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Abstract. Following the efficient technique of Bérenger in classical computational fluid
dynamics methods to avoid reflection of sound waves on the boundaries of the computational
domain, we propose a new LBE scheme that behaves like a Bérenger medium for absorbing waves
without reflection. This model is presented and its properties are discussed using the method
of “equivalent equations”. We also proposed a general method to introduce zero-order damping
terms in Boltzmann schemes that are used to absorb the waves propagating in the Bérenger
medium. Results of the simulation are discussed with theoretical interpretation in the case of
waves incoming normal to the interface. We shall also show that the reflection of sound waves
can be reduced simply by changing the “advection step” of the lattice Boltzmann algorithm on
the nodes close to the interface.
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terms, reflected waves.
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1 Introduction

Physical wave phenomena often take place in unbounded domains. The numerical study
of such phenomena requires to create a finite computational region and thus to introduce
artificial boundaries. The aim of these boundaries is to absorb all the waves and reduce
the reflection of waves within the computational domain as much as possible. Among the
classical absorbing methodologies [3, 7, 1] we choose to simulate the perfectly matched
layer method using the Lattice Boltzmann method.

Figure 1: Left: Domain of interest Ω and buffer/sponge domain (PML). Right: interface
between the acoustics domain Ω− and the “PML” domain Ω+.

The perfectly matched layer (PML) method was introduced by Bérenger [1] in the context
of electromagnetic wave propagation by surrounding the truncated physical domain of
interest with a buffer/sponge layer which has the property of absorbing all incoming waves
without reflection for any frequency and any incident angle (see Fig. 1). Hu applies in
1996 [5] the PML approach to aeroacoustic problem modeled with the linearized Euler
equation for the domain of interest Ω− (see Fig 1):

(1)



∂jx
∂t

+
∂ρ

∂x
= 0,

∂jy
∂t

+
∂ρ

∂y
= 0,

∂ρ

∂t
+

∂jx
∂x

+
∂jy
∂y

= 0,

where ρ is the fluid density and jx, jy are the flux of velocity components.
In the PML buffer Ω+ (see Fig 1) we use the non-physical equations [5]:

(2)



∂jx
∂t

+ σjx +
∂(ρx + ρy)

∂x
= 0,

∂jy
∂t

+
∂(ρx + ρy)

∂y
= 0,

∂ρx
∂t

+
∂jx
∂x

+ σρx = 0,

∂ρy
∂t

+
∂jy
∂y

= 0,
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where the coefficient σ is introduced for the absorption of waves in the PML. We will
refer to it as zero-order damping term in this work and it will be assumed to be non
negative. We note that when σ = 0, we are left with the original acoustics equations
with: ρ = ρx + ρy. We notice here that the mass ρ is assumed to be continuous at the
interface between the domain of interest Ω− and the PML Ω+.
Our work is structured as follows. We first construct a Bérenger Lattice Boltzmann
(BLB) scheme to model an absorbing medium without damping terms and we study the
properties of this new model. Then we propose a method to simulate damping terms
by changing the advection step. In section three we show numerical tests of an interface
between classical D2Q9 medium and BLB medium. Finally in section five we propose
a method to reduce reflected waves in the simple case of wave incident normal to the
interface.

2 Bérenger Lattice Boltzmann scheme

In this section we construct the BLB scheme which has equations (2) as equivalent macro-
scopic equations up to order 1 relatively ∆t (defined below). First we recall the classical
D2Q9 [6] scheme.

2.1 Classical D2Q9 scheme

We consider the classical D2Q9 [8] model. Let L a regular lattice parametrized by a space
step ∆x, composed by a set L0 ≡ {xj ∈ (∆xZ) × (∆xZ)} of nodes or vertices. ∆t is
the time step of the evolution of LBE and λ ≡ ∆x

∆t
is the elementary celerity. We choose

the velocities vi, i ∈ (1 . . . 9) such that vi ≡ ci
∆x
∆t

= ciλ, where the family of vectors {ci}
is defined by: c = (0, 0), (1, 0), (0, 1), (−1, 0), (0,−1), (1, 1), (−1, 1), (−1,−1), (1,−1).
The LBE is a mesoscopic method and deals with a small number of functions {fi} that can
be interpreted as populations of fictitious “particles”. The populations fi evolve according
to the LBE scheme which can be written as follows [2]:

(3) fi(xj, t+∆t) = f ∗
i (xj − vi∆t, t), 1 ≤ i ≤ 9,

where the superscript ∗ denotes post-collision quantities. Therefore during each time
increment ∆t there are two fundamental steps: advection and collision.
• The advection step describes the motion of a particle which has collisioned in node
xj − vi∆t having the velocity vj and goes to the jth neighbouring node xj.
• Following d’Humières [6], the collision step is defined in the space of moments. The
nine moments {mℓ} are obtained by a linear transformation of vectors fj:

mℓ =
9∑

j=1

Mℓ jfj , 1 ≤ ℓ ≤ 9 ,
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where the matrix M ≡ (Mℓ j)1≤ℓ,j≤9 is given by:

(4) M =



0 λ 0 −λ 0 λ −λ −λ λ

0 0 λ 0 −λ λ λ −λ −λ

1 1 1 1 1 1 1 1 1

0 1 −1 1 −1 0 0 0 0

0 0 0 0 0 1 −1 1 −1

−4 −1 −1 −1 −1 2 2 2 2

4 −2 −2 −2 −2 1 1 1 1

0 −2 0 2 0 1 −1 −1 1

0 0 −2 0 2 1 1 −1 −1


.

The moments have an explicit physical significance [8]: m1 ≡ jx and m2 ≡ jy are x-
momentum, y-momentum, m3 ≡ ρ is the density (density), m4 and m5 are diagonal stress
and off-diagonal stress, m6 is the energy, m7 is related to energy square, and m8, m9 are
x-heat flux and y-heat flux. Note that we have changed the usual order of moments to
simplify the introduction of the Bérenger Lattice Boltzmann scheme.
To simulate fluid problems, we conserve the flux momentum jx, jy and the density moment
ρ in the collision step and obtain three macroscopic scalar equation. The other quantities
(non-conserved moments) are assumed to relax towards equilibrium values meq

ℓ following:

(5) m∗
ℓ = (1− sℓ)mℓ + sℓm

eq
ℓ , 4 ≤ ℓ ≤ 9,

where sℓ (sℓ > 0, for ℓ ≥ 4) are relaxation rates, not necessarily equal to a single value as
in the so called BGK case [9]. The equilibrium values meq

i of the non conserved moments
in equation (5) determine the macroscopic behavior of the scheme (i.e. equation (3)). In-
deed with the following choice of equilibrium values (neglecting non-linear contributions):
meq

4 = 0, meq
5 = 0, meq

6 = −2ρ, meq
7 = ρ, meq

8 = −jx and meq
9 = −jy and using Taylor

expansion [2] we find the acoustics equations up to order two in ∆t:

(6)


∂jα
∂t

+
λ2

3

∂ρ

∂xα

= λ2∆t
σ6

3

∂(divj)

∂xα

+ λ2∆t
σ4

3
△j +O(∆t2),

∂ρ

∂t
+ divj = O(∆t2),

where σℓ ≡
(

1
sℓ
− 1

2

)
, 4 ≤ ℓ ≤ 9, and in the case of s5 = s4. Values of the sound speed

cs, bulk viscosity ζ and shear viscosity ν are cs =
λ√
3
, ζ = c2s∆tσ6 and ν = λ2∆t

3
σ4.

2.2 Bérenger Lattice Boltzmann scheme (BLB)

To have a perfectly matched layer for lattice Boltzmann method, we construct a Lattice
Boltzmann scheme which models the buffer of Bérenger (BLB). At first we propose a
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scheme which has the acoustic PML equations (2) as macroscopic behavior without zero-
order damping term (i.e. σ = 0). Later, we change the advection step of the BLB scheme
to add the terms proportional to σ.
As there are four macroscopic equations (2) in the Bérenger scheme, we need to use four
conserved quantities in the collision step. For simplicity, we keep the classical D2Q9 veloc-
ity set (hopefully this will allow simple boundaries between the LBE and BLB domains),
and we replace the list of moments generated with matrix M , by those generated with a
new matrix MB given below.

(7) MB =



0 λ 0 −λ 0 λ −λ −λ λ

0 0 λ 0 −λ λ λ −λ −λ

1 1 1 1 1 1 1 1 1

MB
4 1 MB

4 2 MB
4 3 MB

4 4 MB
4 5 MB

4 6 MB
4 7 MB

4 8 MB
4 9

0 0 0 0 0 1 −1 1 −1

−4 −1 −1 −1 −1 2 2 2 2

4 −2 −2 −2 −2 1 1 1 1

0 −2 0 2 0 1 −1 −1 1

0 0 −2 0 2 1 1 −1 −1


,

Note that M and MB differ only in the definition of the fourth moment, that we call m′
4

and which will be conserved in collision (i.e. s
′
4 = 0) to get a fourth macroscopic equation.

Later we shall identify m3 to ρ ≡ ρx + ρy and m
′
4 to ρx − ρy.

To simplify later formula, we introduce coefficients γ1···9 such that

MB
4 1 = γ3 − 4(γ5 − γ6)

MB
4 2 = λγ1 + γ3 + γ4 − γ6 − 2γ7 − 2γ8

MB
4 3 = λγ2 + γ3 − γ4 − γ6 − 2γ7 − 2γ9

MB
4 4 = −λγ1 + γ3 + γ4 − γ6 − 2γ7 + 2γ8

MB
4 5 = −λγ2 + γ3 − γ4 − γ6 − 2γ7 + 2γ9

MB
4 6 = λ(γ1 + γ2) + γ3 + γ5 + 2γ6 + γ7 + γ8 + γ9

MB
4 7 = λ(−γ1 + γ2) + γ3 − γ5 + 2γ6 + γ7 − γ8 + γ9

MB
4 8 = −λ(γ1 + γ2) + γ3 + γ5 + 2γ6 + γ7 − γ8 − γ9

MB
4 9 = λ(γ1 − γ2) + γ3 − γ5 + 2γ6 + γ7 + γ8 − γ9 .

We note that this corresponds to MB
4• = (γ1, γ2, . . . , γ9).M . For the non conserved mo-

ments, we take new equilibrium values, meq
5 = 0, meq

6 = axρx + ayρy, meq
7 = cxρx + cyρy,

meq
8 = c1

λ
jx and meq

9 = c2
λ
jy. We now determine the equivalent set of equations of the

model defined above at first order in ∆t and we try and identify these equations with the
set of equations 2 with no linear damping (σ = 0). In addition we impose that the matrix
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MB is invertible. Using a first order Taylor expansion in ∆t of the BLB scheme [2], we
obtain

∂jx
∂t

+ A1
∂jx
∂x

+ A2
∂jy
∂x

+ A3
∂ρ

∂x
+ A4

∂(ρx − ρy)

∂x
= O(∆t),(8)

∂jy
∂t

+B1
∂jy
∂y

+B2
∂jx
∂y

+B3
∂ρ

∂y
+B4

∂(ρx − ρy)

∂y
= O(∆t),(9)

∂ρ

∂t
+

∂jx
∂x

+
∂jx
∂y

= O(∆t),(10) 
∂(ρx − ρy)

∂t
+ C1

∂(ρx − ρy)

∂x
+ C2

∂(ρx − ρy)

∂y
+ C3

∂ρ

∂x
+ C4

∂ρ

∂y

+C5
∂jx
∂x

+ C6
∂jx
∂y

+ C7
∂jy
∂x

+ C8
∂jy
∂y

= O(∆t) ,
(11)

where

A1 =
−1

2γ4
(γ1 + c1γ8) , A2 =

−1

2γ4
(γ2 + c2γ9) ,

A3 =
2

3
− γ3

2γ4
+

ax + ay
4

(
1

3
− γ6

γ4

)
− γ7(cx + cy)

4γ4
,

A4 =
1

2γ4
+

ax − ay
4

(
1

3
− γ6

γ4

)
− γ7(cx − cy)

4γ4
,

B1 =
1

2γ4
(γ2 + c2γ9) , B2 =

1

2γ4
(γ1 + c1γ8) ,

B3 =
2

3
+

γ3
2γ4

+
ax + ay

4

(
1

3
+

γ6
γ4

)
+

γ7(cx + cy)

4γ4
,

B4 =
−1

2γ4
+

ax − ay
4

(
1

3
+

γ6
γ4

)
+

γ7(cx − cy)

4γ4
,

C1 =
(ax − ay)

2
(
γ1
6

+
γ8
3

+
γ6
2γ4

(2γ8 − γ1)) +
cx − cy

2
(
γ8
3

+
γ7
2γ4

(2γ8 − γ1)) ,

C2 =
(ax − ay)

2
(
γ2
6

+
γ9
3

+
γ6
2γ4

(γ2 − 2γ9)) +
cx − cy

2
(
γ9
3

+
γ7
2γ4

(γ2 − 2γ9)),

C3 =
2γ1
3

+
γ3
2γ4

(2γ8 − γ1) +
ax + ay

2

(γ8
3

+
γ1
6

+
γ6(2γ8 − γ1)

2γ4

)
+
cx + cy

2

(γ8
3

+
γ7
2γ4

(2γ8 − γ1)
)
,

C4 =
2γ2
3

+
γ3
2γ4

(−2γ9 + γ2) +
ax + ay

2

(γ9
3

+
γ2
6

+
γ6(−2γ9 + γ2)

2γ4

)
+
cx + cy

2

(γ9
3

+
γ7
2γ4

(−2γ9 + γ2)
)
,

C5 = γ3 + γ6 + c1(γ6 + γ7) +
γ4
3
(1− c1) +

γ8γ1
2γ4

(2− c1) +
2c1γ

2
8 − γ2

1

2γ4
,

C6 =
γ5(2 + c1)

3
+

1

2γ4
(c1γ8 + γ1)(γ2 − 2γ9), C7 =

γ5(2 + c2)

3
− 1

2γ4
(c2γ9 + γ2)(γ1 − 2γ8),

C8 = γ3 + γ6 + c2(γ6 + γ7)−
γ4
3
(1− c2)−

γ9γ2
2γ4

(2− c1)−
2c2γ

2
9 − γ2

2

2γ4
.
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The identification between a suitable linear combination of equations (8), (9), (10), (11)
and the PML system (2) where σ = 0 leads to the following requirements:

γ1 = γ2 = γ8 = γ9 = 0 ,

ax = −4 + 6c2s , ay = −4 + 6c2s ,

cx =
(4γ6 − 6γ6c

2
s − γ3 + 1)

γ7
,

cy =
(4γ6 − 6γ6c

2
s − γ3 − 1)

γ7
− 4 + 6c2s ,

c1 =
(3γ3 + γ4 + 3γ6 − 3)

(γ4 − 3γ6 − 3γ7)
,

c2 =
(−3γ3 + γ4 − 3γ6 − 3)

(γ4 + 3γ6 + 3γ7)
.

For γ3,4,5,6,7 we find two possible sets of solutions for γ3,4,5,6,7:

i) γ3 = γ6 + 2γ7, γ4 = 1 , ii) γ5 = 0.

Note that there are some free parameters left (γ5,6,7 for the first case or γ3,4,6,7 for the
second one). To have a stable scheme, we have found that only the second is acceptable.

2.3 Dissipation properties of BLB scheme without damping terms

To study the dissipation properties of the BLB scheme without absorbing terms (i.e.
σ = 0), we determine the macroscopic equations up to order 2 relatively to ∆t.

Proposition 1. In the case where s6 = s7, s8 = s9, cs = λ√
3

and γ5 = 0, the BLB scheme
models the following system of macroscopic equations up to order two on ∆t:

∂jx
∂t

+
λ2

3

∂(ρx + ρy)

∂x
+ Axx

∂2jx
∂x2

+ Ayy
∂2jx
∂y2

+ Axy
∂2jy
∂xy

= O(∆t2),

∂jy
∂t

+
λ2

3

∂(ρx + ρy)

∂y
+Bxx

∂2jy
∂x2

+Byy
∂2jy
∂y2

+Bxy
∂2jx
∂xy

= O(∆t2),

∂ρx
∂t

+
∂jx
∂x

+ Cxx
∂2ρx
∂x2

+ Cyy
∂2ρx
∂y2

+Dxx
∂2ρy
∂x2

+Dyy
∂2ρy
∂y2

= O(∆t2),

∂ρy
∂t

+
∂jy
∂y

− Cxx
∂2ρx
∂x2

− Cyy
∂2ρx
∂y2

−Dxx
∂2ρy
∂x2

−Dyy
∂2ρy
∂y2

= O(∆t2),
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where

Axx = −λ2∆t(4γ4 − 1)

6γ4
σ6

Ayy = −λ2∆t

3

(3(γ3 − γ6 − 2γ7 + γ4)− 1)

γ4 − 3(γ6 + γ7)
σ5

Axy = −λ2∆t

3

[
3(γ6 + γ7) + γ4(6(γ7 − γ3) + 4γ4 − 1)

2γ4(γ4 + 3(γ6 + γ7))
σ6 +

3(γ6 − γ3 + 2γ7 + γ4)− 1

γ4 + 3(γ6 + γ7)
σ5

]
Bxx = −λ2∆t

3

(3(−γ3 + γ6 + 3γ7 + γ4)− 1)

γ4 + 3(γ6 + γ7)
σ5

Byy = −λ2∆t(2γ4 + 1)

3γ4
σ6

Bxy = −λ2∆t

3

[
3(γ6 + γ7) + γ4(3(γ3 − γ7) + 2γ4 − 2)

γ4(γ4 − 3(γ6 + γ7))
σ6 +

3(γ3 − γ6 − 2γ7 + γ4)− 1

γ4 − 3(γ6 + γ7)
σ5

]
Cxx =

λ2∆t

18
σ8(3(γ6 + γ7)− γ4)(2(γ7 − γ6) + γ3 − 1)

Cyy =
λ2∆t

18
σ8(3(γ6 + γ7) + γ4)(2(γ7 − γ6) + γ3 − 1)

Dxx =
λ2∆t

18
σ8(3(γ6 + γ7)− γ4)(2(γ7 − γ6) + γ3 + 1)

Dyy =
λ2∆t

18
σ8(3(γ6 + γ7) + γ4)(2(γ7 − γ6) + γ3 + 1) .

We note that this model is not isotropic.

Proof. To obtain the macroscopic equations we can use the usual Chapman-Enskog anal-
ysis [4] or Taylor expansion [2]. The details are given in [10]. In general the second order
space derivatives in the preceding equations are not isotropic. To obtain isotropy, the fol-
lowing conditions have to be met: Axx = Byy, Ayy = Bxx, Axy = Bxy and Axx−Axy = Ayy,

where Axx,yy,xy and Bxx,yy,xy are the coefficients appearing in the equivalent equations of
the model BLB (see proposition 1). This can be satisfied only for s5 = 0. This fact intro-
duces a new conservation law which is incompatible with the Bérenger model. Therefore
our model is not isotropic.

2.4 Stability analysis

We study numerically the stability of the BLB scheme by using the Von Neumann analysis.
It consists in considering the solution of the scheme for a plane wave fj(xi, t) = ϕje

i(ωt−k.xi)

and by using the Fourier transform of the equation (3). We obtain the following equation:

(12) f(xi, t+∆t) = G(p, q)f(xi, t),

where p = eikx∆x, q = eiky∆x, (kx, ky) = k and G(p, q) = A(p, q)M−1
B CMB. The advection

operator A(p, q) can be written as follows:
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A = diag
(
1, p, q, 1

p
, 1
q
, pq, q

p
, 1
pq
, p
q

)
, the moments matrix MB is given by (7) and the

collision matrix is given by:

C=



1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1− s5 0 0 0 0

axs6
ax−ay

2
s6 0 0 0 1− s6 0 0 0

cxs7
cx−cy

2
s7 0 0 0 0 1− s7 0 0

0 0 c1
λ
s8 0 0 0 0 1− s8 0

0 0 0 c2
λ
s9 0 0 0 0 1− s9


.

Let introduce z = eiω∆t, then equation (12) becomes:

zf(xi, t) = G(p, q)f(xi, t).

So the stability relies on the eigenvalue problem for the operator G. Therefore we compute
numerically the eigenvalues zα and the stability occurs when Re(lnzα) < 0 (i.e. |zα| < 1)
for all wave vector k.
For the case where sound speed cs = λ√

3
we find that the BLB scheme is not stable

for the first choice: γ5 ̸= 0, γ3 = γ6 + 2γ7 and γ4 = 1. So we take the second choice
(i.e. γ5 = 0). We find that the BLB algorithm is stable for the following configuration:
γ4 = 1, γ3 = γ6 + 2γ7, γ6 ∈ [0.88, 3.22], γ7 ∈ [0.77, 2.22], s5 ∈]0, 1.6[, s6,7 ∈]0, 1.66[ and
s8,9 ∈]0, 1.8[. Figures 2(a), 2(b), 2(c) and 2(d) show the real part of logarithm of the
eigenvalues as function of wave vector k. We see that for this choice of the parameters the
BLB algorithm is stable. We note that we have not find situations where the attenuation
is less 10−2 typically (i.e. one order of magnitude greater than the classical D2Q9).

2.5 BLB with damping terms

Until now we studied the case of BLB without absorbing terms (i.e. σ = 0 in the system
of equations (2)) to represent only the non-reflecting property of the BLB scheme. To
model the zero-order damping terms we propose to change the advection step of the BLB
scheme as follows:

Proposition 2. If we modify the advection step of the BLB scheme as follows:

fj(xi, t+∆t) = f ∗
j (xi − vj∆t, t)−

9∑
ℓ=1

σ̃B
ℓ,jf

∗
ℓ (xi − vℓ∆t, t) , 1 ≤ j ≤ 9.
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Figure 2: Real part of logarithmic eigenvalues of the BLB model versus |k|. The value of
the parameters are γ3 = 7, γ6 = 3, γ7 = 2, γ4 = 1 and cs =

1√
3
. The relaxation parameters

are s5 = 1.4, s6 = 1.6, s7 = 1.65, s8 = 1.3 and s9 = 1.8. (a) For θ = 0 angle of wave
vector k (i.e. k is parallel to Ox). (b) For θ =

π

12
. (c) For θ =

π

6
. (d) For θ =

π

4
.

where the matrix σ̃B ≡ (σ̃B
ℓ,j)1≤ℓ,j≤9, is given by:

σ̃B
2, • = σ∆t

4
(1 + a1, 4, 0, 0, 0, a2 + 3, a2 − 1, a2 − 1, a2 + 3) ,

σ̃B
4, • = σ∆t

4
(1 + a1, 0, 0, 4, 0, a2 − 1, a2 + 3, a2 + 3, a2 − 1) ,

and σ̃B
ℓ,j = 0 for ℓ ̸= (2, 4), 1 ≤ j ≤ 9, with

a1 = γ3 − 4(γ6 − γ7) , a2 = γ3 + 2γ6 + γ7.

We simulate the terms of damping proportional to σ in the PML system of equations (2).
We note here that we give the matrix σ̃ only for the case where the BLB scheme is stable.

Proof. We use here the Taylor expansion [2] for the above equation to find the macroscopic
equivalent equations (2). So we write the Taylor expansion up to order 2 on ∆t of the
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BLB scheme equation (see Proposition 2):

fj(xi, t) + ∆t∂tfj(xi, t) =
(
f ∗
j (xi, t)−∆tvj∇f ∗

j (xi, t)
)

−
9∑

ℓ=1

σ̃B
j,ℓ (f

∗
ℓ (xi, t)−∆tvℓ∇f ∗

ℓ (xi, t)) + O(∆t2),

With the help of the moment matrix MB, using the fact f ∗
j = f eq

j +O(∆t) and neglecting
the terms in (∆t2), we obtain:

mℓ +∆t ∂tmℓ = m∗
ℓ −∆t

∑
j=1,9

MB
ℓ,jv

β
j ∂βf

eq
j −

9∑
j=1

MB
ℓ,j

9∑
p=1

σ̃B
j,pf

eq
p (x, t) + O(∆t2).

We rewrite the above equation as follows:

m∗
ℓ −mℓ = ∆t ∂tmℓ +∆t

∑
j=1,9

MB
ℓ,jv

β
j ∂βf

eq
j +

9∑
j=1

Ψℓ,jf
eq
j (x, t) + O(∆t2),(13)

where the matrix (Ψℓ,j)1≤ℓ,j,≤9 = MB.σ̃B is the product of matrix MB and σ̃B. So with
the help of the matrix Ψ we calculate the terms:

∑9
j=1Ψℓ,jf

eq
j (x, t), for ℓ = 1..9

which is equal to: σ∆tjx for ℓ = 1, 0 for ℓ = 2, σ∆tρ+(ρx−ρy)

2
= σ∆tρx for ℓ = 3 and

σ∆tρ+(ρx−ρy)

2
= σ∆tρx for ℓ = 4. Now we write equation (13) for the four conserved

moments (i.e. ℓ = {1, 2, 3, 4}) and with the help of m∗
ℓ = mℓ we obtain the PML system

(2) with absorption.

3 Numerical test of interfaces

In this section we present numerical simulations for acoustic waves normally incident to
an interface between a classical D2Q9 medium (on the left) and various situations on
the right: first a BLB without absorption then BLB with absorption and finally classical
D2Q9 with absorption. Because we have chosen the same velocity set for both media the
scheme (3) is used at all points, including those at the interface.

3.1 Classical D2Q9/BLB without absorption

So let Ω = [0, l] × [0, h], where l = 4000 and h = 5 be composed by Ω− = [0, l
2
] × [0, h]

and Ω+ = [ l
2
, l]× [0, h].

• In Ω−, we use the classical D2Q9 scheme with the following relaxation rates: s4 = s5 =

1.95, s6 = 1.97, s7 = 1.9 and s8 = s9 = 1.7.
• In Ω+, we use the BLB scheme without absorption and we take the following configura-
tion for different parameters: γ3 = 7, γ4 = 1, γ6 = 3, γ7 = 2, cs = 1√

3
, s5 = 1.8, s6 = 1.6,
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Figure 3: Interface test in the case of normal incidence between classical D2Q9 acoustic
medium and BLB without absorption medium. (a) jtestx vs Nx wave transmission between
Ω− (D2Q9 medium) and Ω+ (BLB without absorption medium) at time T = 6000. (b)

jtestx − jrefx vs Nx, difference between the test and reference cases.

s7 = 1.6 and s8 = s9 = 1.7.
Here we take periodic boundary conditions for the y direction and a simple bounce back
in the outer edges in xi = l. In the inlet edges at xi = 0 we impose an harmonic wave
jx = sin(ω∆t) where ω = 2π

100
(implemented by bounce-back and application of 2jx with

appropriate weight factors for the velocities incoming in the computational domain). We
take a fluid at rest for initial conditions and the total duration T = n∆t of the simulations
is chosen such that waves have not reached the outlet (see Fig. 3(a)). We note here that
the acoustic wave is more absorbed for xi > 2000 Fig. 3(a), and this is due to the change
of viscosity in the BLB medium.

To determine the reflected wave, we perform another simulation in the domain ΩR =

[0, l] × [0, h]. In this domain we take the same configuration as in the domain Ω− with
the same boundary conditions for the inlet edges at xi = 0. This simulation gives us the
reference solution. To see the reflected wave and the Knudsen modes that are generated
at the interface we draw the difference between the flux jtestx in Ω (the test case) and the
flux jrefx in ΩR (the reference case) for the same number of time steps = 6000. It should be
noted here that we have a small reflected wave between classical D2Q9 acoustic medium
and BLB without absorption medium. So in Fig. 3(b) (for xi ∈ (1, 2, . . . .2000)) we see a
reflected acoustic wave which has an amplitude of the order 3.10−3. This reflected acoustic
wave is generated by the change in the viscosity between the two media. As indicated
above, the BLB scheme is anisotropic and is not stable for parameters corresponding to
a viscosity as small as that can be obtained with D2Q9 (for more details see [11]).
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Figure 4: Interface test in the case of normal incidence between classical D2Q9 acoustic
medium and BLB with absorption medium. (a) jtestx vs Nx wave transmission between Ω−

(D2Q9 medium) and Ω+ (BLB with absorption medium) at xi = 2000 and time T = 6000.
(b) jtestx − jrefx vs Nx, difference between the test and reference cases.

3.2 Classical D2Q9/BLB with absorption

To test this interface we make the same simulation as above, but now we only change
the Ω+ medium. Indeed in Ω+ we use the BLB scheme with absorption (i.e. changing
the advection step as described in proposition 2). We take the following parameters:
γ3 = 7, γ4 = 1, γ6 = 3, γ7 = 2, cs = 1√

3
, s5 = 1.8, s6 = 1.6, s7 = 1.6, s8 = s9 = 1.7

and σ(xi) = 10−7(xi − 2000)2. Figure 4(a) shows that the transmitted acoustic wave is
absorbed (for xi > 2000) in the BLB with absorption medium. We note also that the
reflected acoustic wave (see Fig. 4(b)) in the D2Q9 medium has the same amplitude as
in the case D2Q9/BLB without absorption.

3.3 Classical D2Q9/ Classical D2Q9 with absorption

Now to test the classical D2Q9/classical D2Q9 with absorption we only change the
medium Ω+. So we take the following D2Q9 scheme where we have only changed the
advection step in Ω+:

fj(xi, t+∆t) = (Id− σ̃)f ∗
j (xi − vj∆t, t) , 1 ≤ j ≤ 9,

where the matrix σ̃ ≡ (σ̃ℓ,j)1≤ℓ,j≤9 is given by:
σ̃2,• = σ∆t

2
(1, 2, 1, 0, 1, 2, 0, 0, 2)

σ̃4,• = σ∆t
2
(1, 0, 1, 2, 1, 0, 2, 2, 0)

σ̃ℓ,j = 0 for ℓ ̸= (2, 4) , 1 ≤ j ≤ 9 .
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Figure 5: Interface test in the case of normal incidence between D2Q9 acoustic medium
and D2Q9 with absorption medium. (a) jtestx vs Nx wave transmission between Ω− (D2Q9

medium) and Ω+ (D2Q9 with absorption medium) at time T = 6000. (b) jtestx − jrefx vs
Nx, difference between the test and reference cases.

This scheme has the following macroscopic equation up to order 1 in ∆t:
∂tρ+ σρ+ ∂xjx + ∂yjy = O(∆t),

∂tjx + σjx + c2s∂xρ = O(∆t),

∂tjy + c2s∂yρ = O(∆t).

In Ω+ we take the following conditions: meq
4 = meq

5 = 0, meq
6 = −2ρ, meq

7 = ρ, meq
8 = −jx,

meq
9 = −jy, s4 = s5 = 1.9, s6 = 1.8, s7 = 1.75, s8 = s9 = 1.7, and σ(xi) = 10−7(xi−2000)2.

Figure 5(a) shows that the transmitted wave is absorbed (for xi > 2000) in the D2Q9

with absorption medium. We note here that this interface generates a very small reflected
wave (see Fig. 5(b)) in normal incidence which is due to the change of the speed of sound
in the two media (for more details see [10, 11]).

3.4 Comparison between numerical interfaces

The BLB without absorption scheme generates an undesired reflected acoustic wave in
the domain of interest. The BLB with absorption scheme is stable and does not generate
any additional reflected wave. Finally the classical D2Q9 scheme with absorption is more
efficient but it generates a small reflected wave for normal incidence. Thus we propose a
new method to cancel reflected wave.

4 Towards cancellation of reflected waves

Let Ω−, Ω+ be two one dimensional acoustic domains simulated by D1Q3 scheme with
sound velocity, relaxation rate and viscosity (cs, s, ν) and (c̃s, s̃, ν̃) respectively (e.g. ν =
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∆t c2s (
1
s
− 1

2
)). So we have the following reflection coefficient [11]:

(14) r =
p+ − p̃+
1− p+p̃+

=
cs − c̃s
cs + c̃s

+
i(ν c̃2s − ν̃ c2s)

csc̃s(cs + c̃s)2
ω +O(ω2),

where p+ = e(ik
+∆x), p̃+ = e(ik̃

+∆x), ω is the frequency of incident wave and k+, k̃+ are
the progressive wave vectors in Ω− and Ω+ respectively.
In order to cancel the reflected wave we propose to change the advection step at the
interface. Thus the new f1 in node xr = ∆x

2
is a linear combination of f ∗

1 in node
xl = −∆x

2
and f ∗

1 in node xl−∆x (see Fig. 6). Whereas we keep the same advection step
for f2 which goes in the opposite direction. Thus we propose the following scheme at the
interface:{

f1(t+∆t, xi) = δ1f
∗
1 (t, xi −∆x) + δ2f

∗
1 (t, xi − 2∆x) in xi =

∆x
2
,

f2(t+∆t, xi) = f ∗
2 (t, xi +∆x) in xi = −∆x

2
,

where δ1 and δ2 are two scalar coefficients which are fixed in order to cancel the reflected
wave.

Figure 6: Connection at interface.

Proposition 3. For D1Q3 monodimensional acoustic interface, we find coefficients δ1
and δ2 in cancelling terms of order 0 and 1 in ω of the reflection coefficient given in
equation (14). We have:

δ1 =
ν

∆t

(λ+ c̃s)

(λ− c̃s)(λ+ cs)2
− ν̃

∆t

cs(λ− cs)

c̃s(λ+ cs)(λ− c̃s)2
+

(λ+ c̃s)(λ− cs)

(λ− c̃s)(λ+ cs)
,

δ2 =
ν̃

∆t

cs(λ− cs)

c̃s(λ+ cs)(λ− c̃s)2
− ν

∆t

(λ+ c̃s)

(λ− c̃s)(λ+ cs)2
.

Proof. To find coefficients δ1 and δ2 we calculate the theoretical expression of the reflection
coefficient taking into account the new advection step at interface. Then we resolve the
equation r = O(ω2) (for more details see [10]).

• Numerical test: Let Ω− = {xi, i = 1..1000} and Ω− = {xi, i = 1001..2000} with sound
velocity and viscosity (cs = 0.577, ν = 0.001) and (c̃s = 0.479, ν̃ = 0.2). Figure 7(a) shows
that there is a reflected wave which has an amplitude of the order 10−1. By using the
new proposed method (see proposition 3) we have reduced the reflected wave. In figure 7

(b) the reflected wave has an amplitude about 10−4.
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Figure 7: jtestx − jrefx vs Nx: difference between test and reference cases at T = 1500,
(a) without changing the advection step at interface and (b) with interpolation of the
advection step at the interface.

5 Conclusion

We have proposed a new scheme called BLB to model the perfeclty matched layer of
Bérenger. Unfortunately this scheme generates a reflected wave in the domain of interest
and this is due to the non isotropic property of BLB. The method used here to obtain
a fourth macroscopic equation (as in the Bérenger scheme) needs to be tested for more
complicated schemes than D2Q9 in order to model first order equations without obtaining
unsatisfactory second order equations (by this we mean anisotropic viscous terms). We
have also proposed a method to model the zero-order damping terms. This method
consists in changing the advection scheme. This method is stable and does not generate
a reflected wave.
We have proposed a new method to cancel the reflected wave for normal incidence based
on a local modification of the propagation rules near the interface. Future work could
be the extension of the this method for two and three dimensional interface and for any
incidence angle.
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