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PERIODIC POINTS AND SHADOWING FOR GENERIC

LEBESGUE MEASURE-PRESERVING INTERVAL MAPS

JOZEF BOBOK, JERNEJ ČINČ, PIOTR OPROCHA, AND SERGE TROUBETZKOY

Abstract. In this article we study dynamical behaviour of generic Lebesgue
measure-preserving interval maps. We show that for each k ≥ 1 the set of

periodic points of period at least k is a Cantor set of Hausdorff dimension zero

and of upper box dimension one. Moreover, we obtain analogous results also in
the context of generic Lebesgue measure-preserving circle maps. Furthermore,

building on the former results, we show that there is a dense collection of

transitive Lebesgue measure-preserving interval maps whose periodic points
have full Lebesgue measure and whose periodic points of period k have positive

measure for each k ≥ 1. Finally, we show that the generic continuous maps of

the interval which preserve the Lebesgue measure satisfy the shadowing and
periodic shadowing property.

1. Introduction

In what follows a residual set denotes a dense Gδ set and we call a property
generic if it is satisfied on at least a residual set of the underlying Baire space.
The roots of studying generic properties in dynamical systems can be found in
the article by Oxtoby and Ulam from 1941 [28] in which they showed that for a
finite-dimensional compact manifold with a non-atomic measure which is positive
on open sets, the set of ergodic measure-preserving homeomorphisms is generic in
the strong topology. Subsequently, Halmos in 1944 [17],[18] introduced approxima-
tion techniques to a purely metric situation: he studied interval maps which are
invertible almost everywhere and preserve the Lebesgue measure and showed that
the generic invertible map is weakly mixing, i.e., has continuous spectrum. Then,
Rohlin in 1948 [33] showed that the set of (strongly) mixing measure-preserving
invertible maps is of the first category in the same space. Two decades later, Katok
and Stepin in 1967 [20] introduced the notion of a speed of approximations. One
of the notable applications of their method is the genericity of ergodicity and weak
mixing for certain classes of interval exchange transformations. One of the most
outstanding results using approximation theory is the Kerckhoff, Masur, Smillie
theorem on the existence of polygons for which the billiard flow is ergodic [21], as
well as its quantitative version by Vorobets [38]. Many more details on the history
of approximation theory can be found in the surveys [5], [14], [37].

In what follows we denote by I the unit interval [0, 1], S1 the unit circle and
λ the Lebesgue measure on an underlying manifold. Our present study focuses on
generic topological properties in the spaces of Lebesgue measure-preserving (not
necessarily invertible) continuous maps on the interval Cλ(I) and the circle Cλ(S1).
For the rest of the article we equip the two spaces with the uniform metric, which
makes the spaces complete. The study of generic properties on Cλ(I) was initiated
in [7] and continued recently in [8]. It is well known that every such map has
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a dense set of periodic points (see for example [8]). Furthermore, except for the
two exceptional maps id and 1 − id, every such map has positive metric entropy.
Recently, basic topological and measure-theoretical properties of generic maps from
Cλ(I) were studied in [8]. We say that an interval map f is locally eventually onto
(leo) if for every open interval J ⊂ I there exists a non-negative integer n so that
fn(J) = I. This property is also sometimes referred in the literature as topological
exactness. The Cλ(I)-generic function

(a) is weakly mixing with respect to λ [8, Th. 15],
(b) is leo [8, Th. 9],
(c) satisfies the periodic specification property [8, Cor. 10],
(d) has a knot point at λ almost every point [7],
(e) maps a set of Lebesgue measure zero onto [0, 1] [8, Cor. 22],
(f) has infinite topological entropy [8, Prop. 26],
(g) has Hausdorff dimension = lower Box dimension = 1 < upper Box dimension

= 2 [34].

It was furthermore shown that the set of mixing maps in Cλ(I) is dense [8, Cor.
14] and in analogy to Rohlin’s result [33] that this set is of the first category [8,
Th. 20].

In this paper we study periodic structure of generic Lebesgue measure-preserving
maps on manifolds of dimension 1. Our choice of Cλ(I) is motivated by the fact
that they are one-dimensional versions of volume-preserving maps, or more broadly,
conservative dynamical systems; ergodic maps preserving Lebesgue measure are
the most fundamental examples of maps having a unique physical measure. Since
generic maps in Cλ(I) are weakly mixing [8], the Ergodic theorem implies that for a
generic map in Cλ(I) the closure of a typical trajectory has full Lebesgue measure,
thus the statistical properties of typical trajectories can be revealed by physical
observations.

The class Cλ(I) contains very large spectrum of maps; on one hand nowhere
differentiable ones or even without finite or infinite one-sided derivative [7] and
on the other hand piecewise monotone or even piecewise smooth maps. One can
construct many interesting examples using Lemma 11 from [9] and the fact that
Cλ(I) is closed.

On the other hand, they represent a variety of possible one-dimensional dynamics
as highlighted in the following remark.

Remark. Let f be an interval map. The following conditions are equivalent.

(i) f has a dense set of periodic points, i.e., Per(f) = I.
(ii) f preserves a nonatomic probability measure µ with supp µ = I.
(iii) There exists a homeomorphism h of I such that h ◦ f ◦ h−1 ∈ Cλ(I).

To see the above equivalence it is enough to combine a few facts from the liter-
ature. The starting point is [3], where the dynamics of interval maps with dense
set of periodic points has been described; while this article is purely topological it
easily implies that such maps must have non-atomic invariant measures with full
support. The Poincaré Recurrence Theorem and the fact that in dynamical sys-
tems given by an interval map the closures of recurrent points and periodic points
coincide [12] provides connection between maps preserving a probability measure
with full support and dense set of periodic points. Finally, for µ a non-atomic
probability measure with full support the map h : I → I defined as h(x) = µ([0, x])
is a homeomorphism of I; moreover, if f preserves µ then h ◦ f ◦ h−1 ∈ Cλ(I)
(see the proof of Theorem 2 for more detail on this construction). Therefore, the
topological properties that are proven in [8] and later in this paper are generic also
for interval maps preserving measure µ.
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A basic tool to understand the dynamics of interval maps is to understand the
structure, dimension and Lebesgue measure of the set of its periodic points. For
what follows let f ∈ Cλ(I). Since generic maps from Cλ(I) are weakly mixing with
respect to λ it follows that the Lebesgue measure of the set of periodic points is 0.
However, it is still natural to ask:

Question A. What is the cardinality, structure and dimension of periodic points
for generic maps in Cλ(I)?

Akin et. al. proved in [1, Theorems 9.1 and 9.2(a)] that the set of periodic
points of generic homeomorphisms of S1 is a Cantor set. In an unpublished sketch,
Guihéneuf showed that the set of periodic points of a generic volume preserving
homeomorphism f of a manifold of dimension at least two (or more generally pre-
serving a good measure in the sense of Oxtoby and Ulam [28]) is a dense set of
measure zero and for any ` ≥ 1 the set of fixed points of f ` is either empty or a
perfect set [15]. On the other hand, Carvalho et. al. have shown that the upper
box dimension of the set of periodic points is full for generic homeomorphisms on
compact manifolds of dimension at least one [11]1.

In the above context we provide the general answer about the cardinality and
structure of periodic points of period k for f (denoted by Per(f, k)), of fixed points
of fk (denoted by Fix(f, k)) and of the union of all periodic points of f (denoted by
Per(f)) and its respective lower box, upper box and Hausdorff dimensions. Namely,
we prove:

Theorem 1. For a generic map f ∈ Cλ(I), for each k ≥ 1:

(1) the set Fix(f, k) is a Cantor set,
(2) Per(f, k) is a relatively open dense subset of Fix(f, k),
(3) the set Fix(f, k) has Hausdorff dimension and lower box dimension zero.

In particular, Per(f, k) has Hausdorff dimension and lower box dimension
zero. As a consequence, the Hausdorff dimension of Per(f) is also zero.

(4) the set Per(f, k) has upper box dimension one. Therefore, Fix(f, k) has
upper box dimension one as well.

The proof of the above theorem works also for the generic continuous maps
which we believe is not known yet. Furthermore, we can also address the setting of
Cλ(S1), however, due to the presence of rotations, we need to treat degree 1 maps
separately (for the related statement of the degree one case we refer the reader to
Theorem 17).

Related to the study above, there is an interesting question about the possible
Lebesgue measure on the set of periodic points for maps from Cλ(I).

Question B. Does there exist a transitive (or even leo) map in Cλ(I) with positive
Lebesgue measure on the set of periodic points?

As mentioned already above, generic maps from Cλ(I) will have Lebesgue mea-
sure 0 since λ is weakly mixing. Therefore, the previous question asks about the
complement of generic maps from Cλ(I) and requires on the first glance contradict-
ing properties. The often noted discrepancy between the topological and measure
theoretic notions of density is again displayed here and we obtain the following
result. We answer Question B and even prove a stronger statement.

Theorem 2. The set of leo maps in Cλ(I) whose periodic points have full Lebesgue
measure and whose periodic points of period k have positive measure for each k ≥ 1
is dense in Cλ(I).

1this statement only appears in the published version of [11].
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Another motivation for the study in this article was the following natural ques-
tion.

Question C. Is the shadowing property generic in Cλ(I)?

Shadowing is a classical notion in topological dynamics and it serves as a tool to
determine whether any hypothetical orbit is actually close to some real orbit of a
topological dynamical system; this is of great importance in systems with sensitive
dependence on initial conditions, where small errors may potentially result in a large
divergence of orbits. The dynamics of maps that satisfy the shadowing property
can be physically observed, in particular, through computer simulations. Pilyugin
and Plamenevskaya introduced in [31] a nice technique to prove that shadowing is
generic for homeomorphisms on any smooth compact manifold without a boundary.
This led to several subsequent results that shadowing is generic in topology of
uniform convergence, also in dimension one (see [27, 22] for recent results of this
type). On the other hand, there are many cases known, when shadowing is not
present in an open set in C1 topology (see survey paper by Pilyugin [30] and
[29, 32] for the general overview on the recent progress related with shadowing).

For continuous maps on manifolds of dimension one, Mizera proved that shad-
owing is indeed a generic property [26]. In the context of volume preserving homeo-
morphisms on manifolds of dimension at least two (with or without boundary), the
question above was solved recently in the affirmative by Guihéneuf and Lefeuvre
[16].

Our last main theorem provides the affirmative answer on Question C. Let us
mention at this point why this setting is difficult, compared to expanding maps on
surfaces. For interval maps, we lose expanding at some points due to the existence
of critical points that necessarily appear. This may in turn disable shadowing, even
in very regular settings. For example, it was proved in [13] that in the tent map
family there is a dense set of parameters where there is shadowing, however there
its dense complement has no shadowing property. All depends on the trajectory
of the unique critical point, whose dynamics can change dramatically with a slight
change of the slope. On the other hand, for many maps in the core tent map family
we have strong mixing properties, like topological mixing, locally eventually onto,
or even periodic specification property [6] (see also [10]).

Theorem 3. Shadowing and periodic shadowing are generic properties for maps
from Cλ(I).

Let us briefly describe the structure of the paper. In Preliminaries we give gen-
eral definitions that we will need in the rest of the paper. In particular, our main
tool throughout the most of the paper will be the controlled use of the approxima-
tion techniques which we introduce in the end of Section 2. In Section 3 we turn
our attention to the study of periodic points and prove Theorem 1. The proof relies
on a precise control of perturbations introduced in Section 2 which turns out to
be particularly delicate. With some additional work we consequently obtain The-
orem 2. We conclude the section with the study of periodic points for maps from
Cλ(S1) in Subsection 3.1. In Section 4 we provide a proof of Theorem 3. Similarly
as in [22] we use covering relations, however the main obstacle is the preservation of
Lebesgue measure which makes obtaining such coverings a more challenging task.
We conclude the paper with Subsection 4.2 where we address a notion stronger
than shadowing called the s-limit shadowing (see Definition 20) in the contexts of
Cλ(I). We prove that s-limit shadowing is dense in the respective environments.
The approach resembles the one taken in [25], however due to our more restrictive
setting our proof requires better control of perturbations. This result, in particular,
implies that limit shadowing is dense in the respective environments as well.
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2. Preliminaries

Let N := {1, 2, 3, . . .} and N0 := N∪{0}. Let λ denote the Lebesgue measure on
the unit interval I := [0, 1]. We denote by Cλ(I) ⊂ C(I) the family of all continuous
Lebesgue measure-preserving functions of I being a proper subset of the family of
all continuous interval maps equipped with the uniform metric ρ:

ρ(f, g) := sup
x∈I
|f(x)− g(x)|.

It follows from the following proposition that (Cλ(I), ρ) is a complete metric
space as well.

Proposition 4. (Cλ(I), ρ) is closed in (C(I), ρ); in particular it is a complete
metric space.

Proof. Fix a sequence (fn)n of maps from Cλ(I) which converge to a map f . Then
f is continuous and we need to show that f ∈ Cλ(I). Fix an open interval J ⊂ [0, 1].
The set f−1(J) is a union of open intervals, so for a given ε > 0 we can find finitely
many connected components (open intervals) J1, . . . Jm of f−1(J) such that

(2.1) λ(

m⋃
i=1

Ji) > λ(f−1(J))− ε;

since fn
n−→ f we have limn→∞ λ(f−1

n (J) ∩ Ji) = λ(Ji) and

λ(J) ≥ lim
n→∞

λ(f−1
n (J) ∩

m⋃
i=1

Ji) = λ(

m⋃
i=1

Ji).

Combining this with (2.1) we conclude λ(J) ≥ λ(f−1(J))− ε. Taking into account
that ε was chosen arbitrarily we get

(2.2) λ(J) ≥ λ(f−1(J))

and thus

(2.3) λ(f−1(x)) = 0 for each x ∈ [0, 1].

Applying (2.2) we obtain: 1
2 ≥ λ(f−1((0, 1

2 ))) and 1
2 ≥ λ(f−1(( 1

2 , 1))). Applying

(2.3) we obtain: 0 = λ(f−1(0)) = λ(f−1( 1
2 )) = λ(f−1(1)). Together these imply

1
2 = λ(f−1((0, 1

2 ))) = λ
(
f−1

((
1
2 , 1
)))

.

We proceed similarly for the dyadic intervals for each j ∈ {0, . . . , 2k−1} to conclude

(2.4) 1
2k

= λ
(
f−1

((
j

2k
, j+1

2k

)))
.

Since λ is a regular measure (i.e., every measurable set can be approximated from
above by open sets and from below by compact sets), (2.4) implies f ∈ Cλ(I). �

A critical point of f is a point x ∈ I such that there exists no neighborhood of
x on which f is strictly monotone. Denote by Crit(f) the set of all critical points
of f . A point x is called periodic of period N ∈ N, if fN (x) = x and f i(x) 6= x for
1 ≤ i < N . Let us denote by Ξ(f) the set of points from I for which no neighborhood
has a constant slope under f . Obviously, Crit(f) ⊂ Ξ(f). Let PA(I) ⊂ C(I) denote
the set of piecewise affine functions; i.e., functions that are affine on every interval
of monotonicity and have finitely many points in the set Ξ(f). Let PAλ(I) ⊂ Cλ(I)
denote the set of piecewise affine functions that preserve Lebesgue measure and
PAλ(leo)(I) ⊂ PAλ(I) such functions that are additionally locally eventually onto
(i.e., the image under sufficiently large iterations of nonempty open sub-intervals
cover I).
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For a metric space (X, d) we shall use B(x, ξ) for the open ball of radius ξ
centered at x ∈ X and for a set U ⊂ X we shall denote

B(U, ξ) :=
⋃
x∈U

B(x, ξ).

In the rest of the paper we use letter d to denote the Euclidean distance on I and
S1.

2.1. Window perturbations in Lebesgue measure-preserving setting. In
this subsection we briefly discuss the setting of Lebesgue measure-preserving in-
terval maps and introduce the techniques that we will apply in the rest of the
paper.

Definition 5. We say that continuous maps f, g : [a, b] ⊂ I → I are λ-equivalent
if for each Borel set A ∈ B,

λ(f−1(A)) = λ(g−1(A)).

For f ∈ Cλ(I) and [a, b] ⊂ I we denote by C(f ; [a, b]) the set of all continuous maps
λ-equivalent to f |[a, b]. We define

C∗(f ; [a, b]) := {h ∈ C(f ; [a, b]) : h(a) = f(a), h(b) = f(b)}.

Remark 6. It follows from Definition 5 that if we take any function f : [a, b]→ I
and any function q ∈ Cλ([a, b]), then f and f ◦ q are λ-equivalent.

The following definition is illustrated by Figure 1.

Definition 7. Let f be from Cλ(I) and [a, b] ⊂ I. For any fixed m ∈ N, let us
define the map h = h〈f ; [a, b],m〉 : [a, b]→ I for j ∈ {0, . . . ,m− 1} by:

h(a+ x) :=

f
(
a+m

(
x− j(b−a)

m

))
if x ∈

[
j(b−a)
m , (j+1)(b−a)

m

]
, j even,

f
(
a+m

(
(j+1)(b−a)

m − x
))

if x ∈
[
j(b−a)
m , (j+1)(b−a)

m

]
, j odd.

Then h〈f ; [a, b],m〉 ∈ C(f ; [a, b]) for each m and h〈f ; [a, b],m〉 ∈ C∗(f ; [a, b]) for
each m odd.

f

a b

h

a b

Figure 1. For f ∈ Cλ(I) shown on the left, we show on the right
the regular 3-fold piecewise affine window perturbation of f by
h = h〈f ; [a, b], 3〉 ∈ C∗(f ; [a, b]).

Definition 8. For a fixed h ∈ C∗(f ; [a, b]), the map g = g〈f, h〉 ∈ Cλ(I) defined by

g(x) :=

{
f(x) if x /∈ [a, b],

h(x) if x ∈ [a, b]
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will be called the window perturbation of f (by h on [a, b]). In particular, if h =
h〈f ; [a, b],m〉, m odd, (resp. h is piecewise affine), we will speak of regular m-fold
(resp. piecewise affine) window perturbation g of f (on [a, b]).

Remark 9. We will repeatedly use the following facts about regular m-fold piecewise
affine window perturbations which either are easy to verify or follow directly from
the definition. First, for every f ∈ Cλ(I) Lemma 5 from [8] gives that for each ε > 0
there is a positive integer n0 such that for each n > n0, if Ij = [j/n, (j + 1)/n] and

g|Ij = h〈f ; Ij ,m(j)〉
with odd numbers m(j) for every j ∈ {0, . . . , n− 1}, then independently of numbers
m(j) it holds ρ(f, g) < ε. Second, we will also often use the fact that if f ∈ PAλ(I)
then any regular m-fold piecewise affine window perturbation g〈f, h〉 ∈ PAλ(I).

3. Cardinality and dimension of periodic points for generic Lebesgue
measure-preserving interval and circle maps

Since generic maps from Cλ(I) are weakly mixing (Theorem 15 from [8]) it follows
that the Lebesgue measure of the periodic points of generic maps from Cλ(I) is
0. The main result of this section is Theorem 1 which describes the structure,
cardinality and dimensions of this set.

Let
Fix(f, k) := {x : fk(x) = x}

Per(f, k) := {x : fk(x) = x and f i(x) 6= x for all 1 ≤ i < k}
k(x) := k for x ∈ Per(f, k)

and
Per(f) :=

⋃
k≥1

Per(f, k) =
⋃
k≥1

Fix(f, k).

Definition 10. A periodic point p ∈ Per(f, k) is called transverse if there exist
three adjacent intervals A = (a1, a2), B = [a2, c1], C = (c1, c2), with p ∈ B, B
possibly reduced to a point, such that (1) fk(x) = x for all x ∈ B and either (2.a)
fk(x) > x for all x ∈ A and fk(x) < x for all x ∈ C or (2.b) fk(x) < x for all
x ∈ A and fk(x) > x for all x ∈ C.

Remark 11. In our constructions we will apply the above definition only for the
case when B degenerates to a point.

To prove Theorem 1 we will use the following lemma.

Lemma 12. For each k ≥ 1 there is a dense set {gi}i≥1 of maps in Cλ(I) such that
gi ∈ PAλ(I), Per(gi, k) 6= ∅, and for each i all points in Fix(gi, k) are transverse.

Proof. The set PAλ(I) is dense in Cλ(I) ([7], see also Proposition 8 in [8]). Each
f ∈ PAλ(I) (in fact each f ∈ Cλ(I)) has a fixed point, so using a 3-fold window
perturbation around the fixed point we can approximate f arbitrarily well by a
map f1 ∈ PAλ(I) with Per(f1, k) 6= ∅.

Fix f ∈ PAλ(I) with Per(f, k) 6= ∅. We claim that by an arbitrarily small
perturbation of f we can construct a map g ∈ PAλ(I) such that

(3.1) Per(g, k) 6= ∅ and all points in Fix(g, k) are transverse.

We do this in several steps. The first step is to perturb f to g in such a way that
the points 0 and 1 are not in Fix(g, k); we will treat only the point 0, the arguments
for the point 1 are analogous. If 0 is a fixed point we can make an arbitrarily small
window perturbation as in Figure 2 so that this is no longer the case.

Now consider the case when f j(0) = 0, where j > 1 is the period of the point 0,
and j|k. We assume that a is so small that f i([0, a])∩ [0, a] = ∅ for i = 1, 2, . . . , j−1
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0 aa
2

b

Figure 2. Small perturbations of a map f ∈ PAλ(I) near 0.

and choose a so that f j(a) 6= 0. Let g be the map resulting from a regular 2-fold
window perturbation of f on the interval [0, a] (see Figure 3). Thus g(0) = f(a) and
gj−1 = f j−1 on the interval [f(0), f(a)], and so gj(0) = gj−1 ◦ f(a) = f j(a) 6= 0.

f(0)

g(0)

0
0

aa
2 f(0) g(0)=f(a)0

Figure 3. Left: small perturbations of a map f ∈ PAλ(I) near 0;
Right: gj−1 = f j−1 on [f(0), f(a)].

Thus we can choose a dense set of f ∈ PAλ(I) with Per(f, k) 6= ∅, and Fix(f, k)∩
{0, 1} = ∅. Fix such a map f . We claim the following.

Claim 13. By an arbitrarily small perturbation of f we can construct a g ∈ PAλ(I)
with Per(g, k) 6= ∅ and Fix(g, k)∩{0, 1} = ∅ such that for every c ∈ Crit(g) we have
gi(c) 6∈ Crit(g) for all 1 ≤ i ≤ k.

Proof of Claim 13. Suppose that for some c1, c2 ∈ Crit(f) we have an ` ≥ 1 such
that f `(c1) = c2 and f i(c1) 6∈ Crit(f) for 1 ≤ i ≤ ` − 1. We call this orbit a
critical connection of length `. Choose c1, c2 with the minimal such `, if there are
several choices fix one of them. We will perturb f to a map g for which this critical
connection is destroyed, so g has one less critical connection of length `. Since there
are finitely many critical connections of a given length, a finite number of such
perturbations will remove all of them, and a countable sequence of perturbations
will finish the proof of the claim.

If c1 6= c2 it suffices to use a small window perturbation around c2 as in Figure
4; if the window perturbation is disjoint from the orbit segment f i(c1) for i ∈
{0, 1, . . . , `− 1} then for the resulting map g we have g`(c1) = c2 < c̄2 and gi(c1) 6∈
Crit(g) = {c̄2} ∪ Crit(f) \ {c2} for i = 1, 2, . . . , ` − 1, thus we have destroyed the
critical connection. Let Q = {f i(c) : 0 ≤ i < ` and c ∈ Crit(f)} \ {c2}. Notice that
g(c̄2) = f(c2), thus taking the neighborhood for the perturbations sufficiently small
to be disjoint from Q guaranties that we did not create new critical connections of
length ` or shorter.

Now consider the case c1 = c2. Suppose that c1 is a local minimum of f ; the
other cases are similar. If ` = 1 then we again move the peak using the window
perturbation as in Figure 4 to destroy the connection. If ` > 1 then by assumption
the map f `−1 in a neighborhood U = (a, b) of the point f(c1) is strictly monotone.
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c2 c̄2

Figure 4. Small perturbations of a map f ∈ PAλ(I).

Using a window perturbation around c1 as in Figure 5, yields a map g ∈ Cλ(I)
with Per(g, k) 6= ∅ such that

Crit(g) = {c̄1} ∪ Crit(f) \ {c1}.
The critical set Crit(f) is finite since f is piecewise affine. If this perturbation is

c1 c̄1

a f(c1)
=g(c̄1)

b

Figure 5. Left: small perturbations of a map f ∈ PAλ(I); Right:
g`−1 = f `−1.

small enough to be disjoint from the set U := ∪`−1
i=1f

i(U) then the resulting map
g|U = f |U, and so g`−1|U = f `−1|U . Furthermore, if the perturbation is small
enough so that g(c̄1) ∈ U then

g`−1 ◦ g(c̄1) = f `−1 ◦ g(c̄1) = f `−1 ◦ f(c1) = c1.

Moreover, we can choose the perturbation so small that these two points are arbi-
trarily close, i.e., g`(c̄1) ∈ (c1 − ε, c1), for any fixed ε > 0.

If ε is small enough then there are no critical points of f in the interval (c1−ε, c1).
Furthermore, since c̄1 > c1, then if the perturbation and ε are small enough it holds
that c̄1 is also not in this interval. This procedure possibly creates new critical
connections but of length at least `+ 1; but inductive application of both cases will
eventually get rid of the critical connections of length at most k.

If we choose the interval of perturbation small enough then no new critical con-
nections of length at most k can be created, thus the proof of the claim is fin-
ished. �

Claim 13 implies that no critical point nor endpoint is in Fix(g, k) for the con-
structed perturbation g of f . But the map g is piecewise affine with absolute value
of slope larger than 1. Therefore all points in Fix(g, k) must be transverse periodic
points.

By Proposition 8 from [8] there is a sequence of maps {fi}i≥1 ⊂ PAλ(I) which
is dense in Cλ(I). For each i and n use (3.1) and define maps {gi,n}i≥1 ⊂ Cλ(I)
with ρ(fi, gi,n) < 1/n. The sequence {gi,n}i≥1 is by definition dense in Cλ(I) but
now each gi,n satisfies Per(gi,n, k) 6= ∅ and all points in Fix(gi,n, k) are transverse.
This completes the proof, after renumbering the sequence {gi,n}i≥1. �
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Now we have prepared all the tools to give the proof of Theorem 1. In what
follows, by dimBox, dimBox and dimH we denote the lower box dimension, the upper
box dimension and the Hausdorff dimension of the underlying sets respectively.

Proof of Theorem 1. First note that the last part of (3) follows from the first part
of (3) since

dimH(Per(f)) ≤ sup
k≥1

dimH(Fix(f, k)) ≤ sup
k≥1

dimBox(Fix(f, k)) = 0.

For the proofs of 1), 2), 3) and 4) we fix k ∈ N.
Thus we can choose a countable set {gi}i≥1 ⊂ PAλ(I), such that no gi has slope

±1 on any interval, which is dense in Cλ(I) with each gi satisfying the conclusion of
Lemma 12, i.e., (3.1). The advantage of such gi is that for each point in Fix(gi, k),
there is at least one corresponding periodic point in Fix(g, k) if the perturbed map
g is sufficiently close to gi.

Consider the shortest length

γi := min{|c− c′| : c, c′ ∈ Crit(gi) ∪ {0, 1} and c 6= c′}
of the intervals of monotonicity of gi, note that γi > 0 since gi ∈ PAλ(I).

Since gi ∈ PAλ(I) do not have slope ±1 the set Fix(gi, k) is finite, suppose it
consists of `i disjoint orbits and the set Per(gi, k) consists of ¯̀

i ≤ `i distinct orbits.
In particular

(3.2) `i ≤ #Fix(gi, k) ≤ k`i and Per(gi, k) = k ¯̀
i.

Choosing one point from each of the orbits in Fix(gi, k) defines the set {xl,i : 1 ≤
l ≤ `i} ⊂ Fix(gi, k). Let k(xl,i) denote the minimal period of xl,i.

By the definition of gi, the minimal distance

ηi := min{|gmi (xl,i)− c| : 0 ≤ m ≤ k(xl,i)− 1, 1 ≤ l ≤ `i, c ∈ Crit(gi) ∪ {0, 1}}
of the periodic orbits to the set Crit(gi) ∪ {0, 1} is strictly positive.

If k = `i = 1 let βi := 1, otherwise we consider the minimal distance

βi :=
1

2
min{|x− x′| : x 6= x′ ∈ Fix(gi, k)}.

Let τi be a positive real number such that the slope of every |(gki )′(x)| < τi for
every point x where gki is differentiable.

The construction in the proof depends on integers ni ≥ 1 which will be defined
in the proof, for most of the estimates it suffices to have ni = 1, but for the upper
box dimension estimates we will need ni growing sufficiently quickly. We define a
new map hi ∈ PAλ(I) by applying a regular 2ni + 1-fold window perturbation of
gi of diameter

ai ≤
1

2τi
min(

1

ik`i
, ηi, γi, βi, (k`i)

−i)

around each of the points xl,i keeping the map gi unchanged elsewhere, in particular
it is unchanged around the other points in Fix(gi, k). The perturbations are disjoint
from one another (perturbation around xl,i and xl′,i) by the definition of ai. The
bound on ai guarantees that these maps satisfy the following properties:

i) The collection {hi}i≥1 is dense in Cλ(I). Namely, the slope of gi is bounded
by τi and hi can differ from gi on an interval of length at most k`iai where we
perform the window perturbation. If a, b are points from that window, then

|gi(a)− gi(b)| ≤ τik`iai ≤
1

i
→ 0.

and therefore ρ(hi, gi)→ 0.
ii) Suppose xl,i ∈ Fix(gi, k).
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a) The map h
k(xl,i)
i has exactly 2ni + 1 fixed points in the interval Il,i :=

[xl,i − ai, xl,i + ai],

b) The map hki has (2ni + 1)k/k(xl,i) fixed points in this interval.

c) The full branches of h
k/k(xl,i)
i have length ai/(2ni + 1)k/k(xl,i), thus each

subinterval of Il,i of length 2ai/(2ni + 1)k/k(xl,i) contains at least one full
branch and at most parts of three branches, and thus at least one fixed
point and at most 3 fixed points of hki .

d) The map hi has a point of period k in each interval Il,i.
iii) The total number Nl,i of fixed points of hki arising from the orbit of xl,i satisfies

Nl,i = (2ni + 1)k/k(xl,i)k(xl,i).

Summing over the points xl,i and using 1 ≤ k(xl,i) ≤ k yields

max((2ni + 1)`i, (2ni + 1)k) ≤ #Fix(hi, k) =

`i∑
l=1

Nl,i ≤ (2ni + 1)kk`i.

Note that the last lower bound follows from the fact that we have `i different
points xl,i and among them there is a fixed point of gi, so there is at least one
l with k(xl,i) = 1.

iv) If xl,i ∈ Per(gi, k) (i.e., k(xl,i) = k) then the Nl,i = (2ni + 1)k points are
not only in Fix(hi, k) but also in Per(hi, k); thus #Per(hi, k) ≥ (2ni + 1)k ¯̀

i.
The reason is that we make perturbation close to point xl,i of period k so
new periodic points obtained by perturbation have to visit all k small disjoint
intervals defined by the orbit of that point (we make window perturbation on
a small interval around considered point xl,i).

v) Any interval of length ai/(2ni + 1)k covers at most two points of Fix(hi, k)
(since hi restricted to an interval of length ai/(2ni+1) has at most one critical
point).

Consider δi > 0 and

G :=
⋂
j∈N

⋃
i≥j

B(hi, δi).

The set G is a dense Gδ set.
(1) We claim that if δi > 0 goes to zero sufficiently quickly then Fix(f, k) is a

Cantor set for each f ∈ G. The set Fix(hi, k) is finite, choose ζi so small that the
balls of radius ζi around distinct points of Fix(hi, k) are disjoint and such that ζi →
0. We can choose δi so small that if f ∈ B(hi, δi) then Fix(f, k) ⊂ B(Fix(hi, k), ζi);
in particular the set Fix(f, k) can not contain an interval whose length is longer
than 2ζi.

Consider the open cover of Fix(hi, k) by pairwise disjoint intervals of length 2ai,
by (ii) these intervals contain (2ni + 1)k/k(xl,i) fixed points of hi for some k(xl,i).
Fix these covering intervals and choose δi sufficiently small so that all fixed points
of fk of any f ∈ B(hi, δi) are contained in the covering intervals and so that there
are at least #Fix(hi, k) ≥ (2ni + 1)`i such points (iii).

Fix f ∈ G, thus f ∈ B(hij , δij ) for some subsequence ij . Since ζij → 0 the set
Fix(f, k) can not contain an interval. By its definition the set Fix(f, k) is closed.
By the above discussion on #Fix(hi, k), there are no isolated points in Fix(f, k)
since for any periodic point of period k we can find another point from Fix(f, k)
arbitrary close. This completes the proof of (1).

To prove (2) we additionally assume that ζi converges to zero sufficiently fast,
to ensure Per(f, k) ⊂ B(Per(hi, k), ζi) for each f ∈ B(hi, δi). We first claim that
xl,i ∈ Per(gi, k) has period k then the (2ni + 1) fixed points of hi in the interval
Il,i all have period k. Suppose now xl,i ∈ Fix(gi, k) has period k(xl,i) (a strict



12 JOZEF BOBOK, JERNEJ ČINČ, PIOTR OPROCHA, AND SERGE TROUBETZKOY

divisor of k), then the corresponding (2ni+ 1) points in Fix(hi, k)∩ Il,i have period

k(xl,i). If we consider the map h
k(xl,i)
i restricted to Il,i then it is a (2ni + 1)-fold

tent map, thus it has periodic orbits of all periods. In particular, periodic points

of h
k(xl,i)
i with period k/k(xl,i) belongs to the set Per(hi, k). The number of such

periodic points is strictly larger than 1, and the claim follows. Fix any f ∈ G,
any x ∈ Fix(f, k) and any α > 0. Take i such that ζi < α/3, 2ai < α/3 and
f ∈ B(hi, δi). Then

• Fix(f, k) ⊂ B(Fix(hi, k), ζi),
• Per(f, k) ⊂ B(Per(hi, k), ζi),
• Fix(hi, k) ⊂ B(Per(hi, k), 2ai) (see ii) d) above).

Therefore Per(f, k) ∩ (x− α, x+ α) 6= ∅. Thus Per(f, k) is dense in Fix(f, k).
Finally notice that Per(f, k) = Fix(f, k) \ ∪1≤`<k:`|kFix(f, `). But this finite

union is closed, thus Per(f, k) is relatively open subset of Fix(f, k). This completes
the proof of (2).

(3) Since Per(f, k) ⊂ Fix(f, k) it suffices to prove the statement for Fix(f, k).
Remember that the number k ≥ 1 and the sequence `i are fixed. We claim that if
δi > 0 goes to zero sufficiently quickly then the lower box dimension of Fix(f, k) is
zero for any f ∈ G.

Consider the open cover of Fix(hi, k) by intervals of length ai guaranteed by (ii).
Fix these covering intervals and choose δi sufficiently small so that all points of
Fix(f, k) of any f ∈ B(hi, δi) are contained in the covering intervals.

To prove the claim fix f ∈ G, thus f ∈ B(hij , δij ) for some subsequence ij . Let
N(ε) denote the number of intervals of length ε > 0 needed to cover Fix(hij , k). By
the choice of δij , these intervals of length aij also cover Fix(f, k). Equation (3.2)
combined with (ii) implies that `ij ≤ N(aij ) ≤ k`ij . Combining this with the fact

that aij ≤ (k`ij )
−ij yields

log(N(aij ))

log(1/aij )
≤

log(k`ij )

log(1/aij )
≤ 1

ij

and thus the lower box dimension of Fix(f, k) defined as

lim inf
ε→0

log(N(ε))

log(1/ε)

is 0.
(4) We begin by calculating the upper box dimension of Fix(f, k) of f ∈ G.

Here we will need to choose the sequence ni growing sufficiently quickly. Instead
of covering Fix(hi, k) by intervals of length ai we cover it by intervals of length
bi := 2ai/(2ni + 1)k. By (iic) each such interval covers at most three points of
Fix(hi, k). Thus we need at least (#Fix(hi, k))/3 such intervals to cover Fix(hi, k);
so by (iii) we need at least (2ni + 1)k/3 such intervals to cover Fix(hi, k). Fix such
a covering and choose δi sufficiently small so that all periodic points of period k of
any f ∈ B(hi, δi) are contained in the covering intervals.

Thus

(3.3)
log(N(bi))

log(1/bi)
≥ log((2ni + 1)k/3)

log(1/bi)
=

log((2ni + 1)k)− log(3)

log((2ni + 1)k)− log(2ai)
.

The sequence ai has been fixed above, if ni grows sufficiently quickly the last
term in (3.3) approaches one. We can not cover Fix(hi, k) by fewer intervals, and
thus we can not cover Fix(f, k) by fewer intervals for any f ∈ B(hi, δi).
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By the above discussion, if we fix any f ∈ G then f ∈ B(hij , δij ) for some
subsequence ij and therefore, the upper box dimension of Fix(f, k) defined as

lim sup
ε→0

log(N(ε))

log(1/ε)

is 1.
Next we modify the above proof to calculate the upper box dimension of Per(f, k)

for k ≥ 2. Instead of Fix(hi, k) we consider Per(hi, k) in the calculations. As before,
an interval of length bi covers at most three points of this set, thus we need at least
#(Per(hi, k))/3 such intervals to cover it. Let xl,i be a fixed point and Il,i the
associated interval, then

#(Per(hi, k)) ≥ #(Fix(hi, k) ∩ Il,i)−
∑

`|k,1≤`<k

#(Fix(hi, `) ∩ Il,i)

= (2ni + 1)k −
∑

`|k,1≤`<k

(2ni + 1)`

≥ (2ni + 1)k
(

1−
√
k(2ni + 1)

√
k−k
)
.

Here the last inequality holds since the largest divisor of k is at most
√
k and

there are at most
√
k positive divisors of k.

If we additionally suppose that ni ≥ 2 then for any k ≥ 2 we have(
1−
√
k(2ni + 1)

√
k−k
)
≥ 1−

√
25
√

2−2 >
2

5
.

Thus the estimate (3.3) becomes

log(N(bi))

log(1/bi)
>

log( 2
5 (2ni + 1)k/3)

log(1/bi)

=
log((2ni + 1)k)− log(2/15)

log((2ni + 1)k)− log(2ai)

and the rest of the proof follows in a similar manner. �

Remark 14. The proof of Theorem 1 can easily be adapted to show that generic
maps in C(I) have the same properties, this does not seem to be known in our
setting. Related results have been proven for homeomorphisms on manifolds of
dimension at least two in [15] (unpublished sketch) and [11].

While positive Lebesgue measure of periodic points can not be realized for er-
godic maps, it turns out it can be seen in many leo Lebesgue measure-preserving
maps. To this end let us first introduce some needed definitions.

Let Mf (I) be the space of invariant Borel probability measures on I equipped
with the Prohorov metric D defined by

D(µ, ν) = inf

{
ε :

µ(A) ≤ ν(B(A, ε)) + ε and ν(A) ≤ µ(B(A, ε)) + ε
for any Borel subset A ⊂ I

}
for µ, ν ∈Mf (I). The following (asymmetric) formula

D(µ, ν) = inf{ε : µ(A) ≤ ν(B(A, ε)) + ε for all Borel subsets A ⊂ I}

is equivalent to original definition, which means we need to check only one of the
inequalities. It is also well known, that the topology induced by D coincides with
the weak∗-topology for measures, in particular (Mf (I), D) is a compact metric space
(for more detail on Prohorov metric and weak*-topology the reader is referred to
[19]).
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Lemma 15. Fix k ≥ 1. Assume that Fix(f, k) is a Cantor set and Per(f, k) is
non-empty. For any open set U ⊂ I such that Per(f, k)∩U 6= ∅ the set Per(f, k)∩U
contains a Cantor set C. Fix such a Cantor set in U , x ∈ C and ε > 0. Let µx be
the unique f -invariant Borel probability measure supported on the orbit of x. Then
there is a non-atomic measure ν supported on C ⊂ Per(f, k) such that D(µx, ν) < ε.

Proof. For any open set U ′ ⊂ U ′ ⊂ U if C := Per(f, k)∩U ′ = Fix(f, k)∩U ′ is non-
empty, then since Fix(f, k) is a Cantor set, C is a Cantor set as well. Assume U ′

additionally satisfies that the sets f i(C) are pairwise disjoint with diam(f i(C)) < ε
for i = 0, . . . , k − 1. Let ν̂ be any non-atomic probability measure on C and put

ν = 1
k

∑k−1
i=0 ν̂ ◦f i. Clearly ν is f -invariant. Note that ν(B(f i(x), ε)) ≥ ν(f i(C)) =

1/k, which yields that D(µx, ν) < ε. �

Proof of Theorem 2. Using Theorem 1 and the results of [8] we can choose a map
f ∈ Cλ(I) that is leo, ergodic and Per(f, k) ∩ U contains a Cantor set for each
k and any open set U such that U ∩ Per(f, k) 6= ∅. By result of Blokh, every
topologically mixing interval map has the periodic specification property [6] (see
also [8], Corollary 10). By a well known result of Sigmund [35, 36], so called CO-
measures, i.e., ergodic measures supported on periodic orbits, are dense in the space
of invariant probability measures for maps with periodic specification property. In
our context it means that Lebesgue measure can be approximated arbitrarily well
by a CO-measure supported on a periodic orbit. As a consequence, Lemma 15
implies that there exists a sequence µk of non-atomic measures supported on a
subset of Per(f) such that limk→∞D(µk, λ) = 0.

Let us fix any ε > 0 and without loss of generality assume that D(µk, λ) < ε for
every k.

Consider the measure

ν :=

∞∑
k=1

1

2k
· µk.

By definition ν is an f -invariant Borel probability measure, so f preserves both
measures λ and ν. As a combination of non-atomic measures, ν is non-atomic, and
since limk→∞D(µk, λ) = 0, ν has full support, i.e., supp ν = I.

We define a map h : I → I by h(x) := ν([0, x]), since ν has full support and is
non-atomic, the map h is a homeomorphism. Note that by the definition of the
metric D we have

ν([0, x]) ≤ λ([0, x+ ε]) + ε = x+ 2ε

and
x− ε = λ([0, x− ε]) ≤ ν([0, x]) + ε

hence |x− h(x)| < 2ε.
For each Borel set A in I we can equivalently write

(3.4) λ(h(A)) = ν(A) or λ(A) = ν(h−1(A)).

We claim that g := h ◦ f ◦ h−1 ∈ Cλ(I). Using (3.4) for any Borel set A in I we
have

λ(A) = ν(h−1(A)) = ν(f−1(h−1(A))) = λ(h(f−1(h−1(A)))) = λ(g−1(A)).

Moreover, the maps g and f are topologically conjugated, so the map g is also leo
and h(Per(f)) = Per(g). But by (3.4) again

λ(Per(g)) = λ(h(Per(f))) = ν(Per(f)) =

∞∑
k=1

1

2k
· µk(Per(f)) = 1.

In the above construction, we may take ε arbitrarily small, therefore g can be
arbitrarily small perturbation of f .
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Now assume that we are given a leo map f ∈ Cλ(I) for which λ(Per(f)) = 1.
Consider the measure

η :=

∞∑
k=1

1

2k
· ηk,

where each ηk is obtained by application of Lemma 15 to a point x ∈ Per(f, k).
Then η is non-atomic and η(Per(f, k)) > 0 for every k.

We repeat the above proof (construction of map g) using measures νεi := εi ·η+
(1− εi) · λ where the sequence 0 < εi < 1 decreases to 0. The resulting maps {gεi}
satisfy ρ(gεi , f)→ 0, thus completing the proof. �

3.1. Periodic points for generic circle maps. Let Cλ,d(S1) denote the set of
degree d maps in Cλ(S1). The proof of Theorem 1 immediately shows:

Theorem 16. Theorem 1 holds for generic maps in Cλ,d(S1) for each d ∈ Z \ {1}.

For Cλ,1(S1) the situation is more complicated, consider the open set

Cp := {f ∈ Cλ,1(S1) : f has a transverse periodic point of period p}.

In this setting the proof of Theorem 1 yields a similar result,

Theorem 17. For any f in a dense Gδ subset of Cp we have that for each k ∈ N
(1) the set Fix(f, kp) is a Cantor set,
(2) the set Per(f, kp) is a relatively open dense subset of Fix(f, kp),
(3) the set Fix(f, kp) has Hausdorff dimension and lower box dimension zero.

In particular, Per(f, kp) has Hausdorff dimension and lower box dimension
zero. As a consequence, the Hausdorff dimension of Per(f) is also zero.

(4) the set Per(f, kp) has upper box dimension one. Therefore, Fix(f, kp) and
Per(f) have upper box dimension one as well.

Remark 18. As in the interval case, the proof of the previous two results can easily
be adapted to show that the generic degree d map in C(S1) has the same properties,
again this does not seem to be known in our setting.

To interpret this result we investigate the set C∞ := Cλ,1(S1) \ ∪p≥1Cp. As we
already saw in the proof of Theorem 1, a periodic point can be transformed to a
transverse periodic point by an arbitrarily small perturbation of the map, thus the
set C∞ consists of maps without periodic points. Using the same argument we
see that ∪p≥1Cp contains an open dense set. Therefore, C∞ is nowhere dense in
Cλ,1(S1).

Proposition 19. The set C∞ consists of irrational circle rotations.

Proof. Clearly C∞ contains all irrational circle rotations. Each rational rotation is
in Cp for some p ∈ N.

We claim that any f ∈ C∞ must be invertible. For each point z denote by
Jz the largest interval containing z such that fn(z) 6∈ Jz for all n > 0. Suppose
that f(x) = f(y) for some x 6= y. By definition each f ∈ C∞ does not have
periodic point, so by [2, Theorem 1] we obtain that Jx = Jy, in particular both are
nondegenerate intervals. By the same result intervals fn(Jx) are pairwise disjoint
for all n ≥ 0. The Poincaré recurrence theorem states that almost every point
is recurrent, which is a contradiction since interior of Jx consists of non-recurrent
points. Indeed f is invertible, and so all elements of C∞ are homeomorphisms.

But each homeomorphism in C∞ preserves Lebesgue measure by definition, thus
it is an isometry. This means that elements of C∞ are rotations, and so they are
irrational rotations by the previous discussion. �
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4. Shadowing is generic for Lebesgue measure-preserving interval
and circle maps

First we recall the definition of shadowing and its related extensions that we
will work with in the rest of the paper. For δ > 0, a sequence (xn)n∈N0

⊂ I is
called a δ-pseudo orbit of f ∈ C(I) if d(f(xn), xn+1) < δ for every n ∈ N0. A
periodic δ-pseudo orbit is a δ-pseudo orbit for which there exists N ∈ N0 such that
xn+N = xn, for all n ∈ N0. We say that the sequence (xn)n∈N0

is an asymptotic
pseudo orbit if limn→∞ d(f(xn), xn+1) = 0. If a sequence (xn)n∈N0

is a δ-pseudo
orbit and an asymptotic pseudo orbit then we simply say that it is an asymptotic
δ-pseudo orbit.

Definition 20. We say that a map f ∈ C(I) has the:

• shadowing property if for every ε > 0 there exists δ > 0 satisfying the
following condition: given a δ-pseudo orbit y := (yn)n∈N0

we can find a
corresponding point x ∈ I which ε-traces y, i.e.,

d(fn(x), yn) < ε for every n ∈ N0.

• periodic shadowing property if for every ε > 0 there exists δ > 0 satisfying
the following condition: given a periodic δ-pseudo orbit y := (yn)n∈N0 we
can find a corresponding periodic point x ∈ I, which ε-traces y.

• limit shadowing if for every sequence (xn)n∈N0
⊂ I so that

d(f(xn), xn+1)→ 0 when n→∞
there exists p ∈ I such that

d(fn(p), xn)→ 0 as n→∞.
• s-limit shadowing if for every ε > 0 there exists δ > 0 so that

(1) for every δ-pseudo orbit y := (yn)n∈N0 we can find a corresponding
point x ∈ I which ε-traces y,

(2) for every asymptotic δ-pseudo orbit y := (yn)n∈N0
of f , there is x ∈ I

which ε-traces y and

lim
n→∞

d(yn, f
n(x)) = 0.

The notions of shadowing and periodic shadowing are classical but let us com-
ment less classical notions of limit and s-limit shadowing. While limit shadowing
seems completely different than shadowing, it was proved in [23] that transitive
maps with limit shadowing also have the shadowing property. In general it can
happen that for an asymptotic pseudo orbit which is also a δ-pseudo orbit, the
point which ε-traces it and the point which traces it in the limit are different [4].
This shows that possessing a common point for such a tracing is a stronger prop-
erty than the shadowing and limit shadowing properties together and this property
introduced in [24] is called the s-limit shadowing.

Observation 21. S-limit shadowing implies both classical and limit shadowing.

4.1. Proof of genericity of shadowing. The main step in the proof of genericity
of the shadowing property in the context of maps from Cλ(I) is the following lemma.

Lemma 22. For every ε > 0 and every map f ∈ Cλ(I) there are δ < ε
2 and

F ∈ Cλ(I) such that:

(1) F is piecewise affine and ρ(f, F ) < ε
2 ,

(2) if g ∈ Cλ(I) and ρ(F, g) < δ then every δ-pseudo orbit x := {xi}∞i=0 for
g is ε-traced by a point z ∈ I. Furthermore, if x is a periodic sequence of
period n, then z can be chosen to be a periodic point of period at most n.
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Proof. Step 1. Partition. First, let 0 < γ < ε/2 be such that, if |a− b| < γ then
|f(a)− f(b)| < ε/2.

Let us assume that f is piecewise affine with the absolute value of the slope at
least 4 on every piece of monotonicity. Indeed, we can assume that f is piecewise
affine due to Proposition 8 from [8]. Furthermore, we can also assume that the
absolute value of the slope of f is at least 4 on every piece of monotonicity by
using regular window perturbations from Definition 8 and thus we can approximate
arbitrarily well any piecewise affine map from Cλ(I) by a piecewise affine map from
Cλ(I) having absolute value of the slope at least 4 on every piece of monotonicity.
We set γ to be smaller than the length of the shortest piece of monotonicity of
f . Since f preserves the Lebesgue measure it must have non-zero slope on every
interval of monotonicity. Thus we can assume we have a partition P := {[ai, ai+1] :
i ∈ {0, . . . n+ 1}} where 0 = a0 < a1 < . . . < an < an+1 = 1 such that:

(i) γ/2 ≤ ai+1 − ai ≤ γ for i = 0, . . . , n,
(ii) if f(ai) 6∈ {0, 1} then f(ai) 6= aj for every j.
(iii) if f(ai) 6∈ {0, 1} then ai 6∈ f(Crit(f)).

Thus diam f([ai, ai+1]) ≥ γ and so f([ai, ai+1]) intersects interiors of at least two
consecutive intervals of the partition.
Step 2. Perturbation. By the definition of the partition, there is δ > 0 such
that for each j = 0, . . . , n we have

(4.1) {i : f([aj , aj+1])∩ (ai, ai+1) 6= ∅} = {i : B(f([aj , aj+1]), 3δ)∩ (ai, ai+1) 6= ∅}.

Using (i) and the fact that the slope of f is at least 4 combined with assuming that
δ is sufficiently small we may require that if f([aj , aj+1]) ∩ [ai, ai+1] 6= ∅ then

(4.2) f([aj , aj+1]) ⊃ [ai, ai + 2δ] or f([aj , aj+1]) ⊃ [ai+1 − 2δ, ai+1].

Now, repeating the construction behind Proposition 8 of [8] we construct a map
F by replacing each f |[ai, ai+1] by its regular m-fold window perturbation (see
Definition 8 and Figure 1), with odd m large enough to satisfy 1/m < δ. This way
F is still piecewise affine and its minimal slope is larger than the maximal slope of
f and such that

(4.3) F ([ai, ai + δ]) = F ([ai+1 − δ, ai+1]) = F ([ai, ai+1]) = f([ai, ai+1]).

Since Cλ(I) is invariant under window perturbations we conclude F ∈ Cλ(I).
Step 3. ε-shadowing. For any x ∈ I and any J ⊂ I in what follows denote
dist(x, J) := inf{d(x, y) : y ∈ J}. Also, for an interval J ⊂ I let diam(J) :=
sup{d(x, y) : x, y ∈ J}. Take any g ∈ Cλ(I) such that ρ(F, g) < δ and let x :=
{xi}∞i=0 be a δ-pseudo orbit for g. We claim that there is a sequence of closed
intervals Ji such that

(1) diam Ji ≤ γ and if i > 0 then Ji ⊂ g(Ji−1),
(2) dist(xi, Ji) < γ,
(3) for every i there is p such that F (Ji) = F ([ap, ap+1]) and xi ∈ [ap, ap+1].

Take p ≥ 0 such that [ap, ap+1] 3 x0 and put J0 = [ap, ap+1]. Then conditions
(1)–(3) are satisfied for i = 0.

Next assume that for i = 0, . . . ,m there are intervals Ji such that conditions (1)–
(3) are satisfied. We will show how to construct Jm+1. Denote F (Jm) =: [a, b]. By
(3) and the definition of F , namely (4.2) and (4.3), there are nonnegative integers

î, ĵ, ĵ − î ≥ 2 such that

(4.4) [aî+1 − 2δ, aĵ−1 + 2δ] ⊂ [a, b] ⊂ [aî, aĵ ].

Furthermore, if aî 6= 0 then a > aî + 2δ and if bĵ < 1 then b < aĵ − 2δ. From

this it follows that B([a, b], 2δ) ⊂ [aî, aĵ ]. To see this, note that [a, b] = F (Jm) =
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f([ap, ap+1]) and so b−a ≥ γ. So there is i such that [ai, ai+2δ] ⊂ [a, b] (or symmet-
rically [ai − 2δ, ai] ⊂ [a, b]). Now condition (4.1) implies that [a, b] ∩ (ai−1, ai) 6= ∅
and therefore, by the choice of δ, we get [ai − 2δ, ai] ⊂ [a, b]. This way we have

candidates for î, ĵ which could be i− 1 and i+ 1. But clearly it may happen that
[a, b] \ [ai−1, ai+1] 6= ∅. Then we decrease or increase these indices, to find the
smallest possible interval such that [a, b] ⊂ [aî, aĵ ] and then (4.4) follows.

Since ρ(F, g) < δ it holds

(4.5) [aî+1 − δ, aĵ−1 + δ] ⊂ g(Jm) ⊂ [aî, aĵ ]

and

g(xm) ∈ B(F (xm), δ) ⊂ B([a, b], δ)

and therefore

xm+1 ∈ B([a, b], 2δ) ⊂ [aî, aĵ ].

Then there is î ≤ q < ĵ such that xm+1 ∈ [aq, aq+1] and if we put L := [aq, aq + δ]
and R := [aq+1 − δ, aq+1] then by (4.5) it follows L ⊂ g(Jm) or R ⊂ g(Jm). Now,
we put Jm+1 = L or Jm+1 = R depending on the situation, obtaining that Jm+1 ⊂
g(Jm). Additionally, dist(xm+1, Jm+1) < γ since both L and R are contained in
[aq, aq+1] and by the definition of F it follows from (4.3) that

F (Jm+1) = F (L) = F (R) = F ([aq, aq+1]).

This finishes the inductive construction.
Observe that if x is periodic of period n then by (3) Jn satisfies F (Jn) =

F ([ap, ap+1]) and x0 = xn ∈ [ap, ap+1] so F (Jn) = F (J0) by the definition. There-

fore, the choice of î, ĵ in the construction for J1 and Jn+1 is the same, and since

the choice of J1, Jn+1 is determined only by î, ĵ, we obtain J1 = Jn+1. Thus, re-
placing J0 by Jn will give a periodic sequence. In other words, we may require that
Jjn+k = Jk for each j, k ≥ 0 in the case of periodic x of period n.

By (1) there is a point z ∈ I such that z ∈
⋂∞
i=0 g

−i(Ji). Then gi(z) ∈ Ji for
every i ≥ 0 and so by (1) and (2) we obtain that

d(gi(z), xi) ≤ diam Ji + dist(xi, Ji) < 2γ < ε.

We have just proved that the pseudo orbit x is ε-traced by the point z.
To finish the proof, let us assume that x is additionally periodic. Since the

sequence Ji is periodic of period n, covering relation implies that we may select z
being a periodic point of period at most n. �

Proof of Theorem 3. Fix {εn}n∈N, where εn > 0 and εn → 0 as n → ∞. Let us
also fix a dense collection of maps {fk}k∈N ⊂ Cλ(I). Define the set

An := {f ∈ Cλ(I) : ∃δ > 0 so that every δ-pseudo orbit is εn-traced}.
Let us fix k, n ∈ N. By Lemma 22 it holds that for every f ∈ Cλ(I) and for all
integers s > 1/εn there exist Fk,s ∈ Cλ(I) and ξk,s > 0 so that ρ(Fk,s, fk) < 1/s
and B(Fk,s, ξk,s) ⊂ An. Define

Qn :=
⋃
s> 1

εn

∞⋃
k=1

B(Fk,s, ξk,s) ⊂ An.

Observe that since fk is in the closure of Qn for all k ∈ N it follows that Qn is
dense in Cλ(I). Also B(Fk,s, ξk,s) is an open set and thus Qn is open in Cλ(I) as
well. Now, taking the intersection of the collection {Qn}n∈N we thus get a dense
Gδ set Q ⊂ Cλ(I). Clearly, if f ∈ Q then for every ε > 0 there is δ > 0 so that
every δ-pseudo orbit is ε-traced by some trajectory of f and if δ-pseudo orbit is
periodic then such trajectory of f can be required to be periodic as well. �
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4.2. S-limit shadowing for Lebesgue measure-preserving interval and cir-
cle maps. In this subsection we address the level of occurrence of the strongest
of the above presented notions related with shadowing. Let us note that in the
context of Lebesgue measure-preserving circle maps we proved that s-limit shad-
owing is generic [9]. In the context of Cλ(I), however, the methods used in [9] do
not apply and Proposition 23 is the best we are able to prove about the s-limit
shadowing (see the final section in [9] for an extended discussion on this topic).

Let us put LSλ(I) := {f ∈ Cλ(I) : f has the s-limit shadowing property}.

Proposition 23. The set LSλ(I) is dense in Cλ(I).

Proof. Choose ε > 0. Let g0 ∈ PAλ(leo)(I). We will show how to perturb g0 to
obtain a map g ∈ Cλ(I) close to g0 - it will be specified later - which has the limit
shadowing property. We will proceed analogously as in the proof of Lemma 22.
In that proof for a given ε > 0 a perturbation of f defining F assumes a special
finite partition P and related positive parameters γ, δ,m. We will call the whole
procedure (such a map F ) (ε,P, γ, δ,m)-perturbation of f .

Fix a decreasing sequence (εn)n≥1 of positive numbers such that

(4.6)

∞∑
n=1

εn < ε

Step 1. We put f = g0 and consider

F = g1 as (ε1,P1, γ1, δ1,m1)− perturbation of f.

We assume that g0|P 1
i is monotone for each P 1

i ∈ P1. From Lemma 22 (1) it follows
that ρ(g0, g1) < ε1/2 and Lemma 22 (2) implies that for each g ∈ B(g1, δ1) (hence
also for g1 itself) every δ1-pseudo orbit is ε1-traced. In addition we can require
δ1 < ε/2.
Step 2. We put f = g1 and consider

F = g2 as (ε2,P2, γ2, δ2,m2)− perturbation of f.

We assume that g1|P 2
i is monotone for each P 2

i ∈ P2. Moreover, we choose P2 to
be a refinement of P1, i.e., each element of P1 is a union of some elements of P2.
We consider γ2 and δ2 so small that

B(g1, δ1) ⊃ B(g2, δ2);

Lemma 22 implies that for each g ∈ B(g2, δ2) (hence also for g2 itself) every δ2-
pseudo orbit is ε2-traced.
Step n. We put f = gn−1 and consider

F = gn as (εn,Pn, γn, δn,mn})− perturbation of f.

We assume that gn−1|Pni is monotone for each Pni ∈ Pn and choose Pn to be a
refinement of Pn−1. We consider γn and δn so small that

(4.7) B(gn−1, δn−1) ⊃ B(gn, δn);

Lemma 22(2) implies that for each g ∈ B(gn, δn) (hence also for gn itself) every
δn-pseudo orbit is εn-traced.

The proof of Lemma 22 shows that for a fixed map g ∈ B(gn, δn), for every
δn-pseudo orbit (xi)i≥0, if xi ∈ [anq(i), a

n
q(i)+1] ∈ Pn for each i ≥ 0, there exists a

sequence of intervals

(4.8) Jni ∈ {[anq(i), a
n
q(i) + δn], [anq(i)+1 − δn, a

n
q(i)+1]}

such that

(4.9) g(Jni−1) ⊃ Jni
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and a point z ∈
⋂∞
i=0 g

−i(Jni ) satisfies

(4.10) |gi(z)− xi| < εn

for each i ≥ 0.
By our construction, the convergence of the sequence (gn)n≥0 is uniform in Cλ(I)

hence limn→∞ gn = G ∈ Cλ(I). Moreover, since by (4.7),

G ∈
⋂
n

B(gn, δn),

and by the previous the map G has the shadowing property, i.e., for every ε > 0
there is δ > 0 such that every δ-pseudo orbit is ε-traced.

Let us show that the map G has the s-limit shadowing property. Due to the
definition of s-limit shadowing let us assume that a sequence (xi)i≥0 is satisfying

|G(xi)− xi+1| → 0, i→∞.

Obviously there is an increasing sequence (`(n))n≥1 of nonnegative integers (w.l.o.g.
we assume that `(1) = 0, i.e., (xi)i≥0 is an asymptotic δ1-pseudo orbit) such that

|G(xi)− xi+1| < δn, i ≥ `(n),

i.e., each sequence (xi)i≥`(n) is a δn-pseudo orbit. Now we repeatedly use the
procedure describe after the equation (4.7) and containing the equations (4.8)-
(4.10). By that procedure, for each n ∈ N we can find sequences (Jni )i≥`(n) (to
simplify our notation on the nth level we index Jni from `(n)) such that for each

(4.11) z ∈
∞⋂

i=`(n)

G−i(Jni ) G`(n)(z) εn − traces (xi)i≥`(n) for G.

But by (4.3) and (4.1) of Step 3 in the proof of Lemma 22, we have G(Jni ) = gn(Jni )
for each n and i and the sequence (Pn)n≥1 is nested, so by (4.1) of Step 3 in the
proof of Lemma 22, (4.8) and (4.9) for each n we get

(4.12) G(Jn`(n+1)−1) ⊃ Jn+1
`(n+1).

If we define a new sequence (Ki)i≥0 of subintervals of I by

Ki = Jni , `(n) ≤ i ≤ `(n+ 1)− 1,

then by (4.12) the intersection

K =

∞⋂
i=0

G−i(Ki)

is nonempty. It follows from (4.11) and (4.6) that for each z ∈ K, |Gi(z)−xi| → 0,
i →∞. If asymptotic pseudo orbit was δ-pseudo orbit at start, then the choice of
intervals J1

i in the first step ensures ε-tracing.
In order to finish the proof let us recall that we have chosen ε1 < ε and δ1 < ε/2

hence

ρ(g0, G) < ρ(g0, g1) + ρ(g1, G) < ε/2 + ε/2 = ε.

Since the set PAλ(leo)(I) is dense in Cλ(I), the conclusion of our theorem follows.
�
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