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Intent-aware control in kinematically redundant systems: Towards
collaborative wearable robots

Mahdi Khoramshahi, Guillaume Morel, and Nathanael Jarrassé

Abstract— Many human-robot collaboration scenarios can be
seen as a redundant leader-follower setup where the human
(i.e., the leader) can potentially perform the task without the
assistance of the robot (i.e., the follower). Thus, the goal of the
collaboration, beside stable execution of the task, is to reduce
the human cost; e.g., ergonomic, or cognitive cost. Such system
redundancies (where the same task be achieved in different
manner) can also be exploited as a communication channel for
the human to convey his/her intention to the robot; since it
is essential for the overall performance (both execution and
assistance) that the follower recognizes the intended task in
an online fashion. Having an estimation for the intended task,
the robot can assist the human by reducing the human cost
over the task null-space; i.e., the null-space which arises from
the overall system redundancies with respect to the intended
task. With the prospective of supernumerary and prosthetic
robots, in this work, we primarily focus on serial manipulation
in which the proximal/distal part of the kinematic chain is
controlled by the leader/follower respectively. By exploiting
kinematic redundancies for intention-recognition and cost-
minimization, our proposed control strategy (for the follower)
ensures assistance under stable execution of the task. Our
results (simulations and preliminary experimentation) show the
efficacy of our method in providing a seamless robotic assistance
(i.e., improving human posture) toward human intended tasks
(i.e., reaching motions) for wearable robotics.

I. INTRODUCTION

Collaborative robotics has become the cynosure of research
on pHRI (physical human-robot interaction) mainly due to
its numerous applications: from industrial robotics (where
mobile robots, manipulators, and humanoids aim to assist
humans with cumbersome tasks [1–3]) to wearable robotics
which aims to restore or augment human motor capacities
(e.g., exoskeletons [4], prosthetic and supernumerary arms
[5, 6]). The ubiquitous properties of such applications are
(1) the presence of heterogeneous agents, (2) decentralized
control, and (3) redundancy: On one side of the interaction,
we have an agent with higher cognitive capacities (often
a human) who has the intention of performing a specific
task, and on the other side, an agent with higher actuation
capacity (often a robot) who aims to provide assistance.
Decentralization occurs since the intention of the leader
is latent to the follower and the communication channel
is often limited to kinesthetics, myoelectric signals, etc.
Furthermore, redundancy often arises from the fact that
the human can potentially perform the task alone; robots
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Fig. 1: Humans utilizing their kinematic redundancies to compen-
sate for the lack of collaboration in wearable robots. In (a), the
human leans backward to create an upward motion at the end-
effector of the prosthetic arm, and in (b), leans forward to create
forward motion at the end-effector of the supernumerary arm.

are employed to reduce human metabolic cost or improve
human ergonomics, manipulability, etc. As an example,
consider the case of a human-robot serial manipulation
(illustrated in Fig. 1) where the human can perform his/her
desired reaching motion even if the robot provides poor
collaboration.

The major challenge for collaborative robots is to provide
assistance toward an unknown task; i.e. the human-intended
task. Methods relying on input devices to communicate
the intentions (e.g., control panel, joystick, etc.) proved
to be limited in their performance due to lack of real-
time communication, necessity for extra hardware, or
increase in human cognitive load [7–9]. Therefore, recent
approaches aim at real-time integration of human intention
(as discussed in [10]) based on motion [11, 12], forces
[13, 14], impedance [15, 16], gesture [17, 18], etc. These
approaches range from relying on delayed observation
to prediction of human behavior which aims to increase
robot’s proactivity [11, 19–24]. Beside human-intention
recognition, stability (and subsequently safety) is another
challenge; i.e., to guarantee that the human-intended task is
executed stably [24, 25]. Finally, the robotic input needs to
be perceived as assistive by the human; e.g., consider an
undesirable scenario where the human rejects robot’s input
as a disturbance to his/her intended task. In summary, any



seamless collaborative control design requires: (1) robust
human-intention recognition, (2) stable task execution, and
(3) human cost minimization.

Numerous types of robotic assistance (i.e., cost function)
are considered in the literature: reducing human effort
in exerting a force [26], human tremor and oscillations
[25], muscle fatigue [27], metabolic cost [28], etc. In this
work, we primarily focus on assisting human to adopt an
ergonomic posture; see [2, 29, 30] for postural optimization
in human-robot co-manipulation tasks. Posture is also of
particular interest to supernumerary and prosthetic robots
since human users compromise their posture to compensate
for their lack of direct control over non-natural joints [31].
Several conventional metrics exist for measuring ergonomic
cost of a human posture such as REBA and RULA; see [32]
as an application of such metrics. In this work, to focus
on control aspect of our method, we assume that a leader
preferred/ergonomic posture is given; e.g., having an upright
torso. We show that stable convergence to both intended
target position (of the reaching motion) and ergonomic
posture can be achieved under our proposed control strategy.

In this work, we take inspiration from the literature of
movement-based control of wearable device (particularly
prosthetic arms) for impaired users. This line of research
emerged to overcome the limitations of Myoelectric control
[33]; mainly to decode human intention from surface EMG
signal. Movement-based methods can be categorized into
synergy-based and compensation cancellation control. The
first category exploits the fact that there are kinematic
synergies across joints in human reaching motion [34].
Therefore, the motion of robotic joints are coupled (via
a synergy model) to human joints motion; e.g., prosthetic
elbow coupled to human shoulder [35, 36]. This approach
provides a reliable interface through which the human
can indirectly control the robotic joint. Compensation
cancellation control [37], however, leverages the fact that
impaired users utilize their kinematic redundancies to create
their desired motion at the end-effector; e.g., utilizing
hip and shoulder to reach forward which compromises
the ergonomics [38, 39]. Our previous works [40–42]
show the effectiveness of movement-based approach (over
Myoelectric control) in providing an ergonomic posture to
the human user. However, these current approaches only
operate in the joint-space and do not consider the human-
intended task. In this work, we extend this line of research
to a case where the robot recognizes the human-intended
motions, which allows to provides assistance for both task
execution and ergonomic posture. More specifically, we
assume that measurements for the end-effector velocity and
human joint positions are available for intention-recognition
purposes. Furthermore, we analyze the performance of our
proposed control strategy rigorously in terms of stability,
convergence, and optimally.

II. METHOD

In this section, we first formulate our problem and later
propose our control approach.

A. Problem formulation

Let us consider a generic n-DoF redundant robot with its
joint configuration q ∈ Rn with its end-effector position x ∈
Rm where m < n. We assume that the robot is controlled in
a leader-follower fashion, where the task is only known to the
leader. Furthermore, we assume that the first l proximal joints
are controlled by the leader (qL = [q1, q2, ..., ql]) while the
rest is controlled by the follower; i.e., n−l distal joints qF =
[ql+1, ql+2, ..., qn]. To control the robot, the leader and the
follower command their respective joint-velocities; i.e., q̇L
and q̇F assuming perfect joint velocity tracking. Therefore,
the velocity of the end-effector is obtained by using the task
Jacobian:

ẋ =
[
JL JF

]︸ ︷︷ ︸
J

[
q̇L
q̇F

]
(1)

The Jacobian matrix (J(q) ∈ Rm×n) is segmented into
respective parts for the leader (JL ∈ Rm×l) and the follower
(JF ∈ Rm×(n−l)). We consider the following reaching task
for the leader.

vL = −γ(x− xd) (2)

where xd is the target position for the end-effector, γ is a
positive scalar, and vL is the leader desired task-velocity.
Beside, we consider the following cost (C ∈ R+):

C =
1

2
(q̇ − ˙̄q)T

[
WL 0
0 WF

]
︸ ︷︷ ︸

W

(q̇ − ˙̄q) (3)

where ˙̄q = −K(q − q̂) represents joint velocities toward
desired posture q̂ ∈ Rn with K ∈ Rn×n a positive
definite matrix. WL and WF (positive definite matrices)
account for the leader and follower weights respectively. The
unified/centralized solution (q̇∗) to this problem (e.g., using
method of Lagrange multipliers) is:

q̇∗ = J#vL +N ˙̄q (4)

where the weighted pseudo-inverse of the Jacobian and its
null-space projector can be segmented into the respective
parts for the leader and the follower.[
J#
L

J#
F

]
︸ ︷︷ ︸
J#

= W−1JT (JW−1JT )−1 , and
[
NL
NF

]
︸ ︷︷ ︸
N

= (I−J#J)

(5)
However, in our leader-follower formulation, the follower
is not aware of the task (xd nor vL), only the state of the
system (q and ẋ) and the leader desired posture (q̂) and the
null-space gain (K) . In the next section, we propose our
control strategy for solving this problem.
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Fig. 2: The simulation results for the illustrative example of n = 2 and m = 1. The first plot shows the position of the end-effector under
various values of wF . the second plot show the joint position. The third plot shows how the performance is compared to a centralized
solution for different values of wF . The fourth plot shows the system performance when the leader and the follower have different
assumption about wF .

B. Proposed control strategy

We propose the following control strategy:
q̇L = J#

L vL +NL ˙̄q

q̇F = J#
F vF +NF ˙̄q

v̇F = −α(vF − ẋ)

(6)

The first equation represents the leader’s strategy which
attempts to create its desired velocities (vL and ˙̄q). The
second and third equations represent the follower’s strategy
which uses a lower-pass filtered version of ẋ as an
approximation for the leader intended velocity; i.e., vF is
the follower inferred velocity, and α is positive scalar. In
this strategy, the leader creates its desired velocity (vL)
to reach the intended goal (xd), while the follower assists
the leader via executing an inferred velocity (vF ) based
on previous observation of the end-effector motion (ẋ).
Finally, let us note that the ODEs in Eq. 6 describe the
desired dynamics where forward Euler method is used for
numerical implementation.

In Appendix, we analyze the dynamics of the system under
our proposed control strategy. In short, we show that when

1) the leader is not singular (i.e., capable of performing
the task alone), and

2) the follower estimation rate is faster than the task
dynamics (i.e., α > γ and α > K)

then
1) the task is achieved in a stable manner, and
2) the follower stably tracks (and converges to) the cen-

tralized solution (i.e., when the follower knows vL)

III. ILLUSTRATIVE EXAMPLE

Let us consider the most simple example where we have
two prismatic joints and one-dimensional task x = qL +
qF . where qL and qF represent the leader and the follower
joints respectively. Therefore, the Jacobian is J = [1 , 1],
which means JL = JF = 1. For inverse kinematics (IK), we
consider the following general parameterization:

W =

[
1 0
0 wF

]
→ J# =

[
λ̄
λ

]
, N =

[
λ −λ̄
−λ λ̄

]
(7)

with the follower IK weight wF > 0, λ = 1/(1 + wF ),
and λ̄ = 1 − λ. For null-space velocity, we consider ˙̄q =
[−kqL, 0]T , with k > 0, in order to perform the task with
qL = 0. In this case, the dynamics (derived from Eq. 6) are:

q̇L = (1− λ)vL − λkqL
q̇F = λvF + λkqL

v̇F = −α(vF − q̇F − q̇L)

(8)

At this point, it is interesting to consider two extreme cases:{
wF =∞ → λ = 0 → q̇F = 0

wF = 0 → λ = 1 → q̇F = −q̇L
(9)

It is intuitive to see that in the case of wF = ∞, zero
velocities are expected from the follower as it has a high
cost. On the other hand, when wF = 0, the leader is not
performing any portion of the task since it is expected that
the follower performs the task completely. Therefore, the
follower recognizes vL = 0 as the intended motion. The
follower moves only in order to cancel the leader’s motion
on the end-effector (ẋ = 0) as the leader still moves in order
to reach qL = 0. For other cases (where 0 < λ < 1), we can
write (by taking the time-derivative of q̇F in Eq. 8):

q̈F = −αλ̄(q̇F − q̇∗F −∆q̇F ) (10)

where q̇∗F = λvL + λkqL represent the centralized solution
for the follower, and ∆q̇F = kα−1(λvL − λ2λ̄−1kqL)
accounts for the error induced by filtering (i.e., intention
estimation). This error is mitigated by higher values for α.
Moreover, since −αλ̄ < 0, the follower velocity converges
to q̇∗F (when ∆q̇F can be neglected). These dynamics also
show that small values of λ lead to faster convergence to the
centralized solution. However, in centralized solutions with
low λ (i.e., high wF ), the follower contributes less (i.e.,
q̇∗F ∝ λ). Therefore, in the decentralized scenario, we face
a trade-off between intention-recognition and assistance;
where the leader is required to perform the task partially in
order to communicate the intended goal to the follower and
subsequently receive assistance.



𝑥

𝑦

𝑞1

𝑞2

𝑞3

𝑙1

𝑙2
𝑙3

(a)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Time [s]

0

0.2

0.4

0.6

0.8

1

P
os

iti
on

 [r
ad

]

q
1

q
1

q
2

q
2

q
3

q
3

(b)

0

1
0

0.05

0.1

0

0.15

0.5 2

0.2

1 1.5

0.25

2

0.3

(c)

Fig. 3: The simulation results for the 3-DoF planar manipulator. (a) The model. (b) The joint values. (c) The joint-level error (compared
to the centralized solution) when the agents have different assumptions about each other’s contribution (i.e., wF ).

Fig 2 shows the results of a simulation for this 1-D case.
We simulate the system behavior for different values of wF
and compare against the centralized solution. For reaching
task, we consider vL = −1.2(x − 1) and k = 1 for the
null-space. We initialized the system at qL = 0.5, qF = 0.1,
and vF = 0, and all their derivatives at zero. The centralized
solution is generated with wF = 0 and vF = vL. The results
show the aforementioned trade-off. Higher values of wF
lead to similar results to those of the centralized solution
at the end-effector; see the first subplot. However, lower
values of wF perform similarly in the null-space; see qL
in the second subplot. Finally, the third subplot (qF ) shows
that with wF = 0.1, qF behaves similar to q∗F . The fourth
subplot shows this trade-off in a quantitative manner where
wF has opposite effect on task and null-space error.

It is crucial to investigate the case where the leader and
the follower have different assumptions about each other’s
contribution. Note that in our formulation, we assumed that
both agents utilize the same gain matrix W in their inverse
kinematics. Last subplot in Fig. 2 shows the performance
of our control approach (in terms of joint-level error) where
the leader and the follower have different assumption for
wF . Intuitively, the leader assuming small values or the
follower assuming big values (i.e., relying heavily on the
other partner) are counter-productive. When the follower
assumes wF < 1 (i.e., to contribute more than the leader), the
performance is not only satisfactory, but also less sensitive
to the leader’s assumption.

IV. THREE-LINKS PLANAR ROBOT

In this simulation, we consider a 3-DoF planar model
illustrated in Fig. 3a where the first two joints are controlled
by the leader and the last joint by the follower. This
resembles a simplified model for human reaching in the
sagittal plane utilizing hip, shoulder, and a prosthetic
elbow. In this model, we have l1 = 0.6, l2 = 0.3, and
l3 = 0.25m. The task is to reach xd = [.5, .5]T with
vL = −0.1(x − xd). The preferred posture is q̂ = [0, 0, 0]T

with K = diag[2, 0, 0]; i.e., only keeping the first link
upright. The robot is initialized at q = [0;−7π/8;π/6]
and simulated with dt = 0.01. The centralized solution
is generated using W = diag([1, .1, .05]), whereas in the

leader-follower scenario W = diag([1, .1, .5]). We choose
wF = 0.5 (lower expected contribution from the follower)
to investigate the performance of the robust case which
we expect following the insight from the previous results
presented in Fig. 2.

The results presented in Fig. 3b compares the centralized and
collaborative scenarios in terms of joint angles. As expected
by the weight matrix W in the centralized scenario, the
reaching motion is mostly achieved by moving the third
and the second joint. However, in the collaborative scenario,
the leader moves its joints (q1 and q2) more to convey the
intended motion. Interestingly, the leader only uses q1 on
the onset of the motion and goes back to its preferred value.
Compared to the centralized case, the follower motion has
less amplitude (due to higher wF ) and is delayed (due to
filtering). It can be seen that after 0.2s, the joint values con-
verge to the centralized solution. Furthermore, Fig. 3c shows
the joint-space error (compared to the centralized solution)
when the leader and the follower have different assumption
about wF . The graph is similar to the one obtained from
the 1-DoF example; i.e. the results are less sensitive to the
leader’s assumption when the follower assumes wF = 0.4.
However, a lower error can be achieved if both agree upon
wF = 0.1.

Tracking markers

Reaching
target

Fig. 4: The experimental setup where a human subject controls a
kinematic chain on the screen with his/her respective joints in order
to reach a designated target. We use this setup to compare different
control strategies for the third joint.
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V. EXPERIMENTAL RESULTS

In this section, we validate our proposed control method
facing a leader with higher complexity. To do so, we asked
10 participants to control the 3-DoF manipulator (of the
previous section) with their respective kinematic chain in
the sagittal plane; hip, shoulder, and elbow to control q1, q2,
and q3 respectively. We use the Optitrack system to track
four marker-clusters attached to the subject upper body (hip,
shoulder, elbow and wrist) from which we obtains the values
for q. The participants were asked to reach for a series of
target positions in the frontal reachable workspace. These
targets position, as well as the 3-DoF robot, was displayed
to the participants on a monitor screen as illustrated in Fig. 4.

To better investigate our approach, we considered the
following conditions. In HC, the participant controls all
the tree joints; i.e., a centralized control. For FE, the
third joint (elbow) is fixed at q3 = π

6 , and the participant
controls q1 and q2. In SS, q3 is controlled using a simple
shoulder-elbow synergy; i.e., q̇3 = q̇2 where q1 and q2
is controlled by the subject. In PC, the proposed control
method is used to control the third joint. For PC-S, only
the synergy part of the propose method is used; i.e., ˙̄q = 0
in Eq. 6. Finally in PS-N, only the null-space part of
the proposed method is used; i.e., vF = 0 in Eq. 6. The
sequence of the target position (consists of G = 28 goals)
were kept fixed across the conditions. We designed this
sequence to accommodate motions in different direction;
since the previous reached-goal will be the initial position
to reach another. Each target was presented for a period
of 6s making the trial T = 168s long. Prior to each trial,
the participants had a short training session to familiarize
with the control strategy. For our controller, we used
α = 40, W = diag([1, 1, .15]), K = diag([2, .2, 0]), and
q̂ = [0,−2.7, 0]rad. Finally, the control loop frequency, in
average, was around 50Hz.

We consider the four following metric (listed in the table
below) to evaluate the performance of participants. Hip
utilization is computed as the average absolute value of the

first joint (q1). Distance error is obtained as the average of
distance between the end-effector and the target e = x− xd
where ‖.‖ denotes the vector norm. Time to reach is the
average time spent to reach a target position with tolerance
δ = 0.02m: Finally, Deviation from straight line is the
average of the velocity components that are orthogonal to
the error vector e. The participants’ performances across
conditions are summarized in Fig. 5. In this figure, the per-
formance of each participant in each conditions is compared
(in percentages) to their individual performances in the HC
condition.

Metric Equation Average in HC

Hip utilization 1
T

∫ T
0
‖q1(t)‖ dt 0.075rad

Distance error 1
T

∫ T
0
‖e‖ dt 0.07m

Time to reach 1
G

∫
‖e‖>δ dt 2.5s

Deviation from
straight line

1
T

∫ T
0
‖ẋ− ẋT e

‖e‖ e‖ dt 0.05m/s

The obtained results show that our approach is effective
in reducing the hip utilization in human participants; 47%
compared to 250% when the elbow is locked, and 150%
when the simple synergy method is used. However, it can
be seen that the equality of reaching motion (in terms of
the other three metrics) is worse compared to HC and FE
when the human (even though the third joints is locked)
controls the system in a centralized manner. Such lower
performance is expected since in the decentralized control the
follower has uncertainties (about the intended task and over
control parameters) and suffers from delayed observations.
Nevertheless, comparison between SS and PC reveals that
more complex dynamics (which reduces the hip utilization
by 102%) does not exacerbate the quality of reaching drasti-
cally; 10% slower reaching with 17% higher deviation from
straight line. Moreover, the results shows that due to the
faster dynamics of the synergy part of our method, the target
is reached faster but with higher deviation from the straight
line. On the other hand, slower dynamics of the null-space



part lead to less deviation but slower reaching is achieved.
These observations are useful in tuning parameters such as
wF and K which adjust the reactivity of each respective
part. Finally, it is important to note the variability among
participants (as the distributions have high variance) which
hints at 1) personalized parameter tuning, and 2) possibility
for improvement after training.

VI. DISCUSSION AND CONCLUSION

In this work, we present an intent-aware control method for
collaborative robots in kinematically redundant setups with
applications towards prosthetic and supernumerary arms.
Our proposed method is inspired by the movement-based
control approach in which it was observed that impaired
users utilize their kinematic redundancies (and subsequently,
compromise the ergonomics of their posture) to perform
their intended task. Our method exploits the fact that the
intended task can be recognized through the observations of
the end-effector velocity created by the leader. We formulate
our method based on the segmentation of the Jacobian
matrix which allowed us to investigate the stability and
convergence behavior rigorously. The simulation results are
in line with the theoretical aspects of the method and shed
light on how certain parameters affect the final performance;
e.g., wF as the follower IK gain which sets a trade-off
between optimality and robustness.

Our experimental results show that our proposed method is
effective in recognizing the intended task, and thus, reducing
the ergonomic cost for human-leaders. We compare our
method against a simple linear synergy model which often
used in the literature. Most often, the synergy model is
extracted from healthy subjects ([43, 44]) to be used for
individuals with amputations ([36, 45]). However, such
methods neglect the kinematic changes in individuals with
amputations; e.g., higher hip and scapula utilization to
compensate for the lack of control over the distal joints.
Moreover, we put our method under further scrutiny by
investigating the performance of the separate parts of the
controller; namely the synergy and the null-space part in
Eq. 6. The obtained results hint at how the respective gains
of each part (wF and K) can be tuned effectively in order
to provide satisfactory dynamics for the human-user; slow
dynamics increase the reaching time and fast dynamics
cause fluctuations and overshoots.

The comparison between simulation and experimental results
show that better performance is achieved when the leader
and the follower have complementary dynamics; i.e., the
leader and the follower solving the IK problem by using
the respective parts of a unified Jacobian. However, in the
experimental scenario, the unmodeled/unexpected dynamics
seen by each agents deteriorates the tracking performance.
In our future work, we will try to improve our approach
by accommodating human-like dynamics; e.g., through on-
line learning and personalization. Moreover, in future, we
will implement our method on a prosthetic arm where we

need to tackle technical challenges such as embedded and
noisy measurements, imperfect physical coupling and robot
dynamics.

APPENDIX

1) Proof of stability: The dynamics of this system can be
studied by plugging Eq. 6 into Eq. 1, which results in

ẋ = −γHL(x− xd) +HF vF (11)

where HL = JLJ
#
L and HF = JFJ

#
F with property that

HL + HF = JJ# = I; I being the identity matrix. The
dynamics of the error can also be investigated with respect
to the target position; i.e., e = x−xd and its time-derivative:

ė = −γHLe+HF vF (12)

The second time-derivative yields the dynamics as

ë+ (γ + α)HLė+ αγHLe = ηx (13)

where the ηx = ḢL(λe − vF ). Since γ and α are positive
scalars, the homogeneous system is stable if all eigenvalues
of HL are positive. To show this, we expand HL as follows.

HL = JLW
−1
L JTL (JLW

−1
L JTL + JFW

−1
F JTF )−1 (14)

Here, we assume that JLW−1L JTL is invertible; i.e., the leader
is not singular. Therefore, HL can be simplified to:

HL = (I +A)−1 (15)

where A = (JFW
−1
F JTF )(JLW

−1
L JTL )−1 has non-negative

eigenvalues since it is the multiplication of a semi-positive
and a positive definite matrix. Therefore, if λ ≥ 0 is
eigenvalue for A, 1

1+λ > 0 is an eigenvalue for HL.

The previous analysis shows that the task can be achieve in a
stable manner. However, we also need to show that internal
dynamics are stable; e.g., the undesirable behavior when the
leader compensates for the follower’s unstable dynamics.
Thus, we study the follower’s dynamics which are

q̈F = −α(I − J#
F JF )(q̇F − q̇∗F ) + ηq (16)

where q̇∗F = J#
F vL +NF ˙̄q represent the centralized solution

of the follower; where vF is replaced by vL. Moreover,
ηq = NF ¨̄q + ṄF ˙̄q + J̇#

F vF represents the disturbances
due to higher order dynamics. The matrix J#

F JF has the
same non-zero eigenvalues of HF . Since HL + HF = I , it
follows that (I − J#

F JF ) has eigenvalues of form 1
1+λ > 0

as well. This guarantees a stable convergence of q̇F to its
centralized solution when ηq can be neglected.

Finally, in our analysis, we assume a perfect velocity-
controller and we ignore the second-order dynamics of the
system; e.g., inertia, centrifugal forces and gravity. However,
such neglected discrepancies can be accommodated into ηx
and ηq as disturbances that can be tolerated by the velocity
controller. Our analysis (at the velocity level) and proposed
method (on motion planning for the follower) still hold even
if one imagines other types of controllers such as torque-
level control (e.g., inverse dynamics control [46]) as long as
the control objective is to track q̇F proposed by Eq. 6.
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and O. Khatib, “Progress and prospects of the human–robot collabo-
ration,” Autonomous Robots, vol. 42, no. 5, pp. 957–975, 2018.

[11] D. Aarno and D. Kragic, “Motion intention recognition in robot
assisted applications,” Robotics and Autonomous Systems, vol. 56,
no. 8, pp. 692–705, 2008.

[12] J. Huang, W. Huo, W. Xu, S. Mohammed, and Y. Amirat, “Control
of upper-limb power-assist exoskeleton using a human-robot interface
based on motion intention recognition,” IEEE transactions on automa-
tion science and engineering, vol. 12, no. 4, pp. 1257–1270, 2015.

[13] A. Kucukyilmaz, T. M. Sezgin, and C. Basdogan, “Intention recog-
nition for dynamic role exchange in haptic collaboration,” IEEE
transactions on haptics, vol. 6, no. 1, pp. 58–68, 2012.

[14] A. Olivares-Alarcos, S. Foix, and G. Alenya, “On inferring intentions
in shared tasks for industrial collaborative robots,” Electronics, vol. 8,
no. 11, p. 1306, 2019.
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