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Abstract
We propose the derivation of acoustic-type isotropic partial differential equations that are

equivalent to linear lattice Boltzmann schemes with a density scalar field and a momentum

vector field as conserved moments. The corresponding linear equivalent partial differential

equations are generated with a new “Berliner version” of the Taylor expansion method.

The details of the implementation are presented. These ideas are applied for the D2Q9,

D2Q13, D3Q19 and D3Q27 lattice Boltzmann schemes. Some limitations associated with

necessary stability conditions are also presented.
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1) Introduction

• Partial differential equations like Navier-Stokes equations are invariant by rotation

and all space directions are equivalent. Due to the use of a given mesh, lattice Boltzmann

schemes cannot be completely invariant by rotation. This difficulty was present in the

early ages of lattice gas automata. The initial model of Hardy, de Pazzis and Pomeau

[12] proposed very impressive qualitative results but the associated fluid tensor was not

invariant by rotation. With a triangular mesh, the second model of Frisch, Hasslacher

and Pomeau [4] gives the correct physics. The lattice Boltzmann scheme with multiple

relaxation times is the fruit of the work of Higuera and Jiménez [14], Higuera, Succi

and Benzi [15], Qian, d’Humières and Lallemand [21] and d’Humières [16]. It uses in

general square meshes and leads to isotropic physics for second order equivalent model

as analyzed in [18]. The question of rotational invariance is still present in the lattice

Boltzmann community and a detailed analysis of moment isotropy has been proposed by

Chen and Orszag [3].

• The invariance by rotation has to be kept as much as possible in order to respect the

correct propagation of waves. In [10], using the Taylor expansion method proposed in [9]

for general applications, we have developed a methodology to enforce a lattice Boltzmann

scheme to simulate correctly the physical acoustic waves up to fourth order of accuracy.

But unfortunately, stability is in general guaranteed only if the viscosities of the waves

are much higher than authorized by common physics. In this contribution, we relax this

constraint and suppose that the equivalent partial differential equation of the scheme are

invariant under rotations. The objective of this contribution is to propose a methodology

to fix the parameters of lattice Boltzmann schemes in order to ensure the invariance by

rotation at a given order.

• The outline is the following. In Section 2, we consider the question of the algebraic

form of linear high order “acoustic-type” partial differential equations that are invariant

by two dimensional and three-dimensional rotations. In Section 3, we recall the essential

properties concerning multiple relaxation times lattice Boltzmann schemes. The equiva-

lent equation of a lattice Boltzmann scheme introduces naturally the notion of rotational

invariance at a given order. In the following sections, we develop a methodology to force

acoustic-type lattice Boltzmann models to be invariant under rotations. We consider the

four lattice Boltzmann schemes D2Q9, D2Q13, D3Q19 and D3Q27 in the sections 4 to 7.

A conclusion ends our contribution. The Appendix 1 presents with details the implemen-

tation of the “Berliner version” of our algorithm to derive explicitely the equivalent partial

differential equations. Some long formulas associated of specific results for D2Q13 and

D3Q27 lattice Boltzmann schemes are presented in Appendix 2.


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2) Invariance by rotation of acoustic-type equations

• With the help of group theory, and we refer the reader e.g. to Hermann Weyl [23] or

Goodman and Wallach [11], it is possible to write a priori the general form of systems of

linear partial differential equations invariant by rotation. More precisely, if the unknown

is composed by one scalar field ρ (invariant function under a rotation of the space) and

one vector field J (a vector valued function that is transformed in a similar way to how

than cartesian coordinates are transformed when a rotation is applied), a linear partial

differential equation invariant by rotation is constrained in a strong manner. Using some

fundamental aspects of group theory and in particular the Schur lemma (see e.g. Goodman

and Wallach [11]), it is possible to prove that general linear partial differential equations

of acoustic type that are invariant by rotation admit the form described below.

• In the bidimentional case, we introduce the notation

(1) ∇⊥ ≡

( ∂

∂x
,
∂

∂y

)⊥

=
( ∂

∂y
, −

∂

∂x

)

, J⊥ ≡ (Jx, Jy)
⊥ = (Jy, −Jx) .

Then acoustic type partial differential equations are of the form

(2)























∂tρ+
∑

k≥0

(

αk △
kρ+ βk △

kdivJ + γk △
kdiv(J⊥)

)

= 0 ,

∂tJ +
∑

k≥0

(

δk ∇△kρ+ µk△
kJ + ζk ∇div△kJ

+ εk ∇
⊥△kρ+ νk △

kJ⊥ + ηk ∇div△kJ⊥
)

= 0 ,

where the real coefficients αk, βk, γk, δk, µk, ζk, εk, νk and ηk are in finite number. The

tridimensional case is essentially analogous. The “acoustic type” linear partial differential

equations invariant by rotation take necessarily the form

(3)



















∂tρ+
∑

k≥0

(

αk △
kρ+ βk div△

kJ
)

= 0

∂tJ +
∑

k≥0

(

δk ∇△kρ+ µk △
kJ + ηk ∇div△kJ + ϕk curl△kJ

)

= 0 ,

with an analogous convention that the sums in the relations (3) contain only a finite

number of such terms.

3) Lattice Boltzmann schemes with multiple relaxation times

• Each iteration of a lattice Boltzmann scheme is composed by two steps: relaxation

and propagation. The relaxation is local in space: the particle distribution f(x) ∈ IRq for

x a node of the lattice L, is transformed into a “relaxed” ’ distribution f ∗(x) that is non

linear in general. In this contribution, we restrict to linear functions IRq ∋ f 7−→ f ∗ ∈ IRq.

As usual with the d’Humières scheme [16], we introduce an invertible matrix M with q

lines and q columns. The moments m are obtained from the particle distribution thanks

to the associated transformation

(4) mk =

q−1
∑

j=0

Mk j fj , 0 ≤ k ≤ q − 1 .


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Then we consider the conserved moments W ∈ IRN :

(5) Wi = mi , 0 ≤ i ≤ N − 1 .

For the usual acoustic equations for d space dimensions, we have N = d + 1. The first

moment is the density and the next ones are composed by the d components of the physical

momentum. Then we define a conserved value meq
k for the non-equilibrium moments mk

for k ≥ N. With the help of “Gaussian” functions Gk(•), we obtain:

(6) meq
k = Gk(W ) , N ≤ k ≤ q − 1 .

In the present contribution, we suppose that this equilibrium value is a linear function of

the conserved variables. In other terms, the Gaussian functions are linear:

(7) GN+ℓ(W ) =
n−1
∑

i=1

EℓiWi , ℓ ≥ 0

for some equilibrium coefficients Eℓi for ℓ ≥ 0 and 0 ≤ i ≤ N − 1.

• The relaxed moments m∗
k are linear functions of mk and meq

k :

(8) m∗
k = mk + sk

(

meq
k −mk

)

, k ≥ N .

For a stable scheme, we have

(9) 0 < sk < 2 .

We remark that if sk = 0, the corresponding moment is conserved. In some particular

cases, the value sk = 2 can also be used (see e.g. [7, 8]). The conserved moments are not

affected by the relaxation:

m∗
i = mi = Wi , 0 ≤ i ≤ N − 1 .

From the moments m∗
ℓ for 0 ≤ ℓ ≤ q − 1 we deduce the particle distribution f ∗

j by

resolution of the linear system
M f ∗ = m∗ .

• The propagation step couples the node x ∈ L with his neighbours x − vj ∆t for

0 ≤ j ≤ q − 1. The time iteration of the scheme can be written as

(10) fj(x, t+∆t) = f ∗
j (x− vj ∆t, t) , 0 ≤ j ≤ q − 1 , x ∈ L.

• From the knowledge of the previous algorithm, it is possible to derive a set of equiv-

alent partial differential equations for the conserved variables. If the Gaussian functions

Gk are linear, this set of equations takes the form

(11)
∂W

∂t
− α1W − ∆t α2W − · · · − ∆tj−1 αj W − · · · − = 0 ,

where αj is for j ≥ 1 is a space derivation operator of order j. We refer the reader to

[5] for the presentation of our approach in the general case. In this contribution, we have

developed an explicit algebraic linear version of the algorithm detailed in Appendix 1.

Moreover, we consider that the lattice Boltzmann scheme is invariant by rotation at order

ℓ if the equivalent partial differential equation

(12)
∂W

∂t
−

ℓ
∑

j=1

∆tj−1 αj W = 0





On rotational invariance of lattice Boltzmann schemes

obtained from (11) by truncation at the order ℓ is invariant by rotation. For acoustic-type

models, the partial differential equation (12) has to be identical to (2) or (3) for dimension

2 or 3. In the following, we determine the equivalent partial differential equations for

classical lattice Bolzmann schemes in the general linear case. Then we fit the equilibrium

and relaxation parameters of the scheme in order to enforce rotational invariances at all

orders between 1 and 4.

4) D2Q9
The isotropy of the lattice Boltzmann scheme D2Q9 for the acoustic equations has been

studied in detail in [1, 2]. We give here only a summary of our results.

• The matrix M for the D2Q9 lattice Boltzmann model is of the form

(13) Mkj = pk(vj) , 0 ≤ j , k ≤ q − 1

with polynomials pk detailed in the contribution [17]. With this choice, the moments are

named according to the following notations:

(14)



































0 1 λ0

1, 2 X, Y λ1

3 ε λ2

4, 5 XX,XY λ2

6, 7 qx, qy λ3

8 ε2 λ4 .

We have recalled in (14) the degrees of homogeneity of each moment mk relative to the

reference numerical velocity λ ≡ ∆x
∆t

.

• At first order, the invariance by rotation (2) takes the form

(15)

{

∂tρ+ divJ = O(∆t)

∂tJ + c20∇ρ = O(∆t)

if the next moments of degree 2 follow the simple equilibrium:

(16) εeq = αλ2 ρ , XXeq = XY eq = 0 .

Then the sound velocity c0 in the equation (15) satisfies

(17) c20 =
λ2

6
(4 + α) .

• At second order, the invariance by rotation (2) is realized under specific conditions

for the third order moments q ≡ (qx, qy). This equilibrium condition is defined with the

help of Hénon’s [13] parameters σk defined from the coefficients sk according to

(18) σk ≡
1

sk
−

1

2
when k ≥ 3 .

The stability condition (9) can be written as

(19) σk > 0 , for k ≥ N .


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We have

(20) qeq =
σ4 − 4 σ5
σ4 + 2 σ5

λ2 J .

We obtain with these conditions the following equivalent partial differential equations

(21)

{

∂tρ+ divJ = O(∆t2)

∂tJ + c20∇ρ− µ△J − ζ∇ divJ = O(∆t2) .

The physical viscosities µ and ζ can be determined according to

(22) µ =
σ4 σ5

σ4 + 2 σ5
λ∆x , ζ = σ3

(2 σ4 − 2 σ5 − ασ4 − 2ασ5)

6 (σ4 + 2 σ5)
λ∆x .

We observe that the classical isotropy condition σ4 = σ5 for the second order moments

XX and XY is not necessary for the relaxation at this second order step.

• At third order, the system (2) takes the particular form

(23)

{

∂tρ+ divJ + ξ△ divJ = O(∆t3)

∂tJ + c20∇ρ− µ△J − ζ∇ divJ + χ∇△ρ = O(∆t3) .

This is possible if the complementary relations

(24) σ4 = σ5 , εeq2 = −
λ4 ρ

2

(

3α+ 4
)

hold. Then the heat flux at equibrium has an expression (20) that can be simply written

as

(25) qeq = −λ2 J .

The coefficients in the equations (23) are given by the expressions

(26)











µ =
1

3
σ4 λ∆x , ζ = −

1

6
σ3 αλ∆x , ξ =

1

72
(α− 2)∆x2 ,

χ =
1

216
(α + 4)

(

2 + 6ασ2
3 − α− 12 σ2

4

)

λ2∆x2 .

We remark that the dissipation of the acoustic waves γ ≡
µ+ζ

2
(see e.g. Landau and

Lifshitz [19]) is given according to

(27) γ =
λ∆x

12

(

2σ4 − ασ3
)

.

• The invariance by rotation at fourth order of the D2Q9 lattice Boltzmann scheme

does not give completely satisfactory results, as observed previously in [2]. In order to

get equivalent equations at order 4 of the type

(28)

{

∂tρ+ divJ + ξ△ divJ + η△2ρ = O(∆t4)

∂tJ + c20∇ρ− µ△J − ζ∇ divJ + χ∇△ρ+ µ4△
2J + ζ4∇ div△ J = O(∆t4),

it is necessary to fix some relaxation parameters:

(29) σ3 = σ4 = σ8 , σ6 = σ7 =
1

6 σ4
.


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The two viscosities µ and ζ are now dependent and the dissipation of the acoustic waves

introduced previously in (27) admits now the expressions

(30) µ =
1

3
σ4 λ∆x , ζ = −

1

6
σ4 αλ∆x , γ =

λ σ4∆x

12
(2− α) .

Observe that the dissipation γ is positive under usual conditions. If the conditions (29)

are satisfied, we can specify the coefficients of the fourth order terms in the equations

(28):

(31)















η =
λ∆x3

432
(α+ 4) (α− 2) , µ4 =

λ∆x3

108
(12 σ2

4 − 1) ,

ζ4 =
λ∆x3

216
σ4

(

12− α− 2α2 + 12 σ2
4 (α

2 − α− 4)
)

.

• In [2], we have conducted a set of numerical experiments that make more explicit

the isotropy qualities of four different variants of the D2Q9 lattice Boltzmann scheme for

the numerical simulation of acoustic waves. The orders of isotropy precision numerically

computed are in coherence with the level of accuracy presented in this section.

5) D2Q13

• Four more velocities are added to the D2Q9 scheme to construct D2Q13. The details

can be found e.g. in [17]. Nine moments are analogous to those proposed in (14) for

D2Q9 and four moments (rx, ry, ε3, XXe) are new:

(32)































































0 1 λ0

1, 2 X, Y λ1

3 ε λ2

4, 5 XX,XY λ2

6, 7 qx, qy λ3

8, 9 rx, ry λ5

10 ε2 λ4

11 ε3 λ6

12 XXe λ4 .

• At first order, the invariance by rotation (2) takes again the form (15). The conditions

(16) are essentially unchanged, except that the sound velocity is now evaluated according

to the relation

(33) c20 =
λ2

26
(28 + α) ≡ c2s λ

2 .

• At second order, the equivalent partial differential equations take the isotropic form

(21) when we have :

(34) qeq = ϕλ2 J , req =
1

12

(20 σ5 − 85 σ4 − 49ϕσ4 − 14ϕσ5
σ4 + σ5

)

λ4 J .


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Then the isotropy coefficients in (15) have the following expressions:

(35) µ =
λ∆x

2

σ4 σ5
σ4 + σ5

(3 + ϕ) , ζ =
λ∆x

26
σ3 (11 + 13ϕ− α) , σk > 0 when k ≥ 3 .

• The invariance by rotation at third order of the mass equation is realized if we impose

a unique value for the relaxation coefficients of the second order moments XX and XY

introduced in (32):

(36) σ4 = σ5 .

Moreover, the attenuation of sound waves γ does not depend at first order on the advec-

tive velocity if (36) is satisfied. For the invariance by rotation of the momentum equation,

we must impose also the following equilibrium values for the moments m10 ≡ ε2, m11 ≡ ε3
and m12 ≡ XXe:

(37)











εeq2 =
(

− 5α+
77

26
ϕα +

1078

13
ϕ
)

λ4 ρ

εeq3 =
( α

48
−

137

12
−

135

208
αϕ−

945

52
ϕ
)

λ4 ρ , XXeq
e = 0 .

Then the equivalent equations at order 3 of the D2Q13 lattice Boltzmann scheme are still

given by the equations (23). The equilibrium condition (34) is now written as

(38) req = −
1

24
(65 + 63ϕ) λ4 J

and the coefficients in the equations (23) can be clarified:

(39)







































µ =
1

4
σ5 (3 + ϕ) λ∆x , ζ =

1

26
σ4 (11 + 13ϕ− α) λ∆x ,

ξ =
1

624
(2α− 39ϕ− 61)∆x2 ,

χ =
1

8112
(28 + α)

(

61 + 39ϕ+ 12ασ2
3 − 2α− 78ϕσ2

4

−156ϕσ2
3 − 234 σ2

4 − 132 σ2
3

)

λ2∆x2 .

• The invariance by rotation at fourth order is satisfied if we add to the previous

conditions (36) (37) and (38) the new ones:

(40)



























































qeq = −
7

5
λ2 J , σ6 = σ7 =

1

12 σ4
,

σ8 = σ9 =
5

24

155− a

a− 308

1

σ4
+

1

24

7 a− 1391

a− 308

1

σ3
,

σ10 =
3973

45

43 a− 16610

89 a− 20680

5 c2s − 4

1189 c2s − 828
σ3 +

+
154

1395

7 a− 1391

89 a− 20680

725 c2s − 418

1189 c2s − 828
a σ4 ,

σ11 =
a

155
σ4 .

If the parameters cs and α relative to the non-dimensionalized sound velocity are linked

together thanks to (33) and if the new parameter a is chosen such that

(41) c2s <
418

25
, −28 < α ≤ −

9432

725
≃ −13 , 155 < a <

1391

7
≃ 198 ,


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the coefficients σ8, σ10 and σ11 are strictly positive if it is the case for σ3 and σ4. In

this case, the stability conditions (19) are satisfied for the coefficients σ3, σ4, σ8, σ10 and

σ11. With the choice (40) the nontrivial algebraic expressions of the previous conditions

(36), (37) and (38) can be written as

(42) req =
29

30
λ4 J , εeq2 = −

(1189

130
α +

7546

65

)

λ4 ρ , εeq3 =
(547

39
+

145

156
α
)

λ4 ρ .

With the above conditions (40) and (42) the equivalent equations of the D2Q13 lattice

Boltzmann scheme at fourth order are made explicit in (28), with the associated coeffi-

cients, except ζ4, given according to:

(43)























































ξ =
5α− 16

1560
∆x2 , η =

α + 28

40560

(

36σ3 + 5σ3 α− 52σ4
)

λ∆x3

µ =
2

5
σ4 λ∆x , ζ = −

1

130
σ3 (36 + 5α) λ∆x

χ =
1

20280
(28 + α)

(

16− 5α+ 216 σ2
3 − 312 σ2

4 + 30ασ2
3

)

λ2∆x2

µ4 =
σ4 λ∆x

3

300 σ3 (a− 308)

(

4483σ4 − 5099 σ3 − 23 a σ4 + 25 a σ3

−14784 σ3 σ
2
4 + 48 a σ3 σ

2
4

)

.

The algebraic expression of the coefficient ζ4 is quite long. With Hénon’s coefficients

σj defined according to (18), the related moments numbered by the relations (32), the

equilibrium of the energy (16) parametrized by α, and the parameter a introduced at

(40), the coefficient ζ4 for the fourth order term in (28) can be evaluated according to:



































































































ζ4 =
σ4 λ∆x

3

56581200 σ3 (89a− 20680)

(

525433428 a σ3 σ4 + 576972000 α2σ2
3

+18001526400ασ3
3 σ4 + 18001526400ασ3 σ

3
4 + 65975 a2 α σ3 σ4

+170558856 a σ2
4 − 334055628 a σ2

3 − 858312 a2 σ2
4 − 159243217380 σ3 σ4

+75143778660 σ2
3 + 18001526400ασ2

3 σ
2
4 − 77472720 aασ3

3 σ4
− 77472720 aασ2

3 σ
2
4 − 77472720 aασ3 σ

3
4 + 504042739200 σ3 σ

3
4

+129610990080 σ3
3 σ4 + 129610990080 σ2

3 σ
2
4 + 858312 a2 σ3 σ4

+22940190 aασ3 σ4 + 17841109925ασ2
3 − 65975 a2 ασ2

4

+13110175 aασ2
4 − 3461832000α2 σ4

3 − 85853433600ασ4
3

− 2483100 aα2 σ2
3 − 78263065 aασ2

3 − 438683351040 σ4
3

+369485280 aασ4
3 + 14898600 aα2 σ4

3 + 1887950592 a σ4
3

− 557803584 a σ2
3 σ

2
4 − 2169236160 a σ3 σ

3
4 − 557803584 a σ3

3 σ4

− 8032585925ασ3 σ4

)

.
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6) D3Q19

• For the scheme D3Q19, we have 4 conservation laws and a total of 19 moments. We

refer e.g. to [9] for an algebraic expression of the polynomials pk in (13):

(44)































































0 1 λ0

1, 2, 3 X, Y, Z λ1

4 ε λ2

5, 6 XX,WW λ2

7, 8, 9 XY, Y Z, ZX λ2

10, 11, 12 qx, qy, qz λ3

13 ε2 λ4

14, 15 XXe,WWe λ4

16, 17, 18 antisymmetric of order 3 λ3 .

The results summarized in this Section have been essentially considered (quickly) in the

previous contribution [10]. They have been also used by Leriche, Lallemand and Labrosse

[20] for the numerical determination of the eigenmodes of the Stokes problem in a cubic

cavity.

• We write the four equivalent partial differential equations at first order with the

method explained in Appendix 1. Then we impose that the associated modes are isotropic,

i.e. contain only partial differential operators that are invariant by rotation. In Fourier

space, the coefficients of the associated determinant must contain only powers of the

wave vector. The associated equations are highly nonlinear relative to the coefficients of

the equilibrium matrix introduced in (7). We have obtained a family of parameters by

enforcing the linearity of the solution of the isotropic equations. With this constraint, we

have to impose a relation for the “energy” moment m4 ≡ ε at equilibrium:

(45) εeq = αλ2 ρ .

Moreover, the equilibrium values for the moments m5 to m9 of degree two introduced

in (44) are equal to zero:

(46) XXeq = WW eq = XY eq = Y Zeq = ZXeq = 0 .

When the conditions (45) and (46) are realized, the isotropic equivalent system is given

by the system of first order acoustic equations (15). Moreover, the sound velocity c0
satisfies

(47) c20 =
α + 30

57
λ2 ≡ cs λ

2 .

• Invariance by rotation at second order is realized if we impose on one hand

(48) qeq = 2
3 σ5 − 4 σ7
σ5 + 2 σ7

λ2 J

and on the other hand

(49) σ5 = σ6 , σ7 = σ8 = σ9 .
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Then the equivalent partial differential equations of the D3Q19 lattice Boltzmann scheme

take the form (21). The associated coefficients are given according to

(50)











µ =
σ5 σ7

σ5 + 2 σ7
λ∆x

ζ =
λ∆x

57 (σ5 + 2 σ7)

(

27 σ4 σ5 + 19 σ5 σ7 − 22 σ4 σ7 − ασ4 σ5 − 2ασ7 σ4 α
)

.

• At third order, if we impose the previous relations (45) (46) (48) and (49), id est an

equilibrium for the “energy square” ε2 given below, a null value for meq
14 and meq

15 and a

supplementary condition for the relaxation coefficients, id est

(51) εeq2 =
42 + 9α

9
λ2 ρ , XXeq

e = WW eq
e = 0 , σ5 = σ7 ,

the equivalent equations of the D3Q19 lattice Boltzmann scheme are exactly given by

(23). We observe that the relation (48) takes now the form

(52) qeq = −
2

3
λ2 J

and the coefficients associated to the equations (23) can be deduced through an elementary

process:

(53)











µ =
1

3
σ5 λ∆x , ζ =

λ∆x

171

(

5 σ4 + 19 σ5 − 3ασ4
)

, ξ =
∆x2

684
(α− 27) ,

χ =
λ2∆x2

19494

(

α + 30
) (

27 + 6ασ2
4 − 10 σ2

4 − 152 σ2
5 − α

)

.

The bulk viscosity ζb ≡ 3 ζ − µ (see e.g. Landau and Lifshitz [19]) is essentially function

of the relaxation parameter associated to the energy ε :

(54) ζb =
λ σ4∆x

57

(

5− 3α
)

.

• We have found also a variant of the previous relations to enforce third order isotropy.

We can replace the relations (51) by the following ones, with an undefined parameter β:

(55)







εeq2 = β λ2 ρ , XXeq
e = WW eq

e = 0 , σ5 = σ7 ,

σ10 = σ11 = σ12 =
1

12 σ5
, σ16 =

1

8 σ5
, σ17 =

1

4 σ5
, σ18 =

1

12 σ5
.

The relations (52), (53) and (54) are not changed, except that the coefficient χ in the

second line of (23) is now given by

(56)



















χ =
λ2∆x2

409374 σ5

(

16212 σ5 + 126α2 σ2
4 σ5 + 3570ασ2

4 σ5 − 6300 σ2
4 σ5

−σ5 α
2 − 234ασ5 + 361 β σ4 + 171ασ4

+798 σ4 − 3192ασ3
5 − 95760 σ3

5 − 361 β σ5

)

.

• The invariance by rotation at fourth order has also been considered. But due to

the low number of remaining parameters, the family of Boltzmann schemes that we have

obtained impose constraints between physical parameters. We must have in particular

(57) σ4 = σ5
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and this relation induces some a priori relationship between the shear viscosity µ of

relation (50) and the bulk viscosity ζb presented in (54). Moreover, the relations (51)

(52) must be satisfied and Hénon’s parameters of the multiple relaxation times have to

follow, with an ordering proposed in (44), the complementary conditions

(58) σ10 = σ11 = σ12 =
1

6 σ5
, σ13 = σ14 = σ15 = σ5 , σ16 = σ17 = σ18 =

1

6 σ5
.

Then the fourth order isotropic equivalent equations (28) are satisfied and the associated

coefficients can be clarified:

(59)











ξ =
α− 27

684
∆x2 , η =

(α + 30) (α− 27)

38988
σ5 λ∆x

3 , µ4 =
12 σ2

5 − 1

108
σ5 λ∆x

3

ζ4 =
σ5 λ∆x

3

38988

(

2062 + 45α− 4α2 − 5304 σ2
5 − 612ασ2

5 + 24α2 σ2
5

)

.

7) D3Q27

• For the schemes D3Q27, we refer e.g. to [10] for an algebraic expression of the

polynomials pk of the relation (13). The moments follow now the nomenclature

(60)



































































































0 1 λ0

1, 2, 3 X, Y, Z λ1

4 ε λ2

5, 6 XX,WW λ2

7, 8, 9 XY, Y Z, ZX λ2

10, 11, 12 qx, qy, qz λ3

13, 14, 15 rx, ry, rz λ5

16 ε2 λ4

17 ε3 λ6

18, 19 XXe,WWe λ4

20, 21, 22 XYe, Y Ze, ZXe λ4

23, 24, 25 antisymmetric of order 3 λ3

26 XY Z λ3 .

• At first order, we follow the same methodology as the one presented for the previous

schemes. We keep the relation (45) for the momentum m4 ≡ ε at equilibrium. As for

the D3Q19 scheme, the equilibrium values for the moments m5 to m9 of degree two

introduced in (60) are equal to zero and the relation (46) still holds. Then the first order

isotropic equivalent system is given by (15). Observe that the sound velocity c0 now

satisfies

(61) c20 =
α + 2

3
λ2 ≡ cs λ

2 .

• At second order the equilibrium values have to be constrained: the “heat flux” at

equilibrium is given by the relation

(62) qeq = 2
σ5 − 4 σ7
σ5 + 2 σ7

λ2 J
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and a null value for the equilibrium of the third order moments is imposed:

(63) meq
23 = meq

24 = meq
25 = meq

26 = 0 .

Moreover, the relations (49) between Hénon’s parameters of second order moments still

have to be imposed. Then the second order equivalent equations are isotropic and the

coefficients of (21) follow the non-traditional relations

(64) µ =
σ5 σ7

σ5 + 2 σ7
λ∆x , ζb ≡ 3 ζ − µ =

λ σ4∆x

σ5 + 2 σ7

(

σ5 − 2 σ7 − ασ5 − 2ασ5
)

.

• At third order, we have two options as for the D3Q19 scheme. If we suppose that the

heat flux at equilibrium and only one time relaxation are fixed, id est

(65)

{

qeq = −2 λ2 J , εeq2 = −(2 + 3α) λ2 ρ ,

XXeq
e = WW eq

e = XY eq
e = Y Zeq

e = ZXeq
e = 0 , σ5 = σ7 ,

the third order equivalent equations of the D3Q27 lattice Boltzmann scheme are given

by the expressions (23). The coefficients in these equations are simple to evaluate with a

software of formal calculus:

(66)











µ =
1

3
σ5 λ∆x , ζb = −

1

3
σ4 (1 + 3α) λ∆x , ξ =

1

36
(α− 1)∆x2 ,

χ =
1

54
(α+ 2)

(

1 + α + 6ασ2
4 − 2 σ2

4 + 8 σ2
5

)

λ2∆x2 .

• The second solution for third order isotropy does not specify completely the “square

of the energy” ε2 but fixes an important number of relaxation times:

(67)















qeq = −2 λ2 J , εeq2 = β λ2 ρ , σ5 = σ7 ,

σ10 = σ11 = σ12 =
1

12 σ5
, σ23 =

1

12 σ5
, σ24 =

1

4 σ5
, σ25 =

1

8 σ5
,

XXeq
e = WW eq

e = XY eq
e = Y Zeq

e = ZXeq
e = 0 .

The parameters µ, ζ , ζb and ξ are still given by the relations (66). But the value of the

parameter χ is modified:

(68)











χ =
1

162 σ5

(

4 σ5 + 2 σ4 + 3ασ4 − 6ασ5 − 3α2 σ5 + 18α2 σ2
4 σ5 + 42ασ2

4 σ5

+12 σ2
4 σ5 − 24ασ3

5 − 48 σ3
5 + β σ4 − β σ5

)

λ2∆x2 .

• The search of an isotropic form of the fourth order equivalent partial differential

equations like (28) leads to a nonlinear system of 33 equations. We have obtained a first

solution with the following particular parameters:

(69) req = 2 λ4 J , σ10 = σ11 = σ12 , σ18 = σ19 , σ23 = σ24 = σ25 .

It is possible to fix the other parameters of the scheme with the ratio ψ of Hénon’s

parameters associated with the moments XXe and XX. With the notations proposed

in (60), we set

(70) ψ ≡
σ18
σ5

.
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When we impose the following relations between the coefficients of relaxations (all defined

through their associated Hénon’s parameter introduced at the relation (20)),

(71)











































































σ4 = σ5
3ψ3 − 4ψ2 − 13ψ + 32

3ψ3 − 22ψ2 + 23ψ + 14
,

σ10 = σ11 = σ12 =
1

12 σ5

(3ψ − 7) (ψ − 4)

3ψ2 − 11ψ + 14
,

σ16 = σ5
6ψ5 − 24ψ4 + 100ψ3 − 267ψ2 + 506ψ − 364

(4ψ − 7) (3ψ3 − 22ψ2 + 23ψ + 14)
,

σ18 = σ19 ≡ ψ σ5 ,

σ23 = σ24 = σ25 =
1

12 σ5

3ψ2 − 7ψ + 16

3ψ2 − 11ψ + 14
,

σ26 =
1

18 σ5

21ψ2 − 73ψ + 100

3ψ2 − 11ψ + 14
,

the equivalent partial differential equations of the D3Q27 lattice Boltzmann scheme are

isotropic at fourth order of accuracy. We can make more explicit graphically the previous

result. We observe in Figure 1 that the fundamental stability property σ16 > 0 can be

maintained only if 0 < ψ < 1.5. With this restriction, we see in Figure 1 again that

Hénon’s parameters σ10, σ16 and σ18 remain positive only if

(72) 1 <
σ4
σ5

< 2.25 .

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4

ψ ≡ σ18 / σ5

σ16 / σ5
σ4 / σ5
σ10 / σ5
σ26 / σ5

Figure 1. Fourth order isotropy parameters for the D3Q27 lattice Boltzmann scheme.

Due to the expressions (66) of the shear and the bulk viscosities, the inequality (72)

imposes signifiant restrictions for the physical parameters µ and ζb. The coefficients η
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and µ4 associated with the fourth order equation (28) can be evaluated easily:

(73)























η =
σ5 λ∆x

3

108

Nη

14 + 23ψ − 22ψ2 + 3ψ3
,

Nη = (α + 2) (32α− 8− 13αψ − 35ψ − 4αψ2 + 28ψ2 + 3αψ3 − 3ψ3)

µ4 =
σ5 λ∆x

3

108

132ψ σ2
5 − ψ + 36ψ2 σ2

5 + 168 σ2
6 + 3ψ2 − 8

3ψ2 − 11ψ + 14
.

The expression of ζ4 is quite long and is reported in the relation (114) of Appendix 2.

8) Conclusion

• In this contribution, we have presented the “Berliner version” of the Taylor expansion

method in the linear case. This is done with explicit algebra and allows a huge reduction

of computer time for formal analysis. We have also considered in all generality acoustic

type partial differential equations that are rotationally invariant at an arbitrary order.

• The generalization of a methodology of group theory for discrete invariance groups

of a lattice Boltzmann scheme remains still under question, in the spirit of the previous

study of Rubinstein and Luo [22].

• Concerning the fundamental examples considered in this contribution, the D2Q9

scheme can be invariant by rotation at third order. At fourth order, physical parameters

have to be strongly correlated. The D2Q13 scheme is invariant by rotation at fourth

order for an ad hoc fitting of the parameters. We have not explored all the possible

solutions of the strongly nonlinear set of equations that is necessary to solve in order

to fit the fourth order isotropy. Numerical experiments have to confirm our theoretical

considerations. The D3Q19 lattice Boltzmann scheme admits two sets of coefficients in

order to impose rotational invariance at third order. Particular physics has to be imposed

to satisfy fourth order isotropy. The D3Q27 scheme is rotationally invariant at fourth

order for a parameterized set of parameters. Our analysis imposes restrictions for the

physical parameters to guarantee the stability. A complementary numerical experiment

will be welcome !
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Appendix 1. Formal expansion in the linear case

• We present in this Appendix the “Berliner version” [6] of the algorithm proposed in all

generality in our contribution [9]. We suppose having defined a lattice Boltzmann scheme

“DdQq” with d space dimensions and q discrete velocities at each vertex. The invertible

matrix M between the particules and the moments is given:

(74) mk =

q−1
∑

j=0

Mkj fj ≡
(

M•f
)

k
, 0 ≤ k ≤ q − 1 .

The lattice Boltzmann scheme generates N conservation laws: the first moments

mk ≡ Wk , 0 ≤ k ≤ N − 1

are conserved during the collision step :

(75) m∗ = mk = Wk .

The q −N “slave” moments Y with

(76) Yℓ ≡ mN+ℓ , 0 ≤ ℓ ≤ q −N − 1

relax towards an equilibrium value Y eq
ℓ . This equilibrium value is supposed to be a linear

function of the state W . We introduce a constant rectangular matrix E with N−q lines

and N columns to represent this linear function:

(77) Y eq
ℓ =

N−1
∑

k=0

Eℓk Wk , 0 ≤ ℓ ≤ q −N − 1 .

The relaxation step is obtained through the usual algorithm [16] that decouples the mo-

ments:

(78) Y ∗
ℓ = Yℓ + sℓ (Y

eq
ℓ − Yℓ) , sℓ > 0 , 0 ≤ ℓ ≤ q −N − 1 .

Observe that the numbering of the “s” coefficients used in (78) differ just a little from

the one used for the equation (8) and the four examples considered previously. With a

matricial notation, the relaxation can be written as:

(79) m∗ = J0 •m

with a matrix J0 of order q decomposed by blocks according to

(80) J0 =





IN 0

S •E Iq−N − S





and a diagonal matrix S of order q−N defined by S ≡ diag
(

s0 , s1 , . . . , sq−N−1

)

. The

discrete advection step follows the method of characteristics:

(81) fj(x, t+∆t) = f ∗
j (x− vj∆t, t) , 0 ≤ j ≤ q − 1 .

• With the d’Humières’s lattice Boltzmann scheme [16] previously defined, we can

proceed to a formal Taylor expansion:


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mk(t+∆t) =
∑

j

Mkj f
∗
j (x− vj∆t) =

∑

jℓ

Mkj M
−1
jℓ m∗

ℓ(x− vj∆t)

=
∑

jℓ

Mkj M
−1
jℓ

∞
∑

n=0

∆tn

n !

(

−

d
∑

α=1

vαj ∂α

)n

m∗
ℓ

=
∞
∑

n=0

∆tn

n !

∑

jℓp

Mkj M
−1
jℓ

(

−

d
∑

α=1

vαj ∂α

)n

(J0)ℓpmp .

We introduce a derivation matrix of order n ≥ 0, defined by blocks of space differential

operators of order n:

(82)





An Bn

Cn Dn





k p

≡
1

n !

∑

j ℓ

Mk j

(

M−1
)

j ℓ

(

−

d
∑

α=1

vαj ∂α

)n

(J0)ℓp , n ≥ 0 .

We observe that in the relation (82), the blocks An and Dn are square matrices of order

N and q−N respectively. The matrices Bn and Cn are rectangular of order N×(q−N)

and (q−N)×N respectively. We remark also that at order zero, the matrices A0, B0,

C0 and D0 are known:

(83)





A0 B0

C0 D0



 = J0 =





IN 0

S •E Iq−N − S



 .

The previous Taylor expansion can now be written under a matricial form:

(84)





W

Y



 (x, t+∆t) =
∞
∑

n=0

∆tn





An Bn

Cn Dn



 •





W

Y



 (x, t) .

• At order zero relative to ∆t we have:
(

W

Y

)

(x, t) + O(∆t) = J0 •

(

W

Y

)

+ O(∆t) =

(

W

S •E •W + (I− S) •Y

)

+ O(∆t)

and the non-conserved moments are close to the equilibrium:

(85) Y (x, t) = E •W (x, t) + O(∆t) .

• We make now the hypothesis of a general form for the expansion of the nonconserved

moments:

(86) Y (x, t) =
(

E +
∑

n≥1

∆tn βn

)

•W (x, t)

and the hypothesis of a formal linear partial differential system of arbitrary order for the

conserved variables W :

(87)
∂W

∂t
=

(

∑

ℓ≥ 0

∆tℓ αℓ+1

)

•W (x, t) ,

where αℓ and βn are space differential operators of order ℓ and n respectively. We develop

the first equation of (84) up to first order:
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W + ∆t
∂W

∂t
+ O(∆t2) = W + ∆t

(

A1W +B1 Y
)

+ O(∆t2)

= W + ∆t
(

A1W +B1 EW
)

+ O(∆t2)

due to (85). Then

(88)
∂W

∂t
=

(

A1 +B1E
)

•W + O(∆t)

and the relation (87) is satisfied at order one, with

(89) α1 = A1 + B1E .

The “Euler equations” are emerging ! We have an analogous calculus for the second

equation of (84) :

Y + ∆t
∂Y

∂t
+ O(∆t2) = S EW + (I− S) Y + ∆t

(

C1W +D1EW
)

+ O(∆t2) .

We clarify the time derivative ∂tY at order zero by differentiating (formally !) the relation

(85) relative to time:

∂Y

∂t
= E

∂W

∂t
+ O(∆t) = E α1W + O(∆t) .

We introduce this expression inside the previous calculus. Then:

S Y + ∆t E α1W + O(∆t2) = S EW + ∆t
(

C1W +D1EW
)

+ O(∆t2) .

Consequently we have established the expansion of the nonconserved moments at order

one:

(90) Y = EW + ∆t S−1
(

C1 +D1E −E α1

)

W + O(∆t2)

with

(91) β1 = S−1
(

C1 +D1E − E α1

)

.

Now, we have formally

∂2W

∂t2
=

∂

∂t

(

α1W +O(∆t)
)

= α1

∂W

∂t
+O(∆t) = α1

(

α1W
)

+O(∆t) = α2
1W +O(∆t)

and we recognize the “wave equation”

(92)
∂2W

∂t2
− α2

1W = O(∆t) .

• We can derive a formal expansion at order two. We go one step further in the Taylor

expansion of equation (84) :

W + ∆t
∂W

∂t
+

1

2
∆t2 α2

1W + O(∆t3) =

= W + ∆t
(

A1W +B1 Y
)

+ ∆t2
(

A2W +B2 Y
)

+ O(∆t3)

= W + ∆t
(

A1W+B1 (EW+∆t β1W )
)

+ ∆t2
(

A2W+B2EW
)

+ O(∆t3)

and dividing by ∆t, we obtain a “Navier-Stokes type” second order equivalent equation:

∂W

∂t
= α1W + ∆t

(

B1 β1 + A2 +B2E −
1

2
α2
1

)

W + O(∆t2) .
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With the notations introduced in (87), we have made explicit the partial differential

equations for the conserved variables at the order two:
∂W

∂t
= α1W + ∆t α2W + O(∆t2)

with

(93) α2 = A2 +B2E + B1 β1 −
1

2
α2
1 .

We remark that this Taylor expansion method can be viewed as a “numerical Chapman

Enskog expansion” relative to a specific numerical parameter ∆t instead of a small phys-

ical relaxation time step. For the moments Y out of equilibrium, we expand the first

order derivative of Y relative to time with a formal derivation of the relation (90):
∂Y

∂t
=

∂

∂t

(

EW + ∆t β1W
)

+O(∆t2)

= E
(

α1W + ∆t α2W
)

+ ∆t β1 α1W + O(∆t2)

=
(

E α1 + ∆t
(

E α2 + β1 α1

)

)

W + O(∆t2) .

Then

(94)
∂Y

∂t
=

(

E α1 + ∆t
(

E α2 + β1 α1

)

)

W + O(∆t2) .

Analogously for the second order time derivative:

(95)
∂2Y

∂t2
= E α2

1W + O(∆t) .

We re-write the second line of the expansion of the equation (84) at second order accuracy:

Y + ∆t
∂Y

∂t
+

∆t2

2

∂2Y

∂t2
+ O(∆t3) =

= S EW + (I− S) Y + ∆t
(

C1W + D1 Y ) + ∆t2
(

C2W + D2 Y ) + O(∆t3)

and we get

SY = S EW − ∆t
(

E α1 + ∆t (E α2 + β1 α1)
)

W −
∆t2

2
E α2

1W

+∆t
(

C1W + D1

(

E +∆t β1
)

W
)

+ ∆t2
(

C2W + D2 EW ) + O(∆t3)

Y = EW + ∆t S−1
(

C1 + D1 E − E α1

)

W

+∆t2 S−1
(

C2 + D2E + D1 β1 − E α2 − β1 α1 −
1

2
E α2

1

)

W + O(∆t3) .

It is exactly the expansion (87) at second order :

Y = EW + ∆t β1W + ∆t2 β2W + O(∆t2)

with

(96) β2 = S−1
[

C2 + D2E + D1 β1 − E α2 − β1 α1 −
1

2
E α2

1

]

• For the general case, we proceed by induction. We suppose that the developments

(86) and (87) are correct up to the order k, that is:

(97)











∂W

∂t
=

(

α1 + ∆t α2 + . . . ∆tk−1 αk

)

W + O(∆tk)

Y =
(

E + ∆t β1 + ∆t2 β2 + . . . ∆tk βk

)

W + O(∆tk+1) .
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We expand the relation (84) at order k+2, we eliminate the zeroth order term and divide

by ∆t. We obtain

(98)
∂W

∂t
+

k+1
∑

j=2

∆tj−1

j!

(

∂jtW
)

+ O(∆tk+1) =

k+1
∑

j=1

∆tj−1
(

Aj W + Bj Y
)

+ O(∆tk+1) .

The term ∂jtW =
(
∑∞

ℓ=1∆t
ℓ−1 αℓ

)j
on the left hand side of (98) can be evaluated by

taking the formal power of the equation (87) at the order j. We define the coefficients

Γj
m according to:

(99)
(

∞
∑

ℓ=1

∆tℓ−1 αℓ

)j

≡

∞
∑

ℓ=0

∆tℓ Γj
j+ℓ , j ≥ 0 .

They can be evaluated without difficulty from the coefficients αℓ, taking care of the non-

commutativity of the product of two matrices. We report the corresponding terms and

we identify the coefficients in factor of ∆tk between the two sides of the equation (98),

with the help of the induction hypothesis (97). We deduce:

(100) αk+1 = Ak+1 +

k+1
∑

j=1

Bj βk+1−j −

k+1
∑

j=2

1

j!
Γj
k+1 .

We do the same operation with the second relation of (84) :

(101)



























Y +

k+1
∑

j=1

∆tj

j!

(

∂jtY
)

+ O(∆tk+2) =

= S EW + (I− S) Y +
k+1
∑

j=1

∆tj
(

Cj W + Dj Y
)

+ O(∆tk+2) .

As in the previous case, we suppose that we have evaluated formally the temporal deriva-

tive

∂jtY = ∂jt

[

(

E + ∆t β1 + ∆t2 β2 + . . . +∆tk βk + . . .
)

W
]

=
(

E + ∆t β1 + ∆t2 β2 + . . . +∆tk βk + . . .
) (

∂jtW
)

=
(

E + ∆t β1 + ∆t2 β2 + . . . +∆tk βk + . . .
) (

α1 +∆t α2 + · · ·+∆tℓ αℓ + . . .
)j
W

relatively to the space derivatives. Then with the help of the induction hypothesis

(102)
(

E +

∞
∑

m=1

∆tm βm

)(

∞
∑

p=1

∆tp−1 αp

)j

≡

∞
∑

ℓ=0

∆tℓ Kj
j+ℓ , j ≥ 0 ,

we identify the two expressions of the coefficient of ∆tk+1 issued from the equation (101):

(103) S βk+1 = Ck+1 +
k+1
∑

j=1

Dj βk+1−j −

k+1
∑

j=1

1

j!
Kj

k+1 .

• The explicitation of the coefficients Γj
j+ℓ and Kj

k+1 of the matricial formal series is

now easy, due to the relations (99) and (102). We specify the coefficients Γℓ
j+ℓ obtained
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in the matricial formal series (99). For j = 0, the power in relation (99) is the identity.

Then

(104) Γ0
0 = I , Γ0

ℓ = 0 , ℓ ≥ 1 .

When j = 1, the initial series is not changed. Then

(105) Γ1
ℓ = αℓ , ℓ ≥ 1 .

For j = 2, we have to compute the square of the initial series, paying attention that

the matrix operators αℓ do not commute. Observe that with the formal Chapman-

Enskog method used e.g. in [16], non-commutation relations have also to be taken into

consideration for higher order terms in the case of several conserved moments. We have
(

∞
∑

ℓ=1

∆tℓ αℓ+1

)(

∞
∑

j=1

∆tj αj+1

)

=

∞
∑

p=0

∆tp
∑

ℓ+j=p

αℓ+1 αj+1

and we have in particular

(106) Γ2
2 = α2

1 , Γ2
3 = α1 α2 + α2 α1 , Γ2

4 = α1 α3 + α2
2 + α3 α1 .

In the general case, we have
(

∞
∑

ℓ=0

∆tℓ αℓ+1

)j

=
∞
∑

ℓ=0

∆tp
∑

ℓ1+···+ℓj=p

αℓ1+1 . . . αℓj+1

and in consequence

(107) Γj
p+j =

∑

ℓ1+···+ℓj=p

αℓ1+1 . . . αℓj+1 .

We have in particular for j = 3 and j = 4:

(108) Γ3
3 = α3

1 , Γ3
4 = α2

1 α2 + α1 α2 α1 + α2 α
2
1 , Γ4

4 = α4
1 .

For the explicitation of the coefficients Kj
k+1, we can replace the power of the formal

series of the relation (99) in the relation (102). We obtain, with the notation β0 ≡ E,
(

∞
∑

m=0

∆tm βm

)(

∞
∑

ℓ=0

∆tℓ Γj
j+ℓ

)

≡

∞
∑

p=0

∆tp Kj
j+p

then we have by induction

(109) Kj
j+p =

∑

m+ℓ=p

βm Γj
j+ℓ .

For j = 0, we deduce

(110) K0
0 = E , K0

p = 0 , p ≥ 1

and for j = 1, we have a simple product of two formal series:

(111) K1
p = E αp + β1 αp−1 + . . . + βp−1 α1 , p ≥ 1 .

We specify some particular values of the coefficients Kj
j+p when j = 2, j = 3 and for

j = 4:

(112)

{

K2
2 = E Γ2

2 , K2
3 = E Γ2

3 + β1 Γ
2
2 , K2

4 = E Γ2
4 + β1 Γ

2
3 + β2 Γ

2
2 ,

K3
3 = E Γ3

3 , K3
4 = E Γ3

4 + β1 Γ
3
3 , K4

4 = E Γ4
4 .
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• It is now possible to make explicit up to fourth order to fix the ideas the matricial

coefficients of the expansion (86) of the nonconserved moments and of the associated

partial differential equation (87). We have, following the natural order of the algorithm:

(113)



































































β0 = E

α1 = A1 + B1E

β1 = S−1
(

C1 + D1E − K1
1

)

α2 = A2 +B2E + B1 β1 − 1
2
Γ2
2

β2 = S−1
[

C2 + D2E + D1 β1 − K1
2 − 1

2
K2

2

]

α3 = A3 +B1 β2 + B2 β1 + B3E − 1
2
Γ2
3 − 1

6
Γ3
3

β3 = S−1
[

C3 + D1 β2 + D2 β1 + D3E − K1
3 − 1

2
K2

3 − 1
6
K3

3

]

α4 = A4 +B1 β3 + B2 β2 + B3 β1 + B4E − 1
2
Γ2
4 − 1

6
Γ3
4 − 1

24
Γ4
4 .

Observe that with the explicit relations (113), the computer time for deriving formally

the equivalent partial equation like (97) at fourth order of accuracy has been reduced

by three orders of magnitude (!) in comparison with the algorithm presented in the

contribution [9].

Appendix 2. A specific algebraic coefficient

• With Hénon’s coefficients σj defined according to (18), a numbering of the D3Q27

moments proposed in (60), the equilibrium of the energy (16) parametrized by α, and

the parameter ψ introduced in (70), the coefficient ζ4 for the fourth order term in (28)

can be evaluated according to:
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(114)






















































































































































































ζ4 =
1

108

σ5 λ ∆x3

(4ψ − 7) (3ψ2 − 11ψ + 14) (14 + 23ψ − 22ψ2 + 3ψ3)3
N4

N4 = −526848− 13105344 σ2
5 + 56334931ψ6 α− 3413088ψ2

+29925576ψ3 + 44310000 σ2
5 ψ

3 α2 + 2458624α2 − 7776 σ2
5 ψ

12

+116153808 σ2
5 ψ

7 + 16213680 σ2
5 ψ

9 − 56871552 σ2
5 ψ

8 − 2696976 σ2
5 ψ

10

+803992ψα− 16250948ψ2α + 15057742ψ3 α+ 236520 σ2
5 ψ

11

− 47554008 σ2
5 ψ

5 α2 + 414648 σ2
5 ψ

9 α2 + 5924856 σ2
5 ψ

7 α2

− 3520104 σ2
5 ψ

8 α2 + 7776 σ2
5 ψ

12 α2 − 73224 σ2
5 ψ

11 α2 − 1805156ψ8 α2

− 1316084ψ7 α2 + 13802956ψ6 α2 − 29063324ψ5 α2 + 25708132ψ4 α2

− 1230152ψ3 α2 + 3742816α2ψ + 27756ψ11 α2 − 3429ψ11 α

− 187851264 σ2
5 α

2 ψ2 + 198524928 σ2
5 α

2 ψ + 195048 σ2
5 ψ

10 α2

− 12827088ψ4 + 100016448 σ2
5 ψ − 10762392 σ2

5 ψ
3

− 287184 σ2
5 ψ

5 − 117365232 σ2
5 ψ

6 + 102921792 σ2
5 ψ

4 − 131926368 σ2
5 ψ

2

− 6082272ψ + 22678777ψ4 α− 58798343ψ5 α + 316283520 σ2
5 ψ α

− 421440000 σ2
5 ψ

2 α + 148286280 σ2
5 ψ

3 α + 2458624α− 1296ψ12 α2

− 324ψ12 α− 12657680ψ2α2 + 169965ψ10 α− 1834629ψ9 α

+9787591ψ8 α− 30298973ψ7 α− 235980ψ10 α2 + 989292ψ9 α2

+55400808 σ2
5 ψ

4 α2 − 3888 σ2
5 ψ

12 α + 223236 σ2
5 ψ

11 α

− 2725812 σ2
5 ψ

10 α+ 15619428 σ2
5 ψ

9 α− 48491916 σ2
5 ψ

8 α

+75338436 σ2
5 ψ

7 α + 8771448 σ2
5 ψ

6 α2 − 78989568 σ2
5 α

− 6400920ψ9 − 56568924ψ7 + 24275088ψ8 + 3240ψ12 − 88452ψ11

− 46884384ψ5 + 76942908ψ6 + 151481100 σ2
5 ψ

4 α− 12989436 σ2
5 ψ

6 α

− 141331668 σ2
5 ψ

5 α + 1015308ψ10 − 77070336 σ2
5 α

2 .
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