions of bounded variations and sets of finite perimeter.
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2. Preliminaries

From now on we assume that G satisfies (H1) and (H2).
For a general nonnegative radial kernel K with finite first moment, we have the following control of

PK by the perimeter, as an immediate consequence of [28, Proposition 3.1] and of the second expression
of the nonlocal perimeter in (1.1).

Proposition 2.1. If K : Rn → [0,+∞) is a nonnegative radial kernel with finite first moment, for
every set of finite perimeter E in Rn, we have

PK(E) 6 K1,nI
1
KP (E).

In particular, by (H1) and (H2), we have
PGε(E) 6 P (E), ∀ε > 0.

We also have the following convergence result, which is a consequence of [11].

Proposition 2.2. For any set of finite perimeter E in Rn, we have

PGε(E) ε→0−−−→ P (E).

We will use the following computation obtained in [28, Lemma 3.5], which clarifies the behavior of
the nonlocal perimeter under scaling.

Lemma 2.3. For any set of finite perimeter E ⊆ Rn, the function t 7→ PGε(tE) is locally Lipschitz
continuous in (0,+∞), and for almost every t, we have

d
dt [PGε(tE)] = n

t
PGε(tE)− 1

t
P̃Gε(tE),

where P̃Gε(E) is defined by

P̃Gε(E) := 2
ˆ
E

ˆ
∂∗E

Gε(x− y) (y − x) · νE(y) dH n−1
y dx. (2.1)

Let us remark that in [28], G is assumed to be in addition integrable in Rn, but the proof is already
done by approximation with smooth compactly functions, and it adapts by approximating x 7→ |x|G(x)
with functions x 7→ |x|Gk(x) in L1(Rn) s.t. |Gk| 6 G and noticing that

|PG(E)− PGk(E)| 6 P (E)
ˆ
Rn
|x||(G−Gk)(x)|dx.

In order to study the minimality of the unit ball among nearly spherical sets, we will use the following
Bourgain-Brezis-Mironescu-type result (see [7]) for approximating the H1 seminorm on the sphere by
nonlocal seminorms.

Lemma 2.4. Let us define the (n− 1)-dimensional approximation of identity (ηε)ε>0 by
η(t) := 2t2g(t), and ηε(t) := ε−(n−1)η(ε−1t), ∀t > 0, ∀ε > 0.

When n = 2, we assume in addition that g is such that the family (ηε)ε>0 satisfies

sup
r∈(R,2)

ηε(r)
ε→0−−−→ 0, ∀R ∈ (0, 2). (2.2)

Then for any u ∈ H1(Sn−1), we have¨
Sn−1×Sn−1

(u(x)− u(y))2

|x− y|2
ηε(|x− y|) dH n−1

x dH n−1
y 6

(
1 + qη(ε)

) ˆ
Sn−1
|∇τ u|2 dH n−1,

where qη(ε) vanishes as ε goes to 0, and depends only on n and G. In addition, for any u ∈ H1(Sn−1),¨
Sn−1×Sn−1

(u(x)− u(y))2

|x− y|2
ηε(|x− y|) dH n−1

x dH n−1
y

ε→0−−−→
ˆ
Sn−1
|∇τ u|2 dH n−1.

Proof. One easily checks that assumptions (H1) and (H2) ensure that the family (ηε)ε>0 is a (n− 1)-
dimensional approximation of identity, up to multiplication by the constant K2,n−1 = 1

n−1 , i.e.,
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(i) |Sn−2|
ˆ +∞

0
ηε(r)rn−2 dr = 1

K2,n−1
; (ii) lim

ε→0

ˆ +∞

δ

ηε(r)rn−2 dr = 0, ∀δ > 0.

These properties (together with (2.2) when n = 2) allow us to apply [28, Propositions A.1 & A.4],
which gives the result. �

Remark 2.5. If (H3) stands true, then the condition (2.2) is satisfied, in particular when n = 2. Indeed,
by Remark 4.1 below, we see that (H3) implies that rn+1g(r) r→∞−−−→ 0, so that

ηε(r) = r2ε−(n+1)g(ε−1r) = r1−n(ε−1r)−(n+1)g(ε−1r)
vanishes uniformly on (R, 2) as ε→ 0, for every R ∈ (0, 2).

Eventually, gathering results from [28, Theorems A and B] (see also Theorem 4.16 therein), we
have existence and convergence results for minimizers of (Pγ,ε). We also know that minimizers are
connected for small ε. Here connectedness is to be understood in a measure-theoretic sense for sets of
finite perimeter, often referred to as indecomposability, as defined below (see [3]).

Definition 2.6. We say that a set of finite perimeter E is decomposable if there exist two sets of
finite perimeter E1 and E2 such that E = E1 t E2, |E1| > 0, |E2| > 0 and P (E) = P (E1) + P (E2).
Naturally, we say that a set of finite perimeter is indecomposable if it is not decomposable.

Let us remark that by [3, Theorem 2], the notion of connectedness and indecomposability coincide
whenever E is an open set of finite perimeter such that H n−1(∂E) = H n−1(∂∗E).

Theorem 2.7. There exist ε0 = ε0(n,G, γ) and a function δ = δ(n,G, γ) : (0,+∞)→ (0, 1
4 ) vanishing

in 0 such that the following holds. For every 0 < ε < ε0, (Pγ,ε) admits a minimizer. In addition, any
such minimizer Eε is indecomposable, and up to a translation and a Lebesgue-negligible set, it satisfies

B1−δ(ε) ⊆ Eε ⊆ B1+δ(ε). (2.3)
In dimension n = 2, any minimizer Eε with 0 < ε < ε0 is Lebesgue-equivalent to a connected set which
still satisfies (2.3).

Proof. In [28], the kernel G is assumed to be integrable in Rn. However, it is actually only required
for the two following reasons: first, to be able to write (1.3) and obtain the equivalence with the
Gamow-type minimization problem (1.4); second, by this equivalence, to deduce that minimizers of
(Pγ,ε) are so-called quasi-minimizers of the perimeter, and thus are (non-uniformly in ε) C1, 1

2 -regular
outside a “small” singular set. Here, we do not need the equivalence with (1.4) nor the a priori regularity
of minimizers. In the end, apart from the C1, 1

2 partial regularity of minimizers, all the conclusions
of [28, Theorems A and B] follow. More precisely, there exists ε0 = ε0(n,G, γ) such that, for any
0 < ε < ε0, (Pγ,ε) admits a minimizer. In addition, any such minimizer Eε is indecomposable and, up
to a translation and Lebesgue-negligible set, it satisfies

B1−δ(ε) ⊆ Eε ⊆ B1+δ(ε),

where δ : (0,+∞)→ (0, 1
4 ) is a function depending only on n, G, and γ vanishing in 0.

To conclude, there remains to show that in dimension n = 2, Eε is equivalent to a connected set with
(2.3), that is, to link the indecomposability of Eε with the topological notion of connectedness. It is not
a trivial question, at least without (weak) regularity results on minimizers. However, [3, Theorem 8]
shows that in dimension 2, Ẽε := E̊Mε \ ∂SEε is connected, where E̊Mε is the measure-theoretic interior
of Eε, and

∂SEε :=
{
x ∈ R2 : lim sup

r→0+

H 1(∂∗Eε ∩Br(x))
r

> 0
}
.

Since H 1(∂SEε \ ∂∗Eε) = 0 and L 2(Eε4E̊Mε ) = 0, we have |Eε4Ẽε| = 0, and since B1−δ(ε) ⊆ E̊Mε ⊆
B1+δ(ε) and ∂SEε ⊆ B1+δ(ε) \B1−δ(ε), Ẽε satisfies (2.3). �

Remark 2.8. In higher dimensions n > 3, one could show as well that any minimizer of (Pγ,ε) is
equivalent to a connected set for small ε, without assuming that G ∈ L1(Rn). Indeed, proceeding
e.g. as in [25, Lemma 5.6], it is possible to obtain uniform (w.r.t. ε) density estimates for minimizers,
and with those to deduce that any minimizer is equivalent to an open set Eε such ∂Eε = sptµε. The
indecomposability of Eε then implies connectedness by [3].
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3. Minimizers are nearly circular sets in dimension 2

3.1. Decrease of the critical energy by convexification. We can recover the nonlocal perimeter
of a measurable set E ⊆ Rn by integrating the 1-dimensional nonlocal perimeter of all 1-dimensional
sections of E in a given direction, and averaging over all the directions.

Proposition 3.1. For any measurable set E ⊆ Rn−1, we have

PGε(E) =
ˆ
Sn−1

ˆ
(span(σ))⊥

(¨
Eσ,y×(R\Eσ,y)

|s− t|gε(|s− t|) dsdt
)

dH n−1
y dH n−1

σ

= 1
2ωn−1

ˆ
Sn−1

(ˆ
(span(σ))⊥

P1
ρε(Eσ,y) dH n−1

y

)
dH n−1

σ ,

where
Eσ,y :=

{
s ∈ R : y + sσ ∈ E

}
, (3.1)

ωn−1 is the volume of the unit ball in Rn−1, and P1
ρε is the 1-dimensional nonlocal perimeter in R

associated with the kernel ρε defined by ρε(r) := ωn−1|r|n−1gε(|r|) for L 1-a.e. r ∈ R, that is,

P1
ρε(J) :=

¨
R×R
|1J(s)− 1J(t)|ρε(s− t) dsdt,

for every measurable set J ⊆ R.

Proof. By the change of variable y = x+ rσ with fixed x and Fubini’s theorem, we have

PGε(E) = 2
¨
E×Ec

G(x− y) dxdy

= 2
ˆ
Sn−1

ˆ +∞

0

ˆ
E

1Ec(x+ rσ) rn−1gε(r) dxdr dH 1
σ

= 1
ωn−1

ˆ
Sn−1

ˆ
R

ˆ
E

1Ec(x+ rσ) ρε(r) dxdr dH 1
σ ,

where we have used the definition of ρε for the last equality. Then, for σ fixed, let us make the change
of variable x = y + sσ, where y = π(span(σ))⊥(x) is the orthogonal projection of x on (span(σ))⊥. This
yields

PGε(E) = 1
2

ˆ
Sn−1

ˆ
(span(σ))⊥

ˆ
R

ˆ
R

1E
(
sσ + y

)
1Ec

(
(s+ r)σ + y

)
ρε(r) dsdr dH n−1

y dH n−1
σ .

Finally, using Fubini’s theorem and making the change of variable t = s+ r, where s is fixed, we obtain,
by definition of Eσ,y and P1

ρε ,

PGε(E) = 1
ωn−1

ˆ
Sn−1

ˆ
(span(σ))⊥

ˆ
Eσ,y

ˆ
R\Eσ,y

ρε(s− t) dsdtdH n−1
y dH n−1

σ

= 1
2ωn−1

ˆ
Sn−1

ˆ
(span(σ))⊥

P1
ρε(Eσ,y) dH n−1

y dH n−1
σ .

This concludes the proof. �

Remark 3.2. Recall that by [28, Lemma 3.13], K1,n = Γ(n2 )
√
πΓ(n+1

2 ) , so that, by (H2), the kernel ρε satisfies

ˆ
R
|t|ρε(t) dt = 2ωn−1

ˆ ∞
0

tngε(t) dt = 2ωn−1I
1
G

|Sn−1|
= 2ωn−1

K1,n|Sn−1|
= 1 = 1

K1,1
.

Hence by Proposition 2.1, we have

E1
ρε(E) = P (E)− P1

ρε(E) > 0

for every measurable set E ⊆ R.
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Similarly, as a straightforward consequence of [4, Theorem 3.103], for any set of finite perimeter
E ⊆ Rn−1, Eσ,y is a one-dimensional set of finite perimeter for H n−1-a.e. σ and y, and we have

P (E) = 1
2ωn−1

ˆ
Sn−1

ˆ
(span(σ))⊥

P 1(Eσ,y) dH n−1
y dH n−1

σ ,

where P 1(Eσ,y) = H 0(∂Eσ,y) is the standard perimeter in dimension 1. Hence we have the following
representation of the critical energy EGε .

Corollary 3.3. For any set of finite perimeter E ⊆ Rn, we have

EGε(E) = 1
2ωn−1

ˆ
Sn−1

ˆ
(span(σ))⊥

E1
ρε(Eσ,y) dH n−1

y dH n−1
σ ,

where E1
ρε := P 1 − P1

ρε , and Eσ,y is given by (3.1).

For a segment (a, b) ⊆ R, we have the following simple expression of the one-dimensional critical
energy.

Lemma 3.4. For every a, b ∈ R such that a < b, we have

E1
ρε((a, b)) = 4

ˆ a

−∞

ˆ +∞

b

ρε(s− t) dsdt. (3.2)

In particular E1
ρε(a, b) decreases as the interval grows. In addition,

E1
ρε((b,+∞)) = E1

ρε((−∞, a)) = 0. (3.3)

Proof. By a change of variable and Fubini’s theorem, for any a ∈ R, we have

P 1
ρε((−∞, a)) = 2

ˆ a

−∞

ˆ +∞

a

ρε(t− s) dsdt = 2
ˆ +∞

0
ρ(t)

(ˆ t

0
ds
)

dt = 2
ˆ +∞

0
tρ(t) dt = 1.

Similarly, P 1
ρε((b,+∞)) = 1, and since P 1((−∞, a)) = P 1((b,+∞)) = 1, (3.3) follows. Next,

2 = P 1((a, b)) = P 1((−∞, a)) + P 1((b,+∞))

= 2
ˆ a

−∞

ˆ +∞

a

ρε(s− t) dsdt+ 2
ˆ b

−∞

ˆ +∞

b

ρε(s− t) dsdt,
(3.4)

for every a, b ∈ R such that a < b. We also have

P 1
ρε((a, b)) = 2

ˆ a

−∞

ˆ b

a

ρε(s− t) dsdt+ 2
ˆ +∞

b

ˆ b

a

ρε(s− t) dsdt. (3.5)

Subtracting (3.5) from (3.4), we obtain (3.2). �

For a general set of finite perimeter in R, we have the following expression of the critical energy.

Lemma 3.5. For any set E ⊆ R which is the finite disjoint union of open intervals, let {Ci}i∈{1,...,N}
be the connected components of Ec. Then we have

E1
ρε(E) = 2

∑
16i,j6N
i 6=j

¨
Ci×Cj

ρε(s− t) dsdt+
N∑
i=1
E1
ρε(Ci), (3.6)

where, for the intervals Ci, E1
ρε(Ci) is given by Lemma 3.4.

Let us point out that Ec may have up to two unbounded connected components, and their critical
energy is 0 by Lemma 3.4. As a consequence of Lemmas 3.4 and 3.5, the 1D critical energy decreases
by convexification and by increase of length.

Corollary 3.6. Let E ⊆ J ⊆ R with J an interval and L 1(E) > 0, then E1
ρε(J) 6 E1

ρε(E).

Proof. Let E ⊆ R with L 1(E) > 0, and let J be an interval containing E. Let a′ 6 a < b 6 b′ ∈
R ∪ {±∞} such that co(E) = (a, b) and J = (a′, b′). If a′ = −∞ or b′ = +∞, E1

ρε(J) = 0 6 E1
ρε(E)

by Lemma 3.4 and Remark 3.2, so the result holds true. If E does not have finite perimeter, then
E1
ρε(E) = +∞, and the result holds true as well. Thus, let us assume that E is a bounded set of finite

perimeter. In particular, up to a negligible set, E is the disjoint union of k open intervals with k > 1
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since L 1(E) > 0. In addition, since E is bounded, Ec has two unbounded components C1 = (−∞, a)
and Ck+1 = (b,+∞) (up to renumbering). By Lemmas 3.4 and 3.5, we have

E1
ρε(E) > 4

ˆ
C1×Ck+1

ρε(s− t) dsdt = E1
ρε((a, b)) > E

1
ρε(J).

�

Proof of Lemma 3.5. Let

E =
k⊔
i=1

(ai, bi),

with −∞ 6 a1 < b1 < . . . < ak < bk 6 +∞, so that, setting b0 := −∞ and ak+1 := +∞, the connected
components of Ec are given by

Ci = (bi, ai+1), ∀i ∈ {0, . . . , k}.
Beware that C0 and Ck are either empty or unbounded. If a1 = −∞, C0 = ∅, and if bk = +∞, Ck = ∅,
in which cases it is an abuse to consider them connected components of Ec, but they do not contribute
to the terms in (3.6). Omitting the integrand ρε(s− t) dsdt for the sake of readability, let us write

P1
ρε(E) = 2

k∑
i=0

ˆ
E

ˆ
Ci

=
k∑
i=0

(
2
ˆ
Ci

ˆ
{t∈E : t>ai+1}

+2
ˆ
Ci

ˆ
{t∈E : t<bi}

)
, (3.7)

with the convention {t < −∞} = {t > +∞} = ∅. By (3.4), we have

P 1(E) =
k∑
i=1

(
2
ˆ ai

−∞

ˆ +∞

ai

+2
ˆ bi

−∞

ˆ +∞

bi

)
. (3.8)

Note that this holds even if a1 = −∞ or bk = +∞. Let us define

Ri := 2
ˆ ai+1

−∞

ˆ +∞

ai+1

−2
ˆ
Ci

ˆ
{t∈E : t>ai+1}

, ∀i ∈ {0, . . . , k},

and similarly

Li := 2
ˆ bi

−∞

ˆ +∞

bi

−2
ˆ
Ci

ˆ
{t∈E : t<bi}

, ∀i ∈ {0, . . . , k}.

Notice that Rk = L0 = 0. We observe that by definition of Li, Ri and (3.7), (3.8),

E1
ρε(E) =

k∑
i=0

(Li +Ri) . (3.9)

Writing ˆ ai+1

−∞

ˆ +∞

ai+1

=
ˆ bi

−∞

ˆ +∞

ai+1

+
ˆ
Ci

ˆ +∞

ai+1

,

for i ∈ {0, . . . , k}, using Lemma 3.4 we have

Ri = 2
(ˆ bi

−∞

ˆ +∞

ai+1

+
ˆ
Ci

ˆ +∞

ai+1

)
− 2
ˆ
Ci

ˆ
{t∈E : t>ai+1}

= 2
ˆ
Ci

ˆ
{t∈Ec : t>ai+1}

+1
2E

1
ρε(Ci). (3.10)

and similarly,
Li = 2

ˆ
Ci

ˆ
{t∈Ec : t<bi}

+1
2E

1
ρε(Ci). (3.11)

The two previous equations hold even if C0, Ck are empty or unbounded. Inserting (3.10) and (3.11)
into (3.9) yields

E1
ρε(E) = 2

k∑
i=0

(ˆ
Ci

ˆ
Ec ∩{t>ai+1}

+
ˆ
Ci

ˆ
Ec ∩{t<bi}

)
+

k∑
i=0
E1
ρε(Ci)

= 2
k∑
i=0

∑
j 6=i

ˆ
Ci

ˆ
Cj

+
k∑
i=0
E1
ρε(Ci),

which concludes the proof. �
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We easily deduce from Lemma 3.5 and the slicing decomposition of the critical energy stated in
Corollary 3.3 that in dimension n = 2, the critical energy of a connected set decreases by convexification.

Proposition 3.7. If E ⊆ R2 is a bounded, connected set of finite perimeter, then

EGε(co(E)) 6 EGε(E), ∀ε > 0.

Proof. First, recall that a bounded convex set is a set of finite perimeter, since it is Lebesgue-equivalent
to an open set with Lipschitz boundary, thus co(E) is a set of finite perimeter. Then, by Corollary 3.3
we have

EGε(co(E)) = 1
4

ˆ
S1

ˆ
R
E1
ρε(Eσ,t) dtdH 1

σ , and EGε(co(E)) = 1
4

ˆ
S1

ˆ
R
E1
ρε(Fσ,t) dtdH 1

σ ,

where

Eσ,t :=
{
s ∈ R : tσ⊥ + sσ ∈ E

}
, and Fσ,t :=

{
s ∈ R : tσ⊥ + sσ ∈ co(E)

}
.

Since E is connected, for every σ ∈ S1 and t ∈ R, the slice Fσ,t is empty if and only Eσ,t is empty: this
is the argument which is valid in dimension 2 only. In addition, since E and co(E) are bounded sets of
finite perimeter in R2, for H 1-a.e. σ ∈ S1 and L 1-a.e. t ∈ R, Eσ,t and Fσ,t are bounded sets of finite
perimeter in R, and for every nonempty slice, Fσ,t is an interval s.t. Eσ,t ⊆ Fσ,t, since Fσ,t is a slice of
the convex hull of E. Hence, by Lemmas 3.4 and 3.5, for H 1-a.e. σ ∈ S1 and L 1-a.e. t ∈ R, there
holds

E1
ρε(Fσ,t) 6 E

1
ρε(Eσ,t).

The formula of Corollary 3.3 concludes the proof. �

3.2. Convexity of minimizers in 2D. In this part, we shall use for the sake of brevity the abbrevia-
tions Fγ,ε := Fγ,Gε and Eε := EGε .

Consider a connected minimizer Eε ⊆ R2 of (Pγ,ε). Recall that Fγ,ε = (1 − γ)P + γEε, thus by
Proposition 3.7, Fγ,ε(co(Eε)) 6 Fγ,ε(Eε). However, if Eε is not convex, |co(Eε)| > |Eε|, so co(Eε) is
not a valid competitor for (Pγ,ε). Recalling that B1−δ(ε) ⊆ Eε ⊆ B1+δ(ε) for small ε, we have

B1−δ(ε) ⊆ co(Eε) ⊆ B1+δ(ε),

and defining tε :=
√

|B1|
|co(Eε)| , we see that tεco(Eε) is a valid competitor with (1 + δ(ε))−1 < tε < 1. Let

us show that Fγ,ε(tεco(Eε)) < Fγ,ε(co(Eε)). This follows from the following result, which we prove
further below.

Lemma 3.8. There exists ε1 = ε1(G, γ) > 0 such that the following holds. If E ⊆ R2 is a convex set
such that

B1−δ(ε) ⊆ E ⊆ B1+δ(ε),

with 0 < ε < ε1 and where δ is the function given by Theorem 2.7, then

Fγ,ε(tE) < Fγ,ε(E), ∀t ∈ ( 1
2 , 1).

As a consequence, we obtain that minimizers of (Pγ,ε) are necessarily convex for small ε in dimension
n = 2, that is Theorem 1:

Proof of Theorem 1. Let Eε ⊆ R2 be a minimizer of (Pγ,ε) with 0 < ε < ε1 6 ε0, where ε0(G, γ) is
given by Theorem 2.7. Thus, up to a Lebesgue-negligible set and a translation, Eε is connected and
satisfies

B1−δ(ε) ⊆ Eε ⊆ co(Eε) ⊆ B1+δ(ε).

By contradiction, let us assume that Eε is not convex, so that |co(Eε)| > |B1|. We have |tεco(Eε)| = |B1|
with tε :=

√
|B1|
|co(Eε)| satisfying

1
2 6 (1 + δ(ε))−1 < tε < 1, provided that ε1 = ε1(G, γ) is chosen small

enough. If in addition ε1 < ε1(G, γ), where ε1 is given by Lemma 3.8, we find Eγ,ε(tεco(Eε)) <
Eγ,ε(co(Eε)). Now, since Eε is connected, there holds Eγ,ε(co(Eε)) 6 Eγ,ε(Eε) by Corollary 3.6, hence
Eγ,ε(tεco(Eε)) < Eγ,ε(Eε). This contradicts the minimality of Eε, whence Eε is convex. �
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3.3. Proof of Lemma 3.8. In order to prove that Fγ,ε(co(Eε)) (strictly) decreases by scaling down
co(Eε) by tε for small ε, we need to estimate the term P̃Gε(tεco(Eε)) appearing when applying
Lemma 2.3. While it is not so difficult to see that for a fixed set E with C1 boundary, P̃Gε(E) converges
to P (E) as ε vanishes, here we do not have uniform regularity estimates on minimizers of (Pγ,ε)2.
However, we can make use of the convexity of co(Eε) and the fact that it lies between two balls whose
radii are close to 1 to prove the following.

Lemma 3.9. For any α ∈ (0, 1), there exist positive constants r = r(α) and ε2 = ε2(G, γ, α) such that
the following holds. If E ⊆ R2 is a convex set such that

B1−δ(ε) ⊆ E ⊆ B1+δ(ε),

with 0 < ε < ε2, where the function δ is given by Theorem 2.7, then we have{
y ∈ Br(x) : x− y

|x− y|
· νE(x) > α

}
⊆ E, for H 1-a.e. x ∈ ∂E. (3.12)

Proof. We proceed in two steps.
Step 1. We show that the normal vector νE converges uniformly for H 1-a.e. x ∈ ∂E to νB1 as ε
vanishes, in the sense that∣∣∣∣νE(x)− x

|x|

∣∣∣∣ 6 2

√
δ(ε)

1 + δ(ε) , for H 1-a.e. x ∈ ∂E. (3.13)

The simple geometric argument is well known (see e.g. [27, 15]), but we state it here for the reader’s
convenience. Let θε ∈ (0, π) be the angular diameter of the ball B1−δ(ε) from any point x ∈ ∂B1+δ(ε),
that is, θε is the non-oriented angle between the two lines passing by x ∈ ∂B1+δ(ε) and tangent to
∂B1−δ(ε). Then we have θε = 2 arcsin

(
1−δ(ε)
1+δ(ε)

)
. Let x ∈ ∂E, and let ϕ ∈ (0, π2 ) be the non-oriented

angle between x and a tangent line to E at x. Since E is convex and B1−δ(ε) ⊆ E, the tangent cone to
E at x cannot intersect B1−δ(ε), and since |x| 6 1 + δ(ε), we find

ϕ 6
θε
2 = arcsin

(
1− δ(ε)
1 + δ(ε)

)
.

By convexity of E, for H 1-a.e. x ∈ ∂E, there is a unique tangent line to E at x, and writing∣∣∣∣νE(x)− x

|x|

∣∣∣∣2 = 2(1− sin(ϕ)),

we deduce (3.13).
Step 2. Let α ∈ (0, 1), and let r(α), ε2(G, γ, α) to be fixed later. Then let E ⊆ R2 be as in the statement
of the lemma, with 0 < ε < ε2. As a consequence of Step 1, proving (3.12) amounts to showing that for
r(α) and ε2(G, γ, α) small enough,{

y ∈ Br(x) : x− y
|x− y|

· x
|x|
>
α

2

}
⊆ E, ∀x ∈ ∂E. (3.14)

We assume that r ∈ (0, 1
2 ) and then that ε2 = ε2(G, γ, r) ∈ (0, r2 ) is such that δ(ε) < 1

4 whenever
0 < ε < ε2. Let x = |x|(cosψ, sinψ) ∈ ∂E with ψ ∈ [0, 2π). Since x ∈ B1+δ(ε) \ B1−δ(ε), the set
∂Br(x) ∩B1−δ(ε) is made of exactly two points A and B. Let us denote by ϕ(x, r) ∈ (0, π) the angle
between the segments [Ax] and [Bx]. Then let us introduce the circular sector C(x, r) of Br(x) delimited
by A and B (see Figure 1), that is

C(x, r) :=
{
x− s

(
cos(θ + ψ), sin(θ + ψ)

)
: 0 < s < r, |θ| 6 ϕ(x, r)

2

}
=
{
y ∈ Br(x) : x− y

|x− y|
· x
|x|
> cos

(
ϕ(x, r)

2

)}
.

(3.15)

2The lack of uniform regularity estimates for minimizers of (Pγ,ε) as ε goes to 0 is the main obstacle for proving that
the unit ball is, up to translations, the unique minimizer for ε small enough. With sufficient regularity, the arguments of
Section 4 would yield the result.
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O x

E

B1−δ(ε)

B1+δ(ε)

Br(x)
C(x, r)

A

B

O x

1− δ(ε)
h

ϕ
2

e

r

A

B

Figure 1. The situation in Step 2 of the proof of Lemma 3.9. The red-dashed area is C(x, r).

We claim that for ε2 small enough, ϕ(x, r) > 2 arcsin
√

1− r2. The situation is as in Figure 1, where
we introduce the lengths h and e. We have{

h2 + e2 = r2

(|x| − e)2 + h2 =
(
1− δ(ε)

)2 ,

which gives, after computation,

h2 = r2
[
1− 1

4|x|2

(
r2 + 2

(
|x|2 − (1− δ(ε))2)+ 1

r2

(
|x|2 − (1− δ(ε))2)2)] .

Recalling that 1− δ(ε) 6 |x| < 1 + δ(ε) and r < 1
2 , this implies

h2 > r2 − r4

4
(
1 + δ(ε)

)2
[

1 + 4δ(ε)
r2 +

(
4δ(ε)
r2

)2
]
> r2 (1− r2) ,

provided ε2 = ε2(G, γ, r) is chosen small enough. Thus, the angle ϕ(r, x) satisfies

sin
(
ϕ(r, x)

2

)
= h

r
>
√

1− r2,

which proves the claim. Choosing r = r(α) and ε2(G, γ, r) small enough, we deduce cos
(
ϕ(r,x)

2

)
6 α

2 .
By convexity of E and the fact that B1−δ(ε) ⊆ E, we have C(x, r) ⊆ E, hence (3.14) holds, in view of
(3.15). This concludes the proof. �

Then we can estimate P̃Gε(E) when E is a convex set lying between the disks B1−δ(ε) and B1+δ(ε),
for small ε.

Lemma 3.10. For any τ > 0, there exists ε3 = ε3(G, γ, τ) > 0 such that the following holds. If E ⊆ R2

is a convex set such that
B1−δ(ε) ⊆ E ⊆ B1+δ(ε),

with 0 < ε < ε3, where the δ function is the one from Theorem 2.7, then we have

(1− τ)P (E) 6 P̃Gε(E) 6 P (E),

where P̃Gε(E) is defined by (2.1).

Proof. Let E be as in the statement of the lemma, with 0 < ε < ε3(G, γ, τ), where ε3 is to be fixed
later. Recall that since E is a bounded convex set, it is a set of finite perimeter and its topological
boundary is H 1-equivalent to ∂∗E. We proceed in two steps.
Step 1. We show that P̃Gε(E) 6 P (E). First, note that by convexity of E, we have

(x− y) · νE(x) > 0, for H 1-a.e. x ∈ ∂E, ∀y ∈ E,



THE ISOPERIMETRIC PROBLEM FOR THE PERIMETER MINUS A NONLOCAL PERIMETER 13

and, defining for H 1-a.e. x ∈ ∂E,

Hx :=
{
y ∈ Rn : (x− y) · νE(x) > 0

}
,

it holds
P̃Gε(E) 6

ˆ
∂E

ˆ
Hx

Gε(x− y)(x− y) · νE(x) dH 1
x dy.

Then, by a change of variable and the coarea formula, we find

P̃Gε(E) 6 2
ˆ
∂E

ˆ
{z ∈R2 : z·νE(x)> 0}

Gε(z)
(
z · νE(y)

)
dz dH 1

x

= 2
ˆ
∂E

ˆ +∞

0
gε(t)t2

(ˆ
{σ∈ S1 : σ·νE(x)> 0}

σ · νE(x) dH 1
σ

)
dtdH 1

x

=
ˆ
∂E

ˆ +∞

0
gε(t)t2

(ˆ
S1
|σ · νE(x)|dH 1

σ

)
dtdH 1

x

= K1,2

ˆ
∂E

|S1|
ˆ +∞

0
gε(t)t2 dtdH 1

x = I1
GK1,2P (E) = P (E),

where we also used the definition of K1,2 for the third equality, and (H2) for the last one.
Step 2. Conclusion. Let α ∈ (0, 1) to be chosen later, and θ0 := arcsin(α). Then let r = r(α) > 0 and
ε2(G, γ, α) given by Lemma 3.9. Assume that ε3 < ε2. Let us write

P̃Gε(E) = 2
ˆ
∂E

ˆ
E ∩{|x−y|<r}

Gε(x− y) (x− y) · νE(x) dy dH 1
x

+ 2
ˆ
∂E

ˆ
E ∩{|x−y|> r}

Gε(x− y) (x− y) · νE(x) dxdH 1
: =: P̃ (1)

Gε
(E) + P̃

(2)
Gε

(E).

Since ε < ε2, by Lemma 3.9, we have

P̃
(1)
Gε

(E) > 2
ˆ
∂E

ˆ{
y∈Br(x) : x−y

|x−y| ·νE(x)>α
}Gε(x− y)(x− y) · νE(x) dy dH 1

x

= 2
ˆ
∂E

ˆ +∞

0
gε(t)t2

ˆ
{σ∈ S1 : α6σ·νE(x)6 1}

σ · νE(x) dH 1
σ dtdH 1

x

> P (E)− 2
ˆ
∂E

ˆ +∞

0
gε(t)t2

ˆ 2θ0

0
(cos(θ), sin(θ)) · νE(x) dθ dtdH 1

x .

Here we used the fact that, by assumption (H2),

P (E) = 2
ˆ
∂E

ˆ +∞

0
t2gε(t)

ˆ
{σ∈ S1 : σ·e> 0}

(σ · e) dH 1
σ dtdH 1, ∀e ∈ S1.

We bound the remaining term by using |(cos(θ), sin(θ)) · νE(x)| 6 1 and (H2) again. We get

P̃
(1)
Gε

(E) >
(

1− 2I1
G

π
θ0

)
P (E) =

(
1− 2θ0

K1,2π

)
P (E).

Choosing α (and thus θ0) small enough, depending only on τ , we then find

P̃
(1)
Gε

(E) >
(

1− τ

2

)
P (E).

Since α = α(τ), we have r = r(τ), and ε2 = ε2(G, γ, τ). Now that with r now fixed, up to choosing
ε3 < ε2 even smaller if needed, there holds

|P̃ (2)
Gε

(E)| 6 P (E)
ˆ
Bc
r

|x|Gε(x) dx = P (E)
ˆ
Bc
r/ε

|x|G(x) dx 6 τ

2P (E),

since the first moment of G is finite. Hence, from our choice of r and ε3, we obtain

P̃Gε(E) > (1− τ)P (E),
which concludes the proof. �

We are now in position to prove Lemma 3.8.
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Proof of Lemma 3.8. Let τ > 0 to be chosen later. Recall that by Lemma 2.3, for almost every t, we
have

d
dt [PGε(tE)] = 2

t
PGε(tE)− 1

t
P̃Gε(tE),

where P̃Gε is defined by (2.1). Changing variables, we have
1
t
P̃Gε(tE) = 2t3

ˆ
E

ˆ
∂E

Gε(t(x− y))(y − x) · νE(y)

= 2
ˆ
E

ˆ
∂E

G(t−1ε)(x− y)(y − x) · νE(y) dH 1
y dx = P̃Gt−1ε

(E).

Let τ > 0 such that γ(1 + τ) < 1, and let ε < ε3(G, γ, τ)/2, where ε3 is given by Lemma 3.10. By
Lemma 3.10, we have

1
t
P̃Gε(tE) > (1− τ)P (E).

With Proposition 2.1, this leads to
d
dt [PGε(tE)] 6 2

t
P (tE)− (1− τ)P (E) = (1 + τ)P (E).

Hence, for every t ∈ ( 1
2 , 1), it follows

Fγ,ε(E)−Fγ,ε(tE) = (1− t)P (E)− γ
ˆ 1

t

d
ds [PGε(sE)] ds > (1− t)P (E)

[
1− γ(1 + τ)

]
> 0.

This proves the lemma. �

3.4. Convex minimizers are nearly spherical sets. In arbitrary dimension, it is classical to
improve Hausdorff convergence of the boundary of minimizers to Lipschitz convergence once convexity
is established. Here, we show that convex minimizers of (Pγ,ε) are centered t(ε)-nearly spherical sets
(see Definition 1), up to a translation, where the function t vanishes in 0+.

Proposition 3.11 (Convex minimizers are nearly spherical sets). There exists ε4 = ε4(n,G, γ) > 0
such that the following holds. If Eε ⊆ Rn is a convex minimizer of (Pγ,ε) with 0 < ε < ε4, then, up to
a translation, we have

∂Eε =
{

(1 + uε(x))x : x ∈ Sn−1
}

and ˆ
Eε

xdx = 0,

with uε ∈ Lip(Sn−1), ‖uε‖L∞(Sn−1) 6 δ(ε) and ‖∇τ uε‖L∞(Sn−1) 6 14δ(ε) 1
2 , where δ = δ(n,G, γ) is the

function of Theorem 2.7 vanishing in 0.

Proof. In the proof, we write ‖·‖∞ for ‖·‖L∞(Sn−1). Let Eε be a minimizer (Pγ,ε) with 0 < ε < ε4,
where ε4 is to be fixed later. If ε4 < ε0, where ε0 is given by Theorem 2.7, up to a translation and a
negligible set, Eε lies between the balls B1−δ(ε) and B1+δ(ε). By convexity, this implies that the set Eε
itself (without the addition or the subtraction of a negligible set) satisfies, up to a translation,

B1−δ(ε) ⊆ Eε ⊆ B1+δ(ε).

Setting yε := − 1
|B1|

ˆ
Eε

xdx, we have
ˆ
yε+Eε

x dx = yε|Eε|+
ˆ
Eε

xdx = yε|B1|+
ˆ
Eε

x dx = 0.

Notice that
−
ˆ
Eε

xdx = −
ˆ
B1+δ(ε)

xdx+
ˆ
B1+δ(ε)\Eε

xdx =
ˆ
B1+δ(ε)\Eε

xdx

thus ∣∣∣∣ˆ
Eε

xdx
∣∣∣∣ 6 (1 + δ(ε))|B1+δ(ε) \ Eε| 6 2δ(ε)

provided that ε4 is small enough depending only on n, G and γ. Hence, up to translating Eε by yε, we
may assume that it satisfies

B1−3δ(ε) ⊆ Eε ⊆ B1+3δ(ε), (3.16)
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and is centered, that is, ˆ
Eε

xdx = 0.

By convexity of Eε, for every x ∈ Sn−1, there is a unique point of intersection pε(x) = tε(x)x of
{tx : t > 0} and ∂Eε, and by (3.16), |pε(x)− x| 6 3δ(ε). The map pε : Sn−1 → ∂Eε is obviously onto,
so that, setting uε(x) = tε(x)− 1, we have

∂Eε =
{

(1 + uε(x))x : x ∈ Sn−1
}
,

and ‖uε‖∞ 6 3δ(ε). In addition, the fact that Eε is convex implies uε ∈ Lip(Sn−1). Moreover, for any
x ∈ Sn−1, the distance between the normal vector of ∂Eε (which exists for H n−1-almost every x ∈ ∂Eε)
at pε(x) and the vector x (which is the normal vector of Sn−1 at x) is controlled by ‖pε− Id‖∞ = ‖uε‖∞,
in view of Step 1 of the proof of Lemma 3.9 (or simply by [27, Corollary 1]), which gives a control of
‖∇τ uε‖∞ by ‖u‖∞. More precisely, by [15, Inequality (∗∗)], we have

‖∇τ uε‖∞ 6 2
(

1 + ‖uε‖∞
1− ‖uε‖∞

)
‖uε‖

1
2∞ 6 14δ(ε) 1

2 ,

where we used the inequality ‖uε‖∞ 6 δ(ε) 6 1
4 for the last inequality. This concludes the proof. �

Observe that Theorem 2 is an immediate corollary of Theorem 1 and Proposition 3.11.

4. Minimality of the unit ball among nearly spherical sets

This section is devoted to the proof of the minimality of the unit ball of Rn among t-nearly spherical
sets, for small t and ε. First, let us point out some consequences of the extra assumption (H3).

Remark 4.1. Note that with (H2), (H3) is equivalent to saying that g ∈W 3,1
loc (0,+∞) and the functions

t 7→ tn+i
∣∣∣∣digdti (t)

∣∣∣∣, are integrable on (0,+∞), for i ∈ {0, 1, 2, 3}. In addition, integrating the function

(tn+1g(t))′ between r and R, we have the relation

Rn+1g(R)− rn+1g(r) = (n+ 1)
ˆ R

r

tng(t) dt+
ˆ R

r

tn+1g′(t) dt.

Since tng(t) and tn+1g′(t) are integrable on (0,+∞), this implies that tn+1g(t) has a limit in 0+ and at
infinity. By the integrability of tng(t) on (0,+∞), those limits are necessarily 0. Hence, letting r → 0
and R→∞ in the previous relation yieldsˆ +∞

0
tn+1g′(t) dt = −(n+ 1)

ˆ +∞

0
tng(t) dt.

Proceeding similarly for (tn+2g′(t))′, we also findˆ +∞

0
tn+2g′′(t) dt = −(n+ 2)

ˆ +∞

0
tn+1g′(t) dt = (n+ 1)(n+ 2)

ˆ +∞

0
tng(t) dt.

4.1. A Fuglede-type result for the nonlocal perimeter. The minimality of the unit ball among
nearly spherical sets relies on a bound (in our case, an upper bound) on the quantity PGε(Et)−PGε(B1)
for a centered t-nearly spherical set Et with ∂Et =

{
(1 + tu(x)) : x ∈ Sn−1}, in terms of the L2 norms

of u and ∇τ u on the sphere. In the case of the local perimeter, this kind of control is well known and
is originally due to B. Fuglede (see [15, Theorem 1.2]), who proved

t2

10

(
‖u‖2L2(Sn−1) + ‖∇τ u‖2L2(Sn−1)

)
6
P (Et)− P (B1)

P (B1) 6
3
5‖∇τ u‖

2
L2(Sn−1),

provided that t is small enough, depending only on n. One can find a more precise lower bound in
[16, Proof of Theorem 3.1, eq. (3.8)]. Similar results were obtained for so-called fractional perimeters
Ps as well as for Riesz potentials in [13] (see Theorems 2.1 and 8.1 therein), where the quantities are
bounded in terms of the L2 norm and fractional Sobolev seminorms on the sphere. Our computations
are inspired by the ones in [13], however, due to the general form of the kernel G, they are more involved
and quite tricky at times.

In addition, when ε vanishes, the quadratic terms from the Taylor expansion of PGε(Et)− PGε(B1)
compensate exactly those of P (B1)− P (Et), so that the constant γ must be smaller than 1, and the
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expansion needs to be pushed to the third order to be able to conclude. Let us point out that similarly
to fractional perimeters, fractional Sobolev-type seminorms associated with the kernel Gε (and its
derivatives) naturally appear in the expansion. However, those converge to the H1 seminorm as ε
vanishes, which is the quantity we need to compare them to (when expanding the local perimeter): that
is why we chose to control PGε(Et)− PGε(B1) directly in terms of the H1 seminorm of u on Sn−1.

Lemma 4.2. Assume that G satisfies (H1), (H2) and (H3). There exist positive constants ε5 = ε5(n,G)
and t0 = t0(n) such that the following holds. If Et is a centered t-nearly spherical set with 0 < t < t0,
then for any 0 < ε < ε5, we have

PGε(Et) 6 PGε(B1) + t2

2

((
1 + Cqη(ε)

)
‖∇τ u‖2L2(Sn−1) −

(
(n− 1)− eG(ε)

)
‖u‖2L2(Sn−1)

)
+ Ct3

(
‖∇τ u‖2L2(Sn−1) + ‖u‖2L2(Sn−1)

)
,

(4.1)

where C = C(n,G), qη is given by Lemma 2.4, qη(ε)→ 0 as ε ↓ 0, and eG : (0,+∞)→ [0,+∞) is a
function vanishing in 0+ depending only on n and G.

Proof. In the proof, unless stated otherwise, C denotes a positive constant depending only on n and
possibly changing from line to line. For the sake of brevity we write B for the open unit ball in Rn, ∂B
for the unit sphere Sn−1, and ‖·‖∞ for ‖·‖L∞(Sn−1). Let 0 < ε < ε5, where ε5 = ε5(n,G) is to be fixed
later.
Let t0 = t0(n) < 1

8 to be fixed later, and let Et be a centered t-nearly spherical set such that
∂Et =

{
(1 + tu(x))x : x ∈ Sn−1} with 0 < t < t0. We proceed in 3 steps.

Step 1. We rewrite PGε(Et) in a more convenient form, introducing two terms that we will bound from
above in the next steps. Using polar coordinates, we have

PGε(Et) = 2
¨
∂B×∂B

ˆ 1+tu(x)

0

ˆ +∞

1+tu(y)
Gε(rx− ρy)rn−1ρn−1 dr dρdH n−1

x dH n−1
y .

By symmetry of G, we see that

PGε(Et) =
¨
∂B×∂B

(ˆ 1+tu(x)

0

ˆ +∞

1+tu(y)
Gε(rx− ρy)rn−1ρn−1 dr dρ

+
ˆ 1+tu(y)

0

ˆ +∞

1+tu(x)
Gε(rx− ρy)rn−1ρn−1 dr dρ

)
dH n−1

x dH n−1
y .

Using the identity
ˆ b

0

ˆ +∞

a

+
ˆ a

0

ˆ +∞

b

=
ˆ b

a

ˆ b

a

+
ˆ a

0

ˆ +∞

a

+
ˆ b

0

ˆ +∞

b

,

and the symmetry of G yet again, we find

PGε(Et) =
¨
∂B×∂B

ˆ 1+tu(x)

1+tu(y)

ˆ 1+tu(x)

1+tu(y)
Gε(rx− ρy)rn−1ρn−1 dr dρ dH n−1

x dH n−1
y

+ 2
¨
∂B×∂B

ˆ 1+tu(x)

0

ˆ +∞

1+tu(x)
Gε(rx− ρy)rn−1ρn−1 dr dρdH n−1

x dH n−1
y .

(4.2)

A straightforward computation leads to the identity

|rx− ρy|2 = (r − ρ)2 + rρ|x− y|2, ∀x, y ∈ Sn−1, ∀r, ρ > 0.

Defining

fε(|x− y|, r, ρ) := rn−1ρn−1Gε(rx− ρy) = rn−1ρn−1gε

((
(r − ρ)2 + rρ|x− y|2

) 1
2
)
,
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using identity (4.2) and changing variables, we find

PGε(Et) = t2
¨
∂B×∂B

ˆ u(x)

u(y)

ˆ u(x)

u(y)
fε(|x− y|, 1 + ta, 1 + tb) da dbdH n−1

x dH n−1
y

+ 2
¨
∂B×∂B

ˆ 1

0

ˆ +∞

1
(1 + tu(x))2fε

(
|x− y|, (1 + tu(x))r, (1 + tu(x))ρ

)
dr dρ dH n−1

x dH n−1
y

=: t2ϕε(t) + ψε(t).
(4.3)

This concludes Step 1.
Step 2. Estimation of ϕε(t). Note that by Lemma 2.4 and Remark 2.5, we have

ϕε(0) =
¨
∂B×∂B

(u(x)− u(y))Gε(x− y) dH n−1
x dH n−1

y

=
¨
∂B×∂B

(u(x)− u(y))2

|x− y|2
ηε(|x− y|) dH n−1

x dH n−1
y

6
(
1 + Cqη(ε)

)
‖∇τ u‖2L2(Sn−1).

(4.4)

Then, let us write,
ϕε(t)− ϕε(0)

=
¨
∂B×∂B

ˆ u(x)

u(y)

ˆ u(x)

u(y)

(
(1 + ta)n−1(1 + tb)n−1Gε

(
x− y + t(ax− by)

)
−Gε(x− y)

)
da dbdH n−1

x dH n−1
y

=
¨
∂B×∂B

ˆ u(x)

u(y)

ˆ u(x)

u(y)

(
(1 + ta)n−1(1 + tb)n−1 − 1

)
Gε
(
x− y

)
dadbdH n−1

x dH n−1
y

+
¨
∂B×∂B

ˆ u(x)

u(y)

ˆ u(x)

u(y)
(1 + ta)n−1(1 + tb)n−1

(
Gε
(
x− y + t(ax− by)

)
−Gε(x− y)

)
da dbdH n−1

x dH n−1
y

=: I1(t) + I2(t)

(4.5)

On one hand, since ‖u‖∞ 6 1, we have on the domain of integration,∣∣(1 + ta)n−1(1 + tb)n−1 − 1
∣∣ 6 Ct‖u‖∞ 6 Ct.

Thus
I1(t) 6 Ct

¨
∂B×∂B

ˆ
(u(x),u(y))

ˆ
(u(x),u(y))

Gε
(
x− y

)
da dbdH n−1

x dH n−1
y

= Ct

¨
∂B×∂B

(u(x)− u(y))2Gε(x− y) dH n−1
x dH n−1

y

= Ct

¨
∂B×∂B

(u(x)− u(y))2

|x− y|2
ηε(|x− y|) dH n−1

x dH n−1
y ,

where ηε is defined as in Lemma 2.4 so that gε(r) = ηε(r)
2r2 . In view of Lemma 2.4 and Remark 2.5, it

follows
I1(t) 6 Ct

(
1 + qη(ε)

) ˆ
∂B

|∇τ u|2 dH n−1

6 Ct‖∇τ u‖2L2(Sn−1),

(4.6)

for any ε small enough (depending only on n and G).
Let us now bound the term I2(t). Integrating on a line (recall that g is absolutely continuous in (0,+∞)
by (H3)), and using the inequality (1 + ta)n−1(1 + tb)n−1 6 2 for any 0 < a, b 6 ‖u‖∞ 6 1, provided
that t0 = t0(n) is chosen small enough, we find

I2(t) 6 2t
¨
∂B×∂B

∣∣∣∣∣
ˆ u(x)

u(y)

ˆ u(x)

u(y)

ˆ 1

0
|∇Gε(x− y + st(ax− by)) · (ax− by)|dsdadb

∣∣∣∣∣dH n−1
x dH n−1

y .

(4.7)
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Observe that in (4.7), if the term (x− y) inside ∇Gε were not perturbed by st(ax− by), we would have

I2(t) 6 4t
¨
∂B×∂B

(u(x)− u(y))2|∇Gε(x− y)||x− y|dsdH n−1
x dH n−1

y ,

which we could estimate in terms of ‖∇τ u‖2L2(Sn−1) by applying directly Lemma 2.4 with the kernel
x 7→ |∇Gε(x)||x|3. Here, to deal with this perturbation, we apply the technical Lemma A.2, by showing
that the right-hand side of (4.7) is bounded by a term of the form

Ct

ˆ 1

0

¨
∂B×∂B

ˆ 1

0

ˆ 1

0
(u(x)− u(y))2k(1)

ε (|Φstu(x, y, r, ρ)|) dr dρdxdy ds,

where

Φstu(x, y, r, ρ) := (x− y) + st
[(
ru(x) + (1− r)u(y))

)
x−

(
ρu(y) + (1− ρ)u(x)

)
y
]

(4.8)

is a small perturbation of (x− y), and k(1)
ε is a kernel defined further below. Let us remark that, since

G is radial, we have ∇Gε(x) = g′ε(|x|) x
|x| , thus

∇Gε(x− y + st(ax− by)) · (ax− by) = g′ε(|x− y + st(ax− by)|)
(a+b)

2 |x− y|2 + st|ax− by|2

|x− y + st(ax− by)| . (4.9)

Then notice that, on the domain of integration, we have

|x− y + st(ax− by)|2 = s2t2(a− b)2 + (1 + sta)(1 + stb)|x− y|2

> (1 + sta)(1 + stb)|x− y|2 − s2t2(u(x)− u(y))2

>
9
16 |x− y|

2 − 1
16‖∇τ u‖

2
∞|x− y|2 >

1
2 |x− y|

2,

(4.10)

provided t0 < 1
4 . By (4.10), and the inequality |ax− by|2 6 2|x− y|2 on the domain of integration, for

t0 small enough depending only on n, we have

(a+ b)
2 |x− y|2 + st|ax− by|2 6 8|x− y + st(ax− by)|2.

Hence, with (4.9), it follows

|∇Gε(x− y + st(ax− by)) · (ax− by)| 6 C k(1)
ε (|x− y + st(ax− by)|), (4.11)

where we have set k(1)(r) := r|g′(r)| and k(1)
ε (r) := ε−(n+1)k(1)(ε−1r) for all r > 0 and ε > 0. Making

the changes of variables a = u(x) + r(u(y)− u(x)), and b = u(y) + ρ(u(x)− u(y)) in (4.7) yield, with
(4.8) and (4.11),

I2(t) 6 Ct
ˆ 1

0

¨
∂B×∂B

ˆ 1

0

ˆ 1

0
(u(x)− u(y))2k(1)

ε (|Φstu(x, y, r, ρ)|) dr dρdxdy ds.

It is easy to see that by (H3) and Remark 4.1, the family (k(1)
ε )ε>0 satisfies the assumptions of

Lemma A.2. Thus choosing t0 < t1(n) and ε5 < ε6, where t1(n) and ε6(n,G) are given by Lemma A.2,
we have

I2(t) 6 Ct‖∇τ u‖2L2(Sn−1), (4.12)

for a constant C depending on n and G. Combining (4.12) with (4.4) to (4.6), we deduce

ϕε(t) 6 (1 + Cqη(ε))‖∇τ u‖2L2(Sn−1) + Ct
(
‖u‖2L2(Sn−1) + ‖∇τ u‖2L2(Sn−1)

)
, (4.13)

for some C = C(n,G), which concludes this step.
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Step 3. Estimation of ψε(t). We have

ψε(t) = 2
¨
∂B×∂B

ˆ 1

0

ˆ +∞

1
(1 + tu(x))2nrn−1ρn−1Gε

(
(1 + tu(x))(rx− ρy)

)
dr dρdH n−1

x dH n−1
y

= 2
¨
∂B×∂B

ˆ 1

0

ˆ +∞

1
(1 + tu(x))2nrn−1ρn−1Gε(rx− ρy) dr dρdH n−1

x dH n−1
y

+ 2
¨
∂B×∂B

ˆ 1

0

ˆ +∞

1
(1 + tu(x))2nrn−1ρn−1[Gε((1 + tu(x))(rx− ρy)

)
−Gε(rx− ρy)

]
dr dρdH n−1

x dH n−1
y

=: I3(t) + I4(t).
(4.14)

Notice that

2
ˆ
∂B

ˆ 1

0

ˆ +∞

1
rn−1ρn−1Gε(rx− ρy) dr dρ dH n−1

y

= 2
P (B)

¨
∂B×∂B

ˆ 1

0

ˆ +∞

1
rn−1ρn−1Gε(rx− ρy) dr dρdH n−1

y = PGε(B)
P (B)

does not depend on x ∈ ∂B, by symmetry of Gε, hence

I3(t) = PGε(B)
P (B)

ˆ
∂B

(1 + tu(x))2n dH n−1
x .

By a Taylor expansion, this gives

I3(t) 6 PGε(B) + PGε(B)
P (B)

(
2nt
ˆ
∂B

udH n−1 + n(2n− 1) t2
ˆ
∂B

u2 dH n−1

+Ct3
ˆ
∂B

|u|3 dH n−1
)
.

(4.15)

Whence, recalling that PGε(B) 6 P (B), (4.15) gives

I3(t) 6 PGε(B) + n2t2‖u‖2L2(Sn−1) + Ct3
ˆ
∂B

|u|3 dH n−1. (4.16)

As for I4(t), integrating on a line and splitting it into two parts, we write

I4(t) = 2t
¨
∂B×∂B

ˆ 1

0

ˆ +∞

1

ˆ 1

0
u(x)(1 + tu(x))2nrn−1ρn−1∇Gε

(
(1 + stu(x))(rx− ρy)

)
· (rx− ρy) dsdr dρdH n−1

x dH n−1
y

= 2t
¨

∂B×∂B

ˆ 1

0

ˆ +∞

1
u(x)(1 + tu(x))2nrn−1ρn−1∇Gε(rx− ρy)) · (rx− ρy) dr dρdH n−1

x dH n−1
y

+ 2t
¨
∂B×∂B

ˆ 1

0

ˆ +∞

1

ˆ 1

0
u(x)(1 + tu(x))2nrn−1ρn−1

[
∇Gε

(
(1 + stu(x))(rx− ρy)

)
−∇Gε

(
rx− ρy

)]
· (rx− ρy) dsdr dρdH n−1

x dH n−1
y

=: I5(t) + I6(t).
(4.17)

Using the symmetry of the kernel x 7→ ∇G(x) · x, we find

I5(t) = 1
P (B)

(
t

ˆ
∂B

u(z)(1 + tu(z))2n dH n−1
z

)
(

2
¨
∂B×∂B

ˆ 1

0

ˆ +∞

1
rn−1ρn−1∇Gε(rx− ρy) · (rx− ρy) dr dρdH n−1

x dH n−1
y

)
= 1
P (B)

(
t

ˆ
∂B

u(z)(1 + tu(z))2n dH n−1
z

)(
2
¨
B×Bc

∇Gε(x− y) · (x− y) dxdy
)
.

(4.18)
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Noticing that divy((x− y)Gε(x− y)) = −nGε(x− y)−∇Gε(x− y) · (x− y) and integrating by parts
on Bc, we have

2
¨
B×Bc

∇Gε(x− y) · (x− y) dxdy = −
(
nPGε(B) + P̃Gε(B)

)
,

where P̃Gε(B) is defined by (2.1). On the one hand, by Proposition 2.2, PGε(B) converges to P (B) as
ε vanishes, and on the other hand, as mentioned in the beginning of Section 3.2, it is not difficult to see
that P̃Gε(B) also converges to P (B) (the situation is similar but much simpler than in the proof of
Lemma 3.10). Thus,

e
(1)
G (ε) := 2

¨
B×Bc

∇Gε(x− y) · (x− y) dx dy + (n+ 1)P (B) ε→0−−−→ 0. (4.19)

Expanding (1 + tu(z))2n and using the Taylor expansion (A.1) from Lemma A.1, we find

t

ˆ
∂B

u(z)(1 + tu(z))2n dH n−1
z > t

ˆ
∂B

udH n−1 + 2nt2
ˆ
∂B

u2 dH n−1 − Ct3
ˆ
∂B

|u|3 dH n−1

> t2
(

2n− (n− 1)
2

)
‖u‖2L2(Sn−1) − Ct

3
ˆ
∂B

|u|3 dH n−1

= t2
(

3n+ 1
2

)
‖u‖2L2(Sn−1) − Ct

3
ˆ
∂B

|u|3 dH n−1.

(4.20)
Hence, gathering (4.18) to (4.20) yields

I5(t) 6 −
[

(n+ 1)− e
(1)
G (ε)
P (B)

] [
t2
(

3n+ 1
2

)
‖u‖2L2(Sn−1) − Ct

3
ˆ
∂B

|u|3 dH n−1
]

6 −t2
(

1
2(3n+ 1)(n+ 1)− Ce(1)

G (ε)
)
‖u‖2L2(Sn−1) + Ct3

ˆ
∂B

|u|3 dH n−1,

(4.21)

provided that ε5 = ε5(n,G) is chosen small enough.
Then for I6(t), recalling that ∇Gε(x) · x = g′ε(|x|)|x| and that g′ε is absolutely continuous by (H3),
integrating on a line, we obtain

I6(t) = 2t2
¨
∂B×∂B

ˆ 1

0

ˆ +∞

1

ˆ 1

0

ˆ 1

0
su(x)2(1 + tu(x))2nrn−1ρn−1g′′ε

(
(1 + pstu(x))(rx− ρy)

)
|rx− ρy|2 dp dsdr dρdH n−1

x dH n−1
y

= I7(t) + I8(t),

(4.22)

where

I7(t) := 2t2
¨
∂B×∂B

ˆ 1

0

ˆ +∞

1

ˆ 1

0

ˆ 1

0
su(x)2(1 + tu(x))2nrn−1ρn−1g′′ε (rx− ρy)|rx− ρy|2

dp dsdr dρ dH n−1
x dH n−1

y

and

I8(t) := 2t2
¨
∂B×∂B

ˆ 1

0

ˆ +∞

1

ˆ 1

0

ˆ 1

0
su(x)2(1 + tu(x))2nrn−1ρn−1|rx− ρy|2[

g′′ε
(
(1 + pstu(x)(rx− ρy)

)
− g′′ε

(
rx− ρy

)]
dp dsdr dρdH n−1

x dH n−1
y .

Now, by symmetry, similarly to I5(t), we have

I7(t) = 1
P (B)

(
t2

2

ˆ
∂B

u(z)2(1 + tu(z))2n dH n−1
z

)(
2
¨
B×Bc

g′′ε (|x− y|)|x− y|2 dxdy
)
. (4.23)

Setting k(2)(r) := g(r)− rg′(r) for r ∈ (0,+∞), and then defining the kernels K(2)(x) := k(2)(|x|) for
x ∈ Rn \ {0} and the rescalings K(2)

ε := ε−(n+1)K(2)(ε−1 ·), ε > 0, notice that

2
¨
B×Bc

g′′ε (|x− y|)|x− y|2 dxdy = −2
¨
B×Bc

∇K(2)
ε (x− y) · (x− y) dxdy.
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Note that by (H3), K(2) has finite first moment. However, unlike G, it is not necessarily nonnegative.
Still, integrating by parts on Bc as we did before for I5(t), we find

2
¨
B×Bc

g′′ε (|x− y|)|x− y|2 dxdy = nP
K

(2)
ε

(B) + P̃
K

(2)
ε

(B). (4.24)

It is easy to see that we may split K(2) and K(2)
ε ) into their negative and positive parts K(2) = K(2)+ +

K(2)− with K(2)− := max(−K(2), 0) and K(2)+ := max(K(2), 0), so that P
K

(2)
ε

= P
K

(2)+
ε
−P

K
(2)−
ε

.
Then applying Proposition 2.2 to each nonnegative term, we find

P
K

(2)
ε

(B) = P
K

(2)+
ε

(B)−P
K

(2)−
ε

(B) ε→0−−−→ K1,n
(
I1
K(2)+ − I1

K(2)−

)
P (B) = K1,nP (B)

ˆ
Rn
|x|K(2)(x) dx.

Similarly, we have

P̃
K

(2)
ε

(B) ε→0−−−→ K1,nP (B)
ˆ
Rn
|x|K(2)(x) dx.

Hence, recalling (4.24), and using that, in view of Remark 4.1,
ˆ
Rn
|x|K(2)(x) dx = |Sn−1|

ˆ +∞

0
tng(t)− tn+1g′(t) dt = (n+ 2)I1

G = n+ 2
K1,n

,

it follows

e
(2)
G (ε) := 2

¨
B×Bc

g′′ε (|x− y|)|x− y|2 dx dy − (n+ 1)(n+ 2)P (B) ε→0−−−→ 0. (4.25)

Inserting inequality (A.1) from Lemma A.1 and (4.25) into (4.23) then yields

I7(t) 6 1
2

(
(n+ 1)(n+ 2) + e

(2)
G (ε)
P (B)

)
t2‖u‖2L2(Sn−1) + Ct3

ˆ
∂B

|u|3 dH n−1. (4.26)

Eventually, we turn to I8(t). By (H3), g′′ε is absolutely continuous on (0,+∞), so that, integrating on
lines and using (1 + tu(x))2n 6 2, we find

I8(t) 6 Ct3
¨
∂B×∂B

ˆ 1

0

ˆ +∞

1

ˆ 1

0

ˆ 1

0

ˆ 1

0
|u(x)|3sprn−1ρn−1|g′′′ε ((1 + qpst(rx− ρy))||rx− ρy|3

dq dpdsdr dρdH n−1
x dH n−1

y

6 Ct3
(ˆ

∂B

|u|3 dH n−1
)ˆ 1

0

ˆ 1

0

ˆ 1

0

 ¨

B×Bc

|g′′′ε ((1 + qpst)(x− y))||x− y|3 dx dy

 dq dp ds

,
(4.27)

where we used the symmetry of (x, y) 7→ |g′′′ε (x− y + pst(rx− ρy))||rx − ρy|3 and Fubini’s theorem
for the last inequality. Notice that, for any q, p, s ∈ (0, 1), t ∈ (0, t0),¨

B×Bc

|g′′′ε ((1 + qpst)(x− y))||x− y|3 dxdy 6 2
¨

B×Bc

|g′′′ε ((1 + qpst)(x− y))||(1 + qpst)(x− y)|3 dxdy

= P
K

(3)
(1+qpst)ε

(B),
(4.28)

up to choosing t0(n) small enough, where we have set k(3)(r) := r3|g′′′(r)|, ∀r > 0, defined the kernel
K(3) := k(3)(|x|), ∀x ∈ Rn \{0}, and the rescalings K(3)

ε := ε−(n+1)K(ε−1 ·). Note that I1
K(3) = I4

G <∞
by (H3), so that, by Proposition 2.1, we have P

K
(3)
(1+qpst)ε

(B) 6 K1,nI
4
GP (B). Hence, from (4.27)

and (4.28), we obtain
I8(t) 6 Ct3‖u‖2L2(Sn−1), (4.29)

where the constant C here depends on n and G. Gathering (4.22), (4.26) and (4.29), we find

I6(t) 6 t2

2

(
(n+ 1)(n+ 2) + Ce

(2)
G (ε)

)
‖u‖2L2(Sn−1) + Ct3

ˆ
∂B

|u|3 dH n−1,
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where C = C(n,G), and thus, with (4.17) and (4.21), setting eG := C
(
e

(1)
G + e

(2)
G

)
,

I4(t) 6 t2

2 ((n+ 1)(n+ 2)− (3n+ 1)(n+ 1) + CeG(ε)) ‖u‖2L2(Sn−1) + Ct3
ˆ
∂B

|u|3 dH n−1

= t2

2
(
−2n2 − n+ 1 + CeG(ε)

)
‖u‖2L2(Sn−1) + Ct3

ˆ
∂B

|u|3 dH n−1.

In turn, combining this estimate with (4.14) and (4.16), we deduce

ψε(t) 6 PGε(B) + t2

2
(
2n2 − 2n2 − n+ 1 + eG(ε)

)
‖u‖2L2(Sn−1) + Ct3

ˆ
∂B

|u|3 dH n−1

= PGε(B)−
(
n− 1− eG(ε)

) t2
2 ‖u‖

2
L2(Sn−1) + Ct3

ˆ
∂B

|u|3 dH n−1,

(4.30)

where C depends only on n and G, which concludes this step. Eventually, gathering (4.3), (4.13) from
Step 2 and (4.30), we deduce

PGε(Et) 6 PGε(B) + t2

2

((
1 + Cqη(ε)

)
‖∇τ u‖2L2(Sn−1) −

(
(n− 1)− eG(ε)

)
‖u‖2L2(Sn−1)

)
+ Ct3

(
‖∇τ u‖2L2(Sn−1) + ‖u‖2L2(Sn−1)

)
,

(4.31)

for some C = C(n,G), provided t0 = t0(n) is chosen small enough, which concludes the proof. �

4.2. Minimality of the unit ball. In order to take advantage of Lemma 4.2, one should have that
for a centered t-nearly spherical set Et such that ∂Et =

{
(1 + tu(x))x : x ∈ Sn−1}, the quantity(

1 + Cqη(ε)
)
‖∇τ u‖2L2(Sn−1) −

(
(n− 1)− eG(ε)

)
‖u‖2L2(Sn−1)

from (4.1) controls ‖u‖2H1(Sn−1) for small t and ε. This is the purpose of Lemma A.1 in appendix.
With Lemma 4.2 and Fuglede’s result for the local perimeter, we deduce a lower bound for Fγ,Gε(Et)−

Fγ,Gε(B1).

Proposition 4.3. Assume that G satisfies (H1) to (H3). Then there exist positive constants t∗ and ε3
depending only on n, G and γ such that the following holds. If Et is a centered t-nearly spherical set
such that ∂Et =

{
(1 + tu(x))x : x ∈ Sn−1} with 0 < t < t∗, then for every 0 < ε < ε3, we have

Fγ,Gε(Et)−Fγ,Gε(B1) > t2

16(1− γ)
(
‖∇τ u‖2L2(Sn−1) + ‖u‖2L2(Sn−1)

)
.

Proof. Assume 0 < ε < ε3, and 0 < t < t∗, where t∗ = t∗(n) and ε3 = ε3(n,G, γ) will be fixed later. If
Et is a centered t-nearly spherical set and t∗ < t1 as well, where t1 = t1(n) is given by Lemma A.1, we
have in particular

‖∇τ u‖2L2(Sn−1) + ‖u‖2L2(Sn−1) 6 4
(
‖∇τ u‖2L2(Sn−1) − (n− 1)‖u‖2L2(Sn−1)

)
. (4.32)

Then, by [16, Proof of Theorem 3.1, eq. (3.8)] (which gives a more precise lower bound of P (Et)−P (B)
than [15, Theorem 1.2]) and (4.32), up to choosing t∗ even smaller but depending only on n, we have

P (Et) > P (B1) + t2

2

(
‖∇τ u‖2L2(Sn−1) − (n− 1)‖u‖2L2(Sn−1)

)
− Ct3

(
‖∇τ u‖2L2(Sn−1) + ‖u‖2L2(Sn−1)

)
.

Then, assuming that t∗ < t0(n) as well, and ε < ε5(n,G), where t0 and ε5 are given by Lemma 4.2, we
find
Fγ,Gε(Et)−Fγ,Gε(B1)

>
t2

2

[
(1− γ)

(
‖∇τ u‖2L2(Sn−1) − (n− 1)‖u‖2L2(Sn−1)

)
− Cqη(ε)‖∇τ u‖2L2(Sn−1) − eG(ε)‖u‖2L2(Sn−1)

]
− Ct3

(
‖∇τ u‖2L2(Sn−1) + ‖u‖2L2(Sn−1)

)
,

(4.33)
with eG(ε), qη(ε)→ 0 as ε ↓ 0. From (4.32) and (4.33), it follows

Fγ,Gε(Et)−Fγ,Gε(B1) > 1
4

(
t2

2
(
(1− γ)− Cqη(ε)− CeG(ε)

)
− Ct3

)(
‖∇τ u‖2L2(Sn−1) + ‖u‖2L2(Sn−1)

)
.
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Eventually, choosing ε3, t∗ small enough, for 0 < ε < ε3, 0 6 t 6 t∗, we have

Fγ,Gε(Et)−Fγ,Gε(B1) > t2

16(1− γ)
(
‖∇τ u‖2L2(Sn−1) + ‖u‖2L2(Sn−1)

)
,

which proves the result. �

An immediate consequence of Proposition 4.3 is that the unit ball is the only minimizer, up to
translations, of (Pγ,ε), among t-nearly spherical sets whenever t < t∗(n,G, γ) and ε < ε3(n,G, γ), that
is, Theorem 3. In dimension n = 2, by Theorems 2 and 3, setting ε∗ := min(ε2, ε3), we readily obtain
Theorem A.

Appendix A. Additional computations for Section 4

In the following lemma, we establish some general inequalities on functions u : Sn−1 → R describing
centered nearly-spherical sets. For this, we need to recall a few basic facts and notation on spherical
harmonics. For k > 0, we denote by Sk the subspace of spherical harmonics of degree k (i.e., restrictions
to Sn−1 of polynomials of degree k in Rn), which is a finite-dimensional vector space of degree d(k).
Let (Y ik )i∈{1,...,d(k)} be an orthonormal basis of Sk for the standard scalar product of L2(Sn−1). When
there can be no confusion, we write Yk for a generic vector of the basis of Sk. It is well known that the
family (Y ik )i∈{1,...,d(k)}

k∈N is a Hilbert basis of L2(Sn−1) which diagonalizes the Laplace-Beltrami operator
on the sphere, and the eigenvalue associated with Y ik is lk := lk = k(k + n− 2), for all i ∈ {1, . . . , d(k)}.
We recall that d(0) = 1, d(1) = n, and that the Y i1 may be chosen colinear to x 7→ xi, for example
Y i1 = |B1|−

1
2xi, i ∈ {1, . . . , n}.

Lemma A.1. There exist t1 = t1(n) > 0 and C = C(n) > 0 such that the following holds. If Et is a
centered t-nearly spherical set such that ∂Et =

{
(1 + tu(x))x : x ∈ Sn−1} with 0 < t < t1, then we

have ∣∣∣∣tˆ
Sn−1

udH n−1 + (n− 1) t
2

2

ˆ
Sn−1

u2 dH n−1
∣∣∣∣ 6 Ct3 ˆ

Sn−1
|u|3 dH n−1, (A.1)

and
1
2‖∇τ u‖

2
L2(Sn−1) − (n− 1)‖u‖2L2(Sn−1) >

1
2‖u‖

2
L2(Sn−1). (A.2)

Proof. Since |Et| = |B|, we have

n|Et| =
ˆ
∂B

(1 + tu(x))n dH n−1 =
ˆ
∂B

1 dH n−1 = n|B|.

Thus, writing

(1 + tu(x))n −
(

1 + ntu(x) + (n− 1)
2 t2u(x)2

)
=

n∑
k=3

(
n

k

)
tku(x)k,

we deduce (A.1), choosing e.g. t1 = 1 and C depending only on n. There remains to show (A.2). We
decompose u in spherical harmonics

u =
+∞∑
k=0

d(k)∑
i=1

aik(u)Y ik , (A.3)

so that

‖u‖2L2(Sn−1) =
+∞∑
k=0

d(k)∑
i=1

aik(u)2, ‖∇τ u‖2L2(Sn−1) =
+∞∑
k=1

d(k)∑
i=1

lk a
i
k(u)2.

Recall that d(0) = 1, Y 1
0 is constant, d(1) = n, and that Y i1 is colinear to x 7→ xi. Since l1 = n− 1 and

lk > 2n for k > 2, it follows
1
2‖∇τ u‖

2
L2(Sn−1) − (n− 1)‖u‖2L2(Sn−1)

> ‖u‖2L2(Sn−1) −
(n+ 1)

2

(
n∑
i=1

ai1(u)2

)
− (n− 1)a1

0(u)2.
(A.4)

On one hand,
a1

0(u) = 1
|Sn−1|

ˆ
Sn−1

udH n−1,
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so that by (A.1), we have

|a1
0(u)| 6 2t

|Sn−1|
‖u‖2L2(Sn−1) 6

1
2
√
n− 1

‖u‖L2(Sn−1), (A.5)

up to choosing t1 = t1(n) small enough, and using t < t1 and ‖u‖L∞(Sn−1) 6 1. On the other hand, the
barycenter condition ˆ

Et

xdx = 0

gives ˆ
Sn−1

xi(1 + tu(x))n dH n−1
x = 0, ∀i ∈ {1, . . . , n}.

Using the binomial formula again and Y i1 (x) = |B1|−
1
2xi, we obtain, for i ∈ {1, . . . , n},

ai1(u) = 1√
|B1|

ˆ
Sn−1

xiu(x) dH n−1
x = − 1

n
√
|B1|

n∑
k=2

(
n

k

)
tk
ˆ
Sn−1

xiu(x)k dH n−1
x .

Next, using ‖u‖L∞(Sn−1) 6 1, Cauchy-Schwarz inequality, and n|B1| = |Sn−1|, we get

|ai(u)| 6 2n

n
t2‖u‖L2(Sn−1).

Whence, choosing t1 even smaller, but still depending only on n, we may assume
n∑
i=1

ai1(u)2 6
1

2(n+ 1)‖u‖
2
L2(Sn−1). (A.6)

Gathering (A.4) to (A.6), we find
1
2‖∇τ u‖

2
L2(Sn−1) − (n− 1)‖u‖2L2(Sn−1) >

1
2‖u‖

2
L2(Sn−1),

which proves (A.2) and concludes the proof. �

We establish a technical lemma to control terms of the form¨
Sn−1×Sn−1

ˆ 1

0

ˆ 1

0
(u(x)− u(y))2kε(|Φtu(x, y, r, ρ)|) dr dρdH n−1

x dH n−1
y ,

by the H1(Sn−1) norm of u, where Φtu(x, y, r, ρ) is a small perturbation of (x− y), and kε are suitable
rescalings of a nonnegative kernel.

Lemma A.2. Let k : (0,+∞) → [0,+∞) be a measurable function such that k(r) = O(r−(n+1)) at
infinity and ˆ +∞

0
rnk(r) dr <∞.

Let us define the rescaling kε(r) := ε−(n+1)k(ε−1r), r, ε > 0. For v ∈ Lip(Sn−1), we define a map
Φv :

(
Sn−1)2 × (0, 1)2 by

Φv(x, y, r, ρ) = (x− y) +
[(
rv(x) + (1− r)v(y))

)
x−

(
ρv(y) + (1− ρ)v(x)

)
y
]
. (A.7)

Then there exist positive constants t1 = t1(n), C0 = C0(n, k) and ε6 = ε6(n, k) such that the following
holds. For any u ∈ Lip(Sn−1) with ‖u‖L∞(Sn−1) 6 1, ‖∇τ u‖L∞(Sn−1) 6 1, and any t ∈ (0, t1), we have

¨
Sn−1×Sn−1

ˆ 1

0

ˆ 1

0
(u(x)− u(y))2kε(|Φtu(x, y, r, ρ)|) dr dρdH n−1

x dH n−1
y

6 C0

(ˆ
Sn−1
|∇τ u|2 dH n−1 +

ˆ
Sn−1
|u|2 dH n−1

)
.

(A.8)

Proof. Let t1 > 0 to be chosen later, and let 0 < t < t1. We work in local coordinates, proceeding in
two steps.
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Step 1. Let us denote by Dr(x) the open ball of radius r in Rn−1. We first show that for any ũ ∈ Lip(D2)
s.t. ‖ũ‖W 1,∞(D2) 6M , we have
ˆ
D2

ˆ
D2

ˆ 1

0

ˆ 1

0
(ũ(x)− ũ(y))2kε(|Φtũ(x, y, r, ρ)|) dr dρdxdy 6 C

ˆ
D2

|∇ũ|2 dx, ∀r, ρ ∈ (0, 1), (A.9)

for all ε > 0, provided t < t1, and t1 is chosen small depending only on M , and C = C(n, k). Here,
by a slight abuse of notation, Φv denotes the map from

(
Rn−1)2 × (0, 1)2 whose expression is given

by (A.7). Due to the W 1,∞ bound on ũ, we easily see that the maps Φtu are Lipschitz continuous
and converge uniformly to the map Φ(x, y, r, ρ) = x− y on D2

2 × (0, 1)2 as t vanishes. In fact, up to
choosing t1 = t1(M) small enough, we have

|Φtu(x, y, r, ρ)− (x− y)| 6 1
4 , ∀x, y ∈ D2, ∀r, ρ ∈ (0, 1), (A.10)

and

|Φtu(x, y1, r, ρ)− Φtu(x, y2, r, ρ)− (y2 − x1)| 6 |y2 − y1|
4 , ∀x, y1, y2 ∈ D2, ∀r, ρ ∈ (0, 1). (A.11)

In particular, for any y ∈ D2, and r, ρ ∈ (0, 1) fixed, Ψ1
x,r,ρ : y 7→ Φ

tũ
(x, y, r, ρ) is bi-Lipschitz, and

similarly, for any x ∈ D2, r, ρ ∈ (0, 1), so is Ψ2
y,r,ρ : x 7→ Φ

tũ
(x, y, r, ρ). Integrating on lines, using

Cauchy-Schwarz inequality and Fubini’s theorem, we have
ˆ
D2

ˆ
D2

ˆ 1

0

ˆ 1

0
(ũ(x)− ũ(y))2kε(|Φtũ(x, y, r, ρ)|) dr dρdxdy

6
ˆ 1

0

ˆ 1

0

ˆ 1

0

ˆ
D2

ˆ
D2

|∇ũ(x+ s(y − x))|2|x− y|2kε(|Φtũ(x, y, r, ρ)|) dxdy dsdr dρ.
(A.12)

Now let us focus on the integral on D2 ×D2, fixing s ∈ (0, 1
2 ) and r, ρ ∈ (0, 1). Recall that |x− y|2 6

C|Φ
tũ

(x, y, r, ρ)|2 for a universal constant C by (A.10), that the map Ψ2
x,r,ρ is bi-Lipschitz, injective

and by (A.11), its Jacobian determinant is universally bounded from below. Thus making the change
of variable z = Φ

tũ
(x, y, r, ρ) = Ψ2

x,r,ρ(y) (for x fixed), we find
ˆ
D2

ˆ
D2

|∇ũ(x+ s(y − x))|2|x− y|2kε(|Φtũ(x, y, r, ρ)|) dxdy

6 C
ˆ
D2

(ˆ
D2

|∇ũ(x+ s(y − x))|2|Φ
tũ

(x, y, r, ρ)|2kε(|Φtũ(x, y, r, ρ)|) dy
)

dx

6 C
ˆ
D2

(ˆ
Ψ2
x,r,ρ(D2)

∣∣∇ũ(x+ s
(
(Ψ2

x,r,ρ)−1(z)− x
))∣∣2|z|2kε(|z|) dz

)
dx,

for some universal constant C. By (A.10), Ψ2
x,r,ρ(D1) ⊆ D 5

2
(x), so that by Fubini’s theorem, we obtain

ˆ
D2

ˆ
D2

|∇ũ(x+ s(y − x))|2|x− y|2kε(|Φtũ(x, y, r, ρ)|) dxdy

6 C
ˆ
D 9

2

(ˆ
D2∩
{
x : z ∈Ψ2

x,r,ρ(D2)
}∣∣∇ũ(x+ s

(
(Ψ2

x,r,ρ)−1(z)− x
))∣∣2 dx

)
|z|2kε(|z|) dz

= C

ˆ
D 9

2

(ˆ
D2∩
(
−Ψ1

z,ρ,r(D2)
)∣∣∣∇ũ(x− s(Ψ1

z,ρ,r
−1(x) + x)

)∣∣∣2 dx
)
|z|2kε(|z|) dz,

(A.13)

where we used the fact that Φ
tũ

(x, y, r, ρ) = −Φ
tũ

(y, x, ρ, r) for the last equality, which implies
Ψ2
x,r,ρ(y) = −Ψ1

y,ρ,r(x). By (A.11) and the relation between Ψ1
y,ρ,r and Ψ2

x,r,ρ we see that

∥∥((DΨ1
z,ρ,r)−1 + IdRn−1

)
(x)
∥∥ 6 1

4 , ∀x ∈ D2.
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Since s ∈ (0, 1
2 ), we deduce that the Jacobian determinant of ϕ : x 7→ x − s

(
(Ψ1

z,ρ,r)−1(x) + x)
)
is

universally bounded from below. Making the change of variable y = ϕ(x) in (A.13), it followsˆ
D2

ˆ
D2

|∇ũ(x+ s(y − x))|2|x− y|2kε(|Φtũ(x, y, r, ρ)|) dxdy

6 C

(ˆ
D2

|∇ũ(x)|2 dx
)(ˆ

Rn−1
|z|2kε(|z|) dz

)
.

(A.14)

We observe that the last factor is independent of ε and finite by assumption. Indeed:ˆ
Rn−1
|z|2kε(|z|) dz = |Sn−2|

ˆ +∞

0
rnk(r) dr.

Gathering (A.12) and (A.14) yields (A.9), which concludes this step.
Step 2. We split the domain of integration in the left-hand side of (A.8) in

{
x, y ∈ Sn−1 : |x− y| > 1

4
}

and
{
x, y ∈ Sn−1 : |x− y| 6 1

4
}
. We first treat the contribution of distant pairs (x, y). Choosing t1

small enough depending only on n, we have

|Φtu(x, y, r, ρ)| > |x− y|2 , ∀x, y ∈ Sn−1, ∀r, ρ ∈ (0, 1),

so that, ¨

Sn−1×Sn−1

{|x−y|> 1
4}

ˆ 1

0

ˆ 1

0
(u(x)− u(y))2kε(|Φtu(x, y, r, ρ)|) dr dρdH n−1

x dH n−1
y

6 C
ˆ
Sn−1
|u(x)|2

( ˆ

Sn−1

{|x−y|> 1
4}

ˆ 1

0

ˆ 1

0
kε(|Φtu(x, y, r, ρ)|) dr dρdH n−1

y

)
dH n−1

x

6 C

(ˆ
Sn−1
|u|2 dH n−1

)(
sup
r> 1

8

kε(r)
)
6 C

ˆ
Sn−1
|u|2 dH n−1,

(A.15)

for some C = C(n, k), provided that ε6 = ε6(n, k) is chosen small, where we used the fact that
k(t) = O(t−(n+1)) at infinity for the last inequality. There remains to bound the integral over
the domain M :=

{
x, y ∈ Sn−1 : |x− y| < 1

4
}
. For this, we cover M by a finite number N(n) of

Mi := Sn−1
+ (xi) × Sn−1

+ (xi), where for each i ∈ {1, . . . , N}, xi ∈ Sn−1 and Sn−1
+ (xi) denotes the

hemisphere with center xi. Using the stereographic projection Πi with respect to −xi, we map Sn−1
+ (xi)

to D2 ⊆ Rn−1. By the change of variables ξ = Πi(x), ζ = Πi(y), setting ũi := u ◦ Π−1
i , we have

‖ũi‖W 1,∞(D1) 6 C(n) since ‖u‖L∞(Sn−1) 6 1 and ‖∇τ u‖L∞(Sn−1) 6 1. Applying Step 1 with ũ = ũi,
we obtain ¨

Mi

ˆ 1

0

ˆ 1

0
(u(x)− u(y))2kε(|Φtu(x, y, r, ρ)|) dr dρdH n−1

x dH n−1
y

6 C
¨
D2×D2

ˆ 1

0

ˆ 1

0
(ũi(ξ)− ũi(ζ))2kε(|Φtũi(ξ, ζ, r, ρ)|) dr dρdξ dζ

6 C
ˆ
D2

|∇ũi|2 dx 6 C
ˆ
Sn−1

+ (xi)
|∇τ u|2 dH n−1,

whenever t < t1, where t1 = t1(n) and C = C(n, k). Summing these estimates over i ∈ {1, . . . , N(n)}
and (A.15) conclude the proof. �
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