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We study the problem of optimizing the eigenvalues of the Dirichlet Laplace operator under perimeter constraint. We prove that optimal sets are analytic outside a closed singular set of dimension at most d-8 by writing a general optimality condition in the case the optimal eigenvalue is multiple. As a consequence we find that the optimal k-th eigenvalue is strictly smaller than the optimal (k + 1)-th eigenvalue. We also provide an elliptic regularity result for sets with positive and bounded weak curvature.

Introduction

For a given domain Ω ∈ R d we can consider the eigenvalue problem for the Laplace operator with Dirichlet boundary conditions defined by

-∆u = λ k (Ω)u in Ω u = 0 on ∂Ω.
This operator has compact resolvent if L 2 (Ω) injects compactly in H 1 (Ω) and in this case the spectrum consists of an increasing sequence of eigenvalues

0 < λ 1 (Ω) ≤ λ 2 (Ω) ≤ ... ≤ λ k (Ω) ≤ ... → ∞.
The optimization of the eigenvalues of the Dirichlet Laplace operator under various constraints is a classical problem which recently had important developments. Authors were initially concerned with considering volume constraints, but in some recent works like [START_REF] Bucur | Minimization of λ 2 (Ω) with a perimeter constraint[END_REF], [START_REF] Philippis | Existence and regularity of minimizers for some spectral functionals with perimeter constraint[END_REF] the perimeter constraint gained some interest. In fact, having a perimeter constraint allows the use of techniques related to perimeter quasi-minimizers [START_REF] Tamanini | Variational problems of least area type with constraints[END_REF] which allow important gains in regularity properties. More precisely, the basic form of the problem which we consider is the minimization of λ k (Ω) under a perimeter constraint min

Per(Ω)=c λ k (Ω).
Using the nice behavior of these eigenvalues under homotheties, λ k (tΩ) = λ k (Ω)/t 2 one can deduce that the above problem is equivalent, up to a homothety, to the problem min

Ω∈R d (λ k (Ω) + Per(Ω)) . (1) 
This latter formulation has the advantage of being unconstrained and will be used throughout the paper. In [START_REF] De Philippis | Regularity of minimizers of shape optimization problems involving perimeter[END_REF] the authors study existence and regularity properties of problems of the form where G is the Dirichlet energy or a spectral functional. The authors focus on showing how to recover the C 1,α regularity of the relaxed optimizers. They also describe how to perform a bootstrap argument in certain cases and be able to show that optimal sets are C ∞ . The case where the functional depends on spectral quantities is not treated in full detail as one needs to take care of the case where the optimal eigenvalues are multiple, thus losing some differentiability properties.

The aim of this paper is to improve the known regularity properties for problem [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF]. In fact for the same problem with volume constraint regularity issues are more delicate. Existence results are proved in [START_REF] Bucur | Minimization of the k-th eigenvalue of the Dirichlet Laplacian[END_REF], [START_REF] Mazzoleni | Existence of minimizers for spectral problems[END_REF] in the class of quasi-open sets, which are basically level sets of H 1 functions. Initial regularity results are presented in [START_REF] Bucur | Lipschitz regularity of the eigenfunctions on optimal domains[END_REF] where the authors prove that in certain cases the solution to the analogue spectral optimization problem under volume constraint is an open set. From now on we consider only the perimeter constraint.

The Faber-Krahn inequality and the isoperimetric inequality immediately imply that the first eigenvalue is minimized by the ball in any dimension. A first result concerning higher eigenvalues is due to Bucur, Buttazzo and Henrot [START_REF] Bucur | Minimization of λ 2 (Ω) with a perimeter constraint[END_REF]. The authors consider the minimization of the second eigenvalue among domains Ω in R 2 . Some results particular to this case, like convexity of the optimizers, H 2 regularity for elliptic problems on convex domains [START_REF] Grisvard | Elliptic problems in nonsmooth domains[END_REF] and simplicity of the second eigenvalue, allow the use of a bootstrap procedure which shows that the optimal set is C ∞ .

In [START_REF] Philippis | Existence and regularity of minimizers for some spectral functionals with perimeter constraint[END_REF] De Philippis and Velichkov show that problem [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF] has solutions in every dimension and the optimal shapes have regularity at least C 1,α outside a closed set of Hausdorff dimension less or equal than d -8. The fact that minimizers are not known and do not have a simple structure even in the case of the second eigenvalue [START_REF] Bucur | Minimization of λ 2 (Ω) with a perimeter constraint[END_REF] motivated the numerical study of problem [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF]. Simulations were performed in R 2 and R 3 with two distinct methods in [START_REF] Antunes | Optimisation of eigenvalues of the Dirichlet Laplacian with a surface area restriction[END_REF] and [START_REF] Bogosel | Qualitative and numerical analysis of a spectral problem with perimeter constraint[END_REF]. In addition to numerical simulations Bogosel and Oudet [START_REF] Bogosel | Qualitative and numerical analysis of a spectral problem with perimeter constraint[END_REF] also present an optimality condition applicable in the case of multiple eigenvalues inspired by methods from [START_REF] Soufi | Domain deformations and eigenvalues of the Dirichlet Laplacian in a Riemannian manifold[END_REF]. The need of these more general optimality conditions is motivated by the numerical observations. Indeed, we observe that except some particular cases the eigenvalues of the optimal shapes seem to have multiplicity higher than one. Thus classical methods based on optimality conditions obtained directly from the derivative of the eigenvalue, like the one used in [START_REF] Bucur | Minimization of λ 2 (Ω) with a perimeter constraint[END_REF], are not always applicable. The more general optimality condition presented in [START_REF] Bogosel | Qualitative and numerical analysis of a spectral problem with perimeter constraint[END_REF] states that if the optimal set Ω * is of class C 3 then there exist a family of eigenfunctions {φ i } m i=1 such that the mean curvature H of Ω * can be expressed as

H = m i=1 (∂ n φ i ) 2 .
This optimality condition allows the use of a bootstrap argument which shows that optimal shapes are smooth. These optimality conditions were also used in [START_REF] Bogosel | Qualitative and numerical analysis of a spectral problem with perimeter constraint[END_REF] as a tool for validating the numerical computations.

The purpose of this note is to remove the additional C 3 regularity hypothesis used in the deduction of the above optimality condition. We prove the following result. The arguments used in the proof are different from the ones used in [START_REF] Bourdin | Optimal partitions for eigenvalues[END_REF] which used heavily the C 3 regularity. There are also common points such as the analytic parametrization of eigenvalues under regular perturbations and the use of a variant of the Hahn-Banach theorem to conclude. A summary of the steps employed in the proof is presented below.

1. We want to be able to recover some differentiability information in the case the eigenvalue is multiple. It is well known (see [START_REF] Henrot | Variation et optimisation de formes[END_REF]) that in this case the eigenvalue may not be differentiable. Nevertheless, applying a classical result of Rellich [START_REF] Rellich | Störungstheorie der Spektralzerlegung[END_REF] we can deduce that the eigenvalues and eigenfunctions of an analytic perturbation of the domain can be reparametrized analytically. This fact implies, in particular, that even if we lose differentiability we still recover some facts about directional derivatives.

2.

A second aspect is writing the lateral derivatives of the eigenvalues using expressions similar to the shape derivative formula. In order to do this we would like to have more information about the regularity of the eigenfunctions. In the work of Grisvard [14, Theorem 3.

2.1.2] it is proved that if Ω is convex then solving -∆u = f in H 1 0 (Ω) with f ∈ L 2 (Ω) implies that u is a H 2 (Ω) function.
The proof of this uses the fact that convex sets can be approximated uniformly from inside with C 2 convex sets. This brings us naturally to the next point. [START_REF] Philippis | Existence and regularity of minimizers for some spectral functionals with perimeter constraint[END_REF] it is proved that solutions of problem (1) exist, are of class C 1,α and that any optimizer has non-negative and bounded weak mean curvature. The question which arises is the following: can we approximate C 1,α sets with weak non-negative bounded mean curvature with smoother sets (at least C 2 ) with non-negative mean curvature? The answer is affirmative and a proof is presented in [START_REF] Metzger | No mass drop for mean curvature flow of mean convex hypersurfaces[END_REF]Lemma 3.8] 4. The final step consists in using a variant of the Hahn-Banach theorem which allows us to deduce that the mean curvature is a convex combination of squares of normal derivatives of an orthonormal basis of the eigenspace corresponding to the k-th eigenvalue. Once we have this formula we use a result of Landais [START_REF] Landais | A regularity result in a shape optimization problem with perimeter[END_REF] on the regularity of solutions to the mean curvature equation to deduce that the optimal set is C 2,α . Results concerning the regularity of solutions to equations of the mean curvature type can also be found in [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF]Section 7.7]. A bootstrap algorithm similar to the one used in [START_REF] Bucur | Minimization of λ 2 (Ω) with a perimeter constraint[END_REF] or [START_REF] Landais | A regularity result in a shape optimization problem with perimeter[END_REF] allows us to conclude that optimal shapes are C ∞ .

In

After proving the regularity result we turn our attention to the case where the eigenvalues of the optimal set are multiple. We prove a result which was observed in the numerical computations from [START_REF] Bogosel | Qualitative and numerical analysis of a spectral problem with perimeter constraint[END_REF]. The result says that when the optimal k-th eigenvalue is multiple then the multiplicity cluster ends at λ k , namely ... = λ k-1 (Ω * ) = λ k (Ω * ) < λ k+1 (Ω * ). This implies, in particular, that the optimal costs

c k = min Ω∈R n (λ k (Ω) + Per(Ω)) , d k = min Per(Ω)=1 λ k (Ω) (2) 
form a strictly increasing sequence.

Elliptic regularity for sets of positive mean curvature

As the results of [START_REF] Philippis | Existence and regularity of minimizers for some spectral functionals with perimeter constraint[END_REF] prove that the solutions of problem (1), denoted by Ω * in the sequel, are C 1,α domains (outside a residual closed set of dimension at most d -8) with non-negative weak mean curvature, we start from this setting and we prove the H 2 regularity of the eigenfunctions for the optimizers of (1). In the first part of this section we restrict ourselves to dimension d at most 7, where we do not have singularities. In this case we conclude that u ∈ H 2 (Ω). At the end of the section we give an argument which allows us to deduce local H 2 regularity outside the singular set. This type of results are new up to the author's knowledge. Results relating the regularity of the solution to the curvature of the boundary can be found, for example in [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]Section 14.3], however the problem we are interested in is not covered by these. The results in [START_REF] Grisvard | Elliptic problems in nonsmooth domains[END_REF]Chapter 3] concerning elliptic problem on convex domains are similar to the ones we are interested in and we follow similar methods in the proofs below.

Thus, following the results of [START_REF] Philippis | Existence and regularity of minimizers for some spectral functionals with perimeter constraint[END_REF] we know that solutions of (1) can be represented locally around each point in the regular part of the boundary as epigraphs of C 1,α functions. Thus, in a local coordinate system with origin in a regular point x 0 , the boundary ∂Ω * can be represented as the graph of h : D ⊂ R d-1 ∈ R, where D is an open set containing 0. Moreover, following the results of [START_REF] Philippis | Existence and regularity of minimizers for some spectral functionals with perimeter constraint[END_REF], for every ψ ∈ C 1 (D), ψ ≥ 0 we have 0

≤ D ∇h • ∇ψ 1 + |∇h| 2 ≤ K ∞
where K ∞ is a constant. Thus the mean curvature of an optimizer Ω * can be represeted as an L 2 (∂Ω) integrable function, since Ω * has finite perimeter. Note that if Ω * is C 2 then these inequalities simply say that its mean curvature is non-negative and bounded above by K ∞ .

In [START_REF] Grisvard | Elliptic problems in nonsmooth domains[END_REF]Chapter 3] we can find results concerning the regularity of elliptic problems in terms of the mean curvature of the boundary. In particular, for convex sets the solution of -∆u = f in H 1 0 for f ∈ L 2 is an H 2 function. The scope of this section is to extend such results to the case of C 1,α domains which have weak non-negative mean curvature. In order to do this we follow a similar approach. In a first stage we approximate C 1,α domains with non-negative weak mean curvature with C 2 sets with non-negative mean curvature. This approximation stage is presented in [START_REF] Metzger | No mass drop for mean curvature flow of mean convex hypersurfaces[END_REF] and uses notions related to weak mean curvature flows. A second stage, which is a simple consequence of Theorem 3.1.2.1 and Remark 3.1.2.2 in [START_REF] Grisvard | Elliptic problems in nonsmooth domains[END_REF] gives some results for C 2 domains with non-negative mean curvature. We conclude the general case using an approach similar to Theorem 3.1.2.1 from [START_REF] Grisvard | Elliptic problems in nonsmooth domains[END_REF].

Proposition 2.1. Let Ω be a C 1,α domain with non-negative weak mean curvature in L 2 (∂Ω). Then for each ε > 0 there exists a smooth set Ω ε , with non-negative mean curvature such that

Ω ε ⊂ Ω and d H (∂Ω, ∂Ω ε ) < ε (where d H represents the Hausdorff distance).
Proof: We see that the set Ω verifies the hypotheses of Lemma 3.8 in [START_REF] Metzger | No mass drop for mean curvature flow of mean convex hypersurfaces[END_REF]. Indeed, Ω has nonnegative weak mean curvature in L 2 (∂Ω) so there exists a sequence (Ω ε ) ε>0 such that Ω ε → Ω in C 1 (and thus uniformly), Ω ε are smooth for ε > 0 and the mean curvature of Ω ε is strictly positive.

We state below a few standard regularity results for regular domains. Proofs can be found, for example, in Theorems 2.2.2.3 and 3.1.2.1 from [START_REF] Grisvard | Elliptic problems in nonsmooth domains[END_REF].

Proposition 2.2. 1. If Ω is a domain with C 2 boundary. Then for every f ∈ L 2 (Ω) the problem -∆u = f in Ω u = 0 on ∂Ω has a unique solution solution u ∈ H 2 (Ω). 2.
If Ω is an open, bounded subset of R 2 with C 2 boundary and non-negative mean curvature, then there exists a constant C(Ω), which depends only on the diameter of Ω, such that

u H 2 (Ω) ≤ C(Ω) ∆u L 2 (Ω) , for every u ∈ H 2 (Ω) ∩ H 1 0 (Ω).
Now we are ready to prove the desired regularity result.

Theorem 2.3. Suppose Ω is a C 1,α set with non-negative weak mean curvature in L 2 (∂Ω).

Then for every f ∈ L 2 (Ω) the problem

-∆u = f in Ω u = 0 on ∂Ω has a unique solution u ∈ H 2 (Ω).
Proof: Proposition 2.1 implies the existence of a sequence of C 2 sets Ω n such that Ω n ⊂ Ω, Ω n has non-negative mean curvature and d H (∂Ω n , ∂Ω) → 0. We consider the solution

u m ∈ H 2 (Ω m ) of the Dirichlet problem in Ω m : -∆u m = f in Ω m u m = 0 on ∂Ω m ,
solution which exists by Proposition 2.2. Applying Theorem 1.5.1.5 from [START_REF] Grisvard | Elliptic problems in nonsmooth domains[END_REF] we deduce that ũm ∈ H 1 (R d ), where ũm is the extension by zero of u m outside Ω m . Proposition 2.2 implies that there exists a constant C such that u m H 2 (Ωm) ≤ C. This implies that ũm is bounded in

H 1 (R d ) and that the sequences v m,i,j = ∂ i ∂ j u m are bounded in L 2 (R d ).
Therefore, up to choosing a subsequence, we can assume that there exist

U ∈ H 1 (R d ) and V i,j ∈ L 2 (R d ) such that u m U weakly in H 1 (R d ) and v m,i,j V i,j weakly in L 2 (R d ).
In the following we denote by u the restriction of U to Ω. Since the supports of ũm are all contained in Ω, it follows that U is also supported on Ω. Thus u = 0 on ∂Ω. Now let ϕ ∈ C ∞ c (Ω) be a smooth function with compact support in Ω. Then there exists m 0 such that for every m ≥ m 0 the support of ϕ is contained in Ω m . Thus, for all m ≥ k 0 we have

Ω f ϕ = - Ωm ∆u m ϕ = Ωm ∇u m • ∇ϕ = Ω ∇ũ m • ∇ϕ.
Taking the limit as m → ∞ we get

Ω f ϕ = Ω ∇u • ∇ϕ.
Since this is true for every ϕ ∈ C ∞ c (Ω) we conclude that -∆u = f on Ω in the sense of distributions. Until now we have the existence of a solution u ∈ H 1 (Ω). In order to complete the proof we need to prove that the second derivatives of u are in L 2 . We take again ϕ ∈ C ∞ c (Ω) and for m ≥ m 0 we have

Ω ũm ∂ i ∂ j ϕ = Ωm u m ∂ i ∂ j ϕ = Ωm ∂ i ∂ j u m ϕ = Ω v m,i,j ϕ.
Taking the limit as m → ∞ we obtain

Ω u∂ i ∂ j ϕ = Ω V i,j ϕ,
which means that the distributional derivatives of order 2 denoted by ∂ i ∂ j u are given by V i,j and they are in L 2 for all i, j = 1...d. Thus we have proved the existence of a solution u ∈ H 2 (Ω) ∩ H 1 0 (Ω). The uniqueness follows at once using the estimates in Proposition 2.2 along with an approximation argument.

We note that the above arguments work if Ω does not have a singular part Σ. Indeed, the result stated in Proposition 2.1 is for the case when Ω is globally C 1 . When we have a singular set Σ it is no longer possible to use this. We can however prove that outside the singularity the eigenfunction is locally H 2 . In order to do this, let's recall the following integration by parts formula.

Ω ϕ|D 2 u| 2 dx + ∂Ω ϕH|∇u| 2 dσ = Ω ϕ(∆u) 2 dx + Ω (∇ϕ • ∇u)∆udx - Ω ∇ϕ • D 2 u∇udx.
For the sake of completness an idea of the proof, as well as some references are given in the Appendix C. Note that for a solution of (1) we know that the corresponding eigenfunction u is Lipschitz so ∇u ∈ L ∞ (Ω). See [START_REF] Philippis | Existence and regularity of minimizers for some spectral functionals with perimeter constraint[END_REF] for details. Moreover, since -∆u = λ k u and u ∈ L ∞ (Ω) we may as well assume that ∆u ∈ L ∞ (Ω). See for example [START_REF] Davies | Heat kernels and spectral theory[END_REF]Example 2.1.8] where we have the estimate u ∞ ≤ e 1/8π λ k (Ω) d/4 . Let x 0 be a point outside the singular set Σ. Since this set is closed, there is an open neighborhood of x 0 which does not intersect the singular part. Let B r be a ball centered in x 0 of radius r small enough such that B r ∩ ∂Ω is C 1,α . Consider a smooth cutoff function 0 ≤ ϕ ≤ 1 such that, ϕ = 1 on B r/2 and ϕ = 0 on ∂B r , where B r/2 is a ball concentric with B r , having radius r/2. With these considerations note that ∂(Ω∩Br) ϕH|∇u| 2 dσ ≥ 0 since on ∂Ω ∩ B r the curvature is non-negative in the distributional sense and on ∂B r ∩ Ω we have ϕ = 0. Thus, applying the above integration by parts formula for Ω ∩ B r and ϕ described above, we get

Ω∩Br ϕ|D 2 u| 2 dx ≤ Ω∩Br ϕ(∆u) 2 dx + Ω∩Br (∇ϕ • ∇u)∆udx - Ω∩Br ∇ϕ • D 2 u∇udx.
Applying the inequality ab ≤ a 2 +b 2 2 and Cauchy-Schwarz we obtain

Ω∩Br ϕ|D 2 u| 2 dx ≤ Ω∩Br ϕ(∆u) 2 dx + 1 2 Ω∩Br (∆u) 2 dx + 1 2 Ω∩Br (∇ϕ • ∇u) 2 dx + Ω∩Br ∇ϕ • D 2 u∇udx.
Integrating again by parts the last term in the above inequality, we obtain

Ω ∇ϕ • D 2 u∇udx = n i,j=1 Ω ∂ i ϕ∂ i ∂ j u∂ j u ∂ j = n i,j=1 ∂Ω ∂ i u∂ j u∂ i ϕν j dσ - n i,j=1 Ω ∂ i u∂ i ∂ j ϕ∂ j udx - n i,j=1 Ω ∂ i u∂ i ϕ∂ 2 j udx = ∂Ω (∇u • ∇ϕ)(∇u • n)dσ - Ω ∇u • D 2 ϕ∇udx - Ω (∇u • ∇ϕ)∆udx.
Since ∇u is in L ∞ (Ω) and in our case -∆u = λ k u ∈ L ∞ (Ω), the above expression is bounded and we may conclude that Ω∩Br ϕ|D 2 u| 2 dx < +∞ which means that u ∈ H 2 (B r/2 ). Since this argument is valid for any point x 0 outside Σ, it follows that u ∈ H 2 loc (Ω \ Σ).

Analytic perturbations for eigenvalue problems

We know that the eigenvalues of the Dirichlet Laplace operator on Ω are differentiable if they are simple. We refer to [START_REF] Henrot | Variation et optimisation de formes[END_REF] for further details. However, numerical results found in [START_REF] Antunes | Optimisation of eigenvalues of the Dirichlet Laplacian with a surface area restriction[END_REF][START_REF] Bogosel | Qualitative and numerical analysis of a spectral problem with perimeter constraint[END_REF] show that optimizers of problem (1) tend to have multiple eigenvalues. It is possible to recover some information regarding the differentiability of the eigenvalues, even when the multiplicity is greater than one, by using the theory of operator perturbations.

Rellich proved in [START_REF] Rellich | Störungstheorie der Spektralzerlegung[END_REF] that analytic perturbations of a self-adjoint operator with the same domain allows an analytic parametrization of the eigenvalues and the eigenfunctions. More recent results can be found in [START_REF] Kriegl | Differentiable perturbation of unbounded operators[END_REF]. The article of Micheletti [START_REF] Micheletti | Perturbazione dello spettro dell'operatore di Laplace, in relazione ad una variazione del campo[END_REF] contains details about the application of Rellich's result to the study of eigenvalue problems. Indeed, it is proved that the Laplace operator defined on Ω ε = (Id + εV )(Ω) has the same spectrum as a self-adjoint operator A ε which depends analytically on ε and has a domain of definition independent of ε. The result of Rellich, stated above, implies that the eigenvalues and eigenvectors of (-∆) on Ω ε can be parametrized analytically with respect to ε. Thus, if λ is an eigenvalue of Ω with multiplicity m, with the associated orthonormal basis (u i ) m i=1 , there exist m functions ε → λ ε,i and the associated family of eigenfunctions ε → ϕ ε,i orthonormal in L 2 (Ω ε ), such that both dependencies are analytic in ε, λ 0,i = λ, ϕ 0,i = u i and

-∆ϕ ε,i = λ ε,i ϕ ε,i in Ω ε ϕ ε,i = 0 on ∂Ω ε ,
for every i = 1, ..., m. Differentiating with respect to ε we obtain the classical derivative formula

dλ ε,i dε ε=0 = - ∂Ω ∂u i ∂n 2 V.ndσ (3) 
For details see [START_REF] Oudet | Numerical minimization of eigenmodes of a membrane with respect to the domain[END_REF] where a formal argument shows how to deduce relation [START_REF] Bogosel | Qualitative and numerical analysis of a spectral problem with perimeter constraint[END_REF]. The formal argument is rigorous once we know that the eigenvalues and eigenfunctions depend analytically on ε. The H 2 regularity (local H 2 when singularities are present) of the eigenfunctions proved in the previous section allows writing the derivative of the eigenvalues using the above boundary integral depending on the normal derivative. For details see [START_REF] Henrot | Variation et optimisation de formes[END_REF]Theorem 5.7.4]. Proof: Since Ω * has C 1,α regularity outside an eventual closed singular set Σ of dimension at most d -8, it is possible to represent the boundary around a point x 0 ∈ ∂Ω * \ Σ as the graph of a C 1,α function h : B a ⊂ R d-1 → R, where B a is a ball of radius a, small enough such that we are still outside the singular set. We denote by Ω ε = (Id + εV )(Ω * ) for a C 1 (R d , R d ) vector field. Using this type of graph representation we deduce that if ψ is the perturbation of this graph associated to V then ε → Per(Ω ε ) is differentiable at zero and its derivative is equal to

Main result

Ba ∇ψ • ∇h 1 + |∇h| 2 .
As noted in the previous section, the function ε → λ k (Ω ε ) has left and right derivatives. Furthermore, we know that there is an orthonormal basis of the associate eigenspace, denoted (u i ) p i=1 , such that the directional derivatives of λ k are in the set

- Ba |∇u i | 2 ψ(x)dx p i=1
. This is just a simple consequence of the derivative formula (3) in the local coordinate system. Indeed, the normal derivative is just the gradient since the tangential derivative is zero. On the other hand the term V.n is equal to ψ(x)/ 1 + |∇h| 2 and the Jacobian is 1 + |∇h| 2 .

Thus, at the optimum, regardless of the multiplicity and the C 1 perturbation considered, there exist left and right derivatives for λ k (Ω ε )+Per(Ω ε ) at ε = 0. The case where the eigenvalue is simple is straightforward and is similar to the approach used in [START_REF] Bucur | Minimization of λ 2 (Ω) with a perimeter constraint[END_REF]. Suppose now that λ k is multiple. The local optimality of Ω * implies that the left and right derivatives of λ k (Ω ε )+Per(Ω ε ) at ε = 0 in any direction given by ψ in the local coordinates are of different signs. As a consequence, given a perturbation ψ ∈ C 1 (B a ) we have two indices i, j such that Ba ∇ψ • ∇h

1 + |∇h| 2 - Ba |∇u i | 2 ψ ≥ 0 (4) Ba ∇ψ • ∇h 1 + |∇h| 2 - Ba |∇u j | 2 ψ ≤ 0 (5) 
We define the linear functionals F, G i on C 1 (B a ) by

F(ψ) = Ba ∇ψ • ∇h 1 + |∇h| 2 G i (ψ) = Ba |∇u i | 2 ψ
Equations ( 4) and ( 5) tell us that for every ψ ∈ C 1 (B a ) there exist indices i, j such that F(ψ) ≥ G i (ψ) and F(ψ) ≤ G j (ψ). This implies, in particular, that for every ψ ∈ C 

1 + |∇h| 2 = m i=1 µ i Ba |∇u i | 2 ψ,
for every ψ ∈ C 1 (B a ). Since h is already C 1,α , we know that each u i is also C 1,α [13, Theorem 6.18]. Therefore ∇u i are all in C 0,α .

In [START_REF] Landais | A regularity result in a shape optimization problem with perimeter[END_REF] it is proved that if h ∈ C 1,α (B a ). f ∈ C 0,α (B a ) and the distributional equation

Ba ∇ψ • ∇h 1 + |∇h| 2 = Ba f ψ, ∀ψ ∈ C 1 (B a )
holds, then h ∈ C 2,α (B a ). Using this result we conclude that h ∈ C 2,α and h is a strong solution of the equation

-div ∇h 1 + |∇h| 2 = m i=1 µ i |∇u i | 2 (6) 
with µ 1 + ... + µ p = 1. Using straightforward computations equation ( 6) is equivalent to

- ∆h 1 + |∇h| 2 + ∇h • ∇h (1 + |∇h| 2 ) 3/2 = m i=1 µ i |∇u i | 2
which leads to

-∆h = 1 + |∇h| 2 m i=1 µ i |∇u i | 2 - |∇h| 2 1 + |∇h| 2 . ( 7 
)
Since h ∈ C 2,α (B a ) and this is true for any local chart which does not intersect Σ, the set Ω is a domain with C 2,α boundary outside Σ. Therefore using again the standard Schauder regularity results [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]Theorem 6.18] we see that the eigenfunctions (u i ) p i=1 are in C 2,α (B a ). This means that the right hand side of equation ( 7) is in C 1,α (B a ). Theorem 9.19 from [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF] allows us to deduce that h belongs to C 3,α (B a ). In general we see that if h ∈ C k,α (B a ), k ≥ 2, then the right hand side of ( 7) is in C k-1,α (B a ) and thus h ∈ C k+1,α (B a ). An inductive bootstrap argument allows us to see that h ∈ C ∞ (B a ). Moreover, since the coefficients of the partial differential equation ( 7) are analytic and h is C ∞ the results of Morrey [START_REF] Morrey | On the analyticity of the solutions of analytic non-linear elliptic systems of partial differential equations. I. Analyticity in the interior[END_REF] allow us to deduce that h is analytic. Repeating the argument around each point outside Σ, we conclude that ∂Ω \ Σ is analytic.

Remark 4.2. Theorem 4.1 improves the results in [START_REF] Bogosel | Qualitative and numerical analysis of a spectral problem with perimeter constraint[END_REF] in yet another direction. In the cited reference the authors prove that at the optimum there exists a family of eigenfunctions (ϕ i ) m i=1 in the eigenspace associated to λ k such that

H = m i=1 (∂ n ϕ i ) 2 .
In the proof of our result we deduce a more precise result which says more about the family (ϕ i ) and about the number of eigenfunctions present in the optimality condition. Indeed we prove that if (u i ) m i=1 is an orthonormal basis of the eigenspace associated to λ k then there exist µ 1 , ..., µ m ∈ [0, 1] with µ 1 + ... + µ m = 1 such that

H = m i=1 µ i (∂ n u i ) 2 .
We note that this behavior has been conjectured by the numerical results presented in [START_REF] Bourdin | Optimal partitions for eigenvalues[END_REF]. (P2) F is of class C 1 and at least one of its partial derivatives does not vanish when evaluated at (λ k 1 (Ω * ), ..., λ kp (Ω * )).

(P3) F is increasing in each variable, furthermore, for any compact K ⊂ R p \ {0} there exists a > 0 such that if x, y ∈ R p with x j ≥ y j , j = 1, ..., p then F (x) -F (y) ≥ a|x -y|.

Properties (P1) and (P3) are taken from [START_REF] Philippis | Existence and regularity of minimizers for some spectral functionals with perimeter constraint[END_REF] to guarantee existence. Property (P2) is stronger than the analogous property in [START_REF] Philippis | Existence and regularity of minimizers for some spectral functionals with perimeter constraint[END_REF] (locally Lipschitz continuity) and allows us to differentiate the functional at the optimum.

Remark 4.4. The techniques presented here should also apply to the problem min{λ k (Ω) + Per(Ω), |Ω| = m} introduced in [START_REF] De Philippis | Regularity of minimizers of shape optimization problems involving perimeter[END_REF]. Indeed, the functional is the same, but there is a volume constraint. The existence of a solution which is C 1,α regular outside a closed singular set of dimension at most d -8 has been treated in [START_REF] De Philippis | Regularity of minimizers of shape optimization problems involving perimeter[END_REF]. Like above it is possible to write the expression of the shape derivative, but we need to work with flows which preserve the volume. Such flows can be constructed for any perturbation V such that ∂Ω V.n = 0 (see [START_REF] Soufi | Domain deformations and eigenvalues of the Dirichlet Laplacian in a Riemannian manifold[END_REF]). Then, using techniques similar to the ones in [START_REF] Soufi | Domain deformations and eigenvalues of the Dirichlet Laplacian in a Riemannian manifold[END_REF] we may deduce that at the optimality condition (6) becomes

-div ∇h 1 + |∇h| 2 = m i=1 µ i |∇u i | 2 + const.
This allows us to deduce the full regularity of the above problem in the same way as in Theorem 4.1.

The results in this section allow us to give a different argument for [6, Theorem 2.5] and extend the corresponding result to all dimensions. The following result also generalises [START_REF] Bogosel | Qualitative and numerical analysis of a spectral problem with perimeter constraint[END_REF]Theorem 5.7]. Proof: This is a simple consequence of the fact that ∂Ω * is analytic outside a singular set of dimension at most d -8.

The Multiplicity Cluster

Once the regularity of the minimizers of ( 1) is proved we may look into other facts about the optimal set. As noted in [START_REF] Antunes | Optimisation of eigenvalues of the Dirichlet Laplacian with a surface area restriction[END_REF] and [START_REF] Bogosel | Qualitative and numerical analysis of a spectral problem with perimeter constraint[END_REF] the numerical experiments show that in most cases the multiplicity of the k-th eigenvalue of the optimal set is larger than 1. Numerical experiments also suggest that when λ k (Ω * ) is multiple then λ k (Ω * ) < λ k+1 (Ω * ). A first result in this sense has been obtained in [START_REF] Bogosel | Qualitative and numerical analysis of a spectral problem with perimeter constraint[END_REF] and is similar to [15, Lemma 2.5.9]. For the sake of completness we give a sketch of the proof.

Theorem 5.1. Suppose Ω * is a minimizer for problem (1). If we have λ k-1 (Ω * ) < λ k (Ω * ) then the k-th eigenvalue is simple, i.e. λ k (Ω * ) < λ k+1 (Ω * ).

Proof: Suppose λ k (Ω * ) is multiple and λ k (Ω * ) = ... = λ k+m-1 (Ω * ). Since λ k is the smallest eigenvalue in the cluster and Ω * is a local minimizer, the m analytic parametrizations of the eigenvalues of the spectrum, described in Section 3, have derivative zero at ε = 0. This would imply that (∂ n u i ) 2 = H for all i = 1, ..., m.

If m > 1 this implies the existence of two different eigenfunctions u, v associated to

λ k (Ω * ) such that (∂ n u) 2 = (∂ n v) 2 = H.
The Hölmgren uniqueness theorem implies that H cannot vanish on a relatively open set of ∂Ω (see [START_REF] Bogosel | Qualitative and numerical analysis of a spectral problem with perimeter constraint[END_REF]Theorem 5.7] for an alternative argument). Thus, there exists a relatively open set γ ⊂ ∂Ω such that H > 0 on γ. We can see that in this situation

∂ n u = ± √ H and ∂ n v = ± √ H on γ.
This implies that we have either ∂ n (u + v) = 0 or ∂ n (u -v) = 0 on γ. By Hölmgren's uniqueness theorem we deduce that u = ±v which is a contradiction. Therefore λ k (Ω * ) is simple.

We can provide a stronger result based on the methods used in Theorem 2.5.8 and Lemma 2.5.9 from [START_REF] Henrot | Extremum problems for eigenvalues of elliptic operators[END_REF]. We note that we have already proved that optimal sets Ω * are analytic outside a singular set Σ so the cited results apply in our case. Below we prove a generalization of Lemma 2.5.9 from [START_REF] Henrot | Extremum problems for eigenvalues of elliptic operators[END_REF]. Lemma 5.2. Suppose Ω is a smooth set in R d and that λ k+1 (Ω) = ... = λ k+m (Ω). Then there exist vector fields V such that of the derivatives dλ k+i (Ω ε ) dε ε=0 are strictly negative and the other m -are strictly positive, for ∈ {1, 2, ..., m -1}. Moreover, V can be chosen in such a way that the derivative of the perimeter of Ω in the direction of V is zero, which means that ∂Ω HV.ndσ = 0.

Remark 5.3. Working like in [3, Lemma 2.6] we may construct a family of sets Ω ε = φ ε (Ω) such that Ω ε have the same perimeter as Ω = Ω 0 and the derivative of the flow φ ε at ε = 0 is V .

Proof of Lemma 5.2: Theorem 2.5.8 from [START_REF] Henrot | Extremum problems for eigenvalues of elliptic operators[END_REF] says that the derivatives of the eigenvalues of the perturbations Ω ε of Ω are the eigenvalues of the m × m matrix

A V = (a i,j ) where a i,j = - ∂Ω ∂ n u i ∂ n u j V.ndσ, 1 ≤ i, j ≤ m.
As a consequence, the derivatives of λ k (Ω * ) + Per(Ω * ) in the direction V are the eigenvalues of A shifted by the derivative of the perimeter for the same direction V .

As in the proof of the previous theorem we place ourselves in a relatively open subset γ of ∂Ω where the mean curvature H is strictly positive. For a point X ∈ γ we denote ψ(X) = (∂ n u 1 (X), ..., ∂ n u m (X)) ∈ R m . We can find points X 1 , ..., X n ∈ γ such that the vectors ψ(X i ), i = 1, ..., m are linearly independent. We present a simple proof of this fact in Appendix A.

Once chosen X 1 , ..., X n we consider a vector field V δ such that V δ is supported on O 1 ∪...∪O n , where X p ∈ O p and H n-1 (O p ) = δ. Given j ∈ {1, 2, ..., n} we can consider V δ to be of the form

V δ = (k p /δ) n(x) on O p \ Q p (f p (x)/δ) n(x) on Q p
where constants k p satisfy k p < 0 for p ≤ and k p > 0 for p > , Q p are portions around the boundary of O p of H d-1 measure O(δ 2 ), f p smooth extensions of the constant such that f p ≤ k p and n(x) denotes the normal to ∂Ω. Furthermore, the constants k i are chosen such that ∂Ω HV δ .ndσ = 0, so that the derivative of the perimeter is zero. This can always be done. It suffices to fix the first constants k i = c < 0 and choose the rest equal to a positive constant which makes the above integral zero. Note that the derivative of the perimeter cannot be equal to zero if we choose all k i to have the same sign. This is due to the fact that γ is a region where H is strictly positive.

It is not difficult to see that

lim δ→0 Op ∂ n u i ∂ n u j V δ .ndσ = k p ∂ n u i (X i )∂ n u j (X i ), p = 1, ..., n.
Therefore, the matrix A V δ converges to

k 1 ψ(X i ) T ψ(X i ) + ... + k n ψ(X n ) T ψ(X n )
as δ goes to 0. For a general vector X ∈ R n we have

X T A V δ X → k 1 (X.ψ(X 1 )) 2 + ... + k n (X.ψ(X n )) 2 .
Since the vectors ψ(X i ) are linearly independent we deduce that this limit matrix is associated to a quadratic form of signature (n -, ) so it has negative eigenvalues and n -positive ones. The continuity of the eigenvalues of the matrices with respect to the entries implies that for δ small enough A V δ has negative eigenvalues and n -positive ones. Thus eigenvalues from the cluster have negative derivatives and n -have positive derivatives. Note that even if the above result is stated for smooth sets, we may apply it in our case by performing only perturbations supported outside the singularity. An immediate corollary is the following.

Corollary 5.4. If Ω * is an optimizer for (1) corresponding to the index k then λ k (Ω * ) < λ k+1 (Ω * ).

Proof: Suppose that λ k (Ω * ) is multiple and λ s (Ω * ) = ... = λ k (Ω * ) = λ k+1 (Ω * ) = ... = λ S (Ω * ). Apply Lemma 5.2 to deduce that it is possible to find a perturbation V of Ω * such that the derivatives of the eigenvalues in the cluster are strictly negative for indices in [s, k] and strictly positive for indices in [k + 1, S]. Moreover, the perturbation can be chosen so that the perimeter has derivative zero in the direction of V . This perturbation would then decrease λ k + Per, thus contradicting optimality. Therefore we can only have λ k (Ω * ) < λ k+1 (Ω * ). Denote Ω k and Ω k+1 solutions of problem [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF] for k and k + 1, respectively. Then we have the following inequalities

λ k (Ω k ) + Per(Ω k ) ≤ λ k (Ω k+1 ) + Per(Ω k+1 ) ≤ λ k+1 (Ω k+1 ) + Per(Ω k+1 ),
where the first inequality comes from the optimality of Ω k and the second from the ordering of the eigenvalues. If the optimal costs c k , c k+1 defined in (2) satisfy c k = c k+1 then the above inequalities imply that λ k (Ω k+1 ) = λ k+1 (Ω k+1 ) and that Ω k+1 is also solution of (1) for k. This is in contradiction with the previous corollary.

Remark 5.6. Remark 5.3 allows us to conclude a similar result for the constrained problem

d k = min{λ k (Ω) : Per(Ω) = c}.
In this case we also have d k < d k+1 .

Remark 5.7. Using the results above it is possible to deduce that for the shape Ω * which minimizes λ 2 (Ω) + Per(Ω) the second eigenvalue is simple and thus we have (∂ n u 2 ) 2 = H. Indeed, the optimal set Ω * is connected [START_REF] Philippis | Existence and regularity of minimizers for some spectral functionals with perimeter constraint[END_REF] so we have λ 1 (Ω * ) < λ 2 (Ω * ). The results above show that λ 2 (Ω * ) < λ 3 (Ω * ) so λ 2 (Ω * ) is simple.

A From discrete to continous linear dependence Consider a positive integer n ≥ 2 and let f 1 , f 2 , ..., f n be real continuous functions defined on an open connected set I ⊂ R d . For a point x ∈ I we denote ψ(x) = (f 1 (x), ..., f n (x)) ∈ R n . We suppose that none of the functions f i is identically zero on I. Suppose that for each set of n different points x 1 , ..., x n ∈ I the vectors ψ(x 1 ), ..., ψ(x n ) are linearly dependent on an open connected subset of I. Then the functions f 1 , ..., f n are linearly dependent, i.e. there exist constants α 1 , ..., α n not all zero such that

α 1 f 1 + ... + α n f n = 0.
Let's start with the case n = 2. Pick x 1 = x 2 in I. We know that the vectors ψ(x 1 ), ψ(x 2 ) are linearly dependent which means that

f 1 (x 1 ) f 2 (x 1 ) = λ f 1 (x 2 ) f 2 (x 2 )
We find that on the set {f 2 = 0} the function f 1 /f 2 is constant. Thus, picking eventually a connected component of {f 2 = 0} we find that f 1 , f 2 are linearly dependent on a connected open set.

We can prove the result for general n ≥ 2 by induction. Indeed, let's suppose that the result holds for n functions. Consider now f 1 , ..., f n+1 defined on I such that for every n + 1 points x 1 , ..., x n+1 the vectors ψ(x 1 ), ..., ψ(x n+1 ) are linearly dependent. Suppose that no two functions f i are equal or else we have nothing to prove. Furthermore, we choose x 1 such that f (x 1 ) = 0. Thus there exist scalars λ 1 , ..., λ n , not all zero such that

           λ 1 f 1 (x 1 ) + λ 2 f 1 (x 2 ) + ... + λ n+1 f 1 (x n+1 ) = 0 λ 1 f 2 (x 1 ) + λ 2 f 2 (x 2 ) + ... + λ n+1 f 2 (x n+1 ) = 0 • • • λ 1 f n+1 (x 1 ) + λ 2 f n+1 (x 2 ) + ... + λ n+1 f n+1 (x n+1 ) = 0.
Without loss of generality suppose that λ 1 = 0. Eliminating the elements below λ 1 f 1 (x 1 ) in the first column leaves us with a system of the form

     µ 2 (f 2 -f 1 )(x 2 ) + ... + µ n+1 (f 2 -f 1 )(x n+1 ) = 0 • • • = 0 µ 2 (f n+1 -f 1 )(x 2 ) + ... + µ n+1 (f n+1 -f 1 )(x n+1 ) = 0
Therefore f 2 -f 1 , ..., f n+1 -f 1 satisfy the induction hypothesis and thus they are linearly dependent. It is obvious that this implies that f 1 , ..., f n+1 are linearly dependent.

B A variant of the Hahn-Banach Theorem

We recall below the well known Hahn-Banach separation theorem. For a proof or more details see [START_REF] Clarke | Functional analysis, calculus of variations and optimal control[END_REF]Section 2.4].

Theorem B.1. Ket K 1 , K 2 be nonempty, disjoint convex subsets of the normed vector space X.

Then if K 1 is open, there exist ζ ∈ X * and θ ∈ R such that ζ, x < θ ≤ ζ, y ∀x ∈ K 1 , y ∈ K 2 .
An immediate consequence is the following. Proposition B.2. Let {ζ i : i = 1, 2, ..., k} be a finite subset in X * . The following are equivalent: (a) There is no ν ∈ X such that ζ i , ν < 0, ∀i ∈ {1, 2, ..., k}.

(b) The set {ζ i : i = 1, 2, ..., k} is positively linearly dependent: there exists a non zero nonnegative vector γ ∈ R k such that k i=1 γ i ζ i = 0.

Proof: First let's note that we may suppose that none of the functionals ζ i are identically zero, since the problem would reduce itself to a smaller value of k or to the trivial case when all functionals considered vanish.

We start with the implication (b) =⇒ (a). Suppose that k i=1 γ

i ζ i = 0. Now, if ν ∈ X we have 0 = k i=1 γ i ζ i , ν ≤ ( k i=1 γ i ) max i ζ i , ν , which implies max i ζ i , ν ≥ 0, since k i=1 γ i > 0.
For the implication (a) =⇒ (b) we consider the following subsets of R k :

K 1 = {y ∈ R k : y i < 0∀i ∈ {1, 2, ..., k}} K 2 = {( ζ 1 , ν , ζ 2 , ν , ..., ζ k , ν ) : ν ∈ X}.
We see immediately that (a) implies K 1 ∩ K 2 = ∅ and furthermore K 1 is open. Therefore, we can apply the Hahn-Banach separation theorem B.1 and find a functional ϕ : R k → R and θ ∈ R such that ϕ, x < θ ≤ ϕ, y , ∀x ∈ K 1 , y ∈ K 2 .

We know that such a functional is of the form ϕ(x) = Taking y n i = -n, y n j = -1/n, j = i and taking n → ∞ we see that this is possible only if all γ i are non-negative. This finishes the proof.

C A formula relating the Laplacian and the Hessian Theorem 3.1.1.1. from [START_REF] Grisvard | Elliptic problems in nonsmooth domains[END_REF] says that for v ∈ H 1 (Ω) n and Ω of class C 2 we have

Ω | div v| 2 dx - n i,j=1 Ω ∂ i v j ∂ j v i dx = (tangential part) + ∂Ω H(v • nν) 2 dσ,
where H is the mean curvature of Ω. If we put v = ∇u for u = 0 on ∂Ω, then the tangential part is zero and we obtain a relation between the Laplacian and the Hessian. The aim here is to write a similar relation when we have an additional multiplication with a function ϕ ∈ H 1 (R d ).

We wish to prove the following The terms integrated on Ω are

A Ω = n i,j=1 Ω ∂ j ϕv i ∂ i v j dx - n i,j=1 Ω v i ∂ i ϕ∂ j v j dx = Ω {(v • ∇)v • ∇ϕ}dx - Ω (v • ∇ϕ) div vdx.
In order to avoid possible complications, unnecessary in our case, we recall that we want to use this computation for v = ∇u with u = 0 on ∂Ω. This means, in particular, that the tangential part of v is v τ = (∇u) τ = 0. Therefore, in the following, we suppose that the tangential part of v is zero. Using the reasoning from [14, Theorem 3.1.1.1] and neglecting the tangential components we obtain Note that even if the result above is stated for C 2 sets, we may apply it in the case where Ω is C 1,α with non-negative and bounded distributional curvature. Analysing the proof we notice that the only difficulty comes from the boundary integrals A ∂Ω where which are considered for fields v with zero tangential components.

A ∂Ω = -

  min |Ω|=m (Per(Ω) + G(Ω))

Theorem 4 . 1

 41 If Ω * is a local minimizer for problem (1) then Ω * is analytic for d ≤ 7. If d ≥ 8 then Ω * is analytic outside a closed set of Hausdorff dimension d -8.

Theorem 4 . 1 .

 41 If Ω * is a local minimizer for problem (1) then Ω * is analytic for d ≤ 7. If d ≥ 8 then Ω * is analytic outside a closed set of Hausdorff dimension at most d -8.

Remark 4 . 3 .

 43 The results of Theorem 4.1 can be generalized to problems of the type minΩ∈R d F (λ k 1 (Ω), ..., λ kp (Ω)) + Per(Ω)where F : R p → R + satisfies the properties (P1) F (x) → ∞ as |x| → ∞.

Corollary 4 . 5 .

 45 If Ω * is a solution for problem (1) then • ∂Ω * does not contain flat parts • ∂Ω * does not contain open subsets of spheres unless Ω * is a ball.

Remark 5 . 5 .

 55 A direct consequence of the previous theorem is that the optimal cost for problem (1) is a strictly increasing function of k, i.e. min Ω∈R d λ k (Ω) + Per(Ω) < min Ω∈R d λ k+1 (Ω) + Per(Ω).

γ

  i x i , where γ = (γ 1 , ..., γ k ) is a non-zero element of R k . Therefore ϕ, y ≥ θ, ∀y ∈ K 2 becomes θ ≤ k i=1 γ i ζ i , ν , ∀ν ∈ X,which is only possible when k i=1 γ i ζ i = 0. On the other hand, we have k i=1 γ i y i < θ for all y = (y i ) ∈ K 1 .

Proposition C. 1 .

 1 If Ω is of class C 2 , ϕ ∈ H 1 (R d ) and u is smooth in Ω ∩ supp ϕ then Ω ϕ|D 2 u| 2 dx + ∂Ω ϕH|∇u| 2 dσ = Ω ϕ(∆u) 2 dx + Ω (∇u • ∇ϕ)∆udx -Ω ∇ϕ • D 2 uDudxProof: We integrate by parts two times and we obtainΩ ϕ| div v| 2 = n i,j=1 Ω ϕ∂ i v i ∂ j v j dx Ω v i ϕ∂ i,j v j dx -n i,j=1 Ω v i ∂ i ϕ∂ j v j dx + n i,j=1 ∂Ω ϕv i ∂ j v j ν i dσ ∂ j = n i,j=1 Ω ϕ∂ j v i ∂ i v j dx + n i,j=1 Ω ∂ j ϕv i ∂ i v j dx -n i,j=1 ∂Ω ϕv i ∂ i v j ν j dσ--n i,j=1 Ω v i ∂ i ϕ∂ j v j dx + n i,j=1 ∂Ω ϕv i ∂ j v j ν i dσ Therefore we have I(v) = Ω ϕ| div v| 2 -n i,j=1 Ω ϕ∂ j v i ∂ i v j dx= A Ω (terms on Ω) + A ∂Ω (terms on ∂Ω)

∂Ω ϕHv 2 dσ

 2 ϕv i ∂ i v j ν j dσ + n i,j=1 ∂Ω ϕv i ∂ j v j ν i dσ = ∂Ω ϕv ν div vdσ -∂Ω ϕ{(v • ∇)v} • νdσ =As stated before, we replace v by ∇u where u = 0 on ∂Ω and we getΩ ϕ(∆u) 2 dx -Ω ϕ|D 2 u| 2 dx = Ω ∇ϕ • D 2 uDudx -Ω (∇u • ∇ϕ)∆udx + ∂Ω ϕH|∇u| 2 dσ. Therefore Ω ϕ|D 2 u| 2 dx + ∂Ω ϕH|∇u| 2 dσ = Ω ϕ(∆u) 2 dx + Ω (∇u • ∇ϕ)∆udx -Ω ∇ϕ • D 2 uDudx
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