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Note presented by Philippe G. Ciarlet.

Abstract The topological features of a given domain � in R
3 are here analyzed by means of the

homology groups of first and second order. Algebraic topology together with a particular
QR type factorization in Z can be used to know whether � is connected and simply
connected, as well as to check if a given discretization of � by means of simplices has
been correctly realized. To cite this article: F. Rapetti et al., C. R. Acad. Sci. Paris, Ser. I
334 (2002) 717–720.  2002 Académie des sciences/Éditions scientifiques et médicales
Elsevier SAS

Factorisation matricielle à nombres entiers pour détecter des défaults
dans les maillages

Résumé Les caractéristiques topologiques d’un domaine � de R
3 sont analysées ici à l’aide

des groupes d’homologie du premier et second ordre. La topologie algébrique et une
factorization particulière de type QR dans Z peuvent être utilisées afin de savoir si � est
connexe et simplement connexe, de même que pour vérifier si une discrétisation de � par
éléments simpliciaux a été bien réalisée. Pour citer cet article : F. Rapetti et al., C. R. Acad.
Sci. Paris, Ser. I 334 (2002) 717–720.  2002 Académie des sciences/Éditions scientifiques
et médicales Elsevier SAS

1. Introduction

A precise description of complicated industrial geometries relies on the use of computer assisted design
tools. In this framework, the automatic generation of simplified meshes is often affected by topological
mistakes (e.g., “holes”). We propose here an application of algebraic topology, graph theory and linear
algebra to investigate the presence of mesh defects in two and three dimensions. Note that triangulating
a domain reduces the calculation of homology groups to a finite procedure. The importance of simplified
meshes relies on the fact that any triangulated domain is homeomorphic to one in which the elements
have flat faces and straight edges. The remarkable thing is that these groups, in spite of being defined
through a triangulation, do measure something intrinsic and geometric (they are topological invariants, i.e.,
they depend on the domain up to a homeomorphism) that does not depend on the mesh, if the latter is
not too coarse. The homology groups of a domain have a direct link with the possibility of representing
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curl-free and div-free vectors as gradients and curls, respectively. They contribute to build up suitable
“belted” spanning trees of edges or faces [6]. This link is determinant in the construction of numerical
algorithms for solving given problems in terms of scalar or vector potentials such as in electromagnetism
or fluid dynamics. In a spirit similar to the GAP (Groups, Algorithms and Programming) free system
for computational discrete mathematics, well known in the group theory research field, we propose an
automatic procedure to compute a basis of generators for homology groups to investigate the presence of
topological mesh defects. The very same procedure is used in [3] and for a recent application of similar
tools to classify surfaces, see [5].

2. Cellular complexes and homology groups

Given a domain �⊂R
3 with boundary �, a simplicial mesh m in � is a tessellation of � by tetrahedra,

under the condition that any two of them may intersect along a common face, edge or node, but in no other
way. We denote by Nm, Em, Fm, Tm (nodes, edges, faces, and tetrahedra, respectively) the sets of simplices
of dimension 0 to 3 thus obtained, and by Nm, Em, Fm, Tm their cardinalities. The notation m� stands for
the trace of m on � and all quantities related to m� will carry the superscript �.

First we need to underline some combinatorial properties of the simplicial mesh. Let M(r, s) denote
the set of matrices A whose elements are A(i, j) with 1 � i � r and 1 � j � s. Besides the list of nodes
and their positions, the mesh data structure also contains incidence matrices, saying which node belongs
to which edge, which edge bounds which face, etc. [1,4]. Moreover, there is a notion of orientation of the
simplices that has to be taken into account. In short, an edge is not only a two-node subset of Nm, but an
ordered set where the order implies an orientation. Let e = {�, n} be an edge of the mesh oriented from
the node � to n. We can define the incidence numbers G(e, n)= 1, G(e, �)=−1 and G(e, k)= 0 for all
nodes k other than � and n. These numbers form a rectangular matrix G ∈M(Em, Nm), which describes
how edges connect to nodes. A face f = {�, n, k} has three vertices which are the nodes �, n, k. Note that
{n, k, l} and {k, l, n} denote the same face f whereas {n, l, k} denotes an opposite oriented face, which is
not supposed to belong to Fm if f does. An orientation of f induces an orientation of its boundary. So,
with respect to the orientation of the face f , the one of the edge {l, n} is positive and negative the one
of {k, n}. Then, we can define the incidence number R(f, e) = 1 or −1 if the orientation of e matches or
does not match, respectively the one on the boundary of f and R(f, e)= 0 if e is not an edge of f . These
numbers form a matrix R ∈M(Fm, Em). Finally, let us consider the tetrahedron t = {k, l, m, n}, positively
oriented if the three vectors {k, l}, {k, m} and {k, n} define a positive frame (t ′ = {l, m, n, k} has a negative
orientation and does not belong to Tm if t does). A third matrix D ∈M(Tm, Fm) can be defined by setting
D(t, f )=±1 if face f bounds the tetrahedron t , with the sign depending on whether the orientation of f

and of the boundary of t match or not, and D(t, f )= 0 in case f does not bound t . It can be easily proven
that RG= 0 and DR = 0 [1].

Let m be the simplified mesh on � ⊂ R
3. A p-chain c is a function that associates a number αi to

each simplex of dimension p in m and we denote by Cp(m) the set of all p-chains. The set Cp(m) has a
structure of Abelian group with respect to the addition of p-chains (two p-chains are added by adding the
coefficients).

As an example, let us consider a path of edges of the mesh m to go from a point n1 to a point n2: the
path is an oriented line. Assigning an integer αe equal to +1 or −1 when the edge e belongs to the path
and its orientation is in agreement or in disagreement with that of the path and 0 for all edges e that do not
belong to the path, we define a 1-chain. A circuit is a line plus a way to run along it; so, when the line is
made of oriented edges, we need to tell the positive direction along each edge, which is precisely what the
chain coefficient αe does. In our case, we assume that all coefficients αi are relative integers, i.e., αi ∈ Z.

Next concept is the boundary operator ∂p :Cp(m)→ Cp−1(m), p > 0. By definition, we have:

∂1(e)=
∑

n∈Nm

G(e, n)n, ∂2(f )=
∑
e∈Em

R(f, e)e, ∂3(t)=
∑

f∈Fm

D(t, f )f.
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Note that ∂p is represented by a matrix that is Gt , Rt and Dt depending on the dimension p > 0. We remark
in particular that ∂p+1 ◦ ∂p = 0, i.e., the boundary of a boundary is zero.

We will say that a p-chain c is closed if ∂p(c)= 0. Closed p-chains are called p-cycles and constitute
the subset Zp(m) = ker(∂p;Cp(m)). A p-chain c is a boundary if there is a (p + 1)-chain γ such that
c = ∂p+1 (γ ). The p-boundaries constitute the subset Bp(m)= ∂p+1 (Cp+1(m)). Both Zp(m) and Bp(m)

are Abelian groups with respect to the addition of p-chains. Boundaries are cycles but not all cycles are
boundaries: we have in fact that Bp(m)⊂Zp(m).

Our concern is to determine the 1-cycles and 2-cycles that are not boundaries, i.e., to define the generators
of the homology group of order p of the mesh, Hp(m)= Zp(m)/Bp(m), for p = 1 and 2. To understand
the link between these groups and the detection of topological mesh defects, let us consider the situation
where two separately meshed parts of a domain � are glued together along an interface I to give the global
discretization of � (this occurs in general when � has complicated geometric features). We suppose that,
after the gluing process, a couple of nodes, both on I and each of them on a different part of �, come very
close to each other but do not coincide, by mistake. In two dimensions, the 1-chain associated to the path
of edges having one of these two nodes as extremity does not bound a cluster of triangles: it is an element
of H1(m). In three dimensions, the 2-chain associated to the path of faces having one of these two nodes as
extremity does not bound a cluster of tetrahedra: it is an element of H2(m).

A very first information on the connectivity genus of � and of its surface � comes from the Euler–
Poincaré characteristic [4]. For a given connected domain �, the Euler–Poincaré characteristic of � is the
integer χ(�) = Nm − Em + Fm − Tm and for a connected surface �, it is χ(�) = N�

m − E�
m + F �

m . The
Euler–Poincaré characteristic is linked to the homology groups as follows: setting bp = dimHp(m) (resp.
b�

p = dim Hp(m�)), p = 0, 1, 2, 3 (resp. p = 0, 1, 2) for the Betti numbers of � (resp. of �), we have
χ(�)= b�

0 − b�
1 + b�

2 and χ(�)= b0− b1+ b2− b3. The major point is that Betti numbers, and hence the
Euler–Poincaré characteristic, are topological invariants: they do not depend on the adopted discretization.
The constant χ(�) is typically 0, 1 or 2. For the surface � we have that χ(�)= 2(1− r(�)), where r(�) is
the genus of � (i.e., the “number of loops” of � or, more precisely, the maximum number of disjoint closed
curves which can be drawn on � without separating it). For more details on the subject, see [7].

3. An integer matrix factorization

In this section we present a matrix decomposition to compute the homology groups of order p = 1 and 2
of �⊂ R

3. The basic idea is to make an integer QR factorization of the matrices Gt , Rt and Dt . Given
a matrix A ∈M(r, s), we compute a non-singular unimodular matrix Q and a permutation matrix P such
that R=QAP is upper triangular. As shown later, the two matrices Q and P are obtained as products of
a certain number of local matrices Qi,j and Pi,j and exhibit the row and column rank deficiency of A [2].

To define Q and P , we need two elementary operations. Firstly, the transformation (1 of a vector
v = (εi, εj )t into the vector ṽ = (1, 0)t . To this purpose, let us introduce the matrices

Qel
i,j =

(
εi 0
−εi εj

)
, Qi,j (�, q)=




δ�,q, � �= i, j, q �= i, j,

Qel
i,j (1, 1), �= i, q = i,

Qel
i,j (1, 2), �= i, q = j,

Qel
i,j (2, 1), �= j, q = i,

Qel
i,j (2, 2), �= j, q = j.

(
Qel

i,j

)−1 =
(

εi 0
εj εj

)
.

In our case, ε2
i = 1, and the vector ṽ =(1(v)=Qel

i,j v. Secondly, we need the permutation (2 of a vector’s
components, i.e., the transformation of a vector v = (εi, εj )t into the vector ṽ = (εj , εi)

t . To this purpose,
we have ṽ = (2(v) = Pel

i,j v, where Pel
i,j is a permutation matrix; moreover, we introduce a matrix Pi,j

defined similarly to Qi,j (using Pel
i,j instead of Qel

i,j ). We remark that (Pel
i,j )−1 = Pel

i,j , owing to the fact
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that Pel
i,j is a permutation matrix and that (Qi,j )−1 is defined as Qi,j (using (Qel

i,j )−1 instead of Qel
i,j ).

Now we describe the adopted procedure to build up Q and P for a given matrix A ∈M(r, s).
Procedure: We set Q=Q0 ∈M(r, r), P =P0 ∈M(s, s). We loop on the column index j , 1 � j � s:
1. We define Vj = {i | min{j, r} � i � min{s, r}, A(i, j) �= 0} and we put k equal to the cardinality

of Vj , i1 equal to the smallest integer in Vj and i2 equal to the smallest integer in Vj \ {i1}.
2. In case k = 0: let Pj,z be the matrix of the transformation (2 that permutes the j -th column of A

with the z-th one. The z-th column is chosen to be the first column, starting from the last one in A,
for which it exists a row index s such that A(s, z) �= 0. If the index z exists, P← P Pj,z, A←APj,z

and we go back to step 1, otherwise we stop the Procedure.
3. In case k �= 0 but A(j, j) = 0, we apply a partial pivot strategy. Let Qj,i1 be the matrix of the

transformation (2 that permutes the j -th row with the i1-th one; then, Q←Qj,i1 Q, A←Qj,i1 A,
i1← j and we go to step 4.

4. In case k � 2 and A(j, j) �= 0, let Qel
i1,i2

be the matrix of the transformation (1 applied to the vector
(A(i1, j), A(i2, j))t and Qi1,i2 the associated matrix, then Q← Qi1,i2Q, A← Qi1,i2 A and we go
back to step 1.

5. In case k = 1 and A(j, j) �= 0, then j← j + 1 and we go back to step 1.
Starting with Q0 = Ir and P0 = Is , at the end of the Procedure, the matrix A has been replaced by R, an

upper triangular one. If this new matrix R does not contain zero rows, then dim(range(R))= r . Otherwise
dim(ker(Rt ))= r − dim(range(R)). We remark that the procedure converges and its computational cost is
similar to the one of a QR decomposition by using Givens transformations. Now, the question is to apply
the Procedure to compute the generators of the homology group of order p = 1 and 2.

(i) We apply the Procedure with A = Rt , Q0 = IEm , P0 = IFm and we get two invertible matrices QR

and PR such that RR =QR Rt PR is upper triangular. The 1-cycles which bound a surface belong to
the image of the matrix Rt that is also the image of RR .

(ii) We define G̃t =Gt Q−1
R : in this way we make a change of basis for the 1-chains. Looking at G̃t we see

immediately from the presence of nc zero columns that the corresponding columns of Q−1
R represent

vectors that belong to the kernel of Gt . If dim(range(Rt )) = dim(ker(Gt)) then any 1-cycle bounds.
In the other case, we apply the Procedure with A= G̃t , Q0 = INm , P0 = IEm−nc . We then obtain two
invertible matrices Q

G̃
and P

G̃
such that R

G̃
=Q

G̃
G̃t P

G̃
is upper triangular.

(iii) The rows in P
G̃

, corresponding to zero rows in R
G̃

, represent the vectors that complete the kernel

of Gt . In fact, we are looking for c such that Gtc= 0. This is equivalent to G̃t v = 0 where v has zero
in the first nc components and, in the last Em − nc , any row in P

G̃
corresponding to a new zero row

in R
G̃

. Then, the components of c=Q−1
R v are the coefficients of a 1-chain, generator of H1(m).

To determine the generators of H2(m), it is sufficient to perform parts (i), (ii), (iii) with Dt at the place
of Rt and Rt at the place of Gt .
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