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Nonlinear input/output analysis: application to boundary layer transition

We extend linear input/output (resolvent) analysis to take into account nonlinear triadic interactions by considering a finite number of harmonics in the frequency domain using the harmonic balance method. Forcing mechanisms that maximize the drag are calculated using a gradientbased ascent algorithm. By including nonlinearity in the analysis, the proposed frequency-domain framework identifies the worst-case disturbances for laminar-turbulent transition. We demonstrate the framework on a flat-plate boundary layer by considering three-dimensional spanwise-periodic perturbations triggered by a few optimal forcing modes of finite amplitude. Two types of volumetric forcing are considered, one corresponding to a single frequency/spanwise-wavenumber pair, and a multi-harmonic where a harmonic frequency and wavenumber are also added. Depending on the forcing strategy, we recover a range of transition scenarios associated with K-type and H-type mechanisms, including oblique and Tollmien-Schlichting waves, streaks and their breakdown. We show that nonlinearity plays a critical role in optimizing growth by combining and redistributing energy between the linear mechanisms and the higher perturbation harmonics. With a very limited range of frequencies and wavenumbers, the calculations appear to reach the early stages of the turbulent regime through the generation and breakdown of hairpin and quasi-streamwise staggered vortices.

Introduction

Methods for prediction of instability and transition have evolved considerably during the past several decades. Advances, driven by increases in computer speed and memory, include the availability of high-fidelity DNS and LES solutions for canonical wall-bounded flows [START_REF] Sayadi | Direct numerical simulation of complete H-type and K-type transitions with implications for the dynamics of turbulent boundary layers[END_REF], the recognition of transient growth (non-modal instability) as a key mechanism and mathematical formulations for optimal disturbances in linear and nonlinear frameworks [START_REF] Schmid | Stability and Transition in Shear Flows[END_REF][START_REF] Schmid | Nonmodal stability theory[END_REF][START_REF] Kerswell | Nonlinear nonmodal stability theory[END_REF], and generalization of parallel-flow analysis to global approaches to flows that are inhomogeneous in two or more directions [START_REF] Theofilis | Global linear instability[END_REF].

Most of the stability studies concern linearised evolution of perturbations. For stable base flows, the physical mechanisms associated to linear growth mechanisms (modal and non-modal) and receptivity can be clarified by finding initial conditions in the time domain, or volumetric forcings, in the frequency domain, that maximize, for example, the kinetic energy of perturbations [START_REF] Schmid | Stability and Transition in Shear Flows[END_REF]. The frequency-space problem is also called linear resolvent analysis or input/output analysis in the literature. In these analyses, adjoint methods are used to maximize a specific cost function. [START_REF] Trefethen | Hydrodynamic stability without eigenvalues[END_REF]; [START_REF] Jovanović | Componentwise energy amplification in channel flows[END_REF] showed that the computation of the optimal forcings and responses of the resolvent operator extracts the pseudoresonances of a flowfield, that is the frequencies and spatial distributions of forcings that optimally trigger linear responses in a system. In a setup where the streamwise direction is also discretized (in addition to the cross-stream direction), accurate methods to extract the optimal features from the global resolvent have first been carried out with time-stepper approaches by [START_REF] Blackburn | Convective instability and transient growth in flow over a backward-facing step[END_REF]; Åkervik et al. (2008); [START_REF] Monokrousos | Global three-dimensional optimal disturbances in the blasius boundary-layer flow using time-steppers[END_REF] and more recently with sparse direct LU methods by [START_REF] Sipp | Dynamics and control of global instabilities in open-flows: a linearized approach[END_REF]; [START_REF] Brandt | Effect of base-flow variation in noise amplifiers: the flat-plate boundary layer[END_REF]; [START_REF] Rigas | One Way Navier-Stokes and resolvent analysis for modeling coherent structures in a supersonic turbulent jet[END_REF]; [START_REF] Schmidt | Spectral analysis of jet turbulence[END_REF]; [START_REF] Pickering | Lift-up, Kelvin-Helmholtz and Orr mechanisms in turbulent jets[END_REF], among others.

Determining the growth of finite-amplitude perturbations is, of course, more challenging. In practice, the direct solution of the 3D Navier-Stokes equations in the time domain is most commonly employed. For example, [START_REF] Rist | Direct numerical simulation of controlled transition in a flat-plate boundary layer[END_REF] and [START_REF] Bake | Turbulence mechanism in klebanoff transition: a quantitative comparison of experiment and direct numerical simulation[END_REF] reproduced experimental results evidencing different forms of transition in the flat-plate boundary layer. More recently nonlinear transitional mechanisms have been studied by employing gradient-based techniques to find the smallest amplitude optimal initial conditions that trigger transition to turbulence [START_REF] Biau | An optimal path to transition in a duct[END_REF][START_REF] Cherubini | Rapid path to transition via nonlinear localized optimal perturbations in a boundary-layer flow[END_REF][START_REF] Cherubini | The minimal seed of turbulent transition in the boundary layer[END_REF][START_REF] Pringle | Minimal seeds for shear flow turbulence: using nonlinear transient growth to touch the edge of chaos[END_REF][START_REF] Monokrousos | Nonequilibrium thermodynamics and the optimal path to turbulence in shear flows[END_REF][START_REF] Kerswell | Nonlinear nonmodal stability theory[END_REF][START_REF] Vavaliaris | Optimal perturbations and transition energy thresholds in boundary layer shear flows[END_REF]. The optimal perturbation is calculated over a finite time interval and the one with the lowest energy is known as the minimal seed in the time domain. Similar methodology has been applied to study the transition mechanisms in thermoacoustic systems [START_REF] Juniper | Triggering in the horizontal rijke tube: non-normality, transient growth and bypass transition[END_REF] and also recently has been extended to compressible flows [START_REF] Jahanbakhshi | Nonlinearly most dangerous disturbance for high-speed boundarylayer transition[END_REF][START_REF] Huang | A variational framework for computing nonlinear optimal disturbances in compressible flows[END_REF]. The results still depend on the specific metric (cost function) used to measure the growth; common choices include perturbation kinetic energy [START_REF] Pringle | Minimal seeds for shear flow turbulence: using nonlinear transient growth to touch the edge of chaos[END_REF][START_REF] Cherubini | The minimal seed of turbulent transition in the boundary layer[END_REF], integral skin friction coefficient [START_REF] Jahanbakhshi | Nonlinearly most dangerous disturbance for high-speed boundarylayer transition[END_REF], dissipation [START_REF] Monokrousos | Nonequilibrium thermodynamics and the optimal path to turbulence in shear flows[END_REF], and mean shear [START_REF] Karp | On the secondary instabilities of transient growth in Couette flow[END_REF].

The minimal seed calculations can be compared, in certain cases, against appropriate experimental measurements of finite-amplitude thresholds for transition to turbulence [START_REF] Peixinho | Finite-amplitude thresholds for transition in pipe flow[END_REF], for experimental pipe flow transition). However, by analog with the linear approaches, it is experimentally more natural to model transition from laminar to turbulent flow as a stationary process where disturbances are continually supplied to the system from the environment, i.e. to consider the receptivity problem. For linear growth, this results in the aforementioned resolvent (or input/output) analysis that provides, in the frequency domain, a transfer function between inputs, for example environmental noise characterized by spatially localized spectral co-variance tensors, and outputs, for example the structure of the resulting amplified flow structures, and the net gain between them. Given the convective nature of instabilities in spatially developing boundary layer flows, an accurate and practical prediction of the transition location relies on an accurate description of the amplitude and spectral content of the environmental noise and also on unravelling and prediction of the transition mechanisms, typically the most dangerous ones.

In order to deal with finite-amplitude perturbations in the frequency domain, the stability and numerical tools have to be extended to account for nonlinearity. Previous attempts in this regard have been limited to the nonlinear parabolized stability equations (NPSE, [START_REF] Bertolotti | Linear and nonlinear stability of the Blasius boundary layer[END_REF][START_REF] Chang | Oblique-mode breakdown and secondary instability in supersonic boundary layers[END_REF]. While such calculations showed good agreement with DNS for the very early stages of transition, they require specific inlet conditions to be specified and these are typically based on modal solutions to the local (parallel) spatial stability problem. Furthermore, numerical instabilities and robustness issues, associated with the minimum step restriction, have limited the applicability of both PSE and NPSE [START_REF] Towne | A critical assessment of the parabolized stability equations[END_REF], and cast doubt on whether PSE can be used to identify optimal inlet conditions or volumetric forcing. The aforementioned work on non-modal mechanisms relies on cooperative amplification of modes with disparate wavelengths, which raises further questions about the appropriateness of PSE ansatz.

A natural generalization in order to calculate finite-amplitude perturbations in the frequency domain is to seek solutions to the full Navier-Stokes equations under the form of an expansion consisting of a mean-flow solution, a fundamental mode and p harmonics of the fundamental, but without the parabolizing approximations inherent to PSE. Such an approach, known in literature as the harmonic balance method (HBM, [START_REF] Khalil | Nonlinear systems[END_REF][START_REF] Fabre | A practical review on linear and nonlinear global approaches to flow instabilities[END_REF]) is a general method to find periodic or quasi-periodic solutions, which are approximated using truncated Fourier expansions. HBM has been used previously in fluid mechanics primarily in the context of turbomachinery [START_REF] Hall | Computation of unsteady nonlinear flows in cascades using a harmonic balance technique[END_REF][START_REF] Gopinath | Threedimensional unsteady multi-stage turbomachinery simulations using the harmonic balance technique[END_REF][START_REF] Sicot | A time-domain harmonic balance method for rotor/stator interactions[END_REF], where one seeks a mean flow and harmonics associated with the externally imposed blade passing frequency. When used with p = 0, HBM also recovers the self-consistent model introduced by [START_REF] Mantič-Lugo | Self-consistent mean flow description of the nonlinear saturation of the vortex shedding in the cylinder wake[END_REF] and [START_REF] Mantič-Lugo | Self-consistent model for the saturation mechanism of the response to harmonic forcing in the backward-facing step flow[END_REF] for the cylinder wake and backstep flow, respectively.

In this paper, using HBM we explore the optimal nonlinear amplification problem in the frequency domain, and we use the method to identify and analyze transition scenarios for the flat plate boundary layer. We begin in §2 by briefly reviewing the literature on boundary layer transition. In §3, we propose a solution strategy for the following optimization problem. Given an amplitude A, a time-period and spanwise-wavelength associated respectively to the fundamental frequency ω and fundamental wavenumber β, we look for a spatial distribution of a time-periodic (of period 2π/ω) and spanwise-periodic (of period 2π/β) volumetric forcing of amplitude A that triggers a solution maximising the mean skin friction coefficient (integrated over the wall). In §4 we validate the HBM solver by reproducing a K-type transition scenario previously studied using DNS [START_REF] Rist | Direct numerical simulation of controlled transition in a flat-plate boundary layer[END_REF], while in §5, we validate the optimization procedure by reproducing previously reported linear optimal solutions. Finally, in section 6 we calculate nonlinear optimal reponses and forcings that maximize the skin friction coefficient. By varying A, ω, β and the forcing component combinations, we identify a range of optimal transition scenarios. We summarize our results in §7, and discuss prospects for transition prediction using HBM.

Boundary layer transition: a brief review

Early studies on zero-pressure gradient boundary layer transition have been mainly focused on the modal amplification of Tollmien-Schlichting (TS) waves. The primary TS-waves develop threedimensional secondary instabilities, and subsequently break down to turbulence. The analysis of transition mechanisms resulting from the secondary instability of TS-waves has identified two main routes:

(i) The fundamental K-type transition, which involves a 2D TS-wave (ω, 0) and two oblique waves of the same frequency (ω, ±β). Such a resonance has first been evidenced by [START_REF] Klebanoff | The three-dimensional nature of boundary-layer instability[END_REF].

(ii) The subharmonic H-type transition, triggered by a 2D TS-wave (ω, 0) and two subharmonic oblique waves (ω/2, ±β). It has been experimentally observed by [START_REF] Kachanov | Nonlinear development of a wave in a boundary layer[END_REF]; [START_REF] Kachanov | The resonant interaction of disturbances at laminarturbulent transition in a boundary layer[END_REF].

In both cases, the oblique waves are strongly amplified, leading to Λ-shaped patterns composed of strong longitudinal vortices [START_REF] Rist | Direct numerical simulation of controlled transition in a flat-plate boundary layer[END_REF][START_REF] Berlin | Numerical and experimental investigations of oblique boundary layer transition[END_REF][START_REF] Sayadi | Direct numerical simulation of complete H-type and K-type transitions with implications for the dynamics of turbulent boundary layers[END_REF]). In the case of H-type transition, the Λ-patterns are staggered while they are aligned in the case of K-type transition. In an effort to explain the observed patterns, [START_REF] Herbert | Secondary instability of boundary layers[END_REF] examined the secondary stability characteristics of the modified periodic flow (Blasius flow with superimposed TS waves) using linear Floquet analysis in a local framework. The analysis showed that the growth of threedimensional oblique subharmonic frequency waves (seen for H-type) is favoured over fundamental waves (K-type).

More recent work shows that disturbances can undergo significant transient growth that leads to faster transition to turbulence, even at subcritical Reynolds numbers, and potentially bypassing transition through TS waves. A linear resolvent analysis for the Blasius boundary layer has been performed by [START_REF] Monokrousos | Global three-dimensional optimal disturbances in the blasius boundary-layer flow using time-steppers[END_REF] to identify optimal forcing in the frequency domain. Peaks of the optimal gain in the frequency/spanwise wavenumber space were linked to modal and non-modal instabilities. The analysis showed that maximum energy amplification is due to steady three-dimensional disturbances. The optimal forcing consists of streamwise vortices (rolls) and the response of streamwise elongated vortices, known as streaks. The amplification is a purely nonmodal mechanism through the linear lift-up mechanism [START_REF] Landahl | A note on an algebraic instability of inviscid parallel shear flows[END_REF][START_REF] Butler | Three-dimensional optimal perturbations in viscous shear flow[END_REF]). The non-modal analysis also shows that oblique TS waves are more amplified than the 2D ones, though these are linearly suboptimal to the aforementioned lift up mechanism.

Due to early observations that streaks can be significantly amplified and provide an alternative bypass route to turbulence, various studies have focused on the secondary instability of boundary layers distorted by streaks. [START_REF] Andersson | On the breakdown of boundary layer streaks[END_REF] performed an inviscid, secondary instability analysis of the optimally amplified boundary-layer streaks in a linear framework. Depending on the symmetries of the perturbed flow, varicose or sinuous oscillations of the low-speed streaks are possible, with the latter being the most unstable one. Once the streaks reach certain amplitude and become unstable, breakdown to a turbulent flow is observed [START_REF] Brandt | Transition of streamwise streaks in zero-pressure-gradient boundary layers[END_REF][START_REF] Hack | Streak instabilities in boundary layers beneath free-stream turbulence[END_REF]. The sinuous mode has been linked to the spanwise shear which leads to the formation of streamwise vortices around the low-speed streaks. On the other hand, the varicose mode has been associated with wall-normal shear and the formation of symmetric hairpin vortices [START_REF] Asai | The instability and breakdown of a near-wall low-speed streak[END_REF][START_REF] Hack | Coherent instability in wall-bounded shear[END_REF]).

An alternative bypass scenario for transition relies on oblique waves [START_REF] Schmid | A new mechanism for rapid transition involving a pair of oblique waves[END_REF]. In this scenario, streamwise-aligned vortices are generated by non-linear interaction between a pair of oblique waves with equal angle but opposite sign in the flow direction [START_REF] Schmid | A new mechanism for rapid transition involving a pair of oblique waves[END_REF][START_REF] Reddy | On stability of streamwise streaks and transition thresholds in plane channel flows[END_REF][START_REF] Berlin | Numerical and experimental investigations of oblique boundary layer transition[END_REF]. These vortices, in turn, induce streamwise streaks through the lift-up mechanism. The subsequent stages of transition to turbulence are similar to the ones described above for the streak breakdown. The initial stages of the nonlinear interaction of the oblique waves have been described also using NLPSE. [START_REF] Chang | Oblique-mode breakdown and secondary instability in supersonic boundary layers[END_REF] showed that the oblique waves are a dominant mechanism at low supersonic speeds. Similarly to the incompressible regime, the nonlinear interaction of a pair of oblique waves results in the evolution of a streamwise vortex. This stage was described by a wave-vortex triad consisting of the oblique waves and a
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Nonlinear input/output analysis: theory and algorithms

In order to extend the linear input/output (resolvent) analysis to finite-amplitude perturbations, we need to proceed in two steps:

(i) Devise a method to find, for a given time-and spanwise-periodic finite amplitude forcing, a time-and spanwise-periodic solution with the same periods that is solution to the forced nonlinear Navier-Stokes equations. For this, we will follow the HBM framework. The theory and numerical algorithms are presented in §3.2.

(ii) Devise a method to search, over a fixed set of forcing and response frequencies, for an optimal forcing with a finite overall amplitude, A, that maximizes a given cost-functional. Similarly to the optimization strategies followed in the time-domain [START_REF] Kerswell | Nonlinear nonmodal stability theory[END_REF], we use gradient-based strategies to find local maxima and optimal solutions in a few iterations ( §3.3).

Governing equations and computational set-up

The flow under consideration is the zero-pressure gradient boundary layer flow, shown schematically in figure 1. The spanwise direction z is treated as homogeneous and, without loss of generality, we will assume that the forcing and response are z-periodic, in addition to being t-periodic.

We consider the forced three-dimensional incompressible Navier-Stokes equations

∂ t u + u • ∇u = -∇p + ν∆u + f (x, t) (3.1a) ∇ • u = 0 (3.1b) u = g(x, t) on ∂Ω f , (3.1c)
where f is a volumetric time-dependent momentum forcing and g a time-dependent forcing on some boundary ∂Ω f . The forcing terms can represent the effect of free-stream disturbances or actuators on the boundary/wall (i.e. periodic blowing and suction, vibrating wall, roughness elements) or actuators within the flow (i.e. vibrating ribbon).

The governing equations are discretised in the x and y spatial directions, using the finite-element method, while z and t are treated as continuous homogeneous directions. In the discrete state space, the forcing and state variables are then vectors depending only on z and t, while the explicit dependence on x and y defines the degrees of freedom of the vectors. If we consider the compound state vector w = [u, p], where u = [u, v, w] refers to the x, y and z velocity components, the semi-discretized governing equations (3.1) may be recast in the following form:

M∂ t w + Lw + 1 2 N(w, w) = MPf (z, t) (3.2a) w = Pg(z, t) on ∂Ω f , (3.2b)
where P is the prolongation matrix mapping a [u, v, w] velocity vector into a [u, v, w, 0] velocitypressure vector. The matrices M, L and the bilinear operator N are defined as:

M = M 0 0 0 , L = -ν∆() ∇() ∇ • () 0 , N(w 1 , w 2 ) = u 1 • ∇u 2 + u 2 • ∇u 1 0 ,
where M and M are the mass matrices associated to the spatial discretization, L the Stokes operator and N the symmetrised nonlinear convection operator. We apply no-slip boundary conditions along the plate and zero stress conditions at the outlet. At the inlet and at the upper boundary, we impose the Blasius profile. We consider the free-stream velocity U ∞ and ν/U ∞ as reference velocity and length scales throughout the manuscript. For this specific choice we have x → Re x .

The computational domain for the zero-pressure flat-plate configuration is rectangular with the plate located at y = 0, the upper boundary at y = 1.2×10 5 and the inlet at x i = 0.30×10 5 . The outlet is at x o = 2.52×10 5 ( §4) or x o = 3.60×10 5 ( §5 and §6). The inlet Reynolds number based on the displacement thickness, Re δ * = 1.72 √ Re x , is 298, which is subcritical with respect to the local modal instability of planar TS waves, Re crit δ * = 519.4 [START_REF] Schmid | Stability and Transition in Shear Flows[END_REF]. The elements close to the plate are based on split rectangular elements, which exhibit a uniform streamwise length of ∆x = 400 and a height at the plate of ∆y = 40. The height of the split rectangles is stretched in the vertical direction by a factor 1.04 up to the point where the rectangles become squares. From this height, the mesh is gradually stretched isotropically up to the upper boundary.

The discretization is carried out with the FreeFem++ software [START_REF] Hecht | New development in FreeFem++[END_REF], with first-order [P 1b , P 1b , P 1b , P 1 ] (Mini) elements [START_REF] Arnold | A stable finite element for the Stokes equations[END_REF] for a w = [u, v, w, p] element. The resulting degrees of freedom (DOF) for the 2D discretization of the equations are given in table 1.

Nonlinear input/output relation in frequency space with Harmonic Balance Method

The volume f (z, t) and boundary g(z, t) forcings are assumed to be z-periodic of wavelength λ = 2π/β and t-periodic of period T = 2π/ω. We assume that the state vector w(z, t) behaves the same way. When considering boundary layers in early-stage transition, i.e with weak external forcing amplitude, it is reasonable to assume that the response of the system follows the timeperiodicity and spatial symmetries of the external forcing. A Fourier expansion is introduced for the periodic forcing and state variables, which is truncated at M + 1 harmonics in z and N + 1

harmonics in t. Hence w(z, t) = -M m M -N n N e i(mβz+nωt) ŵmn , (3.3)
with similar expansions (not shown here) for f (z, t) and g(z, t). Term ŵmn (resp. fmn , ĝmn ) represents the harmonic associated to e imβz+inωt for ŵ (resp. f and ĝ). For these variables to be real, the following relation must hold:

ŵ-m,-n = ŵmn for all (m, n), which induces that ŵ00 is real. The overbar (•) denotes the complex conjugate. For high forcing amplitude, quasi-periodic limit-cycles may appear, which can be captured by introducing two or more incommensurate fundamental frequencies and their harmonics in expansion (3.3), an investigation which is beyond the scope of the present paper.

After substituting the Fourier expansion (3.3) in the Navier-Stokes equations (3.2), a set of nonlinear equations is obtained by balancing the amplitudes of like harmonics. Specific simple examples are given in §3.2.1. In the general case, this procedure yields the Harmonic-Balanced Navier-Stokes (HBNS), described by the following system of coupled equations

[inωM + L m + γ mn 00 N m 0 ( ŵ00 , •)] ŵmn + S(m,n) γ m2n2 m1n1 N m2 m1 ( ŵm1n1 , ŵm2n2 ) = MP fmn , (3.4a) ŵmn = Pĝ mn , on ∂Ω f , (3.4b) 
for all (m, n) such that -M m M and -N n N , and the sum is over the set of indices

S(m, n) = m = m 1 + m 2 -M m 1 m 2 M n = n 1 + n 2 -N n 1 n 2 N (m 1 , n 1 ) = (0, 0), (m 2 , n 2 ) = (0, 0) (3.5)
The coefficients

γ m2n2 m1n1 = 0.5 if (m 1 = m 2 , n 1 = n 2 )
and 1 in the other cases. The linear matrix L m and bilinear operator N m2 m1 are deduced from L and N by replacing ∂ z derivatives by imβz. We define the solution and forcing vectors, ŵ, f and ĝ whose elements correspond to the (2M + 1) × (2N + 1) complex unknowns. Then, (3.4) may be rewritten in compact form

R( ŵ) = MP f (3.6a) ŵ = Pĝ, on ∂Ω f , (3.6b)
where we reuse the symbols M and P to now refer to block matrices composed from the individual equations. For given forcing terms f and ĝ, equations (3.6) are (2M + 1) × (2N + 1) complex nonlinear equations for the unknowns ŵ. Due to the fact that the equation governing the (m, n) harmonic of ŵ corresponds to the complex conjugate of the equation governing the (-m, -n) harmonic, the solution will be symmetric, ŵ-m,-n = ŵmn , whenever the forcing is.

Special cases

In order to get some insight into the structure of the governing equations, we consider two particular cases where the boundary forcing term, ĝ, is set to zero for simplicity.

In the case where M = N = 1, equations (3.4) reduce to:

L 0 + 1 2 N 0 0 ( ŵ00 , •) ŵ00 + N 1 -1 ( ŵ10 , ŵ10 ) + N 0 0 ( ŵ01 , ŵ01 ) + N 1 -1 ( ŵ11 , ŵ11 ) = MP f00 , (3.7a) L 1 + N 1 0 ( ŵ00 , •) ŵ10 = MP f10 , (3.7b) iωM + L 0 + N 0 0 ( ŵ00 , •) ŵ01 = MP f01 , (3.7c) iωM + L 1 + N 1 0 ( ŵ00 , •) ŵ11 = MP f11 . (3.7d )
For a boundary layer, the terms ŵ10 e iβz , ŵ01 e iωt and ŵ11 e iβz+iωt may represent, respectively, a streak, a 2D Tollmien-Schlichting wave and an oblique wave. In this case, these components are linearly triggered by the forcing terms f10 , f01 and f11 , whereupon they deform the mean flow through the nonlinear interactions in (3.7a) (in addition to any mean flow forcing, f00 ). The linear operators inωM + L m + N m 0 ( ŵ00 , •) are strictly damped and thus invertible. Connections with the Restricted Nonlinear Model (RNL) introduced for the study of transition [START_REF] Waleffe | How streamwise rolls and streaks self-sustain in a shear flow. self-sustaining mechanisms of wall turbulence[END_REF][START_REF] Biau | An optimal path to transition in a duct[END_REF][START_REF] Farrell | Dynamics of streamwise rolls and streaks in turbulent wallbounded shear flow[END_REF] and turbulence [START_REF] Thomas | A minimal model of selfsustaining turbulence[END_REF][START_REF] Farrell | A statistical state dynamics approach to wall turbulence[END_REF] in streamwise invariant configurations become apparent. The equations governing the steady harmonics ŵ00 and ŵ10 (which comprise the streaks and the rolls), are related to the equation governing the streamwise averaged component of the flow in the RNL equation, while those governing ŵ01 and ŵ11 are related to the streamwise fluctuating part (one harmonic in ω being equivalent to one streamwise wavenumber). In the present approach the spanwise direction is treated as homogeneous while the streamwise direction is solved for, while for RNL model, the opposite is true. But for both models, nonlinear interactions only appear in the mean flow equation due to the low-order truncation.

In the case M = 0, N = 2, nonlinear interactions also appear at the fluctuation level:

L 0 + 1 2 N 0 0 ( ŵ00 , •) ŵ00 + N 0 0 ( ŵ01 , ŵ01 ) + N 0 0 ( ŵ02 , ŵ02 ) =MP f00 , (3.8a) iωM + L 0 + N 0 0 ( ŵ00 , •) ŵ01 + N 0 0 ( ŵ01 , ŵ02 ) =MP f01 , (3.8b) 2iωM + L 0 + N 0 0 ( ŵ00 , •) ŵ02 + 1 2 N 0 0 ( ŵ01 , ŵ01 ) =MP f02 . (3.8c)
They correspond to the extension at second order of the self-consistent model (Mantič-Lugo & Gallaire 2016) for backward-facing step flow. We recognize the dynamics of the three harmonics ŵ00 , e iωt ŵ01 and e 2iωt ŵ02 , the nonlinear interactions (N 0 0 ( ŵ01 , ŵ01 ) + N 0 0 ( ŵ02 , ŵ02 )) and forcing term ( f00 ) generating the mean-flow deformation, the nonlinear interactions (N 0 0 ( ŵ01 , ŵ02 ) and 1/2N 0 0 ( ŵ01 , ŵ01 )) and forcing terms ( f01 and f02 ) affecting the first and second harmonics (e iωt ŵ01 and e 2iωt ŵ02 ). If higher order truncations are considered, the complexity is increased by additional nonlinear interaction terms that affect both the mean-flow and the fluctuating harmonics.

Algorithms and numerical methods

In order to solve the coupled nonlinear equations (3.6) and calculate the response ŵ, we use an iterative Newton algorithm. An initial guess ŵi may be improved according to ŵi+1 = ŵiδ ŵi with:

Aδ ŵi = R( ŵi ) -MP f (3.9a) δ ŵi = ŵi -Pĝ on ∂Ω f , (3.9b) 
where A = ∂R/∂ ŵ is the Jacobian of operator R, given by

     L 0 + N 0 0 ( ŵ00 , •) N 0 0 ( ŵ0,-1 , •) N 0 0 ( ŵ01 , •) • • • N 0 0 ( ŵ01 , •) iωM + L 0 + N 0 0 ( ŵ00 , •) N 0 0 ( ŵ02 , •) • • • N 0 0 ( ŵ0,-1 , •) N 0 0 ( ŵ0,-2 , •) -iωM + L 0 + N 0 0 ( ŵ00 , •) • • • . . . . . . . . . . . .      , (3.10) 
where the off-diagonal blocks stem from non-linear interactions between harmonics, while the diagonal blocks correspond to Navier-Stokes equations linearized around the current mean-flow ŵ00 . This matrix is also known in the literature as the finite-dimensional block Hill-matrix [START_REF] Lazarus | A harmonic-based method for computing the stability of periodic solutions of dynamical systems[END_REF].

The linear problem (3.9) involves a large number of unknowns, equal to the number of harmonics (2N + 1)(2M + 1) times the number of degrees of freedom in a velocity-pressure vector on a twodimensional computational mesh. If the number of retained harmonics is large, solution of the linear system becomes the pacing item, primarily due to associated computer memory limitations rather operation counts, when a direct LU method is used. Iterative solvers for HBM problems partially bypass these limitations [START_REF] Hall | Computation of unsteady nonlinear flows in cascades using a harmonic balance technique[END_REF][START_REF] Gopinath | Threedimensional unsteady multi-stage turbomachinery simulations using the harmonic balance technique[END_REF][START_REF] Sicot | A time-domain harmonic balance method for rotor/stator interactions[END_REF]. In order to decrease the computational cost, we follow [START_REF] Moulin | Augmented Lagrangian preconditioner for large-scale hydrodynamic stability analysis[END_REF] and use a preconditioned Generalized Minimal Residual (GMRES) algorithm that only requires matrix-vector products. We use a block-Jacobi preconditioner, where the blocks correspond to the harmonics: ŵ00 , ( ŵ01 , ŵ0,-1 ), etc. The block-Jacobi preconditioner is very efficient when the diagonal blocks of matrix A are dominant, that is when the nonlinear interactions between harmonics remain reasonably weak. This occurs when the amplitude A of the forcing remains small. The code is parallel with each processor core handling a block. In the block-Jacobi preconditioner, the linear system associated to the diagonal block of a given harmonic, for example

inωM + L m + N m 0 ( ŵ00 , •) A A -inωM + L -m + N -m 0 ( ŵ00 , •) , (3.11)
is solved by the core handling the harmonic ( ŵmn , ŵ-m,-n ) with a sparse direct LU method [START_REF] Amestoy | A fully asynchronous multifrontal solver using distributed dynamic scheduling[END_REF]. For an efficient distributed implementation, we use the PETSc software [START_REF] Balay | PETSc Web page[END_REF] with the scalable linear equation solver component (KSP). Since a single core solves for a system involving matrix (3.11), the size of the mesh needs to remain reasonable. Should larger meshes be required, domain decomposition could be used to distribute each harmonic over several cores.

To obtain a good initial guess, we solve the linear problem, which uncouples the equations and may be solved with a direct LU decomposition. For larger A, we continue in steps from smaller A. Likewise, we may increment M and N as the iteration proceeds.

Reflectional symmetry in z

For a reflectionally symmetric solution with respect to z = 0, we restrict the forcing so that

f x (-z, t) = f x (z, t) =⇒ fx (-m, n) = fx (m, n), (3.12a) f y (-z, t) = f y (z, t) =⇒ fy (-m, n) = fy (m, n), (3.12b) f z (-z, t) = -f z (z, t) =⇒ fz (-m, n) = -fz (m, n). (3.12c)
Imposing symmetry on f and g requires that the spanwise velocity component must be set to zero at the inlet boundary. Imposing the same symmetries on the solution reduces the number of unknowns by about a factor of 2. These symmetric solutions, it must be stressed, may be unstable to asymmetrical disturbances. In the subsequent sections, results are shown with and without imposing z-reflectional symmetry.

Optimal forcings

In this study, we only consider optimal volumetric forcings f in view of understanding the physical triggering mechanisms at play. In a future step, the present study can be extended to boundary forcings, by also optimizing ĝ. We pose a procedure to find the forcing f that maximizes a general positive, real-valued cost-functional J( ŵ), under the constraint that ŵ is a solution to the HBNS nonlinear problem forced by f with finite amplitude A. In the following sections, the cost-functional J( ŵ) will either correspond to the kinetic energy of the harmonics ( §5) or to the wall shear stress of the mean-flow harmonic ( §6).

To solve the constrained optimization, we consider the Lagrangian functional

L( ŵ, [ w, λ], f ) = J( ŵ) -w * R( ŵ) -MP f -λ f * Q f -A 2 , (3.13)
where the star symbol (•) * denotes the conjugate transpose, and w and λ are Lagrange multipliers enforcing the constraints. The λ-constraint is that the forcing f must exhibit a prescribed finite amplitude A

f * Q f = A 2 , (3.14)
where Q is a positive-definite Hermitian matrix defining a norm on the forcing space f . Here we consider a block diagonal matrix

Q = diag(Q mn ) (3.15) where f * mn Q mn fmn = (| fmn,x | 2 + | fmn,y | 2 | + | fmn,z | 2 ) dΩ (3.16)
such that Q is used to calculate the energy over all frequencies and wavenumbers and Q mn is component-wise.

Proceeding in the usual way by zeroing the variations of L with respect to w and λ yields the constraints, whereas variations w.r.t. w gives an equation for the adjoint state,

A * w = dJ d ŵ , (3.17)
and variations w.r.t. f lead to a relation

Q -1 P * M w w -2λ f = 0, (3.18)
that shows that f needs to be parallel to w . A convergence criteria (to a local maximum) is that the angle θ between these two vectors vanishes

cos(θ) = f * Q w Aγ = 1, (3.19)
where γ = √ w * Q w . Following [START_REF] Kerswell | Nonlinear nonmodal stability theory[END_REF], the algorithm for the update of f is based on steepest ascent

fnew = f + A ( w -2λ f ),
where the Lagrange parameter λ is chosen such that it constraints the forcing energy f * new Q fnew = Algorithm 1 Nonlinear Optimization using HBNS 1: Initialize. Set stopping criterion θ c . Let fn be an approximation of a maximum of J( ŵ) such that f * n Q fn = A 2 . 2: Solve the nonlinear HBNS system (3.6) to determine the state ŵn , using the iterative Newton method and the iterative preconditioned GMRES algorithm ( §3.2.2) R( ŵn ) = MP fn .

3: Solve the linear system for the adjoint state wn , using the same iterative preconditioned GMRES algorithm ( §3.2.2)

A * wn = dJ d ŵ ŵn . 4: Set w n = Q -1 P * M wn , compute the norm γ n = w * n Q w n and evaluate alignment angle cos(θ n ) = f * n Q w n /(Aγ n ). 5: if | cos(θ n )| > cos(θ c ) then 6:
Break. Return ( fn , ŵn ), which is a reasonable approximation of an extremum. 7: else 8:

Update f :

λ n = 1 + n γ n cos θ n -1 -2 n γ 2 n sin 2 θ n 2A n , n = c γ n . (3.20) fn+1 = fn + A n ( w n -2λ n fn ), 9:
Go to 2. 10: end if A 2 , and governs the amplitude change between f and fnew . The parameter may be chosen as = c/γ where 0 < c 1 to allow a solution for λ. For c = 1, fnew is parallel to the adjoint vector w and the procedure is therefore similar to the power iteration method. Potentially, more efficient numerical methods can be implemented for the search direction (i.e. conjugate gradient instead of steepest ascent) and for the update step length (line search methods for variable step size).

The explicit steps of the iterative procedure are detailed in algorithm 1. The parameter c can be fixed to 1 if the guess f is close to the optimum. If not, large derivatives of the cost functional (i.e transition) can lead to large drifts of f , which may destabilize the Newton algorithm. In such a case, lower values of c need to be imposed. In the present study, a good compromise was found with c = 0.5, for which most of the cases converged, without penalizing too much the number of iterations for the Newton method to converge. In a few cases, we had to decrease the value of c down to c = 0.2. The stopping criterion was chosen so that the alignment θ is less than θ c = 1 • .

HBNS: validation for controlled transition

In this section, we validate the HBNS implementation described above against the DNS of controlled K-type transition by [START_REF] Rist | Direct numerical simulation of controlled transition in a flat-plate boundary layer[END_REF]. The volumetric forcing f is set to zero and perturbations are triggered through ĝ which is chosen to represent wall-normal forcing by local time-dependent blowing and suction within a narrow strip at the wall. Thus, in accordance with [START_REF] Rist | Direct numerical simulation of controlled transition in a flat-plate boundary layer[END_REF], we impose u = w = 0 and v(x, z, t) = 5×10 -3 sin(ωt)v a (x) + 1.3×10 -4 cos(βz)v s (x), (4.1) which represents a superposition of a 2D spanwise uniform wave (0, ω) of frequency ω = 11×10 -5 and a steady 3D wave (β, 0) of spanwise wavenumber β = 42.3×10 -5 . The specific profiles of the wall-normal velocity of the unsteady and steady waves, which are localized between x 1 and x 2 on the wall boundary, are given by:

v a (x) =        0 , x x 1 15.1875ξ 5 -35.4375ξ 4 + 20.25ξ 3 , x 1 < x x m -v a (2x m -x) , x m < x x 2 0 , x 2 < x (4.2) v s (x) =        0 , x x 1 -3ξ 4 + 4ξ 3 , x 1 < x x m v s (2x m -x) , x m < x x 2 0 , x 2 < x (4.3)
Here:

x 1 = 1.3438×10 5 (Re 1 δ * = 630), x 2 = 1.5532×10 5 (Re 2 δ * = 678), x m = (x 1 + x 2 )/2 and ξ = x-x1
xm-x1 . We have positioned the strip for exciting the disturbances exactly at the same location as in [START_REF] Rist | Direct numerical simulation of controlled transition in a flat-plate boundary layer[END_REF]. The inlet and outlet positions of the domain (Re i δ * = 298 and Re o δ * = 863) are not identical to those of Rist &Fasel (1995) (580 and1375, respectively); yet, due to the convective amplification of disturbances in the boundary layer, these choices should not affect the comparison.

Due to the symmetry of the wall forcing, spanwise reflectional symmetry was assumed enforcing equations (3.12). The mean flow harmonic ŵ00 was initialized with the base-flow solution and the other harmonics were set to zero except the (0, ω) and (β, 0) harmonics, which were initialized with the linearized responses. For M = N = 2 (9 harmonics in total) the solution of the HBNS system converged after 9 Newton iterations (residuals of the order of 10 -10 ). The M = N = 3 (16 harmonics) solution was obtained using as initial guess the M = N = 2 solution and converged after 4 iterations, whereas the M = N = 4 (25 harmonics) solution was obtained from the M = N = 3 one in 4 iterations. The associated computational cost in terms of memory, cores and walltime is given in table 3, appendix A.

In figure 2, we compare the amplitude of the first few harmonics from the HBNS against the DNS results obtained by [START_REF] Rist | Direct numerical simulation of controlled transition in a flat-plate boundary layer[END_REF]. A sensitivity analysis of the domain length and of the finite element discretization is given in appendix A, along with the computational cost for the HBM method. For plotting the (0, 0) harmonic component, we have subtracted the base-flow solution, which leads to the mean flow deformation (MFD). The definition of the amplitudes of the different harmonics are described in appendix B. The wall-normal forcing excites initially planar TS waves (0, ω) and streamwise vortices/streaks (β, 0) at a given frequency and spanwise wavelength. Oblique waves (β, ±ω) and higher harmonics are generated through nonlinear interactions. Similarly, the self-interaction of the modes when they reach sufficiently high amplitudes, generates (0, 0) components that cause departure of the mean-flow harmonic from the base-flow solution. Even with M = N = 2, good agreement is obtained for the fundamental (0, ω) and (β, 0) harmonics and for the oblique wave (β, ω). As the perturbations grow in the streamwise direction, the M = N = 4 results are in slightly better with the DNS for the higher harmonic (2β, ω).

In figure 3, isosurfaces of streamwise velocity show low-speed velocity streaks (blue) developing in the streamwise direction. Furthermore, isosurfaces of the Q-criterion, colored based on the normal distance from the wall, show Λ-vortices sitting on the low-speed streaks. They are elongated and move away from the wall as they propagate downstream, in accordance with [START_REF] Rist | Direct numerical simulation of controlled transition in a flat-plate boundary layer[END_REF]. The more localized the Λ-structure, the larger the number of harmonics required in the z direction to describe it. It is seen that with M = 4, we clearly capture these structures.

It is evident that linear approaches would fail to capture the observed transition dynamics, including mean flow deformation and saturation of the amplitude of the harmonics. Potentially a quasi-linear approach could be used to calculate the meanflow deformation but, in general, the nonlinear energy transfer between the forced modes is not captured. And consequently also the resulting meanflow deformation arising from the triadically nonlinearly excited modes. In the specific case of K-type examined by [START_REF] Rist | Direct numerical simulation of controlled transition in a flat-plate boundary layer[END_REF], this is evident by observing that energy is transferred to the oblique wave due to the nonlinear interaction of the streak and planar 2D wave components.

The HBNS framework captures all the above key dynamical characteristics of transition (mean flow deformation, saturation, nonlinear energy transfer among harmonics) by keeping the minimum number of harmonics and consequently the minimum number of balanced nonlinear interactions.

The question that arises is how many modes and consequently nonlinear interactions are needed for a qualitative and quantitative description of the flow? As expected, the higher the amplitude of the perturbations, the more harmonics are needed in the HBNS representation: the upstream (resp. downstream) part of the flow, which is characterized by small (resp. large) perturbations, requires a low (resp. high) truncation order. The number of required harmonics therefore depends on the forcing amplitude and the extent of the domain in the downstream direction, which sets the maximum amplitude of the perturbation.

Linear input/output (resolvent) analysis

Before performing nonlinear optimization, we briefly recall here results obtained by [START_REF] Monokrousos | Global three-dimensional optimal disturbances in the blasius boundary-layer flow using time-steppers[END_REF]; [START_REF] Brandt | Effect of base-flow variation in noise amplifiers: the flat-plate boundary layer[END_REF] concerning linear optimal forcing in the frequency domain that aim at maximizing energetic gains (resolvent analysis). Such results are important to understand and analyse the forthcoming nonlinear optimizations. For this, we consider a generic volumetric forcing and no-slip boundary conditions on the wall. For a given forcing fmn and response ŵmn harmonic, the cost function for the linear optimization is the input/output kinetic energy gain over the whole domain where Q mn eliminates the pressure component of the state vector w = [u, v, w, p] for the calculation of the kinetic energy solely on the velocity components,

J lin mn = ŵ * mn Q mn ŵmn f * mn Q mn fmn , ( 5 
Q mn = Q mn 0 0 0 , (5.2)
and Q mn was defined in (3.16).

Although we could have used the nonlinear HBNS code with a small forcing amplitude A, such that nonlinear effects are negligible, we used a linearized version of the code implementing the linear relationship between fmn and ŵmn . Such a linear optimization problem is efficiently solved by iterative methods [START_REF] Sipp | Characterization of noise amplifiers with global singular modes: the case of the leading-edge flat-plate boundary layer[END_REF]. The mesh extends here from x i = 0.30 × 10 5 (Re i δ * = 298) to x o = 3.60 × 10 5 (Re o δ * = 1032). It comprises 116806 triangles, yielding 586178 degrees of freedom per harmonic. The same mesh will be used in the next section dealing with nonlinear optimization ( §6). The linear optimal amplitude gain (σ = J lin mn ) is shown in figure 4, as a function of frequency ω and spanwise wavenumber β. Two local maxima are observed, in agreement with [START_REF] Monokrousos | Global three-dimensional optimal disturbances in the blasius boundary-layer flow using time-steppers[END_REF]. The forcing and response mode shapes of the two linear optimal mechanisms are shown in the same figure.

The first local maximum at (β, ω) = (100, 0) × 10 -5 , point A, is associated with the nonmodal lift-up mechanism. The optimal forcing corresponds to steady streamwise rolls (v, w components; for the optimal forcing the v component is shown), and the optimal response to streamwise streaks located further downstream (u component).

The second local maximum at (β, ω) = (30, 10) × 10 -5 , point B, corresponds to the amplification of oblique TS waves. The planar TS waves are not the most amplified ones due to the cooperative non-modal amplification through the Orr and lift-up mechanisms. It is clearly noticed that the optimal forcing is tilted upstream, against the mean shear so that the response takes advantage of the algebraic amplification through the Orr mechanism.

Nonlinear input/output analysis

To uncover the optimal nonlinear mechanisms that promote transition, the nonlinear interactions of the modes and their impact on the mean flow is now incorporated in the analysis through the optimization approach developed in §3.3.

We choose as cost function the (squared) shear-stress of the mean-flow deviation, integrated over the wall. With the notation introduced above, this is:

J( ŵ) = J( ŵ00 ) = ( ŵ00 -w b ) * C * C( ŵ00 -w b ),
with Cw = y=0 ∂u ∂y dx and w b is the base-flow. For this choice of cost function, we have:

dJ d ŵ00 = 2C * C( ŵ00 -w b )
and 0 for the other harmonics. This cost function can be directly linked to the drag change exerted on the plate,

∆C D = νJ 0.5 1 2 U 2 ∞ L p , (6.1)
where L p = x o is the plate length. In other words, by maximizing the specific cost function J, we maximize the drag on the plate. The entries of matrix P allow selection of the forced equations and of a subset of forced harmonics. As in the linear case, we will restrict the forcing to the momentum equations and exclude mass sources. In order to preserve the mean-flow harmonic ŵ00 from direct modifications induced by steady forcing terms, we set f00 = 0 and exclude this mode from the optimization process. Here we focus on environmental perturbations that trigger transition that are in principle characterised by a zero mean in z and t, and they don't introduce directly a mean flow deformation. Yet, we allow steady forcing in z, i.e. rolls with e iβz shape, that trigger mean-flow deformations in z.

Two types of forcing are then considered, which we refer to as fundamental and superharmonic cases, as depicted in figure 5. For the first case, forcing is restricted to components (m, n) = (β, ±ω), (β, 0), (0, ±ω); we call this fundamental, since forcing is allowed only at the primary forcing frequency and spanwise wavenumber. Each of these forcing components, can potentially lead to the amplification of a pair of unsteady oblique waves, steady streamwise streaks or vortices, and planar waves, respectively. For the superharmonic forcing case, we allow also the second forcing harmonics to be optimized, |m| 2 and |n| 2, except m = n = 0. This allows forcings of fundamental harmonic and superharmonic components. For example, forcing f02 is at twice the frequency of forcing f11 . If the perturbation satisfies reflectional symmetry in z, all forcing and response harmonics n < 0 are directly linked to those satisfying n > 0. The range of fundamental forcing frequencies and spanwise wavenumbers for the nonlinear optimization were chosen such that the linear optimal mechanisms corresponding to streaks and oblique waves, see linear βomega gain map in figure 4, are investigated in the nonlinear framework. We note that in both cases, we solve 132 separate optimization cases over a wide range of the fundamental forcing frequency, ω and β. Specifically, β = [4. 1, 8.3, 16.6 : 16.6 : 167] × 10 -5 and ω = [0.83, 1.67 : 1.67 : 16.67] × 10 -5 .

As an initial guess to the nonlinear optimization algorithm, we use the base-flow solution for the mean-flow harmonic ŵ00 and the linear optimal forcing and response components that maximize the kinetic energy (see §5) for the perturbation (all unforced harmonics are set to zero). The amplitude of each harmonic forcing f is normalized based on the linear gain:

f init mn = ζ f lin mn √ λ mn ,
where f lin mn is a unit-norm (based on Q mn ) linear optimal forcing associated to the linear optimal gain λ mn and ζ a constant adjusted so that f * Q f = A 2 . Such a choice allows the initial condition ŵlin to correspond to a mix of optimal responses of equal amplitude. The nonlinear optimization framework then adjusts their amplitude, their spatial shape and fills in the response modes arising from the nonlinear interactions.

Regarding the initial amplitude A, we choose a low value, for which it is easy to converge to the nonlinear solution due to its proximity to the linear regime. Then, we gradually increase A and follow the solution. The optimal solution is defined up to a phase due to the periodicity in time (for example, t = 0 can correspond to arbitrarily defined phase). Without imposing a z-symmetry, the same is true for the z-direction, meaning the z = 0 location has an arbitrarily defined phase. Only in the symmetric case, the phase in z is fixed. For high amplitudes, multiple solutions may exist. For that reason, we have added random noise to test the robustness of our solutions. After a high threshold, we indeed identified a non-symmetric branch of solutions in addition to the low amplitude symmetric one, which are discussed in the following sections. 6.1. Identification of optimal transition mechanisms: z-symmetric case with A = 7.07×10 -5 and

M = N = 2
We first consider a case with imposed spanwise symmetry on the forcing and response and M = N = 2. For small enough amplitude A, we expect that the forcing and perturbation should exhibit the z-reflectional symmetry of the configuration. The small number of resulting modes allows for more expensive parametric studies over ω and β, but, strictly speaking, the results are converged for sufficiently small A so that higher-order harmonics may be neglected. We look for an amplitude A that is sufficiently large so that nonlinear interactions and energy transfers are effective but also sufficiently small to ensure that truncation errors are negligible for M = N = 2. We found the value A = 7.07×10 -5 to be a good compromise. In a subsequent section, we examine convergence by increasing A and the retained number of harmonics M and N , and verify a posteriori that the present results are reasonably well converged.

The cost function (expressed as mean drag perturbation via (6.1)) is shown in figure 6 for both the fundamental-and superharmonic-type forcings. For the fundamental case, maximum drag increase is observed at (β, ω) = (33.4, 11.7) × 10 -5 , whereas for the superharmonic case the maximum occurs at the same frequency but a slightly higher wavenumber, (β, ω) = (50, 11.7) × 10 -5 . For the superharmonic case, the drag increase is approximately 14 times higher compared to the fundamental forcing. In both cases, the overall optimal frequency/wavenumber pairs are close to the point marked B on the linear amplifcation plot (figure 4), which represents the local maximum in linear amplification of oblique waves. While those waves are linearly less amplified than streaks (point A), they are nonlinearly superior. As will be shown in detail below, the nonlinear fundamental mechanism C and superharmonic mechanism D initially harness oblique wave amplification, and eventually lead, through nonlinearity, to redistribution of energy near A and a strong response related to the lift-up mechanisms producing streaks.

Symmetric fundamental forcing

Focusing on the fundamental case first (figure 5a) with z-reflectional symmetry, we now delve into the optimal forcing and response in greater detail. To simplify the discussion, we define in appendix B, a scalar amplitude A(m, n) of each forcing/response mode, which represents an integral over the spatial domain. These amplitudes are shown in figure 7. Note that upon summation of the forcing modes, this yield the overall forcing amplitude (here A = 7.07×10 -5 ), and all amplitudes in the plot are normalized by this value. Based on the dominant regions of the forcing and response amplitudes on the βω planes in figure 7, three distinct mechanisms can be identified:

(i) Oblique waves. The maximal drag increase over the entire β-ω plane examined here occurs for (β, ω)=(33.3, 11.7) × 10 -5 , and only involves significant forcing of the oblique wave component (β, ±ω). In the response, there is some amplification to the response component (β, ±ω), as expected in a linear framework, but the (2β, 0) component, which arises from nonlinear interactions between (β, ω) and (β, -ω) components, is highly amplified. The mean flow modification is clearly associated with the amplification of (2β, 0) streaks via oblique forcing. These observations confirm oblique transition as optimal in terms of transition thresholds among all the fundamental spanwisesymmetric mechanisms, as shown previously for plane Couette [START_REF] Duguet | Towards minimal perturbations in transitional plane couette flow[END_REF]) and channel flow [START_REF] Reddy | On stability of streamwise streaks and transition thresholds in plane channel flows[END_REF].

(ii) Streamwise vortices. For high spanwise wavenumbers, β > 100×10 -5 , the optimal forcing is a streamwise vortex (m, n) = (β, 0). For these frequencies, the linear amplification of obliques waves is weak and thus the generated streaks through nonlinearity would also be weak. Consequently, for high enough frequencies and wavenumbers, i.e. those that are far from the linear optimal of the oblique waves, the optimal forcing mechanism is the direct amplification of streaks through the lift-up mechanism.

(iii) K-type mechanism. Finally, at (β, ω) = (16, 15) × 10 -5 , the optimal forcing is a combination of all three components. Main forcing component is a planar 2D wave (0, ω) followed by a pair of 3D oblique waves (β, ±ω) at the same frequency. This mechanism is similar to the Klebanov one, describing fundamental K-type transition.

Since the oblique waves are the most dangerous mechanism in terms of drag increase, we examine the structure of the forcing and response fields in greater detail in figure 8. Initially, (β, ±ω) oblique waves † are amplified due to linear instability and reach maximum amplitude at Re x ≈ . This forcing results to the maximum amplification of shear stress for fundamental forcing over all forcing frequencies and wavenumbers (point C in figure 6a). Isosurfaces of streamwise perturbations f u = ±8.3×10 -9 (bottom left) and u = ±0.07 (bottom right), blue negative iso-value and red positive one. One fundamental wavelenghth is shown in z.

Figure 9. response components for the optimal oblique fundamental case shown in figure 8. The response is dominated by the growth of (β, ±ω) oblique waves (u shown), followed by the nonlinear generation of (2β, 0) vortices (ω x shown) and the linear growth of streaks (u shown).

250, 000 before they start decaying. The optimal forcing is located further upstream and exploits the Orr mechanism for the amplification of the oblique waves, similarly to the optimal linear mechanism. Both the linear ( §5) and nonlinear (shown in this section) optimal oblique forcings reach their maximum value around Re x ≈ 150, 000, which is near branch I of the neutral amplification curve based on modal stability analysis (see [START_REF] Sipp | Characterization of noise amplifiers with global singular modes: the case of the leading-edge flat-plate boundary layer[END_REF] regarding the link between local modal stability and linear resolvent). The quadratic nonlinearity redistributes the energy of the oblique waves into the (2β, 0) mode in the form of streamwise vortices with streamwise vorticity ω x (v, w components with (2β, 0)). In turn, the streamwise vortices lead to the growth of the streaks (u component with (2β, 0)) through the linear lift-up mechanism. The spatial shape of each harmonic response component mentioned above is shown in figure 9, demonstrating the transition sequence from oblique waves to streamwise vortices and streaks. These observations are in agreement with previous studies on oblique transition [START_REF] Schmid | A new mechanism for rapid transition involving a pair of oblique waves[END_REF][START_REF] Berlin | Spatial simulations of oblique transition in a boundary layer[END_REF]. The sequential temporal unfolding of the Orr, oblique and lift-up phases has been observed during the minimal seed calculations in the time domain [START_REF] Pringle | Minimal seeds for shear flow turbulence: using nonlinear transient growth to touch the edge of chaos[END_REF][START_REF] Duguet | Minimal transition thresholds in plane couette flow[END_REF], in analogy to the spatial unfolding of the above mechanisms in the streamwise direction during the present approach.

The link between the nonlinear gain map and that obtained from linear analysis is evident now: the most dangerous nonlinear forcing exploits both linear amplification mechanisms, specifically 3D unsteady oblique waves and 3D steady rolls-streaks, through the redistribution of energy from the first linear mechanism to the second linear mechanism via nonlinearity. The fundamental frequency and spanwise wavenumber, (β, ω)=(33.3, 11.7) × 10 -5 , is very close to the linearly optimal oblique ones, (β, ω)=(30, 10) × 10 -5 , and then nonlinearly generated steady vortices are formed at twice the spanwise wavenumber (β, ω)=(66.6, 0) × 10 -5 . The latter part does not coincide with the maximum linearly amplified lift-up wavenumber, (β, ω)=(100, 0) × 10 -5 , but it is close enough to take advantage of this mechanism in an optimal synergistic way.

Symmetric superharmonic forcing

Here, forcing is expanded to consider both the fundamental and its first harmonic in both frequency and spanwise wavenumber, see figure 5b. Thus, forcing is allowed in 8 forcing components arising from all the combinations of fundamental and first harmonic components. We retain for now M = N = 2 and A = 7.07×10 -5 , and recall (figure 6b) that maximum amplification of shear stress is observed for forcing at (β, ω) = (50, 11.7) × 10 -5

The optimum in the (β, ω) plane for the superharmonic case is close to the one found for the fundamental case where the oblique waves were the optimal forcing However, now the planar waves at twice the frequency of the oblique waves share similar amplitude to the oblique waves. As can be observed in figure 10, only two major forcing components exist at the optimal (β, ω) pair. The optimal forcing corresponds to a three-dimensional oblique wave (β, ω) and a superharmonic two-dimensional wave at twice the frequency, (0, 2ω). The optimal superharmonic forcing is in agreement with the typical scenario for H-type transition triggered by a pair of oblique waves and a TS wave at twice the frequency. In the literature describing H-type transition, typically the TS is called the fundamental wave and the oblique the subharmonic, but our description is equivalent.

The streamwise evolution of each forcing and response harmonic for the optimal superharmonic case is shown in figure 11. The forcing is dominated by the superharmonic two-dimensional TS wave at twice the fundamental frequency, (0, 2ω), and the three-dimensional oblique waves, (β, ±ω). Since spanwise reflectional symmetry has been enforced, the amplitudes of the (β, +ω) and (β, -ω) oblique waves are equal and only one of those is shown. Despite the differences in the forcing components when compared to the fundamental case where only the oblique waves are present, the amplitude response is qualitatively similar and dominated by streaks. However, the nonlinearly generated streaks have almost twice as high amplitude when compared to the fundamental case, due to the efficient amplification of the parent oblique waves through the resonant interaction with the planar 2D waves (see figure 12). The subsequent stages are similar to the ones of the fundamental case where streamwise vortices are generated from the nonlinear interactions between (β, ω) and (β, -ω) components, which in turn produce streaks. Finally, towards the end of the domain, lowand high-speed streaks start to undergo streamwise oscillations. These oscillations are stronger than in the fundamental oblique case (compare with figure 8), since for a given amplitude, the resonant H-type forcing leads to higher streak amplification through the stages described above.

For the optimal superharmonic forcing (oblique and planar waves), low levels of energy are observed in two other forcing components, the (2β, 0) and (2β, 2ω) components. In figure 13, we analyse their importance by plotting the total amplitude of each forcing and response harmonic. Also, to ensure converged results, we have increased the number of response harmonics and lowered the forcing amplitude. The left column shows the superharmonic optimized forcing and response amplitude for each harmonic, when forcing is allowed in all 8 forcing components as above. The (0, 2ω) planar and (β, ω) oblique waves are the dominant forcing components, and the (2β, 0) and (4β, 0) streaky structures, the (β, ω) and (3β, ω) oblique waves and the (0,0) MFD in the response. The second column corresponds to an optimization restricted solely to the (0, 2ω) and (β, ω) harmonics: it is seen that it reproduces closely the more complex optimization of the leftcolumn (the reached ∆C D is nearly the same). On the contrary (right column), it is seen that if the (0, 2ω) planar wave is replaced by the (2β, 0) streaky component in the forcing (this also corresponds to a superharmonic forcing, but in spanwise wavenumber), then the optimal response only achieves weak drag increase, in agreement with those shown for the fundamental optimization at similar amplitudes. This validates that it is the interplay between the (0, 2ω) planar and the (β, ω) oblique harmonic that accounts for the strong amplification observed in H-type transition.

The catalytic role of the planar waves in the superharmonic H-type case be also evidenced from a weakly-nonlinear analysis based on scaling arguments. The analysis (see appendix C) shows that . This forcing results to the maximum amplification of shear stress for superharmonic forcing over all forcing frequencies and wavenumbers (point D in figure 6b). Isosurface of f u = ±8.3×10 -9 (bottom left) and u = ±0.07 right), blue negative iso-value and red positive one. One fundamental wavelength is shown in z.

Figure 12. Harmonic response components for the optimal superharmonic case shown in figure 11. The response is dominated by the growth of (β, ±ω)OW oblique waves and (0, ± ω)T S at twice the frequency overlaid for OW and TS) characteristic of H-type resonance. The oblique waves generate nonlinearly (2β, streamwise vortices (ω x shown) which promote the linear growth of streaks (u shown). Also, initial stages of streak instability are observed near the domain outlet.

the drag increase, for the two optimal fundamental and superharmonic cases, scales as

∆C D = ∆C D,2 A 2 + ∆C D,3 A 3 + ∆C D,4 A 4 + • • •
for superharmonic forcing (6.2)

∆C D = ∆C D,2 A 2 + ∆C D,4 A 4 + • • • for fundamental forcing. (6.3)
Hence, superharmonic resonant forcing allows the presence of additional odd terms in the expansion. For example, the A-order (0, 2ω) planar and (β, -ω) oblique waves generate the A 2 -order (β, ω) oblique wave, which may interact with the A-order (-β, -ω) oblique wave to promote an A 3 -order (0,0) MFD. Hence, in the case of superharmonic forcing, it is possible to take advantage of the odd-orders to optimize the drag increase, while for fundamental oblique forcing, only even orders exist in the expansion.

Fundamental forcing for higher A and the effects of truncation

The results shown above were obtained with a truncated expansion with M = N = 2 response modes. A preliminary assessment of the harmonic truncation can be made by examining the amplitude of higher or truncated wavenumber/frequency components. In figure 7, we observe that the second frequency harmonics, (mβ, 2ω), have a much smaller amplitude than the fundamental ones, (mβ, ω). However, this is not the case for the truncation in β harmonics. As we saw above, a strong response was obtained at (2β, 0) component through nonlinear interactions.

To directly assess the truncation error, calculations were performed with larger M and N . The resulting maximum in the cost function is shown, as a function of forcing amplitude, in figure 14a for various orders of truncation. Apart from the most highly truncated case, we see a tendency towards convergence for forcing amplitudes A < 7×10 -5 . The M = N = 1 case is clearly too highly truncated-this can be understood physically since the nonlinear amplification mechanisms described above require the generation of streaks at (2β, 0). As discussed above, during the initial stages of transition and for a small forcing amplitude, the second and higher ω-harmonics are not as strongly amplified as the β-harmonics, meaning that the energy spreading occurs faster in β than ω. For example, the M = 2, N = 1 case is almost identical to the M = N = 2. Similarly, M = 4, N = 2 is close to M = N = 4. The dominance of the β-cascade has been observed in various DNS and experimental transition studies [START_REF] Breuer | The late stages of transition induced by a low-amplitude wavepacket in a laminar boundary layer[END_REF] and [START_REF] Yeo | Dns of wavepacket evolution in a blasius boundary layer[END_REF] triggered transition with an impulse wavepacket, or K-type controlled transition [START_REF] Rist | Direct numerical simulation of controlled transition in a flat-plate boundary layer[END_REF]) and it is consistent with the results presented here.

Symmetric streak breakdown

Increasing further the number M of β-harmonics, a sudden change is observed in the drag values for A ≈ 8 × 10 -5 and for M 4, see figure 14a. The skin friction coefficient for various amplitudes is shown in figure 14b for M = N = 4. The spanwise averaged skin-friction coefficient is calculated from the (0, 0) streamwise velocity component:

C f = τ wall 1 2 U 2 ∞
, with τ wall = ν ∂ û00 ∂y y=0 .

For comparison, the values of the laminar skin friction coefficient (C lam f = 0.664/ √ Re x ) and the empirical one corresponding to fully developed turbulence (C turb f = 0.455/ ln 2 (0.06Re x )) are shown with dashed lines [START_REF] White | Viscous fluid flow[END_REF][START_REF] Yeo | Dns of wavepacket evolution in a blasius boundary layer[END_REF]. The transition is accompanied by an overshoot of the skin friction coefficient up to the empirical turbulent values, for sufficiently high forcing amplitudes. Increasing M , the transition threshold moves to lower forcing amplitudes, suggesting that the flow has transitioned to a more complex regime, for which a large number of harmonics would be required to capture quantitatively accurately the solution, as will be discussed in greater detail below.

The amplitudes of the forcing and response components are shown in figure 15 for A = 11.3×10 -5 and the M = N = 4 case, again for the optimal fundamental forcing. The forcing reaches maximum amplitude further downstream at Re x = 200, 000, when compared to the lower amplitude case, and also a second distinct region forcing appears for Re x > 250, 000. For all the cases examined, we noticed that the second region of forcing triggers streak oscillations in the streamwise direction and they subsequently break down. Regarding the response, once the (2β, 0) streaks reach sufficiently high amplitude, the harmonic component (4β, 0) increases up to Re x ≈ 320, 000 along with the (3β, ω) harmonic. The latter is responsible for the generation and progressive elevation of hairpins from the wall. The MFD increases monotonically in agreement with the increase in skin friction coefficient. A cascade of nonlinear interactions makes the amplitude of all the harmonic components to increase significantly toward the end of the domain, where the skin friction has exceeded the empirical turbulent value. The streak breakdown is the key mechanism that promotes transition of the flow, compared to the previous low forcing amplitude cases.

For all the cases presented above we have imposed symmetry in z. Under this restriction, the low-speed streaks undergo varicose oscillations in x whereas the high-speed streaks undergo sinuous oscillations (subharmonic varicose case in [START_REF] Andersson | On the breakdown of boundary layer streaks[END_REF]) creating a staggered pattern of Λ-structures and the emergence of hairpin vortices further downstream [START_REF] Asai | The instability and breakdown of a near-wall low-speed streak[END_REF]. Similar behavior has been observed in DNS simulations [START_REF] Berlin | Numerical and experimental investigations of oblique boundary layer transition[END_REF] where a pair of oblique waves was introduced in the domain inlet and reflectional symmetry in spanwise was imposed. Initial stages of this process are visualized using the Q-criterion. The emergence of the hairpin vortices coincides with the final regime during the transition process and the overshoot of the skin friction coefficient to the turbulent values.

Breaking the z-reflectional symmetry

In this section we relax the reflectional symmetry assumption in z that was imposed above. The computational cost increases since we have to account for almost twice the number of harmonics. We focus again here on the optimal fundamental forcing at (β, ω)=(33.3, 11.7) × 10 -5 that is initiated through a pair of equal amplitude oblique waves.

The dependence of the maximum drag increase on the forcing amplitude with and without z- reflectional symmetry is shown in figure 16a for M = N = 2 and M = 3, N = 2. The dashed lines correspond to the values obtained in the previous section imposing reflectional symmetry (SYM cases). We repeated the optimization for each forcing amplitude and restricted the forcing to act only on the oblique (β, ω) component without imposing symmetry in z. The initial guess was the symmetric solution with random noise of 10% of the maximum value of each forcing component added to break the symmetry. Up to a critical forcing amplitude, A c = 18×10 -5 for M = N = 2 and A c = 9.2×10 -5 for M = 3, N = 2, the solution converges to the one satisfying the reflectional symmetry. At the critical amplitude the solution bifurcates to a different equilibrium with approximately two times higher drag increase than the one for the symmetric case.

In figure 16b, the skin friction coefficients of the two cases with and without z-reflectional symmetry are shown for M = 3, N = 2 for various forcing amplitudes. For the symmetric cases, the skin friction values saturate to values close and above the laminar curve for low forcing amplitudes. Only the highest amplitude shows a tendency for departure from the trend of the lower amplitude curves, indicating that the streaks are on the verge of symmetric breakdown. Relaxing the symmetry assumption, and for the same amplitudes as the symmetric case, the skin friction reaches values significantly higher than the turbulent ones. For the two highest amplitudes, after the overshoot to the turbulent values, the skin friction drops. In contrast, for the symmetric case a monotonic increase for similar values beyond the threshold of the turbulent skin friction values was observed (see figure 14b). 9.9 × 10 -5

9.2 × 10 -5

Figure 16. Maximum drag increase for optimal oblique fundamental forcing with no imposed symmetry in z (solid lines) and z-reflectional symmetry (SYM, dashed lines) for various orders of truncation M, N (left). Skin friction coefficient as a function of Rex for various forcing amplitudes for M = 3, N = 2 (right).

For the non-symmetric cases, sinuous-like transition of the low-speed streaks is observed.

The amplitude of the forcing and response harmonic components is shown in figure 17 for the M = 3, N = 2 case. The oblique forcing components, (β, +ω) and (β, -ω), break their symmetry and are characterized by different amplitudes now. Due to the fact that the +z and -z directions are equivalent, the preference for higher amplification of (1, +1) or (1, -1) is arbitrary and depends upon the noise initialisation. Also, two new local maxima appear for Re x > 2×10 5 in the amplitude forcing curves. This is similar to the one that appeared in the symmetric case that promoted the varicose streak breakdown, but here it is more pronounced. The amplitude response of the different harmonic components shows that the initial stages are similar to the ones observed in the case with imposed spanwise symmetry. The oblique waves (β, ±ω) interact nonlinearly to promote the growth of rolls-streaks at twice the spanwise wavenumber, (2β, 0). The (3β, ±ω) components are amplified as well, similar to the symmetric case. Immediately after that, all the harmonics appear to attain high energy values, due to the more effective energy spread through the symmetry break of the forcing.

Despite the similarities in the amplitude response, the flow is qualitatively different to the symmetric case. The reflectional symmetry break of the forcing can be observed in the isosurfaces of the streamwise velocity perturbation. Towards the decaying phase of the forcing, the dominance of the left-travelling (1, -1) oblique wave is evident. This mechanism promotes in an optimal way the sinuous-like breakdown of the low-speed streaks. The sinuous low-speed streak breakdown occurs for lower forcing thresholds compared to the varicose breakdown. This is in accordance with previous results in the literature examining streak breakdown [START_REF] Andersson | On the breakdown of boundary layer streaks[END_REF]). This regime is not associated with hairpin vortices, but with quasi-streamwise vortices of alternate sign, in accordance with the experimental findings of [START_REF] Asai | The instability and breakdown of a near-wall low-speed streak[END_REF] and numerical ones of [START_REF] Brandt | Numerical studies of the instability and breakdown of a boundary-layer low-speed streak[END_REF]. Visualization of the vortices using the Q-criterion shows longitudinal vortices staggered on each side of the low speed streaks up to Re x = 300, 000. At this location the the low-speed streaks come close together in an alternate staggered manner and merge. In the same time they break and then create individual Λ-like staggered structures. Exactly at this stage, the skin friction coefficient has reached the turbulent value.

Superharmonic forcing for high MN and high A

A convergence study of the truncated HBM expansion was performed for the superharmonic case with imposed z-reflectional symmetry. Up to a forcing amplitude A = 3×10 -5 , the solution appears converged, for the M = N = 2 case. Increasing the forcing amplitude, the flow transitions. For A > 5.13×10 -5 and M = 6, N = 3, the skin friction coefficient overshoots towards the turbulent values, see figure 18b. Similarly to the symmetric fundamental case, a monotonic increase of the skin friction coefficient is observed by increasing the forcing amplitude.

The amplitude of the forcing and response components are shown in figure 19, for the high amplitude forcing case with M = 6, N = 3. The dominant forcing component is the (0, 2ω) mode followed by the (β, ±ω) components. The nonlinear interaction of (β, ±ω) response components create a strong response in the (2β, 0) component. This process continues resulting in the progression of energy along the β-axis and the emergence of (4β, 0) and (6β, 0) components. Although higher harmonics are also created by nonlinear interactions, they are less energetic since they are not amplified by the transient growth to the same degree as the low-wavenumber modes [START_REF] Breuer | The late stages of transition induced by a low-amplitude wavepacket in a laminar boundary layer[END_REF]. The low-speed streaks undergo symmetric varicose type of oscillations, whereas the high-speed streaks oscillate in a sinuous mode in the streamwise direction. The response appears similar to the one for the fundamental oblique forcing, where spanwise reflectional symmetry is imposed. The low-speed streaks attain a Λ-shape, which creates a staggered pattern of Λ vortices. These vortices are identified using the Q-criterion.

Summary and implications for turbulent dynamics

Three high-amplitude forcing cases have been identified above as the worst case nonlinear disturbances that reach values of the skin friction coefficient that are close to and above the empirical turbulent values. These cases were obtained by restricting the forcing to specific harmonic components, with or without spanwise symmetry. For the three cases considered, we plot the mean velocity profile at various streamwise locations for the highest forcing amplitude in figure 20. Distinct regimes can be identified in accordance with the transition sequences observed in the previous sections.

• At the very early stages of transition up to Re x = 200, 000 the velocity profiles obey the linear wall law u + = y + for all three cases. This stage is characterised by linear growth of perturbations. Transition has been triggered optimally with a pair of oblique waves (fundamental cases). In the case of subharmonic instability (superharmonic case), the planar waves are also excited.

• The second stage of transition is associated with the generation of streaks through nonlinear interactions of the oblique waves. At this regime the skin friction coefficient departs from the laminar Blasius values. This new regime is reflected as well through the modification of the local velocity profile outside of the viscous sublayer for y + > 5, in accordance with the increase of the skin friction coefficient (recall that u + ∞ = 2/C f ). Depending on the symmetry of the forcing, varicose Λ-shaped (symmetry in z) or sinuous (no symmetry in z) low-speed streaks have been clearly identified for Re x > 260, 000.

• A third regime is observed where a distinct plateau is formed in the buffer region, 15 < y + < 30 for all three cases. In the symmetric cases, hairpin-like vortical structures grow around the Λ-shaped low-speed streaks at Re x ≈ 330000. In the case without symmetry, alternate quasi-streamwise vortices grow around the sinuous low-speed streaks, i.e. Re x ≈ 300000. Immediately after the vortical structures are formed, the skin friction coefficient overshoots to the turbulent values.

• The final transition regime is associated with the breakdown. At this regime, the skin friction coefficient reaches the empirical turbulent values and energy is transferred to all the higher harmonics.

When z-reflectional symmetry is imposed, the velocity profiles show qualitatively similar characteristics as Re x increases, both for the fundamental and superharmonic cases. A monotonic decrease of the local streamwise velocity is observed in accordance with the monotonic increase of the skin friction coefficient. For the fundamental case with symmetry, a small logarithmic region is observed for Re x = 360000; however, the velocities are lower than those associated with the turbulent profile, which is in accordance with the increased skin friction coefficient beyond the turbulent values. For the superharmonic case and the forcing amplitudes examined here, the behavior is similar without the observation of logarithmic region. The spanwise-symmetric high-amplitude solutions calculated here that transition through streak breakdown show striking similarities with the optimal nonlinear solutions calculated in the time domain for spatially developing boundary layers. However, this is not surprising since their calculations were obtained by using a symmetric initial condition as a guess for the optimization [START_REF] Cherubini | The minimal seed of turbulent transition in the boundary layer[END_REF] or spanwise symmetry was imposed [START_REF] Duguet | Self-sustained localized structures in a boundary-layer flow[END_REF].

Interestingly, for the fundamental case with no symmetry in z (figure 20b), the velocity profiles at the final stages of transition show characteristics similar to the ones observed in turbulent boundary layers. Specifically, the velocity profile appears to develops a nascent logarithmic region, u + = 1 0.41 log y + + 5, that extends in y + as Re x increases. The skin friction coefficient, after an initial overshoot above the turbulent empirical values, drops to values close to the turbulent ones. For this specific case, we observed sinuous low-speed streaks and quasi-streamwise staggered vortices, which are fundamental building blocks in the self-sustaining process (SSP) in a variety of streamwise homogeneous flows [START_REF] Waleffe | On a self-sustaining process in shear flows[END_REF], fundamental sinusoidal instability of the streaky flow), in contrast to the varicose streak instability and the hairpins that were observed for the two symmetric cases.

Conclusion

The nonlinear optimal mechanisms for wall-bounded laminar-turbulent transition have been investigated through solution of the frequency-domain Harmonic-Balanced Navier-Stokes equations by projecting the governing Navier-Stokes equations on to a limited number of harmonics whose triadic interactions are considered. The new framework complements previous methods that seek nonlinear optimal initial conditions in the time domain within a finite time horizon. The proposed nonlinear input/output analysis identifies the most dangerous nonlinear forcing mechanisms that trigger transition and can be viewed as the minimal forcing seed in the frequency domain.

Optimal nonlinear forcing mechanisms that lead to transition and maximize the skin-friction coefficient have been identified based on a variational method using direct-adjoint looping. By increasing the finite forcing amplitude, we identified the key-mechanisms that distort the laminar flow and lead to transition. We showed that for fundamental forcing, the most amplified disturbances correspond to a pair of oblique waves with frequency and spanwise wavenumber close to the linear optimal one. Nonlinearity is responsible for redistributing the energy to the streamwise uniform vortex component which leads to the amplification of streaks through the liftup mechanism. Depending on the imposed spanwise symmetry, the low-speed streaks break down to turbulence through varicose oscillations (imposing reflectional symmetry in spanwise) or sinuouslike ones (no symmetry in spanwise), with the latter being more efficient in promoting transition. In each case, hairpin vortices and quasi-streamwise vortices are observed prior to breakdown. When multi-harmonic forcing is allowed, the resonant interaction between oblique and planar waves at twice the frequency allows for even more rapid transition. At the final stages of transition, the skin-friction coefficient reaches the empirical turbulent values and the velocity profiles depart from the law of the wall, for all cases examined here. However, only for the non-symmetric sinuous-like streak breakdown the velocity profiles develop a clear logarithmic region similar to the one observed for turbulent boundary layers. The green curve corresponds to HBNS solutions with a fixed forcing structure corresponding to the optimal one obtained at A = 4.47×10 -5 (a (0, 2ω) TS wave plus a (β, ω) oblique wave essentially). The blue curve is similar than the green curve, except that the chosen forcing structure corresponds to the one obtained at A = 5.54×10 -7 (a pure (β, ω) oblique forcing). Dashed lines correspond to fitting polynomial expansions for A 1.

It is interesting to note that the structure of the optimal forcing at A = 4.47×10 -5 is strongly suboptimal at very low amplitudes: it becomes optimal only at high-amplitudes due to the additional odd terms in the ∆C D development. On the contrary (blue curve), the structure of the optimal forcing at very low amplitude only benefits from the even terms in the ∆C D development and becomes strongly suboptimal at high amplitudes.

Finally, note that the optimal drag increase (red curve) scales as:

∆C D = 872A 2 + 1.43×10 12 A 4 + • • • ,
which does not exhibit a cubic term. It is more difficult to justify this expansion theoretically (as done in §C.1 and §C.2) since the forcing structure is adjusted at all amplitudes A.

Figure 1 .

 1 Figure1. Schematic of the zero-pressure-gradient flat-plate set-up. Transition of the laminar boundary layer is triggered here either by boundary forcing or volumetric momentum forcing. In general, these forcings can model free-stream disturbances or actuators on the boundary/wall (i.e. periodic blowing and suction, vibrating wall, roughness elements) or actuators within the flow (i.e. vibrating ribbon).
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 2 Figure 2. K-type controlled transition. Comparison between DNS[START_REF] Rist | Direct numerical simulation of controlled transition in a flat-plate boundary layer[END_REF] and Harmonic-Balanced Navier-Stokes retaining M = N = 2 (HBNS22) and M = N = 4 (HBNS44) harmonics in spanwise/frequency. The grey region denotes the streamwise extent of the wall blowing and suction region that triggers K-type transition. Note that to ease representation, we have plotted one fifth of the amplitude of harmonics (0, ω) and (2β, ω).
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 3 Figure 3. K-type controlled transition with HBNS44 . Isosurfaces of perturbation velocity u = ±0.04 (red: high speed, blue: low speed) and of the second invariant of the velocity gradient tensor, Q, coloured by the vertical distance from the wall (Q = 2×10 -9 ).

  .1) |f v |max = ±0.5 A: streak |u |max = ±0.8 |f u |max = ±0.8 B: oblique wave |u |max = ±0.5

Figure 4 .

 4 Figure 4. Linear input/output (resolvent) analysis. Optimal gain (top). The two local maxima correspond to the amplification of streaks (A at (β, ω) = (100, 0) × 10 -5 ) and oblique waves (B at (β, ω) = (30, 10) × 10 -5 ). Optimal forcing (left; light gray:positive, dark grey: negative) and optimal response (right; red: positive, blue negative) for streaks and obliques waves. Top and side views are shown. The x-axis has been scaled by a factor of 4.

Figure 5 .

 5 Figure5. Fundamental (left) and superharmonic (right) cases. The nonlinear optimization is restricted to forcing components 1β, ±1ω, or 1β, 2β, ±1ω, ±2ω, and their oblique combinations, respectively. Other forcing and response harmonics in the (m, n) plane may be deduced from the real-value constraint, e.g. ŵ-m-n = ŵmn. In case of reflectional symmetry in z, the -nω components are linked to the +nω ones.

Figure 6 .

 6 Figure 6. Optimal drag change from nonlinear input/output analysis with fundamental (left) and superharmonic (right) forcing, M = N = 2 and A = 7.07×10 -5 . In both cases, we solve separate optimization cases over a wide range of the fundamental forcing frequency, ω and β. Fundamental maximum at point C: ∆CD,max = 2.8×10 -5 at (β, ω) = (33.4, 11.7) × 10 -5 . Superharmonic maximum at point D: ∆CD,max = 41.6×10 -5 at (β, ω) = (50, 11.7) × 10 -5 . Both maxima are close to the optimal linear amplification of the oblique waves (point B).

Figure 7 .

 7 Figure7. Nonlinear optimization for fundamental z-symmetric forcing with M = N = 2. Amplitudes of optimal forcing (top) and response (bottom) for each individual harmonic component (m, n), as depicted in figure5a. Values have been normalized with the the total forcing amplitude A = 7.07×10 -5 . The circle marks the frequency/wavenumber that maximum drag increase is observed. Also, isolines of the cost function (dashed lines) have been added on the forcing components.

Figure 8 .

 8 Figure 8. Optimal oblique fundamental case with M = N = 2 at (β, ω)=(33.3, 11.7) × 10 -5 for A = 7.07×10 -5. This forcing results to the maximum amplification of shear stress for fundamental forcing over all forcing frequencies and wavenumbers (point C in figure6a). Isosurfaces of streamwise perturbations f u = ±8.3×10 -9 (bottom left) and u = ±0.07 (bottom right), blue negative iso-value and red positive one. One fundamental wavelenghth is shown in z.

Figure 10 .

 10 Figure 10. optimization for superharmonic z-symmetric forcing M = N = 2. Amplitudes of optimal forcing (top) and response (bottom) for each individual harmonic component (m, n), as depicted in figure 5b. Values are normalized with the the total forcing amplitude A = 7.07×10 -5 . The square marks the frequency/wavenumber that maximum drag increase is observed.
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 11 Figure11. Optimal H-type superharmonic case M = N = 2 at (β, ω) = (50, 11.7) × 10 -5 for A = 7.07×10 -5 . This forcing results to the maximum amplification of shear stress for superharmonic forcing over all forcing frequencies and wavenumbers (point D in figure6b). Isosurface of f u = ±8.3×10 -9 (bottom left) and u = ±0.07 right), blue negative iso-value and red positive one. One fundamental wavelength is shown in z.

Figure 13 .

 13 Figure 13. Optimal forcing (top) and response (bottom) amplitudes for superharmonic cases M = 4, N = 2 at (β, ω) = (50, 11.7) × 10 -5 for A = 5.13×10 -5 . Forcing has been optimised in all fundamental and superharmonic components (left); only at (β, ω) and (β, 2ω) (middle); only at (β, ω) and (2β, 0) (right).

Figure 14 .

 14 Figure14. Maximum drag increase as a function of forcing amplitude for different truncations in spanwise (M) and frequency (N) components (left). Results shown for the optimal oblique fundamental case (β, ω)=(33.3, 11.7)×10 -5 , with reflectional symmetry in the spanwise direction. Skin friction coefficient for M = N = 4 as a function of streamwise distance for different forcing amplitudes (right). For A > 8.5×10 -5 , varicose transition of the low-speed streaks is observed.

Figure 15 .

 15 Figure 15. Laminar-turbulent transition for optimal oblique fundamental case (symmetry in z) with M = N = 4 at (β, ω)=(33.3, 11.7) × 10 -5 for A = 11.3×10 -5 . Amplitude for forcing (top left) and response (top right) for each individual harmonic component (m, n). Isosurfaces of streamwise perturbations for f u = ±8.3×10 -9 (middle left) and u = ±0.16 (middle right). Vortical structures visualized with the Q-criterion (iso-Q = 1.4×10 -9 ; green) and low speed streaks (u = -0.16; blue). Two fundamental wavelenghts are shown in z to facilitate the presence of staggered Λ-structures and hairpins.

Figure 17 .

 17 Figure 17. Laminar-turbulent for optimal oblique fundamental forcing (no symmetry in z) with M = 3, N = 2, (β, ω)=(33.3, 11.7) × 10 -5 , A = 14.1×10 -5 . Maximum amplitudes of optimal forcing (top left) and response (top right) for each individual harmonic component (m, n). Isosurfaces of streamwise perturbations for f u and u (middle). Vortical structures visualized with the Q-criterion along with low-speed-streaks (bottom). Two fundamental wavelenghts are shown in z (f u = ±8.3×10 -9 , u = ±0.2, Q = 10 -9 ).

Figure 18 .Figure 19 .

 1819 Figure 18. Maximum drag increase for optimal H-type superharmonic forcing at (β, ω) = (50, 11.7)×10 -5 with z-symmetry as a function of forcing amplitude (left). Various orders of truncation MN are shown. Skin friction coefficient (right) as a function of Rex for M = 6, N = 3.

Figure 20 .

 20 Figure 20. Mean velocity profiles during transition in innner units based on the local friction velocity uτ . Linear (u + = y + ; dashed) and log laws (u + = 1 0.41 log y + + 5; dashed-dotted) are also shown. Then insets show the skin friction coefficient as a function of Rex and the location where the velocity profiles are plot are marked with circles.

Figure 22 .

 22 Figure22. Low amplitude A scalings of drag increase in the case superharmonic forcing at point D, (β, ω) = (50, 11.7)×10 -5 with M N42. The red curve corresponds to optimized solution at all amplitudes. The green curve corresponds to HBNS solutions with a fixed forcing structure corresponding to the optimal one obtained at A = 4.47×10 -5 (a (0, 2ω) TS wave plus a (β, ω) oblique wave essentially). The blue curve is similar than the green curve, except that the chosen forcing structure corresponds to the one obtained at A = 5.54×10 -7 (a pure (β, ω) oblique forcing). Dashed lines correspond to fitting polynomial expansions for A 1.

Table 1 .

 1 Parameters for flat-plate boundary layer computational set-up.

	xi 30,000 252,000 298 863 xo Re i δ * Re o δ * Triangles DOF Section 71,207 357,469 §4	K-type validation
	30,000 360,000 298 1032 116,806 586,178 §5,6	Optimal disturbances

Table 2 .

 2 Sensitivity of various harmonics for various choices of the numerical parameters. Note that to ease representation, we have plotted one fifth of the amplitude of harmonics (0, ω) and (2β, ω). Parameters for sensitivity analysis of the computational parameters.

			10 1			(0, 1)	
		max (m, n)(%)	10 -1 10 0			(1, 1) (2, 1)	(0, 0)
		u						
			10 -2					MN22 , Mesh 1, P1b
								MN44 , Mesh 1, P1b
								MN22 , Mesh 1, P2
								MN22 , Mesh 2, P1b
			10 -3	1.4	1.6	1.8	2	2.2	2.4	2.6
						Re x			×10 5
	Figure 21. M, N	xi	xo	Triangles DOF/harmonic Elements
		Mesh 1 2, 2 30,000 252,000 71,207	357,469	P 1b -P1
		Mesh 1 4, 4 30,000 252,000 71,207	357,469	P 1b -P1
		Mesh 1 2, 2 30,000 252,000 71,207	465,352	P2-P1
		Mesh 2 2, 2 30,000 300,000 86,595	434,653	P 1b -P1
	M, N Cores RAM (Gb) Newton iter. Walltime (min/iter) Elements Initial guess
	Mesh 1 2, 2	9	47		9			23	P 1b -P1	Linear response
	Mesh 1 2, 2	9	121		10			45	P2-P1	Linear response
	Mesh 1 3, 3	16	102		4			43	P 1b -P1	M = 2, N = 2 solution
	Mesh 1 4, 4	25	289		4			77	P 1b -P1	M = 3, N = 3 solution

Table 3 .

 3 Computational cost for HBNS solution.

† Only oblique waves with positive wavenumber and frequency are shown due to z-symmetry.

We would like to thank U. Rist for providing the details for the boundary conditions used in the DNS (Rist & Fasel 1995). This work was initiated while D. Sipp was Visiting Associate at Caltech. G.R. and T.C. also acknowledge the support of the Boeing Company through a Strategic Research and Development Relationship Agreement CT-BA-GTA-1.

Appendix A. Mesh, domain sensitivity & computational cost for K-type transition

A sensitivity analysis of the domain length, the finite element discretization, and the number of retained harmonics has been performed for the K-type controlled transition. The amplitudes of the first few harmonics obtained by the HBM method are shown in figure 21. Mesh 1 extends to x o = 2.52 × 10 5 whereas mesh 2 is for a longer domain up to x o = 3.00 × 10 5 . The number of triangles and degrees of freedom per harmonic of the discretised problem for the two meshes and for different choices of finite elements ([P 1b , P 1b , P 1b , P 1 ] and [P 2 , P 2 , P 2 , P 1 ]) are given in table 2. Small differences are observed in the amplitude of the various harmonics between P 1b and P 2 elements. Given the lower computational cost (see table 3) of the former, we performed all calculations using P 1b elements.

Calculations were performed on a multi-node cluster, with each node having 2 × 12 core Xeon E5-2670 2.3 GHz CPUs and 128 Gb DDR4 2133MHz RAM. In table 3, the RAM, number of cores the number of Newton iteration for convergence and the walltime are given, depending on the order of truncation and mesh type.

Appendix B. Amplitudes of harmonics for HBM

In the z-symmetric case, the full solution may be rewritten under the form:

( ŵ0n e inωt + c.c.)

The domain-integrated amplitudes of the response harmonics may be defined according to:

where Q mn has been defined in eq. ( 5.2). The overall amplitude of all the harmonics is:

The overall amplitude of the forcing f was defined in eq. (3.14) by the Q matrix:

In the symmetric case, noting that f00 = f b = 0, following Eq. (B 3), we have A f = f * Q f . The amplitudes of the individual harmonics may be represented as well with the quantity A f (m, n).

The maximum amplitude of any velocity or pressure component of the state vector can be calculated in accordance with (B 2). For example, for the u component:

Appendix C. Link with weakly nonlinear analysis

In this appendix, we will analyse weakly nonlinear expansions of the HBNS solutions at low amplitudes A 1. We will consider two cases: section C.1 will consider the case of a fixed forcing structure composed of a single harmonic (as obtained in the case of fundamental forcing) and section C.2 the case with two harmonics (as obtained in the case of superharmonic forcing at point D for high forcing amplitude A).

C.1. Single harmonic forcing

Suppose that the forcing only comprises a (β, ω) oblique harmonic of amplitude A (plus the 3 others resulting from the z-reflectional symmetry and the real-value contraints). This forcing will be noted A f11 in the following. For A 1, considering the solution under the form (3.3), the various harmonics may be expanded as:

All non-zero terms up to order A 3 have been indicated for (m, n) = (0, 0), while the development is complete up to order A 5 for the mean-flow harmonic (0, 0). We have shown in the underbraces a sample of forcings that trigger the considered term. Hence, the mean-friction (being a linear operator acting on ŵ00 ) scales as:

. Two-harmonic forcing

Suppose that the forcing lies in the (β, ω) oblique and (0, 2ω) TS harmonics (plus the ones due to symmetry). Similarly to the previous section, these forcings will be noted A f11 and A f02 . We obtain the following expansions:

These expansions are the same as for the single forcing harmonic case described in the previous section with additional terms marked in red. All terms that scale as A 2 are given explicitely for (m, n) = (0, 0), while the development is valid up to order A 3 for the mean-flow harmonic (0, 0). The drag increase now follows

Such scalings have been verified in figure 22 for superharmonic forcing at poind D. The red curve corresponds to the optimized solution at all amplitudes, as presented in section 6.3.

For very low amplitudes, e.g. for the left-most point at A = 4.54×10 -7 on that curve in the graph, the optimal forcing is a pure (β, ω) oblique forcing (for very low amplitudes, the cooperation between forcing harmonics vanishes and the optimal forcing converges to a single harmonic). The blue curve then corresponds to HBNS solutions with a forcing structure frozen and equal to the one obtained for A = 4.54×10 -7 , ie the above mentioned pure oblique (β, ω wave. Only the amplitude A was adjusted in the various computations. For low amplitudes A, a curve fitting technique yields the following scaling:

which is consistent with the weakly nonlinear expansion given in eq. (C 9).

For higher amplitudes, say A = 4.47×10 -5 (see red vertical line on the graph), the optimal forcing is essentially a combination of a (0, 2ω) TS wave plus a (β, ω) oblique wave. The green curve is similar than the blue curve, except that the chosen forcing structure corresponds to the one obtained at A = 4.47×10 -5 , ie the just mentioned combination between a TS and an oblique wave. Fitting this curve yields for small amplitudes:

which exhibits a cubic term, consistent with the development presented in eq. (C 17).