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Regularity result for a shape optimization problem under

perimeter constraint

Beniamin Bogosel

Abstract

We study the problem of optimizing the eigenvalues of the Dirichlet Laplace operator
under perimeter constraint. We prove that optimal sets are analytic outside a closed singular
set of dimension at most d−8 by writing a general optimality condition in the case the optimal
eigenvalue is multiple. As a consequence we find that the optimal k-th eigenvalue is strictly
smaller than the optimal (k + 1)-th eigenvalue. We also provide an elliptic regularity result
for sets with positive and bounded weak curvature.

Keywords: eigenvalues, shape optimization, regularity
AMS Subject Classifications. 49Q10, 35J25

1 Introduction

For a given domain Ω ∈ Rd we can consider the eigenvalue problem for the Laplace operator
with Dirichlet boundary conditions defined by{

−∆u = λk(Ω)u in Ω

u = 0 on ∂Ω.

This operator has compact resolvent if L2(Ω) injects compactly in H1(Ω) and in this case the
spectrum consists of an increasing sequence of eigenvalues

0 < λ1(Ω) ≤ λ2(Ω) ≤ ... ≤ λk(Ω) ≤ ...→∞.

The optimization of the eigenvalues of the Dirichlet Laplace operator under various constraints
is a classical problem which recently had important developments. Authors were initially con-
cerned with considering volume constraints, but in some recent works like [6], [11] the perimeter
constraint gained some interest. In fact, having a perimeter constraint allows the use of tech-
niques related to perimeter quasi-minimizers [25] which allow important gains in regularity
properties. More precisely, the basic form of the problem which we consider is the minimization
of λk(Ω) under a perimeter constraint

min
Per(Ω)=c

λk(Ω).

Using the nice behavior of these eigenvalues under homotheties, λk(tΩ) = λk(Ω)/t2 one can
deduce that the above problem is equivalent, up to a homothety, to the problem

min
Ω∈Rd

(λk(Ω) + Per(Ω)) . (1)

This latter formulation has the advantage of being unconstrained and will be used throughout
the paper. In [10] the authors study existence and regularity properties of problems of the form

min
|Ω|=m

(Per(Ω) + G(Ω))
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where G is the Dirichlet energy or a spectral functional. The authors focus on showing how
to recover the C1,α regularity of the relaxed optimizers. They also describe how to perform a
bootstrap argument in certain cases and be able to show that optimal sets are C∞. The case
where the functional depends on spectral quantities is not treated in full detail as one needs to
take care of the case where the optimal eigenvalues are multiple, thus losing some differentiability
properties.

The aim of this paper is to improve the known regularity properties for problem (1). In
fact for the same problem with volume constraint regularity issues are more delicate. Existence
results are proved in [5], [19] in the class of quasi-open sets, which are basically level sets of H1

functions. Initial regularity results are presented in [7] where the authors prove that in certain
cases the solution to the analogue spectral optimization problem under volume constraint is an
open set. From now on we consider only the perimeter constraint.

The Faber-Krahn inequality and the isoperimetric inequality immediately imply that the
first eigenvalue is minimized by the ball in any dimension. A first result concerning higher
eigenvalues is due to Bucur, Buttazzo and Henrot [6]. The authors consider the minimization
of the second eigenvalue among domains Ω in R2. Some results particular to this case, like
convexity of the optimizers, H2 regularity for elliptic problems on convex domains [14] and
simplicity of the second eigenvalue, allow the use of a bootstrap procedure which shows that the
optimal set is C∞.

In [11] De Philippis and Velichkov show that problem (1) has solutions in every dimension
and the optimal shapes have regularity at least C1,α outside a closed set of Hausdorff dimension
less or equal than d − 8. The fact that minimizers are not known and do not have a simple
structure even in the case of the second eigenvalue [6] motivated the numerical study of problem
(1). Simulations were performed in R2 and R3 with two distinct methods in [2] and [3]. In
addition to numerical simulations Bogosel and Oudet [3] also present an optimality condition
applicable in the case of multiple eigenvalues inspired by methods from [12]. The need of these
more general optimality conditions is motivated by the numerical observations. Indeed, we
observe that except some particular cases the eigenvalues of the optimal shapes seem to have
multiplicity higher than one. Thus classical methods based on optimality conditions obtained
directly from the derivative of the eigenvalue, like the one used in [6], are not always applicable.
The more general optimality condition presented in [3] states that if the optimal set Ω∗ is of
class C3 then there exist a family of eigenfunctions {φi}mi=1 such that the mean curvature H of
Ω∗ can be expressed as

H =

m∑
i=1

(∂nφi)
2.

This optimality condition allows the use of a bootstrap argument which shows that optimal
shapes are smooth. These optimality conditions were also used in [3] as a tool for validating the
numerical computations.

The purpose of this note is to remove the additional C3 regularity hypothesis used in the
deduction of the above optimality condition. We prove the following result.

Theorem 4.1 If Ω∗ is a local minimizer for problem (1) then Ω∗ is analytic for d ≤ 7. If
d ≥ 8 then Ω∗ is analytic outside a closed set of Hausdorff dimension d− 8.

The arguments used in the proof are different from the ones used in [4] which used heavily the
C3 regularity. There are also common points such as the analytic parametrization of eigenvalues
under regular perturbations and the use of a variant of the Hahn-Banach theorem to conclude.
A summary of the steps employed in the proof is presented below.

1. We want to be able to recover some differentiability information in the case the eigen-
value is multiple. It is well known (see [16]) that in this case the eigenvalue may not
be differentiable. Nevertheless, applying a classical result of Rellich [24] we can deduce
that the eigenvalues and eigenfunctions of an analytic perturbation of the domain can be
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reparametrized analytically. This fact implies, in particular, that even if we lose differen-
tiability we still recover some facts about directional derivatives.

2. A second aspect is writing the lateral derivatives of the eigenvalues using expressions similar
to the shape derivative formula. In order to do this we would like to have more information
about the regularity of the eigenfunctions. In the work of Grisvard [14, Theorem 3.2.1.2] it
is proved that if Ω is convex then solving −∆u = f in H1

0 (Ω) with f ∈ L2(Ω) implies that u
is a H2(Ω) function. The proof of this uses the fact that convex sets can be approximated
uniformly from inside with C2 convex sets. This brings us naturally to the next point.

3. In [11] it is proved that solutions of problem (1) exist, are of class C1,α and that any
optimizer has non-negative and bounded weak mean curvature. The question which arises
is the following: can we approximate C1,α sets with weak non-negative bounded mean
curvature with smoother sets (at least C2) with non-negative mean curvature? The answer
is affirmative and a proof is presented in [20, Lemma 3.8]

4. The final step consists in using a variant of the Hahn-Banach theorem which allows us to
deduce that the mean curvature is a convex combination of squares of normal derivatives
of an orthonormal basis of the eigenspace corresponding to the k-th eigenvalue. Once
we have this formula we use a result of Landais [18] on the regularity of solutions to the
mean curvature equation to deduce that the optimal set is C2,α. Results concerning the
regularity of solutions to equations of the mean curvature type can also be found in [1,
Section 7.7]. A bootstrap algorithm similar to the one used in [6] or [18] allows us to
conclude that optimal shapes are C∞.

After proving the regularity result we turn our attention to the case where the eigenvalues
of the optimal set are multiple. We prove a result which was observed in the numerical com-
putations from [3]. The result says that when the optimal k-th eigenvalue is multiple then the
multiplicity cluster ends at λk, namely ... = λk−1(Ω∗) = λk(Ω

∗) < λk+1(Ω∗). This implies, in
particular, that the optimal costs

ck = min
Ω∈Rn

(λk(Ω) + Per(Ω)) , dk = min
Per(Ω)=1

λk(Ω) (2)

form a strictly increasing sequence.

2 Elliptic regularity for sets of positive mean curvature

As the results of [11] prove that the solutions of problem (1), denoted by Ω∗ in the sequel, are
C1,α domains (outside a residual closed set of dimension at most d− 8) with non-negative weak
mean curvature, we start from this setting and we prove the H2 regularity of the eigenfunctions
for the optimizers of (1). In the first part of this section we restrict ourselves to dimension d at
most 7, where we do not have singularities. In this case we conclude that u ∈ H2(Ω). At the
end of the section we give an argument which allows us to deduce local H2 regularity outside
the singular set. This type of results are new up to the author’s knowledge. Results relating
the regularity of the solution to the curvature of the boundary can be found, for example in [13,
Section 14.3], however the problem we are interested in is not covered by these. The results in
[14, Chapter 3] concerning elliptic problem on convex domains are similar to the ones we are
interested in and we follow similar methods in the proofs below.

Thus, following the results of [11] we know that solutions of (1) can be represented locally
around each point in the regular part of the boundary as epigraphs of C1,α functions. Thus, in a
local coordinate system with origin in a regular point x0, the boundary ∂Ω∗ can be represented
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as the graph of h : D ⊂ Rd−1 ∈ R, where D is an open set containing 0. Moreover, following
the results of [11], for every ψ ∈ C1(D), ψ ≥ 0 we have

0 ≤
∫
D

∇h · ∇ψ√
1 + |∇h|2

≤ K∞

where K∞ is a constant. Thus the mean curvature of an optimizer Ω∗ can be represeted as
an L2(∂Ω) integrable function, since Ω∗ has finite perimeter. Note that if Ω∗ is C2 then these
inequalities simply say that its mean curvature is non-negative and bounded above by K∞.

In [14, Chapter 3] we can find results concerning the regularity of elliptic problems in terms
of the mean curvature of the boundary. In particular, for convex sets the solution of −∆u = f
in H1

0 for f ∈ L2 is an H2 function. The scope of this section is to extend such results to the
case of C1,α domains which have weak non-negative mean curvature. In order to do this we
follow a similar approach. In a first stage we approximate C1,α domains with non-negative weak
mean curvature with C2 sets with non-negative mean curvature. This approximation stage is
presented in [20] and uses notions related to weak mean curvature flows. A second stage, which
is a simple consequence of Theorem 3.1.2.1 and Remark 3.1.2.2 in [14] gives some results for C2

domains with non-negative mean curvature. We conclude the general case using an approach
similar to Theorem 3.1.2.1 from [14].

Proposition 2.1. Let Ω be a C1,α domain with non-negative weak mean curvature in L2(∂Ω).
Then for each ε > 0 there exists a smooth set Ωε, with non-negative mean curvature such that
Ωε ⊂ Ω and dH(∂Ω, ∂Ωε) < ε (where dH represents the Hausdorff distance).

Proof: We see that the set Ω verifies the hypotheses of Lemma 3.8 in [20]. Indeed, Ω has non-
negative weak mean curvature in L2(∂Ω) so there exists a sequence (Ωε)ε>0 such that Ωε → Ω
in C1 (and thus uniformly), Ωε are smooth for ε > 0 and the mean curvature of Ωε is strictly
positive. �

We state below a few standard regularity results for regular domains. Proofs can be found,
for example, in Theorems 2.2.2.3 and 3.1.2.1 from [14]. �

Proposition 2.2. 1. If Ω is a domain with C2 boundary. Then for every f ∈ L2(Ω) the problem{
−∆u = f in Ω

u = 0 on ∂Ω

has a unique solution solution u ∈ H2(Ω).
2. If Ω is an open, bounded subset of R2 with C2 boundary and non-negative mean curvature,

then there exists a constant C(Ω), which depends only on the diameter of Ω, such that

‖u‖H2(Ω) ≤ C(Ω)‖∆u‖L2(Ω),

for every u ∈ H2(Ω) ∩H1
0 (Ω).

Now we are ready to prove the desired regularity result.

Theorem 2.3. Suppose Ω is a C1,α set with non-negative weak mean curvature in L2(∂Ω).
Then for every f ∈ L2(Ω) the problem{

−∆u = f in Ω

u = 0 on ∂Ω

has a unique solution u ∈ H2(Ω).
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Proof: Proposition 2.1 implies the existence of a sequence of C2 sets Ωn such that Ωn ⊂ Ω, Ωn

has non-negative mean curvature and dH(∂Ωn, ∂Ω)→ 0. We consider the solution um ∈ H2(Ωm)
of the Dirichlet problem in Ωm: {

−∆um = f in Ωm

um = 0 on ∂Ωm,

solution which exists by Proposition 2.2. Applying Theorem 1.5.1.5 from [14] we deduce that
ũm ∈ H1(Rd), where ũm is the extension by zero of um outside Ωm. Proposition 2.2 implies
that there exists a constant C such that ‖um‖H2(Ωm) ≤ C. This implies that ũm is bounded

in H1(Rd) and that the sequences vm,i,j = ∂i∂jum are bounded in L2(Rd). Therefore, up to
choosing a subsequence, we can assume that there exist U ∈ H1(Rd) and Vi,j ∈ L2(Rd) such
that

um ⇀ U weakly in H1(Rd) and vm,i,j ⇀ Vi,j weakly in L2(Rd).

In the following we denote by u the restriction of U to Ω. Since the supports of ũm are all
contained in Ω, it follows that U is also supported on Ω. Thus u = 0 on ∂Ω. Now let ϕ ∈ C∞c (Ω)
be a smooth function with compact support in Ω. Then there exists m0 such that for every
m ≥ m0 the support of ϕ is contained in Ωm. Thus, for all m ≥ k0 we have∫

Ω
fϕ = −

∫
Ωm

∆umϕ =

∫
Ωm

∇um · ∇ϕ =

∫
Ω
∇ũm · ∇ϕ.

Taking the limit as m→∞ we get ∫
Ω
fϕ =

∫
Ω
∇u · ∇ϕ.

Since this is true for every ϕ ∈ C∞c (Ω) we conclude that −∆u = f on Ω in the sense of
distributions. Until now we have the existence of a solution u ∈ H1(Ω). In order to complete
the proof we need to prove that the second derivatives of u are in L2. We take again ϕ ∈ C∞c (Ω)
and for m ≥ m0 we have∫

Ω
ũm∂i∂jϕ =

∫
Ωm

um∂i∂jϕ =

∫
Ωm

∂i∂jumϕ =

∫
Ω
vm,i,jϕ.

Taking the limit as m→∞ we obtain∫
Ω
u∂i∂jϕ =

∫
Ω
Vi,jϕ,

which means that the distributional derivatives of order 2 denoted by ∂i∂ju are given by Vi,j
and they are in L2 for all i, j = 1...d. Thus we have proved the existence of a solution u ∈
H2(Ω) ∩ H1

0 (Ω). The uniqueness follows at once using the estimates in Proposition 2.2 along
with an approximation argument. �

We note that the above arguments work if Ω does not have a singular part Σ. Indeed, the
result stated in Proposition 2.1 is for the case when Ω is globally C1. When we have a singular
set Σ it is no longer possible to use this. We can however prove that outside the singularity the
eigenfunction is locally H2. In order to do this, let’s recall the following integration by parts
formula.∫

Ω
ϕ|D2u|2dx+

∫
∂Ω
ϕH|∇u|2dσ =

∫
Ω
ϕ(∆u)2dx+

∫
Ω

(∇ϕ · ∇u)∆udx−
∫

Ω
∇ϕ ·D2u∇udx.

For the sake of completness an idea of the proof, as well as some references are given in the
Appendix C. Note that for a solution of (1) we know that the corresponding eigenfunction u is
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Lipschitz so ∇u ∈ L∞(Ω). See [11] for details. Moreover, since −∆u = λku and u ∈ L∞(Ω) we
may as well assume that ∆u ∈ L∞(Ω). See for example [9, Example 2.1.8] where we have the
estimate ‖u‖∞ ≤ e1/8πλk(Ω)d/4.

Let x0 be a point outside the singular set Σ. Since this set is closed, there is an open
neighborhood of x0 which does not intersect the singular part. Let Br be a ball centered in x0 of
radius r small enough such that Br ∩ ∂Ω is C1,α. Consider a smooth cutoff function 0 ≤ ϕ ≤ 1
such that, ϕ = 1 on Br/2 and ϕ = 0 on ∂Br, where Br/2 is a ball concentric with Br, having
radius r/2. With these considerations note that∫

∂(Ω∩Br)
ϕH|∇u|2dσ ≥ 0

since on ∂Ω ∩ Br the curvature is non-negative in the distributional sense and on ∂Br ∩ Ω we
have ϕ = 0. Thus, applying the above integration by parts formula for Ω ∩Br and ϕ described
above, we get∫

Ω∩Br
ϕ|D2u|2dx ≤

∫
Ω∩Br

ϕ(∆u)2dx+

∫
Ω∩Br

(∇ϕ · ∇u)∆udx−
∫

Ω∩Br
∇ϕ ·D2u∇udx.

Applying the inequality ab ≤ a2+b2

2 and Cauchy-Schwarz we obtain∫
Ω∩Br

ϕ|D2u|2dx ≤
∫

Ω∩Br
ϕ(∆u)2dx+

1

2

∫
Ω∩Br

(∆u)2dx+
1

2

∫
Ω∩Br

(∇ϕ · ∇u)2dx

+

∫
Ω∩Br

∇ϕ ·D2u∇udx.

Integrating again by parts the last term in the above inequality, we obtain∫
Ω
∇ϕ ·D2u∇udx =

n∑
i,j=1

∫
Ω
∂iϕ∂i∂ju∂ju

∂j
=

n∑
i,j=1

∫
∂Ω
∂iu∂ju∂iϕνjdσ −

n∑
i,j=1

∫
Ω
∂iu∂i∂jϕ∂judx−

n∑
i,j=1

∫
Ω
∂iu∂iϕ∂

2
j udx =∫

∂Ω
(∇u · ∇ϕ)(∇u · n)dσ −

∫
Ω
∇u ·D2ϕ∇udx−

∫
Ω

(∇u · ∇ϕ)∆udx.

Since ∇u is in L∞(Ω) and in our case −∆u = λku ∈ L∞(Ω), the above expression is bounded
and we may conclude that ∫

Ω∩Br
ϕ|D2u|2dx < +∞

which means that u ∈ H2(Br/2). Since this argument is valid for any point x0 outside Σ, it
follows that u ∈ H2

loc(Ω \ Σ).

3 Analytic perturbations for eigenvalue problems

We know that the eigenvalues of the Dirichlet Laplace operator on Ω are differentiable if
they are simple. We refer to [16] for further details. However, numerical results found in [2, 3]
show that optimizers of problem (1) tend to have multiple eigenvalues. It is possible to recover
some information regarding the differentiability of the eigenvalues, even when the multiplicity
is greater than one, by using the theory of operator perturbations.

Rellich proved in [24] that analytic perturbations of a self-adjoint operator with the same
domain allows an analytic parametrization of the eigenvalues and the eigenfunctions. More
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recent results can be found in [17]. The article of Micheletti [21] contains details about the
application of Rellich’s result to the study of eigenvalue problems. Indeed, it is proved that
the Laplace operator defined on Ωε = (Id + εV )(Ω) has the same spectrum as a self-adjoint
operator Aε which depends analytically on ε and has a domain of definition independent of ε.
The result of Rellich, stated above, implies that the eigenvalues and eigenvectors of (−∆) on
Ωε can be parametrized analytically with respect to ε. Thus, if λ is an eigenvalue of Ω with
multiplicity m, with the associated orthonormal basis (ui)

m
i=1, there exist m functions ε 7→ λε,i

and the associated family of eigenfunctions ε 7→ ϕε,i orthonormal in L2(Ωε), such that both
dependencies are analytic in ε, λ0,i = λ, ϕ0,i = ui and{

−∆ϕε,i = λε,iϕε,i in Ωε

ϕε,i = 0 on ∂Ωε,

for every i = 1, ...,m. Differentiating with respect to ε we obtain the classical derivative formula

dλε,i
dε

∣∣∣∣
ε=0

= −
∫
∂Ω

(
∂ui
∂n

)2

V.ndσ (3)

For details see [23] where a formal argument shows how to deduce relation (3). The formal
argument is rigorous once we know that the eigenvalues and eigenfunctions depend analytically
on ε. The H2 regularity (local H2 when singularities are present) of the eigenfunctions proved
in the previous section allows writing the derivative of the eigenvalues using the above boundary
integral depending on the normal derivative. For details see [16, Theorem 5.7.4].

4 Main result

Theorem 4.1. If Ω∗ is a local minimizer for problem (1) then Ω∗ is analytic for d ≤ 7. If d ≥ 8
then Ω∗ is analytic outside a closed set of Hausdorff dimension at most d− 8.

Proof: Since Ω∗ has C1,α regularity outside an eventual closed singular set Σ of dimension
at most d− 8, it is possible to represent the boundary around a point x0 ∈ ∂Ω∗ \Σ as the graph
of a C1,α function h : Ba ⊂ Rd−1 → R, where Ba is a ball of radius a, small enough such that
we are still outside the singular set. We denote by Ωε = (Id + εV )(Ω∗) for a C1(Rd,Rd) vector
field. Using this type of graph representation we deduce that if ψ is the perturbation of this
graph associated to V then ε 7→ Per(Ωε) is differentiable at zero and its derivative is equal to∫

Ba

∇ψ · ∇h√
1 + |∇h|2

.

As noted in the previous section, the function ε 7→ λk(Ωε) has left and right derivatives. Further-
more, we know that there is an orthonormal basis of the associate eigenspace, denoted (ui)

p
i=1,

such that the directional derivatives of λk are in the set(
−
∫
Ba

|∇ui|2ψ(x)dx

)p
i=1

.

This is just a simple consequence of the derivative formula (3) in the local coordinate system.
Indeed, the normal derivative is just the gradient since the tangential derivative is zero. On the
other hand the term V.n is equal to ψ(x)/

√
1 + |∇h|2 and the Jacobian is

√
1 + |∇h|2.

Thus, at the optimum, regardless of the multiplicity and the C1 perturbation considered,
there exist left and right derivatives for λk(Ωε)+Per(Ωε) at ε = 0. The case where the eigenvalue
is simple is straightforward and is similar to the approach used in [6]. Suppose now that λk is
multiple. The local optimality of Ω∗ implies that the left and right derivatives of λk(Ωε)+Per(Ωε)
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at ε = 0 in any direction given by ψ in the local coordinates are of different signs. As a
consequence, given a perturbation ψ ∈ C1(Ba) we have two indices i, j such that∫

Ba

∇ψ · ∇h√
1 + |∇h|2

−
∫
Ba

|∇ui|2ψ ≥ 0 (4)∫
Ba

∇ψ · ∇h√
1 + |∇h|2

−
∫
Ba

|∇uj |2ψ ≤ 0 (5)

We define the linear functionals F ,Gi on C1(Ba) by

F(ψ) =

∫
Ba

∇ψ · ∇h√
1 + |∇h|2

Gi(ψ) =

∫
Ba

|∇ui|2ψ

Equations (4) and (5) tell us that for every ψ ∈ C1(Ba) there exist indices i, j such that
F(ψ) ≥ Gi(ψ) and F(ψ) ≤ Gj(ψ). This implies, in particular, that for every ψ ∈ C1(Ba) we
have F(ψ) ∈ conv{Gi(ψ)}. Using a variant of the Hahn-Banach separation theorem presented
in Proposition B.2 it follows that F ∈ conv{Gi}. For the sake of completeness a proof of the
result can be found in Appendix B. For more details see [8, Section 2.4].

Therefore there exist µ1, ..., µm ∈ [0, 1] with µ1 + ...+ µn = 1 such that∫
Ba

∇ψ · ∇h√
1 + |∇h|2

=
m∑
i=1

µi

∫
Ba

|∇ui|2ψ,

for every ψ ∈ C1(Ba). Since h is already C1,α, we know that each ui is also C1,α [13, Theorem
6.18]. Therefore ∇ui are all in C0,α.

In [18] it is proved that if h ∈ C1,α(Ba). f ∈ C0,α(Ba) and the distributional equation∫
Ba

∇ψ · ∇h√
1 + |∇h|2

=

∫
Ba

fψ, ∀ψ ∈ C1(Ba)

holds, then h ∈ C2,α(Ba). Using this result we conclude that h ∈ C2,α and h is a strong solution
of the equation

− div

(
∇h√

1 + |∇h|2

)
=

m∑
i=1

µi|∇ui|2 (6)

with µ1 + ...+ µp = 1. Using straightforward computations equation (6) is equivalent to

− ∆h√
1 + |∇h|2

+
∇h · ∇h

(1 + |∇h|2)3/2
=

m∑
i=1

µi|∇ui|2

which leads to

−∆h =
√

1 + |∇h|2
(

m∑
i=1

µi|∇ui|2
)
− |∇h|2

1 + |∇h|2
. (7)

Since h ∈ C2,α(Ba) and this is true for any local chart which does not intersect Σ, the set Ω is
a domain with C2,α boundary outside Σ. Therefore using again the standard Schauder regularity
results [13, Theorem 6.18] we see that the eigenfunctions (ui)

p
i=1 are in C2,α(Ba). This means

that the right hand side of equation (7) is in C1,α(Ba). Theorem 9.19 from [13] allows us to
deduce that h belongs to C3,α(Ba). In general we see that if h ∈ Ck,α(Ba), k ≥ 2, then the right
hand side of (7) is in Ck−1,α(Ba) and thus h ∈ Ck+1,α(Ba). An inductive bootstrap argument
allows us to see that h ∈ C∞(Ba). Moreover, since the coefficients of the partial differential
equation (7) are analytic and h is C∞ the results of Morrey [22] allow us to deduce that h is
analytic. Repeating the argument around each point outside Σ, we conclude that ∂Ω \ Σ is
analytic. �
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Remark 4.2. Theorem 4.1 improves the results in [3] in yet another direction. In the cited
reference the authors prove that at the optimum there exists a family of eigenfunctions (ϕi)

m
i=1

in the eigenspace associated to λk such that

H =
m∑
i=1

(∂nϕi)
2.

In the proof of our result we deduce a more precise result which says more about the family
(ϕi) and about the number of eigenfunctions present in the optimality condition. Indeed we
prove that if (ui)

m
i=1 is an orthonormal basis of the eigenspace associated to λk then there exist

µ1, ..., µm ∈ [0, 1] with µ1 + ...+ µm = 1 such that

H =
m∑
i=1

µi(∂nui)
2.

We note that this behavior has been conjectured by the numerical results presented in [4].

Remark 4.3. The results of Theorem 4.1 can be generalized to problems of the type

min
Ω∈Rd

[
F (λk1(Ω), ..., λkp(Ω)) + Per(Ω)

]
where F : Rp → R+ satisfies the properties

(P1) F (x)→∞ as |x| → ∞.

(P2) F is of class C1 and at least one of its partial derivatives does not vanish when evaluated
at (λk1(Ω∗), ..., λkp(Ω

∗)).

(P3) F is increasing in each variable, furthermore, for any compact K ⊂ Rp \ {0} there exists
a > 0 such that if x, y ∈ Rp with xj ≥ yj , j = 1, ..., p then F (x)− F (y) ≥ a|x− y|.

Properties (P1) and (P3) are taken from [11] to guarantee existence. Property (P2) is stronger
than the analogous property in [11] (locally Lipschitz continuity) and allows us to differentiate
the functional at the optimum.

Remark 4.4. The techniques presented here should also apply to the problem

min{λk(Ω) + Per(Ω), |Ω| = m}

introduced in [10]. Indeed, the functional is the same, but there is a volume constraint. The
existence of a solution which is C1,α regular outside a closed singular set of dimension at most
d − 8 has been treated in [10]. Like above it is possible to write the expression of the shape
derivative, but we need to work with flows which preserve the volume. Such flows can be
constructed for any perturbation V such that

∫
∂Ω V.n = 0 (see [12]). Then, using techniques

similar to the ones in [12] we may deduce that at the optimality condition (6) becomes

−div

(
∇h√

1 + |∇h|2

)
=

m∑
i=1

µi|∇ui|2 + const.

This allows us to deduce the full regularity of the above problem in the same way as in Theorem
4.1.

The results in this section allow us to give a different argument for [6, Theorem 2.5] and
extend the corresponding result to all dimensions. The following result also generalises [3,
Theorem 5.7].
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Corollary 4.5. If Ω∗ is a solution for problem (1) then

• ∂Ω∗ does not contain flat parts

• ∂Ω∗ does not contain open subsets of spheres unless Ω∗ is a ball.

Proof: This is a simple consequence of the fact that ∂Ω∗ is analytic outside a singular set of
dimension at most d− 8.

5 The Multiplicity Cluster

Once the regularity of the minimizers of (1) is proved we may look into other facts about
the optimal set. As noted in [2] and [3] the numerical experiments show that in most cases the
multiplicity of the k-th eigenvalue of the optimal set is larger than 1. Numerical experiments
also suggest that when λk(Ω

∗) is multiple then λk(Ω
∗) < λk+1(Ω∗). A first result in this sense

has been obtained in [3] and is similar to [15, Lemma 2.5.9]. For the sake of completness we
give a sketch of the proof.

Theorem 5.1. Suppose Ω∗ is a minimizer for problem (1). If we have λk−1(Ω∗) < λk(Ω
∗) then

the k-th eigenvalue is simple, i.e. λk(Ω
∗) < λk+1(Ω∗).

Proof: Suppose λk(Ω
∗) is multiple and λk(Ω

∗) = ... = λk+m−1(Ω∗). Since λk is the smallest
eigenvalue in the cluster and Ω∗ is a local minimizer, the m analytic parametrizations of the
eigenvalues of the spectrum, described in Section 3, have derivative zero at ε = 0. This would
imply that (∂nui)

2 = H for all i = 1, ...,m.
If m > 1 this implies the existence of two different eigenfunctions u, v associated to λk(Ω

∗)
such that (∂nu)2 = (∂nv)2 = H. The Hölmgren uniqueness theorem implies that H cannot
vanish on a relatively open set of ∂Ω (see [3, Theorem 5.7] for an alternative argument). Thus,
there exists a relatively open set γ ⊂ ∂Ω such that H > 0 on γ. We can see that in this
situation ∂nu = ±

√
H and ∂nv = ±

√
H on γ. This implies that we have either ∂n(u + v) = 0

or ∂n(u − v) = 0 on γ. By Hölmgren’s uniqueness theorem we deduce that u = ±v which is a
contradiction. Therefore λk(Ω

∗) is simple. �
We can provide a stronger result based on the methods used in Theorem 2.5.8 and Lemma

2.5.9 from [15]. We note that we have already proved that optimal sets Ω∗ are analytic outside a
singular set Σ so the cited results apply in our case. Below we prove a generalization of Lemma
2.5.9 from [15].

Lemma 5.2. Suppose Ω is a smooth set in Rd and that λk+1(Ω) = ... = λk+m(Ω). Then there

exist vector fields V such that ` of the derivatives
dλk+i(Ωε)

dε

∣∣∣∣∣
ε=0

are strictly negative and the

other m − ` are strictly positive, for ` ∈ {1, 2, ...,m − 1}. Moreover, V can be chosen in such
a way that the derivative of the perimeter of Ω in the direction of V is zero, which means that∫
∂Ω
HV.ndσ = 0.

Remark 5.3. Working like in [3, Lemma 2.6] we may construct a family of sets Ωε = φε(Ω)
such that Ωε have the same perimeter as Ω = Ω0 and the derivative of the flow φε at ε = 0 is
V .

Proof of Lemma 5.2: Theorem 2.5.8 from [15] says that the derivatives of the eigenvalues of
the perturbations Ωε of Ω are the eigenvalues of the m×m matrix

AV = (ai,j) where ai,j = −
∫
∂Ω
∂nui∂nujV.ndσ, 1 ≤ i, j ≤ m.
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As a consequence, the derivatives of λk(Ω
∗) + Per(Ω∗) in the direction V are the eigenvalues of

A shifted by the derivative of the perimeter for the same direction V .
As in the proof of the previous theorem we place ourselves in a relatively open subset

γ of ∂Ω where the mean curvature H is strictly positive. For a point X ∈ γ we denote
ψ(X) = (∂nu1(X), ..., ∂num(X)) ∈ Rm. We can find points X1, ..., Xn ∈ γ such that the vectors
ψ(Xi), i = 1, ...,m are linearly independent. We present a simple proof of this fact in Appendix
A.

Once chosen X1, ..., Xn we consider a vector field Vδ such that Vδ is supported on O1∪...∪On,
where Xp ∈ Op and Hn−1(Op) = δ. Given j ∈ {1, 2, ..., n} we can consider Vδ to be of the form

Vδ =

{
(kp/δ)~n(x) on Op \Qp
(fp(x)/δ)~n(x) on Qp

where constants kp satisfy kp < 0 for p ≤ ` and kp > 0 for p > `, Qp are portions around
the boundary of Op of Hd−1 measure O(δ2), fp smooth extensions of the constant such that
fp ≤ kp and ~n(x) denotes the normal to ∂Ω. Furthermore, the constants ki are chosen such that∫
∂Ω
HVδ.ndσ = 0, so that the derivative of the perimeter is zero. This can always be done. It

suffices to fix the first ` constants ki = c < 0 and choose the rest equal to a positive constant
which makes the above integral zero. Note that the derivative of the perimeter cannot be equal
to zero if we choose all ki to have the same sign. This is due to the fact that γ is a region where
H is strictly positive.

It is not difficult to see that

lim
δ→0

∫
Op

∂nui∂nujVδ.ndσ = kp∂nui(Xi)∂nuj(Xi), p = 1, ..., n.

Therefore, the matrix AVδ converges to

k1ψ(Xi)
Tψ(Xi) + ...+ knψ(Xn)Tψ(Xn)

as δ goes to 0. For a general vector X ∈ Rn we have

XTAVδX → k1(X.ψ(X1))2 + ...+ kn(X.ψ(Xn))2.

Since the vectors ψ(Xi) are linearly independent we deduce that this limit matrix is associated
to a quadratic form of signature (n − `, `) so it has ` negative eigenvalues and n − ` positive
ones. The continuity of the eigenvalues of the matrices with respect to the entries implies that
for δ small enough AVδ has ` negative eigenvalues and n − ` positive ones. Thus ` eigenvalues
from the cluster have negative derivatives and n− ` have positive derivatives. �

Note that even if the above result is stated for smooth sets, we may apply it in our case by
performing only perturbations supported outside the singularity. An immediate corollary is the
following.

Corollary 5.4. If Ω∗ is an optimizer for (1) corresponding to the index k then λk(Ω
∗) <

λk+1(Ω∗).

Proof: Suppose that λk(Ω
∗) is multiple and λs(Ω

∗) = ... = λk(Ω
∗) = λk+1(Ω∗) = ... =

λS(Ω∗). Apply Lemma 5.2 to deduce that it is possible to find a perturbation V of Ω∗ such
that the derivatives of the eigenvalues in the cluster are strictly negative for indices in [s, k]
and strictly positive for indices in [k + 1, S]. Moreover, the perturbation can be chosen so that
the perimeter has derivative zero in the direction of V . This perturbation would then decrease
λk + Per, thus contradicting optimality. Therefore we can only have λk(Ω

∗) < λk+1(Ω∗). �
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Remark 5.5. A direct consequence of the previous theorem is that the optimal cost for problem
(1) is a strictly increasing function of k, i.e.

min
Ω∈Rd

λk(Ω) + Per(Ω) < min
Ω∈Rd

λk+1(Ω) + Per(Ω).

Denote Ωk and Ωk+1 solutions of problem (1) for k and k + 1, respectively. Then we have the
following inequalities

λk(Ωk) + Per(Ωk) ≤ λk(Ωk+1) + Per(Ωk+1) ≤ λk+1(Ωk+1) + Per(Ωk+1),

where the first inequality comes from the optimality of Ωk and the second from the ordering of
the eigenvalues. If the optimal costs ck, ck+1 defined in (2) satisfy ck = ck+1 then the above
inequalities imply that λk(Ωk+1) = λk+1(Ωk+1) and that Ωk+1 is also solution of (1) for k. This
is in contradiction with the previous corollary.

Remark 5.6. Remark 5.3 allows us to conclude a similar result for the constrained problem

dk = min{λk(Ω) : Per(Ω) = c}.

In this case we also have dk < dk+1.

Remark 5.7. Using the results above it is possible to deduce that for the shape Ω∗ which
minimizes λ2(Ω) + Per(Ω) the second eigenvalue is simple and thus we have (∂nu2)2 = H.
Indeed, the optimal set Ω∗ is connected [11] so we have λ1(Ω∗) < λ2(Ω∗). The results above
show that λ2(Ω∗) < λ3(Ω∗) so λ2(Ω∗) is simple.

A From discrete to continous linear dependence

Consider a positive integer n ≥ 2 and let f1, f2, ..., fn be real continuous functions defined
on an open connected set I ⊂ Rd. For a point x ∈ I we denote ψ(x) = (f1(x), ..., fn(x)) ∈ Rn.
We suppose that none of the functions fi is identically zero on I. Suppose that for each set of
n different points x1, ..., xn ∈ I the vectors

ψ(x1), ..., ψ(xn)

are linearly dependent on an open connected subset of I. Then the functions f1, ..., fn are
linearly dependent, i.e. there exist constants α1, ..., αn not all zero such that

α1f1 + ...+ αnfn = 0.

Let’s start with the case n = 2. Pick x1 6= x2 in I. We know that the vectors ψ(x1), ψ(x2)
are linearly dependent which means that(

f1(x1)
f2(x1)

)
= λ

(
f1(x2)
f2(x2)

)
We find that on the set {f2 6= 0} the function f1/f2 is constant. Thus, picking eventually a
connected component of {f2 6= 0} we find that f1, f2 are linearly dependent on a connected open
set.

We can prove the result for general n ≥ 2 by induction. Indeed, let’s suppose that the result
holds for n functions. Consider now f1, ..., fn+1 defined on I such that for every n + 1 points
x1, ..., xn+1 the vectors ψ(x1), ..., ψ(xn+1) are linearly dependent. Suppose that no two functions
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fi are equal or else we have nothing to prove. Furthermore, we choose x1 such that f(x1) 6= 0.
Thus there exist scalars λ1, ..., λn, not all zero such that

λ1f1(x1) + λ2f1(x2) + ...+ λn+1f1(xn+1) = 0

λ1f2(x1) + λ2f2(x2) + ...+ λn+1f2(xn+1) = 0

· · ·
λ1fn+1(x1) + λ2fn+1(x2) + ...+ λn+1fn+1(xn+1) = 0.

Without loss of generality suppose that λ1 6= 0. Eliminating the elements below λ1f1(x1) in the
first column leaves us with a system of the form

µ2(f2 − f1)(x2) + ...+ µn+1(f2 − f1)(xn+1) = 0

· · · = 0

µ2(fn+1 − f1)(x2) + ...+ µn+1(fn+1 − f1)(xn+1) = 0

Therefore f2 − f1, ..., fn+1 − f1 satisfy the induction hypothesis and thus they are linearly de-
pendent. It is obvious that this implies that f1, ..., fn+1 are linearly dependent.

B A variant of the Hahn-Banach Theorem

We recall below the well known Hahn-Banach separation theorem. For a proof or more
details see [8, Section 2.4].

Theorem B.1. Ket K1,K2 be nonempty, disjoint convex subsets of the normed vector space X.
Then if K1 is open, there exist ζ ∈ X∗ and θ ∈ R such that

〈ζ, x〉 < θ ≤ 〈ζ, y〉∀x ∈ K1, y ∈ K2.

An immediate consequence is the following.

Proposition B.2. Let {ζi : i = 1, 2, ..., k} be a finite subset in X∗. The following are equivalent:

(a) There is no ν ∈ X such that 〈ζi, ν〉 < 0, ∀i ∈ {1, 2, ..., k}.

(b) The set {ζi : i = 1, 2, ..., k} is positively linearly dependent: there exists a non zero non-
negative vector γ ∈ Rk such that

∑k
i=1 γiζi = 0.

Proof: First let’s note that we may suppose that none of the functionals ζi are identically
zero, since the problem would reduce itself to a smaller value of k or to the trivial case when all
functionals considered vanish.

We start with the implication (b) =⇒ (a). Suppose that
∑k

i=1 γiζi = 0. Now, if ν ∈ X we
have

0 =

k∑
i=1

γi〈ζi, ν〉 ≤ (

k∑
i=1

γi) max
i
〈ζi, ν〉,

which implies maxi〈ζi, ν〉 ≥ 0, since
∑k

i=1 γi > 0.
For the implication (a) =⇒ (b) we consider the following subsets of Rk:

K1 = {y ∈ Rk : yi < 0∀i ∈ {1, 2, ..., k}}

K2 = {(〈ζ1, ν〉, 〈ζ2, ν〉, ..., 〈ζk, ν〉) : ν ∈ X}.
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We see immediately that (a) implies K1 ∩K2 = ∅ and furthermore K1 is open. Therefore, we
can apply the Hahn-Banach separation theorem B.1 and find a functional ϕ : Rk → R and θ ∈ R
such that

〈ϕ, x〉 < θ ≤ 〈ϕ, y〉, ∀x ∈ K1, y ∈ K2.

We know that such a functional is of the form

ϕ(x) =

k∑
i=1

γixi,

where γ = (γ1, ..., γk) is a non-zero element of Rk. Therefore 〈ϕ, y〉 ≥ θ,∀y ∈ K2 becomes

θ ≤ 〈
k∑
i=1

γiζi, ν〉, ∀ν ∈ X,

which is only possible when
∑k

i=1 γiζi = 0. On the other hand, we have

k∑
i=1

γiyi < θ for all y = (yi) ∈ K1.

Taking yni = −n, ynj = −1/n, j 6= i and taking n→∞ we see that this is possible only if all γi
are non-negative. This finishes the proof. �

C A formula relating the Laplacian and the Hessian

Theorem 3.1.1.1. from [14] says that for v ∈ H1(Ω)n and Ω of class C2 we have∫
Ω
| div v|2dx−

n∑
i,j=1

∫
Ω
∂ivj∂jvidx = (tangential part) +

∫
∂Ω
H(v · nν)2dσ,

where H is the mean curvature of Ω. If we put v = ∇u for u = 0 on ∂Ω, then the tangential
part is zero and we obtain a relation between the Laplacian and the Hessian. The aim here is to
write a similar relation when we have an additional multiplication with a function ϕ ∈ H1(Rd).

We wish to prove the following

Proposition C.1. If Ω is of class C2, ϕ ∈ H1(Rd) and u is smooth in Ω ∩ suppϕ then∫
Ω
ϕ|D2u|2dx+

∫
∂Ω
ϕH|∇u|2dσ =

∫
Ω
ϕ(∆u)2dx+

∫
Ω

(∇u · ∇ϕ)∆udx−
∫

Ω
∇ϕ ·D2uDudx

Proof: We integrate by parts two times and we obtain∫
Ω
ϕ| div v|2 =

n∑
i,j=1

∫
Ω
ϕ∂ivi∂jvjdx

∂i= −
n∑

i,j=1

∫
Ω
viϕ∂i,jvjdx−

n∑
i,j=1

∫
Ω
vi∂iϕ∂jvjdx+

n∑
i,j=1

∫
∂Ω
ϕvi∂jvjνidσ

∂j
=

n∑
i,j=1

∫
Ω
ϕ∂jvi∂ivjdx+

n∑
i,j=1

∫
Ω
∂jϕvi∂ivjdx−

n∑
i,j=1

∫
∂Ω
ϕvi∂ivjνjdσ−

−
n∑

i,j=1

∫
Ω
vi∂iϕ∂jvjdx+

n∑
i,j=1

∫
∂Ω
ϕvi∂jvjνidσ
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Therefore we have

I(v) =

∫
Ω
ϕ|div v|2 −

n∑
i,j=1

∫
Ω
ϕ∂jvi∂ivjdx

= AΩ (terms on Ω) +A∂Ω (terms on ∂Ω)

The terms integrated on Ω are

AΩ =
n∑

i,j=1

∫
Ω
∂jϕvi∂ivjdx−

n∑
i,j=1

∫
Ω
vi∂iϕ∂jvjdx

=

∫
Ω
{(v · ∇)v · ∇ϕ}dx−

∫
Ω

(v · ∇ϕ) div vdx.

In order to avoid possible complications, unnecessary in our case, we recall that we want
to use this computation for v = ∇u with u = 0 on ∂Ω. This means, in particular, that the
tangential part of v is vτ = (∇u)τ = 0. Therefore, in the following, we suppose that the
tangential part of v is zero. Using the reasoning from [14, Theorem 3.1.1.1] and neglecting the
tangential components we obtain

A∂Ω = −
n∑

i,j=1

∫
∂Ω
ϕvi∂ivjνjdσ +

n∑
i,j=1

∫
∂Ω
ϕvi∂jvjνidσ

=

∫
∂Ω
ϕvν div vdσ −

∫
∂Ω
ϕ{(v · ∇)v} · νdσ

=

∫
∂Ω
ϕHv2dσ

As stated before, we replace v by ∇u where u = 0 on ∂Ω and we get∫
Ω
ϕ(∆u)2dx−

∫
Ω
ϕ|D2u|2dx =

∫
Ω
∇ϕ ·D2uDudx−

∫
Ω

(∇u · ∇ϕ)∆udx+

∫
∂Ω
ϕH|∇u|2dσ.

Therefore∫
Ω
ϕ|D2u|2dx+

∫
∂Ω
ϕH|∇u|2dσ =

∫
Ω
ϕ(∆u)2dx+

∫
Ω

(∇u · ∇ϕ)∆udx−
∫

Ω
∇ϕ ·D2uDudx

�
Note that even if the result above is stated for C2 sets, we may apply it in the case where Ω

is C1,α with non-negative and bounded distributional curvature. Analysing the proof we notice
that the only difficulty comes from the boundary integrals A∂Ω where which are considered for
fields v with zero tangential components.
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