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AN APPLICATION TO UNSUPERVISED IMAGE SEGMENTATION

Hugo Gangloff, Katherine Morales, Yohan Petetin

Samovar, Telecom Sudparis, Institut Polytechnique de Paris

ABSTRACT

Probabilistic graphical models such as Hidden Markov mod-
els have found many applications in signal processing. In this
paper, we focus on a particular extension of these models, the
Pairwise Markov models. We propose a general parametriza-
tion of the probability distributions describing the Pairwise
Markov models which enables us to combine them with re-
cent architectures from machine learning such as deep neural
networks. In order to evaluate the power of these combined
architectures, we focus on the unsupervised image segmen-
tation problem which is particularly challenging and we pro-
pose a new parameter estimation algorithm. We show that
our models with their associated estimation algorithm outper-
forms the classical probabilistic models for the task of unsu-
pervised image segmentation.

Index Terms— Pairwise Markov Chains, Image Segmen-
tation, Neural Networks, Gradient Expectation-Maximization.

1. INTRODUCTION

Let XXX = (X1, · · · , XK) (resp. HHH = (H1, · · · , HK)) be a
sequence of observed (resp. latent) random variables (r.v.),
where Xk ∈ R and Hk ∈ Ω = {ω1, · · · , ωC}, for all k,
1 ≤ k ≤ K. The joint distribution of (HHH,XXX) is denoted
p(hhh,xxx). In this paper, we focus on the estimation of Hk

from a realization XXX = xxx through the posterior distribution
p(hk|xxx), for all k, 1 ≤ k ≤ K. Image segmentation is a
critical application of this Bayesian estimation problem. In
this context, the hidden r.v. Hk is associated to the class (e.g.,
black or white) of the k-th pixel of an image, while Xk rep-
resents a noisy observation (e.g., a grayscale observation) of
the pixel (see Fig. 4). This problem relies on a relevant proba-
bilistic model pθθθ(hhh,xxx) which should be able to model jointly
the hidden classes and the observed signal but in which it is
also possible to perform (unsupervised) Bayesian inference,
that is to say to estimate θθθ from a realization XXX = xxx, and
next to compute or to approximate the marginal smoothing
distribution pθθθ(hk|xxx), for all k, 1 ≤ k ≤ K.

Hidden Markov Chains (HMCs) define an important fam-
ily of probabilistic graphical models and have been the sub-
ject of many investigations for the Bayesian image segmen-

tation application [1]. In an HMC, HHH is a Markov chain and
givenHHH , the observationsXXX are independent andXk only de-
pends on Hk. These models have been generalized by the in-
troduction of the Pairwise Markov Chains (PMCs) [2] which
only satisfy the assumption that the pair (HHH,XXX) is a Markov
chain, while keeping the computational properties of HMCs.
They rely on a transition distribution pθθθ(hk, xk|hk−1, xk−1)
and have also received a particular attention for image seg-
mentation, see e.g. [3, 4, 5].

By contrast, artificial neural networks do not model the
observations with a probabilistic model. However, as univer-
sal approximators fθθθ(xxx) of an unknown function f(xxx) [6],
deep neural networks (DNNs) have gained in popularity due
to their excellent performances in many tasks such as classi-
fication. The parameters θθθ underlying to fθθθ(xxx) are estimated
in a supervised way by the backpropagation algorithm from a
labeled training dataset [7]. These architectures have been re-
cently combined with probabilistic graphical models in order
to provide powerful generative models [8, 9, 10] which aim at
modeling an unknown distribution pθθθ(xxx) of observations.

Let us turn now to the contributions of this paper. As
stated above, PMCs are very general models for unsupervised
and sequential Bayesian classification. However, and up to
our best knowledge, their application have been restricted to
stationary PMCs [3, 11], i.e. models defined from a joint dis-
tribution pθθθ(hk−1, hk, xk−1, xk) which does not depend on k.
This additional assumption may be motivated by the fact that
the choice of a transition distribution pθθθ(hk, xk|hk−1, xk−1)
for a given problem is not obvious. In this paper, we relax
this underlying assumption and we first propose a general
parametrization of PMC models and an associated Bayesian
inference algorithm. Next, we focus on the unsupervised im-
age segmentation problem; to that end, we exploit our gen-
eral framework by considering a parametrization of our PMC
models with DNNs, in the spirit of the Variational Auto En-
coder [8]. For this application, and contrary to the Variational
Auto Encoder, we take into account that the latent r.v. Hk has
to be interpretable, since it is associated to the class of pixel
k; we thus propose a particular tuning of these architectures.

The rest of the paper is organized as follows. In section 2,
we briefly review the rationale of PMC models and we intro-
duced a general parametrization of these models. In Section



3, we combine PMC models with DNN architectures and we
propose an estimation algorithm for the unsupervised image
segmentation problem. We finally compare our new models
with the classical ones on some experiments.

2. GENERAL PAIRWISE MARKOV MODELS

2.1. A brief review of PMC models

As recalled in the Introduction, the HMC is a popular model
which satisfies

p(hhh,xxx)
HMC
= p(h1, x1)

K∏
k=2

p(hk|hk−1)p(xk|hk). (1)

In other words, HHH is a Markov chain, and p(xxx|hhh) =
∏K
k=1

p(xk|hk); the graphical representation of the model is given
in Fig. 1a. Actually, in model (1), the pair (HHH,XXX) is a Markov
chain in which the transition distribution satisfies a particular
factorization; in other words, model (1) can be rewritten as

p(hhh,xxx)
PMC
= p(h1, x1)

K∏
k=2

p(hk, xk|hk−1, xk−1), (2)

where

p(hk, xk|hk−1, xk−1)
HMC
= p(hk|hk−1)p(xk|hk). (3)

So from now on, we will consider the general PMC model (2)
in which the transition distribution is the most general,

p(hk, xk|hk−1, xk−1)
PMC
=

p(hk|hk−1, xk−1)p(xk|hk, hk−1, xk−1). (4)

The graphical representation of this model is given in Fig. 1c;
as we see, this model also generalizes some recent Stochastic
Recurrent Neural architectures [12].

Finally, we also introduce the semi PMC (SPMC), an
intermediate model between the PMC and the HMC In the
SPMC, the observationXk no longer depends onHk−1 given
(Hk−1, Xk−1, Hk),

p(hk, xk|hk−1, xk−1)
SPMC

=

p(hk|hk−1, xk−1)p(xk|hk, xk−1). (5)

The graphical representation of the SPMC is given in Fig. 1b.

2.2. A general parametrization of PMC models

We now introduce a function fθθθ(hk−1, xk−1) (resp. gθθθ(hk,
hk−1, xk−1)) of (hk−1, xk−1) (resp. of (hk, hk−1, xk−1))
which depends on an unknown parameter θθθ; we also assume
that these functions are differentiable w.r.t. θθθ. The transition

(a) HMC (b) SPMC (c) PMC

Fig. 1: Graphical representations of the HMC, SPMC and
PMC models of section 2.1. The white circles (resp. gray
squares) represent the hidden (resp. observed) r.v. As we will
see in section 3.1, the transition distributions of these models
can be parametrized by a DNN, leading to Deep PMC models.

distribution of the PMC (4) is parametrized through fθθθ and
gθθθ,

pθθθ(hk|hk−1, xk−1) = λ(hk; fθθθ(hk−1, xk−1)), (6)
pθθθ(xk|hk, hk−1, x−1) = µ(xk; gθθθ(hk, hk−1, xk−1)), (7)

where λ(h; z) (resp. µ(x; z′)) is a probability distribution
on Ω (resp. a probability density function on R) whose pa-
rameters are function of z (resp. z′) and which is differen-
tiable w.r.t z (resp. w.r.t. z′). We give below an example
of a Gaussian PMC to illustrate the notations and the general
parametrization introduced.

Example 1 Let us consider the case where Ω consists of two
classes, i.e. Ω = {ω1, ω2}, λ is a Bernoulli distribution and
µ a Gaussian one. In addition, the parameters of these distri-
butions are linear, so we have

fθθθ(hk−1, xk−1) = ahk−1
xk−1 + bhk−1

, (8)
gθθθ(hk, hk−1, xk−1) =

[
chk,hk−1

xk−1+dhk,hk−1
,σhk,hk−1

]
,(9)

λ(h = ω1; z) = sigm(z) =
1

1 + exp(−z)
, (10)

µ(x; z′ = (z′1, z
′
2)) = N (x; z′1; (z′2)2), (11)

(N (x;m;σ2) is the Gaussian distribution with meanm, vari-
ance σ2 taken at point x). Here,

θθθ = {(aωi
, bωi

, cωj ,ωi
, dωj ,ωi

, σωj ,ωi
)|(i, j) ∈ {1, 2}2}.

The equivalent SPMC is obtained when the parameters in
(9) do not depend on hk−1; the HMC satisfies in addition
ahk−1

= 0.

As we have seen in the example above, fθθθ and gθθθ are lin-
ear functions. Of course, our general parametrization allows
more general functions. In section 3, we will focus on func-
tions parametrized by DNNs in Section 3.1.

2.3. Bayesian estimation

Let us now discuss on the computation of pθθθ(hk|xxx) for all
k in model (2) satisfying (6)-(7). The general expressions
derived for the PMCs in [2] and which are a direct extension



of the Forward-Backward algorithm [13] are still valid here.
More precisely, let us set αθθθ,k(hk) = pθθθ(x1, · · · , xk, hk) and
βθθθ,k(hk) = pθθθ(xk+1, · · · , xK |hk, xk), βθθθ,K(hK) = 1 and
remember that

pθθθ(hk, xk|hk−1, xk−1) =

λ(hk; fθθθ(hk−1, xk−1))× µ(xk; gθθθ(hk, hk−1, xk−1));

then, using the Markovian property of pθθθ(hhh,xxx) in (4), we have
for all k, 1 ≤ k ≤ K,

αθθθ,k(hk) =
∑
hk−1

αθθθ,k−1(hk−1)pθθθ(hk, xk|hk−1, xk−1), (12)

and next for all k, K > k ≥ 1,

βθθθ,k−1(hk−1) =
∑
hk

βθθθ,k(hk)pθθθ(hk, xk|hk−1, xk−1). (13)

We finally deduce

pθθθ(hk−1, hk|xxx) ∝
αθθθ,k−1(hk−1)× βθθθ,k(hk)× pθθθ(hk, xk|hk−1, xk−1), (14)

and so
pθθθ(hk|xxx) =

∑
hk−1

pθθθ(hk−1, hk|xxx). (15)

An estimate of Hk is deduced from the maximum posterior
mode criterion [14].

2.4. Parameter estimation

In practice, θθθ is unknown and has to be estimated from a real-
izationXXX = xxx. Unlike the method proposed in [2] for station-
ary PMC models, we propose a maximum likelihood estima-
tion approach with a variant of the Expectation-Maximisation
(EM) algorithm [15]. For a given parameter θθθ(j), it relies on
the computation and the maximization w.r.t. θθθ of

Q(θθθ,θθθ(j)) = Eθθθ(j)(log(pθθθ(hhh,xxx))|xxx),

which reads (up to the initial distribution of the PMC)

Q(θθθ,θθθ(j)) =

K∑
k=2

∑
hk−1,hk

pθθθ(j)(hk−1, hk|xxx)×

log(λ(hk; fθθθ(hk−1, xk−1))µ(xk; gθθθ(hk, hk−1, xk−1))). (16)

Note that Q(θθθ,θθθ(j)) can be exactly computed from (14) re-
gardless of the parametrization (6)-(7).

It remains to maximize Q(θθθ,θθθ(j)) w.r.t. θθθ. In general
PMC models, computing arg maxθθθ Q(θθθ,θθθ(j)) is not possible,
except for simple model such as the linear and Gaussian HMC
discussed in Example 1. When the exact maximization is not
possible, we resort to the Gradient EM (GEM) algorithm [16];
since λ(h; z) and µx(x; z′) (resp. fθθθ and gθθθ) are differentiable

w.r.t. z and z′ (resp. w.r.t. θθθ), it is possible to compute the
gradient of Q(θθθ,θθθ(j)) w.r.t. θθθ. Finally, introducing a learning
rate ε, and according to [16], θθθ(j) is updated as

θθθ(j+1) = θθθ(j) + ε∇θθθQ(θθθ,θθθ(j))
∣∣∣
θθθ=θθθ(j)

. (17)

Algorithm 1 summarizes the inference and parameter es-
timation processes for our general PMC models.

Data: A realizationXXX = xxx, a learning rate ε
Result: ĥhh, the estimated hidden r.v.

θθθ∗, a set of estimated parameters
1 Initialize randomly θθθ(0)

2 j = 0
3 while convergence of pθθθ(j)(xxx) is not attained do
4 Set αθθθ(j),1 = pθθθ(j)(h1, x1)

5 for k ← 2 to K do
6 Compute αθθθ(j),k(hk) with (12)
7 end
8 Compute pθθθ(j)(xxx) =

∑
hK

αθθθ(j),K(hK)

9 Set βθθθ(j),K(hK) = 1, for all hK
10 for k ← K − 1 to 1 do
11 Compute βθθθ(j),k(hk) with (13)
12 end
13 Compute pθθθ(j)(hk, hk+1|xxx) with (14), for all k
14 Compute Q(θθθ,θθθ(j)) with (16)

15 Set θθθ(j+1) = θθθ(j) + ε∇θθθQ(θθθ,θθθ(j))
∣∣∣
θθθ=θθθ(j)

16 j ← j + 1

17 end
18 θθθ∗ ← θθθ(j)

19 ĥk = arg max pθθθ∗(hk|xxx), for all k, with (15)
Algorithm 1: Unsupervised estimation in general
PMC models.

3. DEEP PMC MODELS FOR UNSUPERVISED
IMAGE SEGMENTATION

In this section, we now focus on a particular parametrization
of functions fθθθ and gθθθ by (deep) neural networks, giving rise
to deep PMC architectures. We discuss on the practical im-
plementation of the Algo. 1 in this particular case, while tak-
ing into account that the hidden r.v. Hk is interpretable as
the class associated to the observation Xk. We thus give a
particular attention to the tuning of our models and to their
initialization.

The contribution of our deep parametrization of PMC
models are discussed from simulations in which we perform
unsupervised binary image segmentation (Ω = {ω1, ω2})
extracted from the Binary Shape Database 1. Note that the

1http://vision.lems.brown.edu/content/
available-software-and-databases



considered images are transformed into a 1-D signal xxx with a
Hilbert-Peano filling curve [17].

3.1. Deep PMC architecures

3.1.1. The models

From now on, we will consider two classes of PMC models.
The first one is the class of non-deep PMC models and

consists of the linear and Gaussian PMC and SPMC models
described in Example 1. We easily show that the parameters
related to gθθθ can be updated exactly from (16) (the expres-
sions are not presented due to limited space) while those re-
lated to fθθθ are updated according to the gradient update rule
(17).

The second class is the class of PMC models parametrized
by (deep) neural networks and consists of the deep PMC (D-
PMC) and the deep SPMC (D-SPMC) models. For both mod-
els, λ and µ are the distributions given in Exemple 1, but fθθθ
and gθθθ are now parametrized by neural networks (e.g., see
Fig. 2) with rectified linear activation functions for interme-
diate hidden layers and linear or square function for the ouput
layer. The parameters associated to the last linear layers will
be denoted θθθfr while the other parameters are denoted θθθufr
(the meaning of this notation will be clarified later). For the
update rule, we use (17); the gradient of Q(θθθ,θθθ(j)) w.r.t. θθθ is
indeed deduced from those of fθθθ and gθθθ which are computable
with the backpropagation algorithm [18]. While such archi-
tectures are promising for modeling a large variety of PMC
models, practical problems may appear when it comes to us-
ing them for unsupervised and interpretable estimation, due to
the large number of parameters characterizing these architec-
tures. In practice, when the parameters of the neural networks
fθθθ and gθθθ are initialized randomly, we may encounter conver-
gence issues to optimizeQ(θθθ,θθθ(j)). More importantly, we are
not ensured that the latent r.v. Hk which is learnt coincides
with the original class associated to the observation Xk. To
deal with this challenging optimization problem, we propose
a solution in two steps that we now explain and which gives
promising results in practice.

3.1.2. Constrained deep PMC architectures

We first constrain the parameters of the last layers associated
to fθθθ and gθθθ to coincide with the parameters of the non deep
and linear version of the equivalent model described by Ex-
ample 1, which can be seen as neural networks without hidden
layer. It means that the size of the last hidden layer (before
the output layer) coincides with that of the input layer and
that the associated weights and biases θθθfr are deduced from
the application of Algo. 1 with the non deep model (8)-(9).
These parameters are next frozen. Fig. 2 describes an exam-
ple of constrained DNN for the function fθθθ in (6). This step
provides a pre-segmentation ĥhhpre which aims at helping the
tuning of the remaining parameters θθθufr as we now see.

Σ
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...

hk−1

xk−1

hk−1xk−1

l11 l21

l12 l22

l13 l23

l1n l2n
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l32
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ω3
2

ω
3
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3+b3.

Fig. 2: Example of the proposed constrained architecture for
fθθθ: once the parameters of the last linear θθθfr have been esti-
mated, they are frozen.

3.1.3. Pretraining PMC models with deep architectures

In order to ensure that the final model indeed associates Hk

to the class of Xk despite the large number of parameters,
the unfrozen parameters θθθufr of fθθθ and gθθθ are initialized with
some iterations of a supervised backpropagation algorithm
which uses xxx as inputs and the latent variables ĥhhpre estimated
by the constrained step above. The cost function of the back-
propagation algorithm is the cross entropy for fθθθ and the
mean square error for gθθθ. The parameters θθθufr are next fine
tuned (in an unsupervised way) with steps 2 − 19 of Algo. 1
In practice, we have found that such a pretraining leads to a
better initial point in terms of likelihood, and next to a faster
and easier optimization.

The final Algo. 2 takes into account the specific con-
straints of PMC models parametrized by deep architectures.

Data: xxxI , the observed image
Result: ĥhhI the segmented image

1 xxx = (x1, . . . , xK)← Peano_transform(xxxI)

2 Estimate θθθ∗fr and ĥhhpre with Algo. 1
3 θθθ

(0)
ufr ← Backprop(ĥhhpre,xxx,θθθ

∗
fr)

4 Compute θθθ∗ufr and ĥhh with steps 2− 19 of Algo. 1
5 ĥhhI ← invert_Peano_transform(ĥhh)

Algorithm 2: Unsupervised image segmentation with
PMC models based on Deep Neural Networks archi-
tectures.

3.2. Simulations

3.2.1. Non-linear and correlated noise

In this section we propose to blur our images with a noise
which exhibits non-linearities to highlight the ability of the



generalized models to learn such a signal corruption. The pa-
rameters introduced in the following examples are considered
unknown to meet the case of unsupervised segmentation. In
the following examples, our neural networks consist of one
unfrozen hidden layer with 100 neurons and one frozen hid-
den layer whose size coincides with that of the input of the
neural network according to the constraint discussed in sec-
tion 3.1.2. Two scenarios are considered.

Scenario 1 The hidden image hhh is the dude-type image of the
Binary Shape Database. Each observation is simulated as

Xk ∼ N
(
ahk−1,hk

cos(xk−1); (σ + |cos(xk−1)|)2
)
. (18)

σ will be a varying parameter and we set aω1,ω1 = 0, aω1,ω2 =
0.3, aω2,ω1

= 0.9, aω2,ω2
= 0.7.

Scenario 2 The hidden imagehhh is the horse-type images from
the database. Each observation is simulated as

Xk ∼ bhk
+ 0.5 cosxk−1 +R · U, (19)

where R is a Rademacher r.v. and U is an uniformly dis-
tributed r.v. on [0, 1]. We set bω1

= 0 and bω2
= β, where β

will be a varying parameter.
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Fig. 3: Error rate in the unsupervised segmentations of Sec-
tion 3. Results are averaged on all the dude (Scenario 1) or
horse-type (Scenario 2) images from the database.

Fig. 3 illustrates the error rate associated to our unsu-
pervised segmentations with varying noise level. It is clear
that the D-PMC and D-SPMC models are the best performing
models for almost all noise levels, offering up to a 10%-point
improvement over the non-deep PMCs. The gain obtained
with our D-PMC and D-SPMC models is available without
any further modeling effort. Indeed, the PMC models based
on deep architectures seem to be able to capture the non-linear
correlated noises. Moreover, the training strategies proposed

hhh xxx KMeans HMC-IN

49.1% 41.2%
SPMC PMC D-SPMC D-PMC

14.8% 12.2% 9.4% 7.8%

Fig. 4: Illustration of an unsupervised segmentation of an im-
age from the Example 1 described in Sec. 3.2.1, for σ = 0.7.
The error rates appear below the images.

in Section 3.1 offer stability and consistent results for the
training of the generalized models during all the experiments.
A graphical example of unsupervised segmentations with the
different models considered in this paper is given in Fig. 4.

Finally, other configurations with more hidden layers
and/or more neurons on each layer only slightly improved the
error rate; it means that for this kind of noise, the proposed
configuration is sufficient.

3.2.2. Real Data

Finally, our models were tested on a real dataset taken from
fluorescence microscopy images [19]. The annotated dataset
is available online. Again, the DNNs using in the D-PMCs
are set to one unfrozen hidden layer with 100 neurons. These
images are particularly challenging because of the fuzzy con-
tours of the objects in the fluorescence images which leads to
a complex unsupervised segmentation task. The results of the
experiments are given in Fig. 5. In this experiment, the HMC
and non deep PMC models give similar results and were out-
performed by the our new generalized PMCs. Note that the
D-PMC model seems less suited for this kind of noise than
the D-SPMC model. A possible reason is that the fact that
Xk does not depend on Hk−1 given (hk, xk−1), contrary to
the D-PMC, produces an unsupervised segmentation more ro-
bust in the sense that Hk is more interpretable as the class
associated to Xk in the D-SPMC.

4. CONCLUSION

In this paper, we have proposed a general parametrization of
PMC models. From this general framework, we have deduced
PMC architectures based on DNN and we have proposed a pa-
rameter estimation algorithm to train these models for unsu-
pervised image segmentation. Our experiments have indeed
shown that substantial gains can be attained over the classical
models.



Image hhh xxx HMC-IN SPMC PMC D-SPMC D-PMC

other-
specimen_1

8.0% 8.5% 8.5% 5.6% 7.0%

Ganglio-
neuroblastoma_0

32.3% 32.7% 31.8% 8.0% 21.1%

Fig. 5: Illustration of unsupervised segmentations of real-world data from [19]. The error rates appear below the images.
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