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PERIODIC POINTS AND SHADOWING PROPERTY FOR

GENERIC LEBESGUE MEASURE PRESERVING INTERVAL

MAPS

JOZEF BOBOK, JERNEJ ČINČ, PIOTR OPROCHA, AND SERGE TROUBETZKOY

Abstract. We show that for the generic continuous maps of the interval and
circle which preserve the Lebesgue measure it holds for each k ≥ 1 that the set
of periodic points of period k is a Cantor set of Hausdorff dimension zero and of
upper box dimension one. Furthermore, building on this result, we show that
there is a dense collection of transitive Lebesgue measure preserving interval
maps whose periodic points have full Lebesgue measure and whose periodic
points of period k have positive measure for each k ≥ 1. Finally, we show
that the generic continuous maps of the interval which preserve the Lebesgue
measure satisfy the shadowing and periodic shadowing property.

1. Introduction

In what follows let a residual set be a dense Gδ set and we call a property
generic if it is satisfied on at least a residual set of the underlying space. The
roots of studying generic properties in dynamical systems can be derived from the
article by Oxtoby and Ulam from 1941 [25] in which they showed that for a finite-
dimensional compact manifold with a non-atomic measure which is positive on open
sets, the set of ergodic measure-preserving homeomorphisms is generic in the strong
topology. Subsequently, Halmos in 1944 [14],[15] introduced approximation tech-
niques to a purely metric situation: the study of interval maps which are invertible
almost everywhere and preserve the Lebesgue measure and showed that the generic
invertible map is weakly mixing, i.e., has continuous spectrum. Then, Rohlin in
1948 [30] showed that the set of (strongly) mixing measure preserving invertible
maps is of the first category. Two decades later, Katok and Stepin in 1967 [17]
introduced the notation of a speed of approximations. One of the notable appli-
cations of their method is the genericity of ergodicity and weak mixing for certain
classes of interval exchange transformations. One of the most outstanding result
using approximation theory is the Kerckhoff, Masur, Smillie result on the existence
of polygons for which the billiard flow is ergodic [18], as well as its quantitative ver-
sion by Vorobets [35]. Many more details on the history of approximation theory
can be found in the surveys [5], [11], [34].

In what follows we denote I := [0, 1], S1 the unit circle and λ the Lebesgue
measure on an underlying manifold. Our present study focuses on topological
properties of generic non-invertible maps on the interval resp. circle preserving the
Lebesgue measure Cλ(I), resp. Cλ(S

1). For the rest of the paper we equip the two
spaces with the uniform metric, which makes the spaces complete. The study of
generic properties on Cλ(I) was initiated in [7] and continued recently in [8]. It is
well known that every such map has a dense set of periodic points (see for example
[8]). Furthermore, except for the two exceptional maps id and 1−id, every such map
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has positive metric entropy. Recently, basic topological and measure-theoretical
properties of generic maps from Cλ(I) were studied in [8]. We say that an interval
map f is locally eventually onto (leo) if for every open interval J ⊂ I there exists a
non-negative integer n so that fn(J) = I. This property is also sometimes referred
in the literature as topological exactness. The Cλ(I)-generic function

(a) is weakly mixing with respect to λ [8, Th. 15],
(b) is leo [8, Th. 9],
(c) satisfies the periodic specification property [8, Cor. 10],
(d) has a knot point at λ almost every point [7],
(e) maps a set of Lebesgue measure zero onto [0, 1] [8, Cor. 22],
(f) has infinite topological entropy [8, Prop. 26],
(g) has Hausdorff dimension = lower Box dimension = 1 < upper Box dimension

= 2 [31].

It was furthermore shown that the set of mixing maps in Cλ(I) is dense [8, Cor.
14] and in analogy to Rohlin’s result [30] that this set is of the first category [8,
Th. 20].

In this paper we delve deeper in the study of properties of generic Lebesgue mea-
sure preserving maps on manifolds of dimension 1. Our choice of Cλ(I) for further
investigation is that they are one-dimensional versions of volume-preserving maps,
or more broadly, conservative dynamical systems. On the other hand, they repre-
sent variety of possible one-dimensional dynamics as highlighted in the following.

Remark. Let f be an interval map. The following conditions are equivalent.

(i) f has a dense set of periodic points, i.e., Per(f) = I.
(ii) f preserves a nonatomic probability measure µ with supp µ = I.
(iii) There exists a homeomorphism h of I such that h ◦ f ◦ h−1 ∈ Cλ(I).

To see the above equivalence it is enough to combine a few facts from the liter-
ature. The starting point is [3], where the dynamics of interval maps with dense
set of periodic points had been described; while this article is purely topological it
easily implies that such maps must have non-atomic invariant measures with full
support. The Poincaré Recurrence Theorem and the fact that in dynamical system
given by an interval map the closures of recurrent points and periodic points coin-
cide [10] provides connection between maps preserving a probability measure with
full support and dense set of periodic points. Finally, for µ a non-atomic proba-
bility measure with full support the map h : I → I defined as h(x) = µ([0, x]) is a
homeomorphism of I; moreover, if f preserves µ then h ◦ f ◦ h−1 ∈ Cλ(I) (see the
proof of Theorem 2 for more detail on this construction). Therefore, the topological
properties that are proven in [8] and later in this paper are generic also for interval
maps preserving measure µ.

A basic tool to understand the dynamics of interval maps is to understand the
structure, dimension and Lebesgue measure of the set of its periodic points. For
what follows let f ∈ Cλ(I). Since generic maps from Cλ(I) are weakly mixing
with respect to λ it holds that the Lebesgue measure on the periodic points is 0.
However, it is still natural to ask:

Question A. What is the cardinality, structure and dimension of periodic points
for generic maps in Cλ(I)?

Akin et. al. proved in [1, Theorems 9.1 and 9.2(a)] that the set of periodic
points of generic homeomorphisms of S1 is a Cantor set. In an unpublished sketch,
Guihéneuf showed that the set of periodic points of a generic volume preserving
homeomorphism f of a manifold of dimension at least two (or more generally pre-
serving a good measure in the sense of Oxtoby and Ulam [25]) is a dense set of
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measure zero and for any ℓ ≥ 1 the set of fixed points of f ℓ is either empty or a
perfect set [12]. On the other hand, Carvalho et. al. have shown that the upper
box dimension of the set of periodic points is full for generic homeomorphisms on
compact manifolds of dimension at least one [9]1.

In the above context we provide the general answer about the cardinality and
structure of periodic points of period k for f (denoted by Per(f, k)), of fixed points
of fk (denoted by Fix(f, k)) and of the union of all periodic points of f (denoted by
Per(f)) and its respective lower box, upper box and Hausdorff dimensions. Namely,
we prove:

Theorem 1. For a generic map f ∈ Cλ(I), for each k ≥ 1:

(1) the set Fix(f, k) is a Cantor set,
(2) the set Per(f, k) is a Cantor set,
(3) the set Fix(f, k) has Hausdorff dimension and lower box dimension zero.

In particular, Per(f, k) has Hausdorff dimension and lower box dimension
zero.

(4) the set Per(f, k) has upper box dimension one. Therefore, Fix(f, k) has
upper box dimension one as well.

(5) the Hausdorff dimension of Per(f) is zero.

The proof of the above theorem works also for the generic continuous maps
which by our knowledge is not known in the literature yet. Furthermore, we can
also address the setting of Cλ(S

1), however, due to the presence of rotations, we
need to treat degree 1 maps separately (for the related statement of the degree one
case we refer the reader to Theorem 13).

Related to the study above, there is an interesting question about the possible
Lebesgue measure on the set of periodic points for maps from Cλ(I).

Question B. Does there exist a transitive (or even leo) map in Cλ(I) with positive
Lebesgue measure on the set of periodic points?

As mentioned already above, generic maps from Cλ(I) will have Lebesgue mea-
sure 0 since λ is weakly mixing. Therefore, the previous question asks about the
complement of generic maps from Cλ(I) and requires on the first glance contra-
dicting properties. The discrepancy between topological and measure theoretical
aspect of dynamical systems again comes to display and we obtain the following
result. We answer Question B and even prove a stronger statement.

Theorem 2. The set of leo maps in Cλ(I) whose periodic points have full Lebesgue
measure and whose periodic points of period k have positive measure for each k ≥ 1
is dense in Cλ(I).

Another motivation for the study in this paper was the following natural ques-
tion.

Question C. Is shadowing property generic in Cλ(I)?

Shadowing is a classical notion in topological dynamics and it serves as a tool to
determine whether any hypothetical orbit is actually close to some real orbit of a
topological dynamical system; this is of great importance in systems with sensitive
dependence on initial conditions, where small errors may potentially result in a
large divergence of orbits. Pilyugin and Plamenevskaya introduced in [28] a nice
technique to prove that shadowing is generic for homeomorphisms on any smooth
compact manifold without a boundary. This led to several subsequent results that
shadowing is generic in topology of uniform convergence, also in dimension one (see

1this statement only appears in the published version of [9].
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[24, 19] for recent results of this type). On the other hand, there are many cases
known, when shadowing is not present in an open set in C1 topology (see survey
paper by Pilyugin [27] and [26, 29] for the general overview on the recent progress
related with shadowing).

For continuous maps on manifolds of dimension one, Mizera proved that shad-
owing is indeed a generic property [23]. In the context of volume preserving homeo-
morphisms on manifolds of dimension at least two (with or without boundary), the
question above was solved recently in the affirmative by Guihéneuf and Lefeuvre
[13].

Our last main theorem provides the affirmative answer on Question C.

Theorem 3. Shadowing and periodic shadowing are generic properties for maps
from Cλ(I).

Let us briefly describe the structure of the paper. In Preliminaries we give general
definitions that we will need in the rest of the paper. In particular, our main tool
throughout the most of the paper will be controlled use of approximation techniques
which we introduce in the end of Section 2. In Section 3 we turn our attention to the
study of periodic points and prove Theorem 1. The proof relies on a precise control
of perturbations introduced in Section 2 which turns out to be particularly delicate.
With some additional work we consequently obtain Theorem 2. We conclude the
section with the study of periodic points for maps from Cλ(S

1) in Subsection 3.1.
In Section 4 we provide a proof of Theorem 3. Similarly as in [19] we use covering
relations, however the main obstacle is the preservation of Lebesgue measure which
makes obtaining such coverings a more challenging task. We conclude the paper
with Subsection 4.2 where we address a notion stronger than shadowing called the
s-limit shadowing (see Definition 16) in the contexts of Cλ(I). We prove that s-limit
shadowing is dense in the respective environments. The approach resembles the one
taken in [22], however due to our more restrictive setting our proof requires better
control of perturbations. This result, in particular, implies that limit shadowing is
dense in the respective environments as well.

2. Preliminaries

Let N := {1, 2, 3, . . .} and N0 := N∪{0}. Let λ denote the Lebesgue measure on
the unit interval I := [0, 1]. We denote by Cλ(I) ⊂ C(I) the family of all continuous
Lebesgue measure preserving functions of I being a proper subset of the family of
all continuous interval maps equipped with the uniform metric ρ:

ρ(f, g) := sup
x∈I

|f(x)− g(x)|.

A critical point of f is a point x ∈ I such that there exists no neighborhood
of x on which f is strictly monotone. Denote by Crit(f) the set of all critical
points of f . A point x is called periodic of period N , if there exists N ∈ N so
that fN (x) = x and we take the least such N . Let us denote by Ξ(f) the set of
points from I for which no neighborhood has a constant slope under f . Obviously,
Crit(f) ⊂ Ξ(f). Let PA(I) ⊂ C(I) denote the set of piecewise affine functions;
i.e., functions that are affine on every interval of monotonicity and have finitely
many points in the set Ξ(f). Let PAλ(I) ⊂ Cλ(I) denote the set of piecewise affine
functions that preserve Lebesgue measure and PAλ(leo)(I) ⊂ PAλ(I) such functions
that are additionally locally eventually onto (i.e., the image under sufficiently large
iterations of nonempty open sub-intervals cover I). For some ξ > 0 and h ∈ Cλ(I)
define

B(h, ξ) := {f ∈ Cλ(I) : ρ(f, h) < ξ}.
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By d(x, y) we denote the Euclidean distance on I between x, y ∈ I. For a set U ∈ I
and ξ > 0 we will also often use, by the abuse of notation,

B(U, ξ) := {x ∈ I : d(u, x) < ξ for some u ∈ U}.

2.1. Window perturbations in Lebesgue preserving setting. In this subsec-
tion we briefly discuss the setting of Lebesgue measure preserving interval maps
and introduce the techniques that we will apply in the rest of the paper. The proof
of the following proposition is standard and we leave it for the reader.

Proposition 4. (Cλ(I), ρ) is a complete metric space.

Definition 5. We say that continuous maps f, g : [a, b] ⊂ I → I are λ-equivalent
if for each Borel set A ∈ B,

λ(f−1(A)) = λ(g−1(A)).

For f ∈ Cλ(I) and [a, b] ⊂ I we denote by C(f ; [a, b]) the set of all continuous maps
λ-equivalent to f |[a, b]. We define

C∗(f ; [a, b]) := {h ∈ C(f ; [a, b]) : h(a) = f(a), h(b) = f(b)}.

The following definition is illustrated by Figure 1.

Definition 6. Let f be from Cλ(I) and [a, b] ⊂ I. For any fixed m ∈ N, let us
define the map h = h〈f ; [a, b],m〉 : [a, b] → I by (j ∈ {0, . . . ,m− 1}):

h(a+ x) :=







f
(

a+m
(

x− j(b−a)
m

))

if x ∈
[

j(b−a)
m , (j+1)(b−a)

m

]

, j even,

f
(

a+m
(

(j+1)(b−a)
m − x

))

if x ∈
[

j(b−a)
m , (j+1)(b−a)

m

]

, j odd.

Then h〈f ; [a, b],m〉 ∈ C(f ; [a, b]) for each m and h〈f ; [a, b],m〉 ∈ C∗(f ; [a, b]) for
each m odd.

f

a b

h

a b

Figure 1. For f ∈ Cλ(I) shown on the left, on the right we
show the the regular 3-fold window perturbation of f by h =
h〈f ; [a, b], 3〉 ∈ C∗(f ; [a, b]).

For more details on the perturbations from the previous definition we refer the
reader to [8].

Definition 7. For a fixed h ∈ C∗(f ; [a, b]), the map g = g〈f, h〉 ∈ Cλ(I) defined by

g(x) :=

{

f(x) if x /∈ [a, b],

h(x) if x ∈ [a, b]

will be called the window perturbation of f (by h on [a, b]). In particular, if h =
h〈f ; [a, b],m〉, m odd, (resp. h is piecewise affine), we will speak of regular m-fold
(resp. piecewise affine) window perturbation g of f (on [a, b]).
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3. Cardinality and dimension of periodic points for generic Lebesgue

measure preserving interval and circle maps

Since generic maps from Cλ(I) are weakly mixing (Theorem 15 from [8]) it follows
that the Lebesgue measure of the periodic points of generic maps from Cλ(I) is
0. The main result of this section is Theorem 1 which describes the structure,
cardinality and dimensions of this set.

Let
Fix(f, k) := {x : fk(x) = x}

Per(f, k) := {x : fk(x) = x and f i(x) 6= x for all 1 ≤ i < k}

k(x) := k for x ∈ Per(f, k)

and
Per(f) :=

⋃

k≥1

Per(f, k) =
⋃

k≥1

Fix(f, k).

Definition 8. A periodic point p ∈ Per(f, k) is called transverse if there exist three
adjacent intervals A = (a1, a2), B = [a2, c1], C = (c1, c2), with p ∈ B, B possibly
reduced to a point, such that (1) fk(x) = x for all x ∈ B and either (2.a) fk(x) > x
for all x ∈ A and fk(x) < x for all x ∈ C or (2.b) fk(x) < x for all x ∈ A and
fk(x) > x for all x ∈ C.

To prove Theorem 1 we will use the following lemma.

Lemma 9. For each k ≥ 1 there is a dense set {gi}i≥1 of maps in Cλ(I) such that
gi ∈ PAλ(I), Per(gi, k) 6= ∅, and for each i all points in Fix(gi, k) are transverse.

Proof. The set PAλ(I) is dense in Cλ(I) ([7], see also Proposition 8 in [8]). Each
f ∈ PAλ(I) (in fact each f ∈ Cλ(I)) has a fixed point, so using a 3-fold window
perturbation around the fixed point we can approximate f arbitrarily well by a
map f1 ∈ PAλ(I) with Per(f1, k) 6= ∅.

Fix f ∈ PAλ(I) with Per(f, k) 6= ∅. We claim that by an arbitrarily small
perturbation of f we can construct a map g ∈ PAλ(I) such that

(3.1) Per(g, k) 6= ∅ and all points in Fix(g, k) are transverse.

We do this in several steps. The first step is to perturb f to g in such a way that
the points 0 and 1 are not in Fix(g, k); we will treat only the point 0, the arguments
for the point 1 are analogous. If 0 is a fixed point we can make an arbitrarily small
window perturbation as in Figure 2 so that this is no longer the case.

0 aa
2

b

Figure 2. Small perturbations of a map f ∈ PAλ(I) near 0.

Now consider the case when f j(0) = 0, where j > 1 is the period of the point 0,
and j|k. We assume that a is so small that f i([0, a])∩[0, a] = ∅ for i = 1, 2, . . . , j−1
and choose a so that f j(a) 6= 0. Let g be the map resulting from a regular 2-fold
window perturbation of f on the interval [0, a] (see Figure 3). Thus g(0) = f(a) and
gj−1 = f j−1 on the interval [f(0), f(a)], and so gj(0) = gj−1 ◦ f(a) = f j(a) 6= 0.

Thus we can choose a dense set of f ∈ PAλ(I) with Per(f, k) 6= ∅, and Fix(f, k)∩
{0, 1} = ∅. Fix such a map f . We claim that by an arbitrarily small perturbation
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f(0)

g(0)

0
0

aa
2 f(0) g(0)=f(a)0

Figure 3. Left: small perturbations of a map f ∈ PAλ(I) near 0;
Right: gj−1 = f j−1 on [f(0), f(a)].

of f we can construct a g ∈ PAλ(I) with Per(g, k) 6= ∅ and Fix(g, k) ∩ {0, 1} = ∅
such that for every c ∈ Crit(g) we have gi(c) 6∈ Crit(g) for all 1 ≤ i ≤ k.

Suppose that for some c1, c2 ∈ Crit(f) we have an ℓ ≥ 1 such that f ℓ(c1) = c2
and f i(c1) 6∈ Crit(f) for 1 ≤ i ≤ ℓ − 1. We call this orbit a critical connection
of length ℓ. Choose c1, c2 with the minimal such ℓ, if there are several choices fix
one of them. We will perturb f to a map g for which this critical connection is
destroyed, so g has one less critical connection of length ℓ. Since there are finitely
many critical connections of a given length, a finite number of such perturbations
will remove all of them, and a countable sequence of perturbations will finish the
proof of the claim.

If c1 6= c2 it suffices to use a small window perturbation around c2 as in Figure
4; if the window perturbation is disjoint from the orbit segment f i(c1) for i ∈
{0, 1, . . . , ℓ− 1} then for the resulting map g we have gℓ(c1) = c2 < c̄2 and gi(c1) 6∈
Crit(g) = {c̄2} ∪ Crit(f) \ {c2} for i = 1, 2, . . . , ℓ − 1, thus we have destroyed the
critical connection. Let Q = {f i(c) : 0 ≤ i < ℓ and c ∈ Crit(f)} \ {c2}. Notice that
g(c̄2) = f(c2), thus taking the neighborhood for the perturbations sufficiently small
to be disjoint from Q guaranties that we did not create a new critical connections
of length ℓ or shorter.

c2 c̄2

Figure 4. Small perturbations of a map f ∈ PAλ(I).

Now consider the case c1 = c2. Suppose that c1 is a local minimum of f ; the
other cases are similar. If ℓ = 1 then we again move the peak using the window
perturbation as in Figure 4 to destroy the connection. If ℓ > 1 then by assumption
the map f ℓ−1 in a neighborhood U = (a, b) of the point f(c1) is strictly monotone.
Using a window perturbation around c1 as in Figure 5, yields a map g ∈ Cλ(I)
with Per(g, k) 6= ∅ such that

Crit(g) = {c̄1} ∪ Crit(f) \ {c1}.

The critical set Crit(f) is finite since f is piecewise affine. If this perturbation is

small enough to be disjoint from the set U := ∪ℓ−1
i=1f

i(U) then the resulting map
g|U = f |U, and so gℓ−1|U = f ℓ−1|U . Furthermore, if the perturbation is small
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c1 c̄1

a f(c1)
=g(c̄1)

b

Figure 5. Left: small perturbations of a map f ∈ PAλ(I); Right:
gℓ−1 = f ℓ−1.

enough so that g(c̄1) ∈ U then

gℓ−1 ◦ g(c̄1) = f ℓ−1 ◦ g(c̄1) = f ℓ−1 ◦ f(c1) = c1.

Moreover, we can choose the perturbation so small that these two points are arbi-
trarily close, i.e., gℓ(c̄1) ∈ (c1 − ε, c1), for any fixed ε > 0.

If ε is small enough then there are no critical points of f in the interval (c1−ε, c1).
Furthermore, since c̄1 > c1, then if the perturbation and ε are small enough it holds
that c̄1 is also not in this interval. This procedure possibly creates new critical
connections but of length at least ℓ+1; but inductive application of both cases will
eventually get rid of the critical connections of length at most k.

If we choose the interval of perturbation small enough then no new critical con-
nections of length at most k can be created, thus the proof of the claim is fin-
ished. �

Now we have prepared all the tools to give the proof of Theorem 1. In what
follows, by dimBox, dimBox and dimH we denote the lower box dimension, the upper
box dimension and the Hausdorff dimension of the underlying sets respectively.

Proof of Theorem 1. First note that 5) follows from 3) since

dimH(Per(f)) ≤ sup
k≥1

dimH(Fix(f, k)) ≤ sup
k≥1

dimBox(Fix(f, k)) = 0.

For the proofs of 1), 2), 3) and 4) we fix k ∈ N.
Thus we can choose a countable set {gi}i≥1 ⊂ PAλ(I), such that no gi has

slope ±1 on any interval, which is dense in Cλ(I) with each gi satisfying (3.1).
The advantage of such gi is that for each point in Fix(gi, k), there is at least one
corresponding periodic point in Fix(g, k) if the perturbed map g if is sufficiently
close to gi.

Consider the shortest length

γi := min{|c− c′| : c, c′ ∈ Crit(gi) ∪ {0, 1} and c 6= c′}

of the intervals of monotonicity of gi, note that γi > 0 since gi ∈ PAλ(I).
Since gi ∈ PAλ(I) do not have slope ±1 the set Fix(gi, k) is finite, suppose it

consists of ℓi disjoint orbits and the set Per(gi, k) consists of ℓ̄i ≤ ℓi distinct orbits.
In particular

(3.2) ℓi ≤ #Fix(gi, k) ≤ kℓi and Per(gi, k) = kℓ̄i.

Choosing one point from each of the orbits in Fix(gi, k) defines the set {xl,i : 1 ≤
l ≤ ℓi} ⊂ Fix(gi, k).

By the definition of gi, the minimal distance

ηi := min{|gmi (xl,i)− c| : 0 ≤ m ≤ k(xl,i)− 1, 1 ≤ l ≤ ℓi, c ∈ Crit(gi) ∪ {0, 1}}
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of the periodic orbits to the set Crit(gi) ∪ {0, 1} is strictly positive.
If k = ℓi = 1 let βi := 1, otherwise we consider the minimal distance

βi :=
1

2
min{|x− x′| : x 6= x′ ∈ Fix(gi, k)}.

Let τi be a positive real number such that the slope of every |(gki )
′(x)| < τi for

every point x where gki is differentiable.
The construction in the proof depends on integers ni ≥ 1 which will be defined in

the proof, for most of the estimates it suffices to have ni = 1, but for the upper box
dimension estimates we will need ni growing sufficiently quickly. We define a new
map hi ∈ PAλ(I) by applying a regular 2ni + 1-fold window perturbation of gi of
diameter ai ≤

1
2τi

min( 1
ikℓi

, ηi, γi, βi, (kℓi)
−i) around each of the points xl,i keeping

the map gi unchanged elsewhere, in particular it is unchanged around the other
points in Fix(gi, k). The perturbations are disjoint from one another (perturbation
around xl,i and xl′,i) by the definition of ai. The bound on ai guarantees that these
maps satisfy the following properties:

i) The collection {hi}i≥1 is dense in Cλ(I) (since the total perturbation size is
bounded by kℓiai → 0);

ii) Suppose xl,i ∈ Fix(gi, k).

a) The map h
k(xl,i)
i has exactly 2ni + 1 fixed points in the interval Il,i :=

[xl,i − ai, xl,i + ai],

b) The map hk
i has (2ni + 1)k/k(xl,i) fixed points in this interval.

c) The full branches of h
k/k(xl,i)
i have length ai/(2ni + 1)k/k(xl,i), thus each

subinterval of Il,i of length 2ai/(2ni + 1)k/k(xl,i) contains at least one full
branch and at most parts of three branches, and thus at least one fixed
point and at most 3 fixed point of hk

i .
iii) The total number Nl,i of fixed points of hk

i arising from the orbit of xl,i satisfies

Nl,i = (2ni + 1)k/k(xl,i)k(xl,i).

Summing over the points xl,i and using 1 ≤ k(xl,i) ≤ k yields

max((2ni + 1)ℓi, (2ni + 1)k) ≤ #Fix(hi, k) =

ℓi
∑

l=1

Nl,i ≤ (2ni + 1)kkℓi.

iv) If xl,i ∈ Per(gi, k) (i.e., k(xl,i) = k) then the Nl,i = (2ni + 1)k points are not
only in Fix(hi, k) but also in Per(hi, k); thus #Per(hi, k) ≥ (2ni + 1)kℓ̄i;

v) Any interval of length ai/(2ni + 1)k covers at most two points of Fix(hi, k)
(since hi restricted to an interval of length ai/(2ni+1) has at most one critical
point).

Consider δi > 0 and

G :=
⋂

j∈N

⋃

i≥j

B(hi, δi).

The set G is a dense Gδ set.
(1) We claim that if δi > 0 goes to zero sufficiently quickly then Fix(f, k) is a

Cantor set for each f ∈ G. The set Fix(hi, k) is finite, choose ζi so small that the
balls of radius ζi around distinct points of Fix(hi, k) are disjoint and such that ζi →
0. We can choose δi so small that if f ∈ B(hi, δi) then Fix(f, k) ⊂ B(Fix(hi, k), ζi);
in particular the set Fix(f, k) can not contain an interval whose length is longer
than 2ζi. Fix f ∈ G, thus f ∈ B(hij , δij ) for some subsequence ij . Since ζij → 0
Fix(f, k) can not contain an interval.

By its definition the set Fix(f, k) is closed. Consider the open cover of Fix(hi, k)
by pairwise disjoint intervals of length aij , by (ii) these intervals contain (2ni +

1)k/k(xl,i) fixed points for some k(xl,i). Fix these covering intervals and choose δi
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sufficiently small so that all fixed points of fk of any f ∈ B(hi, δi) are contained in
the covering intervals and so that there are at least Fix(hi, k) ≥ #(2ni + 1)ℓi such
points (iii). Thus there are no isolated points in Fix(f, k) since for any periodic
point of period k we can find another point from Fix(f, k) arbitrary close. This
completes the proof of (1).

To prove (2) we need to make some adjustments to the above argument. We
again fix f ∈ G, thus f ∈ B(hij , δij ) for some subsequence ij . For the same reasons
as before the set Per(f, k) is closed and can not contain any intervals. We consider
the same open cover as above and impose the same restrictions on δi as above.

We claim that if xl,j ∈ Fix(gi, k) then #Per(hi, k) ∩ Il,i > 1. If xl,i ∈ Per(gi, k)
has period k then the (2ni+1) fixed points of hi in the interval Il,i all have period k
and so the claim holds in this case. Suppose now xl,i ∈ Fix(gi, k) has period k(xl,i)
(a strict divisor of k), then the corresponding (2ni + 1) points in Fix(hi, k) ∩ Il,i

have period k(xl,i). If we consider the map h
k(xl,i)
i restricted to Il,i then it is a

(2ni + 1)-fold tent map, thus it has periodic orbits of all periods. In particular,

periodic points of h
k(xl,i)
i with period k/k(xl,i) belongs to the set Per(hi, k). The

number of such periodic points is strictly larger than 1, and the claim follows.
We additionally require that δi is sufficiently small so that for any f ∈ B(hi, δi)

not only are all the fixed points of fk contained in the covering intervals but also
that f restricted to the covering interval around xl,ij has at least 2 periodic points
of period k.

Thus there are no isolated points in Per(f, k) since for any periodic point of
period k we can find another point from Per(f, k) arbitrary close. This completes
the proof of (2).

(3) Since Per(f, k) ⊂ Fix(f, k) it suffices to prove the statement for Fix(f, k).
Remember that the number k ≥ 1 and the sequence ℓi are fixed. We claim that if
δi > 0 goes to zero sufficiently quickly then the lower box dimension of the Fix(f, k)
is zero for any f ∈ G.

To prove the claim fix f ∈ G, thus f ∈ B(hij , δij ) for some subsequence ij .
Consider the open cover of Fix(hij , k) by intervals of length aij guaranteed by (ii).
Fix these covering intervals and choose δij sufficiently small so that all points of
Fix(f, k) of any f ∈ B(hij , δij ) are contained in the covering intervals.

Let N(ε) denote the number of intervals of length ε > 0 needed to cover
Fix(hij , k). By the choice of δij , these intervals of length aij also cover Fix(f, k).
Equation (3.2) combined with (ii) implies that ℓij ≤ N(aij ) ≤ kℓij . Combining

this with the fact that aij ≤ (kℓij )
−ij yields

log(N(aij ))

log(1/aij )
≤

log(kℓij )

log(1/aij )
≤

1

ij

and thus the lower box dimension of Fix(f, k) defined as

lim inf
ε→0

log(N(ε))

log(1/ε)

is 0.
(4) We begin by calculating the upper box dimension of Fix(f, k). Here we

will need to choose the sequence ni growing sufficiently quickly. Instead of covering
Fix(hi, k) by intervals of length ai we cover it by intervals of length bi := 2ai/(2ni+
1)k. By (iic) each such interval covers at most three points of Fix(hi, k). Thus we
need at least (#Fix(hi, k))/3 such intervals to cover Fix(hi, k); so by (iii) we need at
least (2ni+1)k/3 such intervals to cover Fix(hi, k). Fix such a covering and choose
δi sufficiently small so that all periodic points of period k of any f ∈ B(hij , δij ) are
contained in the covering intervals.



PERIODIC POINTS AND SHADOWING PROPERTY FOR Cλ(I) 11

Thus

(3.3)
log(N(bij ))

log(1/bij )
≥

log((2ni + 1)k/3)

log(1/bij )
=

log((2ni + 1)k)− log(3)

log((2ni + 1)k)− log(2ai)
.

The sequence ai has been fixed above, if ni grows sufficiently quickly the last
term in (3.3) approaches one. We can not cover Fix(hi, k) by fewer intervals, and
thus we can not cover Fix(f, k) by fewer interval, thus it follows that the upper box
dimension of Fix(f, k) defined as

lim sup
ε→0

log(N(ε))

log(1/ε)

is 1.
(5) We modify the above proof to calculate the upper box dimension of Per(f, k)

for k ≥ 2. Instead of Fix(hi, k) we consider Per(hi, k). As before, an inter-
val of length bi covers at most three points of this set, thus we need at least
#(Per(hi, k))/3 such intervals to cover it. Let xl,i be a fixed point and Il,i the
associated interval, then

#(Per(hi, k)) ≥ #(Fix(hi, k) ∩ Il,i)−
∑

ℓ|k,1≤ℓ<k

#(Fix(hi, ℓ) ∩ Il,i)

= (2ni + 1)k −
∑

ℓ|k,1≤ℓ<k

(2ni + 1)ℓ

≥ (2ni + 1)k −

⌊k/2⌋
∑

ℓ=1

(2ni + 1)ℓ

= (2ni + 1)k −
(2ni + 1)1+⌊k/2⌋ − 1

2ni

= (2ni + 1)k ·

[

1−
1

2ni

(

1

(2ni + 1)k−1−⌊k/2⌋
+

1

(2ni + 1)k

)]

.

If we additionally suppose that ni ≥ 2 then for any k ≥ 2 we have

1−
1

2ni

(

1

(2ni + 1)k−1−⌊k/2⌋
+

1

(2ni + 1)k

)

≥ 1−
1

4

(

1

(2ni + 1)k−1−⌊k/2⌋
+

1

(2ni + 1)k

)

≥
3

4
.

Thus the estimate (3.3) becomes

log(N(bij ))

log(1/bij )
≥

log(34 (2ni + 1)k/3)

log(1/bij )

=
log((2ni + 1)k)− log(4)

log((2ni + 1)k)− log(2ai)

and the rest of the proof follows in a similar manner. �

Remark 10. The proof of Theorem 1 can easily be adapted to show that the generic
map in C(I) has the same properties, this does not seem to be known in our setting.
Related results have been proven for homeomorphisms on manifolds of dimension
at least two in [12] (unpublished sketch) and [9].

While positive Lebesgue measure of periodic points can not be realized for er-
godic maps, it turns out it can be visible in many leo Lebesgue measure preserving
maps. To this end let us first introduce some needed definitions.

Let Mf (I) be the space of invariant Borel probability measures on I equipped
with the Prohorov metric D defined by

D(µ, ν) = inf

{

ε :
µ(A) ≤ ν(B(A, ε)) + ε and ν(A) ≤ µ(B(A, ε)) + ε
for any Borel subset A ⊂ I

}
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for µ, ν ∈ Mf(I). The following (asymmetric) formula

D(µ, ν) = inf{ε : µ(A) ≤ ν(B(A, ε)) + ε for all Borel subsets A ⊂ I}

is equivalent to original definition, which means we need to check only one of the
inequalities. It is also well known, that the topology induced by D coincides with
the weak∗-topology for measures, in particular (Mf (I), D) is a compact metric space
(for more details on Prohorov metric and weak*-topology the reader is referred to
[16]).

Lemma 11. Assume that Per(f, k) is a Cantor set. Fix x ∈ Per(f, k) and ε > 0.
Let µx be the unique f -invariant Borel probability measure supported on the orbit of
x ∈ Per(f, k). Then there is a non-atomic measure ν supported on Per(f, k) such
that D(µx, ν) < ε.

Proof. There exists a Cantor set C ⊂ Per(f, k) such that x ∈ C and sets f i(C) are
pairwise disjoint with diam(f i(C)) < ε for i = 0, . . . , k−1. Let ν̂ be any non-atomic

probability measure on C and put ν = 1
k

∑k−1
i=0 ν̂ ◦f i. Clearly ν is f -invariant. Note

that ν(B(f i(x), ε)) ≥ ν(f i(C)) = 1/k, which yields that D(µx, ν) < ε. �

Proof of Theorem 2. Using Theorem 1 and the results of [8] we can choose a map
f ∈ Cλ(I) that is leo, ergodic and Per(f, k) is a Cantor set for each k. By result
of Blokh, every mixing interval map has the periodic specification property [6] (see
also [8], Corollary 10). By a well known result of Sigmund [32, 33], so called CO-
measures, i.e., ergodic measures supported on periodic orbits, are dense in the space
of invariant probability measures for maps with periodic specification property. In
our context it means that Lebesgue measure can be approximated arbitrarily well
by a CO-measure supported on a periodic orbit. As a consequence, Lemma 11
implies that there exists a sequence µk of non-atomic measures supported on a
subset of Per(f) such that limk→∞ D(µk, λ) = 0.

Let us fix any ε > 0 and without loss of generality assume that D(µk, λ) < ε for
every k.

Consider the measure

ν :=

∞
∑

k=1

1

2k
· µk.

By definition ν is an f -invariant Borel probability measure, so f preserves both
measures λ and ν. As a combination of non-atomic measures, ν is non-atomic, and
since limk→∞ D(µk, λ) = 0, ν has full support, i.e., supp ν = I.

We define a map h : I → I by h(x) := ν([0, x]), since ν has full support and is
non-atomic, the map h is a homeomorphism. Note that by the definition of the
metric D we have

ν([0, x]) ≤ λ([0, x + ε]) + ε = x+ 2ε

and

x− ε = λ([0, x− ε]) ≤ ν([0, x]) + ε

hence |x− h(x)| < 2ε.
For each Borel set A in I we can equivalently write

(3.4) λ(h(A)) = ν(A) or λ(A) = ν(h−1(A)).

We claim that g := h ◦ f ◦ h−1 ∈ Cλ(I). Using (3.4) for any Borel set A in I we
have

λ(A) = ν(h−1(A)) = ν(f−1(h−1(A))) = λ(h(f−1(h−1(A)))) = λ(g−1(A)).
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Moreover, the maps g and f are topologically conjugated, so the map g is also leo
and h(Per(f)) = Per(g). But by (3.4) again

λ(Per(g)) = λ(h(Per(f))) = ν(Per(f)) =

∞
∑

k=1

1

2k
· µk(Per(f)) = 1.

In the above construction, we may take ε arbitrarily small, therefore g can be
arbitrarily small perturbation of f .

Now assume that we are given a leo mao f ∈ Cλ(I) for which λ(Per(f)) = 1.
Consider the measure

η :=

∞
∑

k=1

1

2k
· ηk,

where each ηk is obtained by application of Lemma 11 to a point x ∈ Per(f, k).
Then η is no-natomic and η(Per(f, k)) > 0 for every k.

We repeat the above proof (construction of map g) using measures νεi := εi ·η+
(1− εi) · λ where the sequence 0 < εi < 1 decreases to 0. The resulting maps {gεi}
satisfy ρ(gεi , f) → 0, completing the proof. �

3.1. Periodic points for generic circle maps. Let Cλ,d(S
1) denote the set of

degree d maps in Cλ(S
1). The proof of Theorem 1 immediately shows:

Theorem 12. Theorem 1 holds for generic maps in Cλ,d(S
1) for each d ∈ Z \ {1}.

For Cλ,1(S
1) the situation is more complicated, consider the open set

Cp := {f ∈ Cλ,1(S
1) : f has a transverse periodic point of period p}.

In this setting the proof of Theorem 1 yields the following result,

Theorem 13. For any f in a dense Gδ subset of Cp we have that for each k ∈ N

(1) the set Fix(f, kp) is a Cantor set;
(2) there exists a Cantor set Pkp ⊂ Per(f, kp);
(3) the sets Pkp ⊂ Per(f, kp) ⊂ Fix(f, kp) have Hausdorff dimension and lower

box dimension zero, while the upper box dimension of these sets is one, and
(4) the Hausdorff dimension of Per(f) is zero.

Remark 14. As in the interval case, the proof of the previous two results can easily
be adapted to show that the generic degree d map in C(S1) has the same properties,
again this does not seem to be known in our setting.

To interpret this result we investigate the set C∞ := Cλ,1(S
1) \ ∪p≥1Cp. As we

already saw in the proof of Theorem 1, a periodic point can be transformed to a
transverse periodic point by an arbitrarily small perturbation of the map, thus the
set C∞ consists of maps without periodic points. Using the same argument we
see that ∪p≥1Cp contains an open dense set. Therefore, C∞ is nowhere dense in
Cλ,1(S

1).

Proposition 15. The set C∞ consists of irrational circle rotations.

Proof. Clearly C∞ contains all irrational circle rotations.
We claim that any f ∈ C∞ must be invertible. For each point z denote by Jz

the largest interval containing z such that fn(z) 6∈ Jz for all n > 0. Suppose that
f(x) = f(y) for some x 6= y. Then by [2, Theorem 1] we obtain that Jx = Jy, in
particular both are nondegenerate intervals. By the same result intervals fn(Jx)
are pairwise disjoint for all n ≥ 0. The Poincaré recurrence theorem states that
almost every point is recurrent, which is a contradiction since interior of Jx consists
of non-recurrent points. The proof is completed. �
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4. Shadowing is generic for Lebesgue measure preserving interval

and circle maps

First we recall the definition of shadowing and its related extensions that we
will work with in the rest of the paper. For δ > 0, a sequence (xn)n∈N0

⊂ I s
called a δ-pseudo orbit of f ∈ C(I) if d(f(xn), xn+1) < δ for every n ∈ N0. A
periodic δ-pseudo orbit is a δ-pseudo orbit for which there exists N ∈ N0 such that
xn+N = xn, for all n ∈ N0. We say that the sequence (xn)n∈N0

is an asymptotic
pseudo orbit if limn→∞ d(f(xn), xn+1) = 0. If a sequence (xn)n∈N0

is a δ-pseudo
orbit and an asymptotic pseudo orbit then we simply say that it is an asymptotic
δ-pseudo orbit.

Definition 16. We say that a map f ∈ C(I) has the:

• shadowing property if for every ε > 0 there exists δ > 0 satisfying the
following condition: given a δ-pseudo orbit y := (yn)n∈N0

we can find a
corresponding point x ∈ I which ε-traces y, i.e.,

d(fn(x), yn) < ε for every n ∈ N0.

• periodic shadowing property if for every ε > 0 there exists δ > 0 satisfying
the following condition: given a periodic δ-pseudo orbit y := (yn)n∈N0

we
can find a corresponding periodic point x ∈ I, which ε-traces y.

• limit shadowing if for every sequence (xn)n∈N0
⊂ I so that

d(f(xn), xn+1) → 0 when n → ∞

there exists p ∈ I such that

d(fn(p), xn) → 0 as n → ∞.

• s-limit shadowing if for every ε > 0 there exists δ > 0 so that
(1) for every δ-pseudo orbit y := (yn)n∈N0

we can find a corresponding
point x ∈ I which ε-traces y,

(2) for every asymptotic δ-pseudo orbit y := (yn)n∈N0
of f , there is x ∈ I

which ε-traces y and

lim
n→∞

d(yn, f
n(x)) = 0.

The notions of shadowing and periodic shadowing are classical but let us com-
ment less classical notions of limit and s-limit shadowing. While limit shadowing
seems completely different than shadowing, it was proved in [20] that transitive
maps with limit shadowing also have shadowing property. In general it can happen
that for an asymptotic pseudo orbit which is also a δ-pseudo orbit, the point which
ε-traces it and the point which traces it in the limit are different [4]. This shows
that possessing a common point for such a tracing is a stronger property than the
shadowing and limit shadowing properties together and this property introduced
in [21] is called the s-limit shadowing.

Observation 17. S-limit shadowing implies both classical and limit shadowing.

4.1. Proof of genericity of shadowing. The main step in the proof of genericity
of the shadowing property in the context of maps from Cλ(I) is the following lemma.

Lemma 18. For every ε > 0 and every map f ∈ Cλ(I) there are δ < ε
2 and

F ∈ Cλ(I) such that:

(1) F is piecewise affine and ρ(f, F ) < ε
2 ,

(2) if g ∈ Cλ(I) and ρ(F, g) < δ then every δ-pseudo orbit x := {xi}
∞
i=0 for g

is ε-traced by a point z ∈ I. Furthermore, if x is a periodic sequence, then
z can be chosen to be a periodic point.
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Proof. Step 1. Partition. First, let 0 < γ < ε/2 be such that, if |a− b| < γ then
|f(a)− f(b)| < ε/2.

Let us assume that f is piecewise affine with the absolute value of the slope at
least 4 on every piece of monotonicity. Indeed, we can assume that f is piecewise
affine due to Proposition 8 from [8]. Furthermore, we can also assume that the
absolute value of the slope of f is at least 4 on every piece of monotonicity by
using regular window perturbations from Definition 7 and thus we can approximate
arbitrarily well any piecewise affine map from Cλ(I) by a piecewise affine map from
Cλ(I) having absolute value of the slope at least 4 on every piece of monotonicity.
We set γ to be smaller than the length of the shortest piece of monotonicity of
f . Since f preserves the Lebesgue measure it must have non-zero slope on every
interval of monotonicity. Thus we can assume we have a partition 0 = a0 < a1 <
. . . < an < an+1 = 1 such that:

(i) ai+1 − ai ≤ γ for i = 0, . . . , n,
(ii) if f(ai) 6∈ {0, 1} then f(ai) 6= aj for every j.
(iii) if f(ai) 6∈ {0, 1} then ai 6∈ f(Crit(f)).

Step 2. Perturbation. By the definition of the partition, there is δ > 0 such
that for each j = 0, . . . , n we have

{i : f([aj , aj+1]) ∩ (ai, ai+1) 6= ∅} = {i : B(f([aj , aj+1]), 3δ) ∩ (ai, ai+1) 6= ∅}.

We may also assume that δ is sufficiently small, so that if f([aj , aj+1])∩[ai, ai+1] 6= ∅
then

(4.1) f([aj , aj+1]) ⊃ [ai, ai + 2δ] or f([aj , aj+1]) ⊃ [ai+1 − 2δ, ai+1].

Now, repeating the construction behind Proposition 8 of [8] we construct a map
F by replacing each f |[ai, ai+1] by its regular m-fold window perturbation (see
Definition 7 and Figure 1), with odd m and large enough to satisfy 1/m < δ. This
way F is still piecewise affine and its minimal slope is larger than the maximal slope
of f and such that

(4.2) F ([ai, ai + δ]) = F ([ai+1 − δ, ai+1]) = F ([ai, ai+1]) = f([ai, ai+1]).

Since Cλ(I) is invariant under window perturbations we conclude F ∈ Cλ(I).
Step 3. ε-shadowing. For some x ∈ I in what follows denote dist(x, J) :=
inf{d(x, y) : y ∈ J ⊂ I}. Also, for an interval J ⊂ I let diam(J) := sup{d(x, y) :
x, y ∈ J}. Take any g ∈ Cλ(I) such that ρ(F, g) < δ and let x := {xi}

∞
i=0 be a

δ-pseudo orbit for g. We claim that there is a sequence of intervals Ji such that

(1) diamJi ≤ γ and if i > 0 then Ji ⊂ g(Ji−1),
(2) dist(xi, Ji) < γ,
(3) for every i there is p such that F (Ji) = F ([ap, ap+1]) and xi ∈ [ap, ap+1].

Take p ≥ 0 such that [ap, ap+1] ∋ x0 and put J0 = [ap, ap+1]. Then conditions
(1)–(3) are satisfied for i = 0.

Next assume that for i = 0, . . . ,m there are intervals Ji such that conditions (1)–
(3) are satisfied. We will show how to construct Jm+1. Denote F (Jm) =: [a, b]. By
(3) and the definition of F , namely (4.1) and (4.2), there are nonnegative integers

î, ĵ, ĵ − î ≥ 2 such that

[aî+1 − 2δ, aĵ−1 + 2δ] ⊂ [a, b] ⊂ [aî, aĵ].

Furthermore, if aî 6= 0 then a > aî + 2δ and if bĵ < 1 then b < aĵ − 2δ. From this

it follows that B([a, b], 2δ) ⊂ [aî, aĵ ]. Since ρ(F, g) < δ it holds

(4.3) [aî+1 − δ, aĵ−1 + δ] ⊂ g(Jm) ⊂ [aî, aĵ ]

and
g(xm) ∈ B(F (xm), δ) ⊂ B([a, b], δ)
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and therefore

xm+1 ∈ B([a, b], 2δ) ⊂ [aî, aĵ ].

Then there is î ≤ q < ĵ such that xm+1 ∈ [aq, aq+1] and if we put L := [aq, aq + δ]
and R := [aq+1 − δ, aq+1] then by (4.3) it follows L ⊂ g(Jm) or R ⊂ g(Jm). Now,
we put Jm+1 = L or Jm+1 = R depending on the situation, obtaining that Jm+1 ⊂
g(Jm). Additionally, dist(xm+1, Jm+1) < γ since both L and R are contained in
[aq, aq+1] and by the definition of F it follows from (4.2) that

F (Jm+1) = F (L) = F (R) = F ([aq, aq+1]).

This finishes the inductive construction.
By (1) there is a point z ∈ I such that z ∈

⋂∞
i=0 g

−i(Ji). Then gi(z) ∈ Ji for
every i ≥ 0 and so by (1) and (2) we obtain that

d(gi(z), xi) ≤ diam Ji + dist(xi, Ji) < 2γ < ε.

We have just proved that the pseudo orbit x is ε-traced by the point z.
To finish the proof, let us assume that additionally x is periodic. Then we

will modify sequence Ji in the following way. Let N be the period of x. Since
there are finitely many choices of interval Ji, there are nonnegative integers k < s
such that JkN = JsN . Define a sequence of interval (Li)

∞
i=0 ⊂ I by the formula

Li = Ji+kN(mod (s−k)N). Condition (1) implies that there is z ∈
⋂∞

i=0 g
−i(Li). Since

sequence Li is periodic, in particular since L(s−k)N is covered by g(s−k)N (L0), we
may select z being a periodic point. But xi = xi(mod N) = xi+kN(mod (s−k)N), so
(2) implies that z is ε-tracing x. �

Proof of Theorem 3. Fix {εn}n∈N, where εn > 0 and εn → 0 as n → ∞. Let us
also fix a dense collection of maps {fk}k∈N ⊂ Cλ(I). Define the set

An := {f ∈ Cλ(I) : ∃δ > 0 so that every δ-pseudo orbit is εn-traced}.

Let us fix k, n ∈ N. By Lemma 18 it holds that for every f ∈ Cλ(I) and for all
integers s > 1/εn there exist Fk,s ∈ Cλ(I) and ξk,s > 0 so that ρ(Fk,s, fk) < 1/s
and B(Fk,s, ξk,s) ⊂ An. Define

Qn :=
⋃

s> 1

εn

∞
⋃

k=1

B(Fk,s, ξk,s) ⊂ An.

Observe that since fk is in the closure of Qn for all k ∈ N it follows that Qn is
dense in Cλ(I). Also B(Fk,s, ξk,s) is an open set and thus Qn is open in Cλ(I) as
well. Now, taking the intersection of the collection {Qn}n∈N we thus get a dense
Gδ set Q ⊂ Cλ(I). Clearly, if f ∈ Q then for every ε > 0 there is δ > 0 so that
every δ-pseudo orbit is ε-traced by some trajectory of f and if δ-pseudo orbit is
periodic then such trajectory of f can be required to be periodic as well. �

4.2. S-limit shadowing for Lebesgue measure preserving interval and cir-

cle maps. In this subsection we address the level of occurrence of the strongest of
the above presented notions related with shadowing.

Let us put LSλ(I) := {f ∈ Cλ(I) : f has the s-limit shadowing property}.

Proposition 19. The set LSλ(I) is dense in Cλ(I).

Proof. Choose ε > 0. Let g0 ∈ PAλ(leo)(I). We will show how to perturb g0 to
obtain a map g ∈ Cλ(I) close to g0 - it will be specified later - which has the limit
shadowing property. We will proceed analogously as in the proof of Lemma 18.
In that proof for a given ε > 0 a perturbation of f defining F assumes a special
finite partition P and related positive parameters γ, δ,m. We will call the whole
procedure (such a map F ) (ε,P, γ, δ,m)-perturbation of f .
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Fix a decreasing sequence (εn)n≥1 of positive numbers such that

(4.4) ε1 < ε and εn → 0, n → ∞.

Step 1. We put f = g0 and consider

F = g1 as (ε1,P1, γ1, δ1,m1)− perturbation of f.

We assume that g0|P 1
i is monotone for each P 1

i ∈ P1. From Lemma 18 (1) it follows
that ρ(g0, g1) < ε1/2 and Lemma 18 (2) implies that for each g ∈ B(g1, δ1) (hence
also for g1 itself) every δ1-pseudo orbit is ε1-traced. In addition we can require
δ1 < ε/2.
Step 2. We put f = g1 and consider

F = g2 as (ε2,P2, γ2, δ2,m2)− perturbation of f.

We assume that g1|P 2
i is monotone for each P 2

i ∈ P2. Moreover, we choose P2 to
be a refinement of P1, i.e., each element of P1 is a union of some elements of P2.
We consider γ2 and δ2 so small that

B(g1, δ1) ⊃ B(g2, δ2);

Lemma 18 implies that for each g ∈ B(g2, δ2) (hence also for g2 itself) every δ2-
pseudo orbit is ε2-traced.
Step n. We put f = gn−1 and consider

F = gn as (εn,Pn, γn, δn,mn})− perturbation of f.

We assume that gn−1|Pn
i is monotone for each Pn

i ∈ Pn and choose Pn to be a
refinement of Pn−1. We consider γn and δn so small that

(4.5) B(gn−1, δn−1) ⊃ B(gn, δn);

Lemma 18(2) implies that for each g ∈ B(gn, δn) (hence also for gn itself) every
δn-pseudo orbit is εn-traced.

The proof of Lemma 18 shows that for a fixed map g ∈ B(gn, δn), for every
δn-pseudo orbit (xi)i≥0, if xi ∈ [anq(i), a

n
q(i)+1] ∈ Pn for each i ≥ 0, there exists a

sequence of intervals

(4.6) Jn
i ∈ {[anq(i), a

n
q(i) + δn], [a

n
q(i)+1 − δn, a

n
q(i)+1]}

such that

(4.7) g(Jn
i−1) ⊃ Jn

i

and a point z ∈
⋂∞

i=0 g
−i(Jn

i ) satisfies

(4.8) |gi(z)− xi| < εn

for each i ≥ 0.
By our construction, the convergence of the sequence (gn)n≥0 is uniform in Cλ(I)

hence limn→∞ gn = G ∈ Cλ(I). Moreover, since by (4.5),

G ∈
⋂

n

B(gn, δn),

and by the previous the map G has the shadowing property, i.e., for every ε > 0
there is δ > 0 such that every δ-pseudo orbit is ε-traced.

Let us show that the map G has the s-limit shadowing property. Due to the
definition of s-limit shadowing let us assume that a sequence (xi)i≥0 is satisfying

|G(xi)− xi+1| → 0, i → ∞.
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Obviously there is an increasing sequence (ℓ(n))n≥1 of nonnegative integers (w.l.o.g.
we assume that ℓ(1) = 0, i.e., (xi)i≥0 is an asymptotic δ1-pseudo orbit) such that

|G(xi)− xi+1| < δn, i ≥ ℓ(n),

i.e., each sequence (xi)i≥ℓ(n) is a δn-pseudo orbit. Now we repeatedly use the
procedure describe after the equation (4.5) and containing the equations (4.6)-
(4.8). By that procedure, for each n ∈ N we can find sequences (Jn

i )i≥ℓ(n) (to
simplify our notation on the nth level we index Jn

i from ℓ(n)) such that for each

(4.9) z ∈
∞
⋂

i=ℓ(n)

G−i(Jn
i ) Gℓ(n)(z) εn − traces (xi)i≥ℓ(n) for G.

But by (4.2) and (4.1) of Step 3 in the proof of Lemma 18, we have G(Jn
i ) = gn(J

n
i )

for each n and i and the sequence (Pn)n≥1 is nested, so by (4.1) of Step 3 in the
proof of Lemma 18, (4.6) and (4.7) for each n we get

(4.10) G(Jn
ℓ(n+1)−1) ⊃ Jn+1

ℓ(n+1).

If we define a new sequence (Ki)i≥0 of subintervals of I by

Ki = Jn
i , ℓ(n) ≤ i ≤ ℓ(n+ 1)− 1,

then by (4.10) the intersection

K =

∞
⋂

i=0

G−i(Ki)

is nonempty. It follows from (4.9) and (4.4) that for each z ∈ K, |Gi(z)− xi| → 0,
i → ∞. If asymptotic pseudo orbit was δ-pseudo orbit at start, then the choice of
intervals J1

i in the first step ensures ε-tracing.
In order to finish the proof let us recall that we have chosen ε1 < ε and δ1 < ε/2

hence

ρ(g0, G) < ρ(g0, g1) + ρ(g1, G) < ε/2 + ε/2 = ε.

Since the set PAλ(leo)(I) is dense in Cλ(I), the conclusion of our theorem follows.
�
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