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Extending Convolutional Neural Networks for Localizing the Subthalamic
Nucleus from Micro-Electrode Recordings in Parkinson’s Disease

Thibault Martin!, Maxime Peralta!, Greydon Gilmore2, Paul Sauleau?®,
Claire Haegelen®, Pierre Jannin' and John S.H. Baxter!*

Abstract— Deep brain stimulation (DBS) is an interventional
treatment for Parkinson’s disease which involves the precise po-
sitioning of stimulated electrodes within deep brain structures,
such as the SubThalamic Nucleus (STN). Although originally
identified via imaging, additional inter-operative guidance is
necessary to localize the target anatomy. Analysis of Micro-
Electrode Recordings (MERs) allows for a trained neurophysi-
ologist to infer the underlying anatomy at a particular electrode
position using human audition, although it is subjective and
requires a high degree of expertise. Various approaches to
assist MER analysis during DBS are proposed in the literature,
including deep learning methods, which rely on a static input
description, that is, a pre-defined number of features or input
size. In this paper, we propose two dynamic deep learning
approaches adaptable to the complexity of MERs signal, by
using an arbitrary long listening time (in 1s chunks), while
providing feedback to the neurophysiologist as to the model’s
certainty. We evaluated five different deep learning based
classifiers which can use arbitrary length MERs for STN seg-
mentation. We found that a Bayesian extension using the high-
level features from SepaConvNet performed the best, increasing
the balanced accuracy to 83.5%. This work represents a step
forward in integrating automated analysis of MERs into the
DBS surgical workflow by automatically finding and exploiting
possible efficiencies in MER acquisition.

Index Terms— Bayesian Inference, Deep Brain Stimulation,
Intraoperative STN detection, Micro-Electrode Recordings, Re-
current Neural Network.

I. INTRODUCTION

ARKINSON’S DISEASE (PD) is a neurodegenerative dis-
Porder which affects the basal ganglia, leading to mo-
tor symptoms including difficulty initiating and controlling
movements. Main causes are still not well understood yet,
which many potential environmental and genetic factors. This
lack of a full physiological understanding of the disorder
and therefore a lack of etiological treatment, means that
symptomatic treatments, whether pharmacological or inter-
ventional, are crucial to the management of the disease. In
addition, PD is currently the second most common neu-
rodegenerative disorder after Alzheimer’s disease [1], which
justifies the interest in further developing a more robust
treatment of its primary symptoms.

Deep Brain Stimulation (DBS) is used to reduce motor
symptoms in cases where pharmacological approaches are
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limited. DBS is currently the dominant surgical intervention
for PD [2]. DBS consists in high-frequency electrical stimu-
lation of a target region, usually in the medial globus palidus
or the Subthalamic Nucleus (STN), which is delivered by a
permanently implanted electrode capable of continuous stim-
ulation. As with many neurosurgical interventions, accurate
positioning during implantation is crucial and can determine
the success of the procedure. Stereotactic frames are often
used to help ensure precise movement of electrodes to a
defined target during their implantation [2].

In the current clinical workflow, patients eligible for
DBS undergo a structural Magnetic Resonance Imaging
(MRI) sequence which allows for the target region and
potential electrode trajectories to be identified during the
pre-operative planning phase. Other pre-operative imaging
modalities, especially functional neuro-imaging modalities
such as Positron Emission Tomography (PET) and functional
MRI, could be used to identify the STN from its functional
signature, rather than solely its structural characteristics.
This information is then used to determine the stereotactic
frame angles and estimated depth of the electrode trajectory
which are used during the intervention. However, the use
of pre-operative MRI as the sole guidance modality does not
guarantee the correct positioning of the electrode in the STN.
According to Lozano et al. [3], the use of MRI alone would
lead to a 20% sub-optimality rate for intra-operative STN lo-
calization. This sub-optimality results from several different
sources of errors including: (1) the low resolution and image
distortion which can lead to an erroneous determination of
the anatomical target, (2) the possibility of inducing a brain
shift with the craniotomy, which can shift the preoperative
defined coordinates of the target, and (3) the presence of
mechanical errors related to stereotactic frame positioning
[4].

By introducing an intra-operative data modality, correc-
tions can be made to account for some of the sources of
error, such as errors in the positioning of the stereotactic
frame [5] and brain shift [6]. This allows for some real-
time adjustments to be made to the electrode trajectory,
although they may still have drawbacks in terms of the
visibility of underlying neuroanatomical regions of interest.
For cortical regions, electroencephalography (EEG) is often
used, allowing for the distinct electrophysiological signature
of the target to be identified. However, the STN is a very deep
nucleus, meaning that a prohibitively large and invasive EEG
grid, as well as intensive computation, would be required
to localise it. Intraoperative imaging modalities, such as



intraoperative computed-tomography (iCT), could be used to
assist in the intraoperative electrode positioning itself making
DBS electrode placement an example of an image-guided
intervention [7]. The benefit of this modality is that the
electrode’s position with respect to bony landmarks can be
easily determined. However, the lack of soft-tissue contrast
renders it difficult to distinguish between the subcortical
white and gray matter. Indeed, an anatomical segmentation of
the STN from this modality is limited, and in order to reduce
Parkinsonian symptoms, it is important to further confirm the
location of the STN, by testing the stimulation and observing
changes in the patient’s symptomatology [8].

In order to determine if these real-time adjustments are
correct, it is common to keep the patient under only local
anesthesia in what is known as “awake” brain surgery.
By keeping the patient in a conscious state, the precise
positioning of the electrode can be inferred by the ability
of test stimulation to immediately control motor disorders
or to induce side-effects. This method, although necessary,
results in discomfort for the patient, and may not always
be possible for patients with extreme motor symptoms that
could jeopardize the safety of the surgery. Thus, it is still
necessary to consider guidance modalities that are effective
at assisting the precise implantation of the DBS electrode
while allowing the patient to be in an unconscious state in
order to improve the safety and comfort of the procedure.

Currently, two approaches have been successful: Micro
Electrode Recording (MER), and interventional MRI (iMRI).
Both methods have been found to have similarly strong
clinical results [9][10], although the latter, as with all other
neuroimaging approaches, requires extensive additional ex-
pense and a specialized MR-safe operating theatre.

The MER protocol for DBS consists of capturing an
electrophysiological signal at defined intervals, similar to
EEG, but along the electrode’s trajectory rather than across
the cortical surface. As the neuronal activity of the targeted
nucleus is different from the activity of its environment, the
recorded signal should reflect the neural population at the
electrode’s position. As the density of active neuronal bodies
is higher in the STN than in the surrounding areas [11],
there is higher background noise on the electrophysiological
recording within the STN than outside of it. In addition,
the presence of neurons with spontaneous discharge activity
in the STN results in the appearance of peaks in the MER
recording. This particular pattern allows the localization of
the STN by human audition, but requires the intra-operative
presence of a trained neurophysiologist for the identification
of these signals. Despite the finding of a different electro-
physiological pattern in the STN, the subjective segmentation
of the STN by ear, as well as the time required to verify each
coordinate during the operation, are limiting factors for the
DBS protocol.

II. RELATED WORK

Therefore, in order to improve the efficiency and speed
up this critical intra-operative localization step, many studies
have focused on the automation of STN detection using

MER data. These studies extracted temporal or frequency
relevant features [12][13][14][15][16], leaving out potential
additional informative features. However, the use of hand-
designed descriptive features is limited by the need for
normalization and extraction from the raw data, which can be
problematic across centers and MER acquisition protocols.
Furthermore, these features are not representative of how
an electrophysiologist analyses MER data, which involves
identifying and integrating more nuanced features from the
raw MER signals.

Recently, Khosravi et al. [17] presented an early imple-
mentation of a Deep Neural Network (DNN) to classify MER
data in the context of STN localization. This work demon-
strates the efficiency of using a Discrete Fourier Transform
(DFT) to extract enough discriminant features, and the use
of a DNN binary classifier with this data representation.
DFT made it possible to obtain a spectral power density
(SPD), and thus the frequency profile of a signal. Their early
experiments have shown that such frequency information,
especially at the 500 — 3000 Hz interval was strongly
indicative of the presence of the STN. The structure of their
DNN was based on a standard feed-forward Artificial Neuron
Network (ANN), coupled with the use of Dropout and a
weight decay term based on Ridge regression as a regularizer,
to avoid overfitting. However, a possible leakage of data
from identical patients between the training and validation
sets may have potentially induced a bias, and thus limit the
integration of this work in this field of research. In order to
confront this preliminary approach with the state of the art in
the field of automatic MER analysis, the results of the study
need to be replicated, as the validation presented is limited
by its methodology.

In parallel, the work of Peralta er al. [18] has led to the de-
velopment of a convolutional neural network, SepaConvNET,
capable of providing a prediction from one-second MER
spectrograms. The motivation behind reducing the length
of the MER signal acquired was to minimize the effect of
using such a network during an intervention and to possibly
improve its efficiency by reducing the time spent listening
to the MER, which we call the listening length. However, it
is necessary to keep a long enough listening time to detect a
larger of discriminating features or patterns within which are
indicative of different anatomies. According to the Peralta et
al. [18], the choice of a one-second signal is a good balance
between brevity and the capacity to obtain meaningfully
accurate predictions.

SepaConvNet’s motivation was to replicate the auditory
analysis of the raw signal starting with the human ear, and
thus to avoid the use of feature engineering. It is well known
the human cochlea performs a sort of frequency decom-
position over time similar to the spectrograms generated
from a Short Term Fourier Transform (STFT). In contrast to
representing the entire signal simultaneously through a DFT,
an STFT allows for temporal information to be retained, and
for particular signal frequencies to be temporally localized.
This network therefore uses a spectrogram representation of
the signal as a pre-processing step, providing the network



with a more descriptive input. The high-dimensionality of
spectrogram data would be overwhelming for traditional
machine learning approaches, but adheres perfectly with the
motivation behind Deep Learning (DL) and has previously
been used for auditory signal analysis [19].

The novelty of this network lies in the use of 1D separable
convolutions, which makes it possible to manage a smaller
number of parameters, and therefore train a lighter model
better adapted to the data available. In addition, the nature
of the MER data has shown that the use of 1D separable
convolutions gives better results than 2D convolutions. This
result was explained by the relationship between the input
axes, which is not as obvious as for conventional image
classification [18]. The time and the frequency axes of
the spectrograms are fundamentally different, which renders
shift-invariance in the frequency direction potentially restric-
tive in this domain.

Despite SepaConvNet’s robust results, it still processes
signals with a fixed length. In order to improve the perfor-
mance of this predictive method, we assume that extending
SepaConvNet for a dynamic listening time, longer than one
second, may allow better integration of temporal features,
thus making the model more certain.

Recurrent neural networks

In an ideal case, the amount of MER acquired for use in
the classifier should adapt itself as a function of the certainty
of the classifier. This would allow for shorter MERs to be
processed, extending them only if the classifier is uncertain
and would benefit from the additional data.

Recurrent neural networks have the ability to process
temporal data of variable size by using “loops” in the
network architecture, referring to their previous state. In the
case of a temporal analysis, this allows some information to
be remembered and used at a later time-point. In particular,
Long Term Short Term Memory (LSTM) cells initially
proposed by Hochreiter er al. [20] manages, through the
use of several gates, a long term, short term memory, and
the combination of the latter with observations in order
to obtain a predictive output. Also, Gated Recurrent Unit
(GRU) layers, developed by Cho et al. [21], have recently
demonstrated similar capabilities as LSTM layers, with a
similar but simplified architecture.

Contributions

In this study, we propose a real-time extension of a Deep
Learning (DL) approach for the intra-operative localization
of the STN based on MER analysis. This extension aims to
improve the model’s performance by integrating temporal-
specific information from the signal, and then provides an
analysis tool that is able to improve its certainty by analyzing
longer time periods (longer than 1 second). In order to
process a signal of several seconds long, a naive approach
would be to return for each consecutive block of one second
of listening a prediction of the predictive model. In this paper,
the goal is to extend the system more in a more smart way by
ensuring a best integration of discriminating features for each

analyzed second, while reflecting the network behavior into
a level of network certainty as the listening progresses. The
development of such a framework mainly aims at improving
the decision making of the clinical team, by increasing the
efficiency of electrode implantation, as well as improving
surgical outcomes.

III. MATERIAL AND METHODS
A. Data acquisition

For this study, MER data was collected from 57 patients
with PD during a single or bilateral DBS surgery at the Lon-
don Health Sciences Center at Western University Hospital
(London, Canada). Data acquisition was carried out using a
configuration in which the electrode trajectory is advanced
through 5 channels (anterior, posterior, medial, lateral and
central). After estimating the zero point (the intersection of
the channel and the side of STN) with a pre-operative seg-
mented MRI, MER recordings were made from 10.0mm to
4.0/5.0mm after target estimation. Recording was performed
at 1.0 mm increments outside the pre-operatively estimated
STN, and 0.5 mm increments within. For each position, a 10s
recording was sampled at 24kHz (8 bits), amplified (gain:
10,000) and digitally filtered (bandpass: 500-5000Hz, notch:
60Hz) using a Leadpoint 5 recording station (Medtronic).
The database contains a total of 11,162 10-second MER
samples. The authorization to use this data follows the
collaborative agreement covered by ethical clearance DSA
109045, and was approved by the Research Ethics Board at
the University of Western Ontario (REB # 109045).

B. Database construction

The acquisition of the 11,162 signals was done in parallel
with their annotation as either ‘in’ the STN or ‘out.” This
annotation was performed by an expert neurosurgeon at
Western University Hospital (London, Canada). The database
thus contains 8,588 signals annotated outside the STN, for
2,574 signals annotated as being inside the STN.

In order to provide a balanced dataset for learning ap-
proaches, two methods were used for class balancing. The
training of SepaConvNet network has been reproduced ac-
cording to the sampling procedure described by Peralta et
al. [18]. The architecture allows for listening lengths of 1
second, and thus allowing for over-sampling of the under-
represented class, providing class balancing as well as more
data augmentation. Three randomly non-overlapping one
second windows were chosen for signals annotated inside the
STN, against one randomly chosen window of one second for
the signals annotated outside. We obtained a training dataset
composed of 7,722 one-second signals annotated inside,
for 8,588 one-second signals annotated outside. For the
implementation of the SepaConvNet combined to a recurrent
neural network, the need to use the whole signal length has
led us to perform an over-sampling approach. In this case, the
signals labeled ‘in’ were triplicated in the training database,
thus obtaining the same number of observations per class as
the previous method.



For the purpose of performance evaluation, the data was
split into a training and validation set, using a Cross-
Validation (CV) method. The use of k-fold CV enhanced
the estimation of the performance of a network by dividing
the dataset into k sub-datasets of equal size. In this way,
each network was trained on one with the combinations of
k-1 folds, and its performance was validated on the unseen
fold. For the study, 10-fold CV was used to evaluate all
the networks. In addition, during the splitting process, all
recordings belonging to the same patient were assigned to
the same fold. In this way, networks evaluation is always
performed on MERs belonging to an unseen patient.

C. Signal pre-processing

After analysis of the amplitude distribution of the signals,
a threshold was determined to eliminate any artifacts related
to the data acquisition method. Thus, signal amplitude was
limited to the threshold values [-249:250]. After this process-
ing, feature extraction was performed. This step is critical,
as it defines the shape of the features proposed to the classi-
fiers, and seeks to highlight any information discriminating
the classes presented. Two different approaches have been
reproduced here. The Fast Fourier Transform of each 10-
second signal was acquired in order to replicate the feature
extraction presented by Khosravi et al. [17]. Spectrograms
of the signals were generated using an STFT as proposed by
Peralta et al. [18], with a Hann window of 512 samples,
and a hop length of 10 samples. These parameters were
determined to best fit the compromise between the time
and the frequency domain resolutions [18]. The signals were
determined to have artifacts on the first and last time steps
which were discarded by removing the first and last half-
second of each recording. At this stage, each spectrogram
represents nine seconds of signal, for 21,600 time points,
and 257 frequency bands. Finally, each frequency band was
bounded to the 5th and 95th percentiles to eliminate residual
artifacts and the intensities rescaled using robust min-max
normalization.

D. DL classifiers

1) SepaConvNet: SepaConvNet (SCN) network has been
implemented according to the architecture, as well as the op-
timized hyperparameters proposed by Peralta et al. [18]. The
network is composed of 4 successive blocks of convolutions,
followed by a Global Average Pooling layer along the time
axis to generate a series of high-level features. These features
are then fed through a linear layer to a single sigmoid
activation neuron to determine the network output. Each
convolution block is exactly composed of a succession of 4
operations. Respectively in the order of the operations, each
block begins with (1) a 10% Dropout operation. The Dropout
layer allows us to limit the overfitting behaviour by randomly
’switching off” a percentage of the neurons of the previous
layer during training. The set of switched-off neurons is
randomly updated between each weight update. This layer
is followed by (2) a 1D separable convolution operation.
This type of convolution is performed in two phases. During

the first step, a one-dimensional kernel shape of length
15 is chosen, and applied along the time axis, in time-
wise convolution for each frequency band (the equivalent
of a depth-wise convolution). This convolution uses a zero
padding technique in order to maintain an identical time
dimension at the output. In a second step, 32 pointwise
convolutions mix all the features along the frequency axis,
for each time point, returning 32 feature maps at the output.
Thus, the separable convolution output depth is driven by a
matrix convolution with a few values, which allows a faster
training of the network. The output layers are sent to (3)
a linear rectifying unit (ReLU) activation function, before
performing (4) a 1D MaxPooling operation along the time
axis. This downsampling operation reduces the information
along the time axis keeping only the main information
for classification. For SepaConvNet, each MaxPooling step
reduces the number of time-points by a factor of 2, keeping
only the highest value within each pair of consecutive points.
The last of the 4 convolution blocks does not contain a
MaxPooling layer, being replaced by the global average
pooling layer. The latter has been set up to return the time
average of each feature map.

The light architecture that is achieved by the separable
convolutions limits the number of training parameters to
16,752.

After the development of this architecture, SepaConvNet,
as well as all other networks in this study were optimized
using binary cross-entropy as a cost function and Adam as
the optimizer with a learning rate of 0.005. Training was
performed on a total of 5 epochs without callbacks, with a
batch size of 32 samples.

2) Bayesian SepaConvNet: The Bayesian extension of
SepaConvNet follows the equation:

Py (X =p) x Pu_1)(X =p) x P(fplX =p) (1)

with the variables:

X the electrodes location as either ‘in’ or ‘out’ of the
STN.

P the classes to be distinguished, specifically {in, out}.

t the length of MER used by the extension which is an

integer in the range [1;9].

Py(X =p) is the probability distribution of X, given past
predictions up to and including time ¢.
P( f |X =p) is the probability of SepaConvNet generating some

feature at time ¢ (represented by f(;)) conditioned on
what anatomy the recording arose from X = p.

Using Bayes’ Theorem, P;)(X = p) can be incrementally
updated over time, being proportional the product of two
simpler terms: the prediction of the Bayesian network at
time ¢ — 1, and the probability of SepaConvNet generating
some feature at time ¢. The Bayesian model’s initial prior,
Poy(X = p), is defined according to the proportion of the
class contained in the database. Three different versions are
proposed which differ solely in terms of how f(t) is defined:
o The Binary Bayesian SCN version using the binary
output (i.e. f+) € {in, out}) of SepaConvNet, calculat-
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Fig. 1: Proposed structure of Recurrent SepaConvNet using LSTM as the recurrent layer.

ing P(fw)|X = p) from a confusion matrix computed
over the validation database of one second signals. This
approach, which is the lightest, has only 4 additional
parameters beyond the regular SepaConvNet.

The Simple GMM of Bayesian SCN uses the non-
thresholded output of SepaConvNet, i.e. fi) € [0,1],
and P(f)|X = p) is estimated using a Gaussian
Mixture Model (GMM), by modeling the output distri-
bution for each class, with 2 Gaussian components per
class. The latter better allows the Bayesian process to
reflect the underlying certainty of SepaConvNet at each
time-point. This non-thresholded approach has only
12 additional parameters in addition to SepaConvNet,
making it also a very lightweight extensions.

Finally, the Advanced GMM of Bayesian SCN uses the
non-negative activation vector from the second to last
layer of SepaConvNet (containing 32 neurons). As with
the Simple GMM Bayesian SCN, P(f)|X p) is
estimated using a GMM (with 4 Gaussian components
per class. This approach involves an additional 8,456
parameters beyond the regular SepaConvNet which al-
though heavier than the previous Bayesian extensions,
still has far fewer weights than a neural network.

3) Recurrent SepaConvNet: The use of trainable end-to-
end recurrent convolutional architectures has already been
described in the literature, often called Long-term Recurrent
Convolutional Networks (LRCNs) [22]. Figure 1 shows
Recurrent SepaConvNet, which has SepaConvNet embedded
within it, which consecutively integrates each one-second

signal across time, injecting the detected features into a 64-
neuron recurrent layer. This layer determines which features
to save from CNN at each time step, before passing these
features to a single sigmoid activation neuron. Two variants
of Recurrent SepaConvNet were tested, Gated Recurrent
Units (GRUs) and Long Short-Term Memory (LSTM) as
the recurrent layer. SepaConvNet network with the GRU
layer has 35,408 weights and the slightly more complex
LTSM layer increases that number to 41,616. All other hyper-
parameters have been set to the same values used in the
comparative SepaConvNet method [18].

4) Simple DNN: In order to provide a comparative ap-
proach to MER signal processing over ten seconds length
MER, the DNN implementation presented by Khosravi et
al. [17] was replicated. This network is based on a standard
feed-forward srtificial neural wetwork, which has 10 hidden
layers each composed of 50 nodes, leading to 6,025,601
weights. A weight decay term based on Ridge regression
(A = 0.0285) coupled with the use of Dropout (30%)
was used on each hidden layer. The implementation of this
network also uses a binary cross-entropy cost function, and
an Adam optimizer with a learning rate of 0.001. Training
was performed over 20 epochs, with a batch size of 256.

E. Performance evaluation and metrics

Despite the use of a sampling method to approximately
balance the classes, the use of an adapted accuracy and
loss metric was chosen to avoid any influence related to a
residual bias. The performance of the models was calculated



using both the accuracy (ACC) and the balanced accuracy
(BACC) metrics (Eq 2), the latter being less susceptible to
dataset imbalance. The training of the different networks
was performed using weights inversely proportional to the
proportion of each class in the dataset, in order to ameliorate
the effects of dataset imbalance in training.

1
BACC = 5

(True Positive

True Negative @)
Positive

Negative

The implementations of each network were evaluated
using 10-fold cross-validation on a database of 11,162 10-
second samples for 57 patients with PD. The training and
testing datasets for each fold were constructed to ensure that
all the data from a single patient appeared in a single fold,
either testing or training but not both, in order to prevent
data leakage (i.e. each fold consisted of all signals from 6
or 7 patients). This results in ten identical networks being
trained for each comparative method, and the performance
of the method is estimated as the average of these ten
networks. Since each implementation is trained and evaluated
on the same data for each fold, their results can be directly
compared using a pairwise Student’s t-test.

F. Hardware & software environment

The networks were trained using on a NVIDIA GTX 1080
Ti chip, and developed with Keras, with Tensorflow as a
backend (Python 3.8). STFT was conducted with the Librosa
module, and DFT with Scipy module.

IV. RESULTS

The results for SepaConvNet as well as its Bayesian and
Recurrent versions (in subfigures (a) and (b) respectively)
are shown for two different MER signals. It should be
noted that the output of the Bayesian SepaConvNets can be
directly interpreted as a likelihood, which facilitates knowing
precisely how confident the networks are. This is not the
case for the Recurrent SepaConvNets where the connection
between the output values and a likelihood is more tenuous.

The dynamics of the three Bayesian approaches varied
significantly as shown in Figure 2(a). The main motivation
for the development of a Bayesian framework is the hypoth-
esis that the certainty of the network is related to the output
value expressed by the latter. For the graph on the right,
consecutive independent SepaConvNet outputs converge to a
much higher average, which shows a higher average output,
and thus a high level of certainty. This higher certainty is not
reflected by the binary Bayesian network which shows an
identical prediction evolution in both cases, indicating that
it is likely unusable in a clinical scenario. Conversely, the
Simple and Advanced GMM Bayesian extensions explicitly
show the certainty level of SepaConvNet differing between
the two signs and adapting their convergence speed.

Due to their more black-box nature, it is more difficult
to decipher the dynamics of the Recurrent SepaConvNets
with respect to time due to the lack of inherently meaningful

units with their output. It is however worth noting that they
should generally trend upwards with more certainty in the
underlying SepaConvNet, although not as cleanly defined
as the Bayesian models. In addition, they appear to have
higher certainty with respect to a higher baseline certainty in
the SepaConvNet, indicating that their dynamics, with some
mapping to familiar units, may be usable in a clinical context.

The quantitative results of the comparative study are
presented in Table I with its mean performance across time
shown in Figure 3 for SepaConvNet and the four real-time
extension networks with adequate qualitative performance.
(The results for SepaConvNet were based on averaging the
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Fig. 2: SepaConvNet extensions behaviour for 2 MER signals
from within the STN. Figure (a) presents the evolution of the
output of Bayesian SepaConvNet and Figure (b) shows that
of Recurrent SepaConvNet. The output of SepaConvNet for
each one second segment is shown in light grey.
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Fig. 3: Average BACC from 10-fold cross-validation accord-
ing to the time of MER analyzed for SepaConvNet and its
extensions.



Deep Learning Networks Accuracy Specificity  Sensitivity BACC Min BACC
(a) Simple DNN 69.7£9.0% 68.1+18.8% 73.54+28.5 72.6+7.5% 49.8%
(b) SepaConvNet 83.2+7.1% 86.0£8.4%  73.9+58 80.0+5.9% 64.8%
(c) Binary Bayes. SepaConvNet 84.1£6.7%  87.5£8.1%  72.6£6.7 80.1£5.8% 64.9%
(d) Simple GMM Bayes. SepaConvNet 80.8£3.9% 82.0+5.1% 77.2+10.1 79.7£5.1% 66.7%
(d) Advanced GMM Bayes. SepaConvNet  85.0+3.0% 86.4+4.8%  80.6£8.4 83.5+3.7% 72.8%
(f) LSTM SepaConvNet 84.24+2.6% 86.1£2.8%  77.8£8.6 81.9+t4.4% 70.9%
(g) GRU SepaConvNet 84.2+23% 86.2+£2.6%  77.5£99 81.84+4.6% 70.1%

TABLE I: Classification performances across folds given the full 9 second MER listening length. Each metric is associated
with the standard deviation calculated through the validation of all 10-CV folds. This table presents the overall classification
results for the networks : (a) reproducing the method presented by Khosravi et al. [17], (b) reproducing the SepaConvNet
network, (c) the binary Bayesian extension of SepaConvNet, (d) the Simple GMM Bayesian extension using SepaConvNet’s
non-thresholded output, (e) the Advanced GMM Bayesian extension using SepaConvNet’s activation vectors, (f)+(g)
Recurrent SepaConvNet, using LSTM or GRU layers respectively.

output over all of the one second listening lengths included
in the signal, hence the slightly improving performance over
time.) Recurrent SepaConvNet with GRU and LSTM layers
demonstrated improved performance over time, converging
to 81.9% BACC, which outperformed the SepaConvNet av-
erage BACC (80.0%) at each one-second segment. Moreover,
Bayesian approaches based on GMM modeling present an
significant accuracy variation depending on the methodology
used. On the one hand, the advanced approach surpasses
all other methods, converging to 83.5% BACC after 9
seconds of listening, and demonstrating the interest of using
a probabilistic method for task given sufficiently descriptive
information, i.e. SepaConvNet’s activation vectors rather
than its output.

One known limitation of Bayesian approaches is the initial
reliance on a prior distribution. The lower accuracy of the
Simple GMM Bayesian extension for short signals (first
few seconds) is explained by the weight of the initial naive
prior which necessarily biases the results towards the most
common class. This initial bias is compensated for quickly,
noting the boost in balanced accuracy for a listening time
between 1 and 2 seconds. A similar although more modest
increase can also be observed for the Advanced GMM
Bayesian extension.

As shown in Table I, full 9-second MER signal listen-
ing provides the highest BACC with the advanced GMM
Bayesian SepaConvNet, improving BACC up to 83.5%. Rec-
curent approaches also outperformed SepaConvNet alone,
providing up to 81.9% for LSTM SepaConvNet. The Simple
DNN approach had the lowest overall performance, although
it is consistent with the performance reported by Khosravi et
al. [17]. The two lightest Bayesian approaches in terms of
parameters, i.e. Binary and Simple GMM methods, do not
show accuracy improvement compared the standard network,
and we measure a quite similar BACC regardless of the f(;)
computation method.

Table I also shows an increase in sensitivity among Sep-
aConvNet’s recurrent, and Bayesian non-threshold extension
approaches, up to 80.6%, compared to SepaConvNet alone
(73.9%). Conversely, the best specificity is obtained with
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Fig. 4: ROC plot from 10-fold cross-validation for the
classification results of 3 SepaConvNet extensions. Figure
(a) shows the behavior of the networks after the one second
analysis, and Figure (b) after the 9 seconds of MER listening.

the binary Bayesian approach, with 87.5%, while the other
extensions do not outperform the baseline. Moreover, Figure
4 reveals that, abstracting from the discrimination thresh-
old, the 3 most accurate network extensions show almost
similar predictive behaviour. Figure 4 (b), in combination
with Figure 5 also illustrate that all extensions tend to
improve classification as listening time is increased. As for
the previous results, the Advanced GMM Bayesian SCN
approach obtains the best results in term of AUC.
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Fig. 5: AUC plot from 10-fold cross-validation according to
the time of MER analyzed for SepaConvNet and its main
extensions.

The standard deviation represented in Table I shows that
this variability confirms the outperformance of SepaConvNet
networks compared to the use of the simple DNN, the latter
returning a BACC score of 72.6%, compared to recurrent
extensions and the advanced GMM Bayesian SepaConvNet.
Classification results per patient between SepaConvNet, sim-
ple DNN, both Recurent SepaConvNets and Advanced GMM
Bayesian SCN were statistically significant with a paired
sample t-test (p < 0.01). In contrast, the classification of each
patient by the Binary and Simple GMM methods compared
to SepaConvNet did not show a significant difference.

V. DISCUSSION

The original SepaConvNet implementation represented a
preliminary step in the development of an intra-operative
framework for MER analysis, showing that short signal
segments could be meaningfully used to streamline the DBS
electrode placement workflow. For the critical task of STN
localization during the DBS intervention itself, we wanted
to highlight a robust predictive system that could integrate
a maximum of discriminating features from the data. This
paper therefore focuses on extending the predictive system to
a dynamic listening range of several seconds of MERs, focus-
ing on the combining sequential classifications produced by
SepaConvNet for one-second long signals. Thus, if a single
second is not enough to produce sufficient certainty in the
neural network, an additional second can be considered, then
another and so on until the network has converged. We have
investigated two general frameworks for this combination:
Bayesian inference and the use of recurrent neural layers.

The primary limitation of the Bayesian framework which
works with SepaConvNet output values is the assumption
that the various one second segments are independent of each
other with respect to the output. This is not the case, and in
fact, the output of SepaConvNet for different segments com-
ing from the same nine second signal are highly correlated,
which can push Bayesian methods to become increasingly
confident in an incorrect answer rather than to approach a
more uncertain middle ground for these cases.

However, this effect has been avoided by the implemen-
tation of the advanced GMM Bayesian SCN, as the latter
models the probability on the second-to-last SepaConvNet
layer distribution, i.e. a 32 vector space. The use of the
GMM allows to capture more variations within the vector
of 32 characteristics than after the linear combination made
by the output which already reduces the information in
terms of predictive weight. In the case where the convolution
analysis of each spectrogram of one second returns different
features, this method is capable of translating even more
transparently the evolution of the signal processing in terms
of classification probability. Among the three implemented
sub-methodologies, which only differ in the likelihood esti-
mation, it has been revealed that the simple GMM Bayesian
version reflects more clearly the certainty returned by the
network at each second. From a clinical implementation
perspective, this method can provide the clinical team with
the machine’s confidence allowing for early termination of
MER acquisition and thus a more efficient workflow.

On the other hand, we have shown experimentally that the
recurrent approaches significantly improved SepaConvNet’s
predictions. The consistent BACC increased by the addition
of recurrent layers also confirmed that relevant discriminating
patterns can be extended over more than one second. This
is also a potential improvement over the Binary and Sim-
ple GMM Bayesian architectures which have more limited
access to the underlying features used by SepaConvNet.
Recurrent networks extension have the capability of tempo-
rally extending these features, determining more descriptive
versions than can be identified in a 1 second window. For
all methods however the prediction was improved with each
added second to the listening range, but it is the Advanced
GMM method that shows the best prediction quality, increas-
ing the BACC score to 83.5%.

Recent approaches developed in the field of MER data
analysis have demonstrated the possibility of implementing
a predictive model from raw MER signals with Deep Neural
Networks, and thus overwhelming the performance of stan-
dard Machine Learning approaches, the latter depending on
non-exhaustive lists of engineering designed features extrac-
tions [17]. The results of this study reinforce this fact, and
further confirm the relevance of the SepaConvNet network
architecture. Indeed, the comparison of SepaConvNet with
the DNN presented by Khosravi ef al. [17] shows that the
exploitation of features after the frequency decomposition of
MER signals is more efficient when using one-dimensional
separable convolution layers, by increasing the BACC from
72.6% to 80.0%. In addition, the dynamic feature extrac-
tion integration achieved by hybridizing SepaConvNet with
recurrent layers, or even the advanced GMM Bayesian ex-
tension, categorizes this implementation further improves its
performance and the network comes to represent an advanced
algorithm system in this field of research.

Overall, the accuracy of SepaConvNet has been improved
by the methodologies presented here. The results show that
the real-time extension of SepaConvNet (which originally
processes only one second long signals) results in a respon-



sive system able to improve the network prediction with
every additional second of signal. In terms of application,
the main benefit is to reduce the STN search phase as much
as possible by reducing to the necessary minimum the MERs
listening time for each position of a trajectory. However,
the signal classification improvement of the Bayesian or
recurrent extensions over the original SepaConvNet, however
significant, remains relatively slight compared to that of Sep-
aConvNet over prior feature-based methods. Thus improving
performance is still a valid motive for future development.

Future work

In order to integrate this predictive system into a clinical
one, it will be necessary to improve its robustness by
directing future work on: (1) using a larger database to
consider a broader diversity of patients during training, (2)
collecting MER data recorded by other acquisition systems,
and therefore from multiple medical centers in an effort to
standardize the predictive model with a view to making it as
universal as possible, and (3) improving the interface of the
predictive system with the clinical team in order to better
integrate the knowledge provided by the model, as well as
its limitations, e.g. real-time data visualization.

In addition, we would like to leverage DL methods such
as those presented in this article to analyse the connection
between MER signals at the electrode’s final position with
surgical outcomes. By correlating detected neural features
with clinical ones, we intend to improve not only the locali-
sation of pre-identified anatomy, but also aid in determining
the precise positioning of DBS electrodes cognisant of the
precise underlying neural circuitry.

VI. CONCLUSIONS

In this paper, we presented two general methods for
extending Convolutional Neural Networks for MER analysis
to handle arbitrary length recordings, fulfilling the future
work set out by both Khosravi et al. [17] and Peralta et al.
[18]. This allows for surgical workflow to be more readily
streamlined, reducing the amount of time necessary for col-
lecting electrophysiological recordings while also rendering
their analysis less subjective.

This paper shows that integrating recurrent layers into Sep-
aConvNet can significantly improve its predictions over time.
The consistent BACC increase by the addition of recurrent
layers confirmed that relevant discriminating features can
be extended over more than one second, although without
overcome the issue of interpreted the results in terms of
likelihoods and confidences.

Results showed that a lightweight Bayesian approach
to extending SepaConvNet network could return a level
of certainty of the underlying predictive model in real-
time, while maintaining the same performance as the native
SepaConvNet. However, it is limited by the strong co-
dependence of SepaConvNet network predictions within a
single signal. The development of this framework highlighted
a non-thresholded version using a simple GMM, giving
representative prediction likelihoods of SepaConvNet at each

second, and making it a method that could be considered
from a clinical implementation perspective. The performance
limitations of this simple approach have been overcome by
the implementation of an advanced approach which access
more information from the network rather than a single
signal. This method attains a BACC of 83.5%, the highest
of all the methods evaluated here. Because of its cross-
domain characteristics, the Advanced GMM Bayesian exten-
sion benefits from the advantages of Bayesian frameworks
in terms of probability interface, and from the advantages of
recurrent methods in terms of managing individual features.
This approach is the most promising path for real-time
integration into a surgical decision support system for DBS
interventions.
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