Overview of MR Image Segmentation Strategies in Neuromuscular Disorders - Archive ouverte HAL
Article Dans Une Revue Frontiers in Neurology Année : 2021

Overview of MR Image Segmentation Strategies in Neuromuscular Disorders

Résumé

Neuromuscular disorders are rare diseases for which few therapeutic strategies currently exist. Assessment of therapeutic strategies efficiency is limited by the lack of biomarkers sensitive to the slow progression of neuromuscular diseases (NMD). Magnetic resonance imaging (MRI) has emerged as a tool of choice for the development of qualitative scores for the study of NMD. The recent emergence of quantitative MRI has enabled to provide quantitative biomarkers more sensitive to the evaluation of pathological changes in muscle tissue. However, in order to extract these biomarkers from specific regions of interest, muscle segmentation is mandatory. The time-consuming aspect of manual segmentation has limited the evaluation of these biomarkers on large cohorts. In recent years, several methods have been proposed to make the segmentation step automatic or semi-automatic. The purpose of this study was to review these methods and discuss their reliability, reproducibility, and limitations in the context of NMD. A particular attention has been paid to recent deep learning methods, as they have emerged as an effective method of image segmentation in many other clinical contexts.
Fichier principal
Vignette du fichier
Ogier_FrontNeurol_2021.pdf (1.31 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03181363 , version 1 (25-03-2021)

Identifiants

Citer

Augustin C. Ogier, Marc-Adrien Hostin, Marc-Emmanuel Bellemare, David Bendahan. Overview of MR Image Segmentation Strategies in Neuromuscular Disorders. Frontiers in Neurology, 2021, 12, pp.625308. ⟨10.3389/fneur.2021.625308⟩. ⟨hal-03181363⟩

Relations

227 Consultations
139 Téléchargements

Altmetric

Partager

More