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Abstract 

User assignment models in transit networks are relevant for the planning of new lines but less relevant for 
management. Other types of models are used for management, which is very efficient for the simulation of supply 
but less efficient for the simulation of users, who nevertheless influence train traffic on urban railway lines. This 
paper proposes to use a combined train and passenger simulation model on a railway line to propose line 
management solutions in order to minimise the passenger travel time. An application of this method on line 13 of 
the Paris subway network, shows how the relationship between frequency and dwell-time impact the railway traffic. 
Precisely, the current frequency of the line associated with a maximum dwell time of the 40s minimise the travel 
time. These optimal time conditions correspond to significant congestion in the line's train traffic. 
© 2020 The Authors. Published by ELSEVIER B.V. 
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) 
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1. Introduction 

Improving the modeling of users in transit systems is an important research field. There are many operational 
uses, particularly for estimating demand and time gains in scenarios for planning new transportation infrastructure. 
Models are often network scale, and the complexity and large size of the networks limits the accuracy of models, 
which have difficulty taking into account congestion and the temporal dynamics of the system (Hamdouch et al. 
2014; Leurent et al. 2014).  
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Railway line operators use supply planning software that enables them to optimise timetables and rolling stock 
dynamically on their line or network. Optimisation models are also an important research field. A number of these 
models focus on service optimisation based on service quality criteria and not only on train movements (Wang et al. 
2017), others optimise passenger train timetables taking waiting times into account (Niu et al. 2015). Some researchs 
go further in optimising the timetable table by directly considering travel time or waiting time as an objective 
function (Sun et al., 2014; Wang et al., 2020; Zhang et al., 2018). However, if passenger assignment is well 
considered with capacity constraints, train movements do not directly depend on waiting time and thus on the 
number of passengers on the line. 

On some highly congested urban railway lines, the maximum frequency that can be achieved depends as much on 
the number of passengers boarding and alighting at a station as on the minimum safety interval between trains. The 
number of trains in circulation and the travel times of trains will therefore also depend on the trajectories of the line's 
users. In order to improve the quality of service on these congested urban rail lines, optimisation of the timetable is 
not enough, so other solutions must be proposed. Some very strong ones, often chosen by operators and transit 
operating authorities, are the construction of alternative lines. Others are simpler but expensive, such as replacing 
rolling stock or counter-intuitive, such as slowing down the flow of trains at station terminals. In this research we 
propose to explore a first step of this kind of solutions: the maximal dwell time and his link with the frequency on 
this type of line.  

The aim of this paper is twofold. The first is to propose a minimisation of the travel time calculated by 
simulations based on two variables that can be parameterised by the operator: frequency at a terminus station and 
maximum dwell time. The second is to better understand the influence of these two variables on the operation of the 
line and in particular on passenger travel times especially on a very congested line. The contributions are as follows: 
(i) the use of a simulation model to minimise travel time on a railway line, (ii) the determination of a maximum 
waiting time that corresponds to a minimum travel time and (iii) a better understanding of the link between 
frequency and waiting time with the operation of the line. 

At the intersection of these research fields, we propose an optimisation of the transport supply on congested urban 
rail lines based on a coupled modeling between dynamic user assignment and train traffic (Poulhès, 2020; Poulhès et 
al. 2017). A simulation is used to estimate a real average travel time of users per origin and destination station. This 
is based on simulation variables that rarely appear as adjustment variables in the models. Some of these variables can 
be adjusted by the operator and thus serve to improve the quality of service on the line. This paper proposes to find 
the minimum of an objective function that evaluates quality of service indicators such as the average travel time. To 
do this, a mapping of the travel time space according to discretisation of the frequency values and dwell time max 
makes it possible to approach the minimum of the objective function. The analyse of the solutions’ space provides a 
better understanding of the interactions between the key variables of the line dynamics and to consider quantifying 
the gains of operational solutions. 

2. Method 

The method is based on simulations of trains and passengers on a railway line. This model of train and passenger 
assignment on the line has been described in two previous papers. Poulhes et al (2017) describes the assignment of 
passengers on the line from an origin station to a destination station. Poulhes (2020) takes the passenger assignment 
and adds the assignment of interacting trains. The first sub-section will take up the essence of this model but we 
invite the reader to consult these two papers for more details. The following sub-sections describe the objective 
function and the characteristics of the line used to minimise the travel time of passengers. 

2.1. The line model 

This modelling considers train vehicles movements along the line as discrete events from block to block 
depending on the signalling and dwell time, which can vary with the number of passengers boarding and alighting. 
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The model assigns trains on the line from their terminus. Without incident or congestion, the signalling and the 
theoretical time per block govern the progress of trains. In this model, no incidents are considered, but the exchange 
of passengers in the station influences the travel time. This exchange time is calculated as a function of the number 
of user wishing to board and alight each train and the density of users on the platform and on board vehicles. If this 
time becomes too long, train traffic can be slowed down, reducing travel times and possibly increasing waiting time 
for the next trains. This increased waiting time may itself affect the number of passengers boarding and alighting for 
the next stations. The systemic interactions between train progress and passengers can be summarised in Figure 1. 

Figure 1: Relation scheme between trains and passengers 

2.1.1. The train circulation 

Train movements on the line are governed by a discrete event model that moves trains in chronological order 
from their terminus at the end of the block to the end of the block. Note ��,��� the block between nodes � and � � 1. 
The travel time over this block is noted as 	
��
��,���� and is found in the input data provided by the line operator. 
We therefore assume that there is no variability in travel time due to the human behaviour of the driver on a non-
automatic line. We can therefore calculate the arrival time ����� ��� of train � at node � � 1 as a function of the 
departure time of node �, ������: 

����� ��� � ������ � 	
��
��,���� (1) 

Train � then crosses node � � 1 which means leaving block ��,���  and arriving at block ����,��� . If ��,���  is a 
station block, the duration ��,������ is defined which corresponds to the stopping time at station ��,��� of train �. If ��,��� is a station block, then ��,������ � 0 (no station stop). It is also necessary to take into account the traffic rules 
and determine how long the next block ����,��� has been free. Note the previous train that passed through this block β���,���. The instant ����� 
β���,���� of departure of the previous train from the block of interest has already been 
calculated because of the chronological order in which the events are taken into account. Thus, the instant from 
which train � can pass over block ����,��� due to the running rules is	����� 
β���,���� 	� 	���
����,����, with 	���  the 
safety time for another train to enter a block after the departure of the previous train. Finally we have the following 
formula determining the departure time of train � of �1 : 

����� ��� � ��� ����� 
!���,���� � 	���
����,����, ����� ��� � �������" (2) 

Thus passengers' travel times can be degraded by the exchange times of the train they have taken but also by the 
increase in the exchange times of the trains preceding that train. 

2.1.2. The demand side 

Users are considered with an aggregated form, a flow from an origin station to a destination station by 
considering a simulation step as fine as the data can inform. They are assigned to the next trains arriving at the 
station according to the residual capacity on board and their destination. If the residual capacity after passengers 
have alighted is not sufficient to accommodate all passengers wishing to board, queues are created with a FIFO 
principle. Passengers who have not been able to board a train are given priority for the next train and so on. We 
propose a very simplified formula of the classic bottleneck model presented in the article Poulhes et al. (2017). Let #���� the number of passengers who succeed to board in the train �, hij

+
(x) the arrival time on the platform of the x-

th passengers from the station � to the station $. %�&� the number of passengers arrived on the platform during the 
time step '&; & ) 1*. Xij- (q(t)) the cumulative flow who board a train when %�&� passengers are on the platform and 

Train circulation: 
Frequency/time per block 

Dwell time 
calculation 

Boarding/Alighting 
passengers per station 
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Xij
- (k) the total boarding flow when � leaves � from � to $ since the beginning of the simulation. Thus the average 

waiting time is: 

+�,��� � 1
#����	 - . hij��x�dxXij- �q�t��

Xij- �q�t-1��&80Xij)�k)1�:Xij- �q�t��:Xij- �k�
 

(3) 

2.1.3. Interaction 

An interaction is then created between the forward movement of trains and the forward movement of passenger 
flows in the dwell time. This dwell time is a function of the number of passengers wishing to board #�, the number 
of passengers wishing to alight #�, the density of passengers standing on board after alighting passengers ;<, the 
density of passengers on the platform upon arrival of the latter ;= and the number of doors of a train set >
. The 
passenger exchange approach studied is sequential. Users first alight and then those wishing to board do so later. 
The formula for passenger exchange time without operational constraints used in this article is therefore in the 
following form (Poulhes, 2020): 

����� � α@θ� #�>
 � θ� #�>
B , θ� � θC�DEFGHF�EIGHI , θ� � θC�DEFJHF�EIJHI  
(4) 

θC� (resp. θC�) is the basic time it takes a passenger to board (or alight) the train if there is no congestion on the 
platform and on board. The parameters α=�  et α<�  (resp α=�  and α<� ) represent the influence of the density of 
passengers on the platform and on board on the boarding (resp. alighting) time of passengers. The multiplicative 
parameter α represents the influence on the exchange time of random and heterogeneous passenger behaviour as 
well as their distribution on the platforms. 
The expected dwell time also depends on the minimum limit ��KC  and on the maximum limit ��KC,L�M as well as the 
time taken for the doors to open and shut &N�����: 

�P�,QR�����S� � &N����� � min	V��KC,L�M 	, max���KC , ��K�X (5) 

��KC,L�M is the maximum dwell time considered as an operational variable in this paper. However, stationary time 

could be upper this value if previous trains occupies the next blocks. The doors of the train then remain open during 

this added time. 

2.2. The objective function 

The aim is to find a set of parameters that minimises the total travel time for users of an urban railway line. The 

travel time per passenger on the line is given by the sum of the waiting time wZ�j, k� and the sum of the train travel 

time � ∈ \� taken by block t]^,^G_ between the origin station � ∈ > and the destination station $ ∈ >. > is the set of 

the all stations of the line and \� the set of all trains passing through station � during the simulation period. Note %�,  

the passenger flow between the station � and the station $ among the set of arriving passengers on the line ` during 

the simulation period. This gives the following result for all users of the line during the simulation period:   

	 � ��a	-- - - - &bR,RG_

bcJ_,c

bR,RG_dbe,eG_=ec�K�∈fK∈ge,∈h�∈h
� -- - - +��$, ��

=ec∈fK∈ge,∈h�∈h
 (6) 

The input variables of the simulation model that we want to estimate in order to have the minimum total travel 
times for the users of the line are the timetable and the maximum exchange time. On a busy urban rail line, the 
timetable can be simplified in the search for optimisation by a frequency of trains departing from each terminus of 
the line. The maximum exchange time is the time that the operator defines not to be exceeded for the station stop 
time. This time is often regulated by an audible signal announcing the closing of the doors. This signal is often 
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triggered by the train driver who has no instructions from the line operator. This variation in station stopping time is 
an important control strategy for the operator in the event of an incident or congestion. 

2.3. Minimisation research  

Minimisation must make it possible to give an indication of the optimum time that each train should remain at the 
platform at most, considering this time constant whatever the station and the train. This stopping time is associated 
with an optimal programmed frequency. In this article we use a simple approach by discretisation of the solutions 
space and not a classical optimization approach. Considering only two variables, this method provides an 
approximate value of the optimum but also a cartography of the values taken by the objective function for all the 
pairs of possible variables limited by minimum and maximum values. We can then better understand the influence 
of the frequency and the maximum dwell time on the total travel time of the passengers on the line.  

We propose to illustrate this travel time minimisation method and to show its interest through the example of line 
13 of the Parisian subway. 

3. Use case 

3.1. The line 13 in the Paris network 

According to Google data, line 13 is the 5th busiest subway line in the world. According to users, it is one of the 
busiest and most uncomfortable (FNAUT). From south to north, the line serves 18 stations, including two national 
train stations in the Paris region (Montparnasse and St-Lazare) and major tourist centres. Then there are two 
branches to the north. The western branch serves 6 stations, the eastern branch serves 8 stations. Both serve major 
business centres. 
On the morning peak from 7.30 am to 9.30 am, service frequency is scheduled at about 34 runs per hour on the main 
trunk. So, theoretically, a train shall leave from the Châtillon-Montrouge terminal station every 1 min 45. Every 
second train leaves for each of the two branches. The trains have 128 seats and considering a maximum of 5 
persons/m² and a surface of 111.5m² the maximum capacity is near to 685 passengers. And the trains are all the 
same with 15 doors. This inputs data describing the supply, the timetables and the travel time for each block is 
provided by the line operator. 
To mimic the morning peak, the demand matrix is built from a survey which provides information on station-to-
station flows. This survey was done by the RATP, which operates the line. Then, AFC data per entry station is used 
to make demand per entry station dynamic with a step time of 5 minutes. In order to make congestion phenomena 
clear and to inflate the counting data may be too underestimated, the demand matrix is increased by a factor of 1.3. 
The total number of passengers using the line is then 77 367 during the simulation period.  
Finally, the computing of the dwelling time comes from equation (4) and the parameters of table 1 are used. They 
were obtained from experiments on the Paris metro and calibrated on real-time data provided by the operator of line 
13. 

     Table 1: Parameters to mimic the boarding/alighting of passengers. 
Parameters Values Parameters Values 

Number of seats 128 On board density alighting 0.04 

Capacity of trains 

Base alighting time 

Base boarding time 

685 

0.0117 

0.0167 

On board density boarding 

On platform density alighting 

On platform density boarding 

0.05 

0.02 

-0.05 

The model was coded in Matlab. Each iteration is a simulation of the assignment of trains and passengers 
between 7:30 and 9:30. The simulation time is 30s per iteration, and an acceptable convergence takes about thirty 
iterations. 

3.2. Results 
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Firstly, to have a reference as the best average time that can be obtained on the line, we estimate the waiting time 
and the travel time without congestion with the model with infinite capacity trains and infinite number of doors. 
This way, the passenger waiting time average is 1.03 min and the travel time average is 11.82 min. Thus, the 
average of the total travel is 12.85 min. As a second element of comparison, a simulation is made with demand and 
supply conditions as provided by the operator. The maximum dwell time taken for the simulation is 50 seconds. The 
average waiting times is 1.46 min and the average travel time is 12.55 min. The resulting average total time is then 
14.01 min. It can already be concluded that under these simulation hypotheses, passengers lose on average 1.16 min 
of time due to congestion on the line, i.e. 9% extra time. In order to highlight the effect of the frequency and the 
maximum dwell time on the total time spend on the line (waiting time + travel time on boarding) we propose a 
numerical analysis. We simulate our model by trying out a set of values. The tested frequency values are between 30 
and 36 with a step of 0.1. And, the tested values of the maximum dwell time are between 0.5 and 1 minutes with a 
step of 0.01 minutes. The results are shown in figure 2. For each couple of nominal frequency and dwell time tested 
the total travel time is plotted and some isolines are drawn. 

Figure 2: Average total travel time on the line 13 by frequencies and dwell time max. 

Several interesting results are shown in Figure 2. The first is that the minimum time that can be obtained with these 
two variables is close to operational conditions. This is reassuring and shows that the operator seeks to minimise the 
travel time of the line's users. For instance, with a nominal frequency near to 33.3 a greater maximum dwell time 
allows to keep a total travel time less than 17.4min up to a limit of 0.97min. Note that, the lowest total travel time is 
17.098min. It’s obtained from a frequency of 34.7 train per hour and a maximum dwell time of 0.68 min. To discuss 
this result, it seems near to the nominal frequency programmed by the RATP which is 34 trains per hours. The 
model retrieves the same orders of magnitude. In regards the dwell time the interval of [0.65, 0.75] seems realistic 
too. In that case, the gap between the total travel time with and without congestion would be 4.25min. 
The second concerns the average time variations in the value intervals for frequency and dwell time max. For 
example, the average time values that increase by 3% when removing a train per hour. Above 35 trains per hour, the 
signalling does not allow the trains to run in good conditions and the times increase. Even the dwell time control 
does not allow increasing the frequency beyond this threshold value of 35 trains. On the contrary, if the dwell time is 
not or cannot be controlled, the most efficient frequency for the line drops to 33 trains per hour. This value remains 
stable from 0.75 min of dwell time max considering our dwell time calculation model according to the congestion 
conditions of the line. An interesting result is the fact that there is a fairly high minimum dwell time max which 
proves that it is not necessarily important to want to leave the station as quickly as possible. The minimum value of 
the average dwell time on the line corresponds to the dwell time for passengers to get on and off the line without 
having to force the doors closed.  
To explore more the results, the figures below dissociate the total travel time into the waiting times (Fig. 3.) and the 
travel time on board (Fig. 4.). On the first figure, the minimal waiting time (blue) is obtained with an high 
frequency, the red value correspond to the global minimal mean time. The waiting time without congestion is on 
average 1 min (on the central section on average a passenger would wait 53s for a frequency of 34 trains), with a 
30% increase in demand, the waiting time is multiplied by 4 and the minimum is 3.41 min, i.e. the fact that on 
average a passenger allows at least one train to pass before being able to board a train, which reflects very 
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complicated transport conditions. A dwell time max that is too low does not leave enough time for all passengers to 
board, which mechanically increases the waiting time. Logically also, the higher the frequency, the lower the dwell 
time. But as can be seen on the second graph a high frequency slows down train traffic and therefore increases the 
travel time. Conversely, a low frequency allows good train movements but increases waiting time. Similarly, below 
the critical dwell time of 0.75 min, travel time decreases and traffic conditions are improved. On the other hand, few 
passengers are able to board, so waiting time is increased as can be seen in the previous graph and in total the 
average total time increases when the dwell time max decreases. 

Figure 3: (a) Average waiting time on the line 13 by frequencies and dwell time, (b) Average travel time on the line 13 by frequencies and dwell 
time 

Figure 4 shows the passengers boarding (green) and alighting (orange) between 8:00 and 9:00 along the line with the 
optimised parameters. The frequencies (black) and waiting time (blue) are also shown. The first station, called 
Châtillon, is already very busy. At Montparnasse station, the maximum waiting time has been exceeded for the first 
time. The increase in length of stay is already taking place at Plaisance and Pernety stations due to congestion on the 
Montparnasse line. The reason for exceeding the maximum dwell time at Montparnasse is an over-occupation of the 
tracks by other trains downstream of the line. Indeed, Saint-Lazare station is the busiest and trains are congested 
before this station. The slowdown due to passenger dwelling has repercussions upstream. However, at Saint-Lazard, 
the maximum dwell time is exceeded, indicating greater congestion downstream. The Place de Clichy station seems 
to be the last to be in a critical situation. Guy Mocquet and Porte de Clichy are not the busiest stations, but the 
exchange time seems to be important in relation to the relatively low total number of passengers. In future 
developments, it will be interesting to accelerate the dwell time only in this station to see the effect on the crowded 
upper station: place de Clichy, Saint-Lazare, Montparnasse. The variation in frequency on the line is another 
indicator that shows the congestion of trains on the line and the slowdown. One of the results of this research is 
therefore the fact that the optimal time solution for passengers is a solution where trains are congested and therefore 
slowed down. The reduction in waiting time then compensates for the increase in travel time by the large number of 
trains arriving at each station on the line. 
 

 

Figure 4: Frequencies and dwell time along the line 13 of Paris according to the optimised parameters 
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4. Conclusion 

This research uses an original simulation model of train traffic that dynamically affects passengers by taking into 
account congestion problems on the line. The dwell time appears to be the central element of the good functioning 
of the line. By studying more precisely the travel time on the line and the compensations between a decrease in 
waiting time but an increase in travel time by increasing the frequency, this study brings several advances for the 
understanding of a congested urban railway line but also helps operators in their choices of line regulation and 
timetables. 

The operator's frequency is the optimal frequency. A decrease in frequency is not beneficial for travel times even 
if maximum dwell times are respected. Conversely, too high a frequency reduces travel time. The dwell time is 
considered by operators as the key to the operation of a line. However, the study on line 13 of the Paris metro shows 
that a too low value of this maximum is not beneficial for passenger journey times. Conversely, it does not seem 
necessary to prevent passengers from boarding in order to keep the lowest travel time. 

Several suites are being considered. The gap between the estimated time and perceived time may be important. 
We have considered a travel time and a travel time as having the same arduousness, but comfort on board and the 
perception of waiting time can considerably degrade the perceived time, which is also important to analyse. This 
research focuses on the optimal functioning of a line but under normal traffic conditions and passenger behaviour. 
One of the main outcomes is to test the impact of an incident or delay on the minimum time and the frequency and 
dwell time max values that minimise it. Finally, an optimisation algorithm would allow to add variables such as the 
interior layout of the rolling stock, in the minimization of time. 
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