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Efficient algorithm for optimizing spectral partitions

Beniamin Bogosel

Abstract

We present an amelioration of current known algorithms for minimizing functions de-
pending on the eigenvalues corresponding to a partition of a given domain. The idea is to
use the advantage of a representation using density functions on a fixed grid while decreas-
ing the computational time. This is done by restricting the computation to neighbourhoods
of regions where the associated densities are above a certain threshold. The algorithm ex-
tends and improves known methods in the plane and on surfaces in dimension 3. It also
makes possible to make computations of optimal volumic 3D spectral partitions on suffi-
ciently important discretizations.

1 Introduction

Many works were dedicated recently to the theoretical and numerical study of optimal spectral
partitions in the plane and on surfaces in R3. A typical example is the minimization of the sum
of the fundamental eigenvalues of the Dirichlet-Laplace operator corresponding to cells of a
partition of a given domain:

min
(ωi)∈P(D)

λ1(ω1) + ...+ λ1(ωn), (1)

where P(D) denotes the family of partitions into a fixed number n of cells of a domain D,
belonging to R2, R3 or to a surface in R3. We recall that the eigenvalues of the Dirichlet-
Laplace operator are obtained by solving the partial differential equation −∆u = λ(ω)u in
ω with boundary condition u = 0 on ∂ω. It is known that problem (1) has a solution and the
cells ωi of the optimal partition are C1,α-regular outside singular parts of codimension greater
than 1.

The study of spectral optimal partitioning problem (1) has multiple motivations. They are
a useful tool in the proof of monotonicity formulas concerning the behaviour of solutions of
PDEs on domains which are adjacent, as can be seen in [ACF84], [CTV03]. Moreover, problem
(1) appears as a limiting case in the study of chemical reactions [CBHy05] or in the study of
systems of competing systems [CTV02]. The existence of solutions for problem (1) was proved
in [BBH98] and the C1,α regularity and qualitative properties concerning the boundaries of the
cells were proved in [CTV03], [CL07]. The interest in numerical studies concerning problem (1)
is motivated by the lack of an exact theoretical description even in the simplest cases, for small
number of cells. A summary of known results for nodal and spectral partitions together with a
more detailed list of references can be found in [BNH17].

One question which remains open is the study of the spectral honeycomb problem regard-
ing the partition of the plane which asymptotically minimizes the sum of the first eigenvalues
of the Dirichlet Laplacian of each cell. This is equivalent to studying solutions of problem (1)
when n → ∞. It was conjectured in [CL07] that the honeycomb partition is the best one. Big
steps towards the proof of this conjecture were made in [BFVV17], where the authors prove
that the spectral honeycomb conjecture is true among convex sets under the hypothesis that
Polya’s conjecture holds for hexagons and a slightly weaker version holds for pentagons and
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heptagons. We recall that Polya’s conjecture states that among n-gons of fixed area, the regu-
lar one minimizes the first Dirichlet eigenvalue. Recent numerical simulations which confirm
Polya’s conjecture can be found in [Bog15, Chapter 1].

The numerical aspects of the spectral partitioning problem (1) were approached by Bourdin,
Bucur and Oudet in [BBO10]. They proposed an algorithm which benefited of the fact that the
cells could be represented as density functions on the same grid. This allows a straightforward
implementation of a gradient based optimization method for the search of optimal numerical
configurations. They managed to study partitions of up to 512 cells and they noticed that
locally partitions seem to be composed of patches of regular hexagons. Due to the size of
the computations the 512 cell computations was done at Texas Advanced Computing Center.
Below we propose a modification of this algorithm which does not have any loss of precision
and which decreases in a significant way the cost of the computation. The case of 512 cells
can now be run in a reasonable amount of time on a personal computer. Some simulations for
more than 1000 cells on finer discretizations are possible and some of these are presented in the
following.

We recall the following works dealing with numerical computations regarding spectral op-
timal partitions. In [CH05, CBHy05] the authors present a problem issued from the modeliza-
tion of chemical reactions for which the stationary state energy is the sum of the Dirichlet
Laplace eigenvalues of the cells. They present evidence that the optimal configurations ap-
proach the hexagonal one in the for large number of components. In [OWO14] Osting, Oudet
and White investigate graph partitions using spectral methods. They propose a different opti-
mization method which is gradient free and converges to a local minimum in a finite number
of iterations. In [ER15] the authors investigate partitions minimizing the sum of the Laplace-
Beltrami eigenvalues on different surfaces in R3. A different approach is presented in [Bog16] in
the case of the sphere using fundamental solutions to compute the eigenvalues. An adaptation
of the algorithm in [BBO10] is presented in [BV16] in the case of the multiphase problem where
the objective functional is the sum of the fundamental eigenvalues and an area penalization.
In [Boz15] a method for minimizing the sum of the eigenvalues and the maximal eigenvalue
is proposed. In [BBN16] the authors study the minimization of the largest eigenvalue by min-
imizing some p-norms of eigenvalues for large p. They propose a grid restriction procedure in
the plane with the purpose of obtaining better precision. This consisted in finding rectangular
neighbourhoods of the cells on which we restrict the computations. This article proposes fur-
ther improvements of this procedure by considering even fewer points in the computational
region. The grid restriction procedure reduces greatly the computational cost, which allows
the study of partitions into a large number of cells with low computational resources. The re-
duction in computational complexity also allows the study of partitions on surfaces and even
volumic partitions for domains in R3.

A similar approach was devised in [BDLO17] for the study of partitions with many cells
which minimize the total perimeter. It is another example where the representation of the
sets as density functions helps when dealing with partitions, which is made possible with the
use of the Modica-Mortola approximations of the perimeter by Γ-convergence. For details see
[Oud11], [BEO17].

This paper focuses on describing how the methods presented in [BBO10] can be modified
so that we gain in precision and in computational speed. We underline the speed improve-
ments which are obtained and we propose a number of simulations that can be made with this
method. The method described in this article allows us to work in 3D with over one hundred
cells on grids of size 100×100×100. The 3D problem has also been approached in [ZO16] for a
periodic cube with a resolution of 26× 26× 26 and up to at most three cells. In [CHy08] the au-
thors apply the same algorithm as in [CBHy05] to the 3D case. Recently, in [WO18] the authors
use a diffusion generated algorithm to study optimal partitions in the periodic cube for dimen-
sion 2, 3 and even 4. They also present computations regarding partitions of the sphere. The
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computations in [WO18] and [CHy08] use an energy formulation using the diffusion equation
in order to study the evolution of the partition. In [WO18] the use of the Fast Fourier Transform
and Spherical Harmonic Transform allow to accelerate computations.

The paper is organized as follows. In Section 2 we describe the numerical algorithm for
computing the eigenvalue corresponding to each cell. We also describe how to solve the eigen-
value problem on a subset of the discrete grid, which allows a great reduction in computational
costs. In Section 3 we present various numerical computations showing the computational ad-
vantages of our algorithm, both in being able to efficiently solve cases where we have many
cells and in solving more complex cases, like finding optimal spectral partitions of domains
in R3. Using this algorithm we manage to give some information about the possible spectral
honeycomb conjecture in R3. Analysing a few configurations which arise when working on the
cube with periodic boundary conditions we note that the partition into rhombic dodecahedra
seems to give the lowest sum of normalized eigenvalues.

2 Numerical algorithm

When considering the spectral optimal partitioning problem (1) from a numerical point of view
two issues arise: first we need to be able to model the partition condition and secondly we need
to be able to compute accurately enough approximations of the fundamental eigenvalues for
each of the cells of the partition. In [BBO10] both these issues were approached by replacing
the cells ωi by density functions ϕi with domain D and values in [0, 1]. This immediately gives
an algebraic formulation of the partition constraint, namely the sum of the functions ϕi must
be identically equal to 1. The computation of the eigenvalues associated to each of the cells
was made using a relaxed eigenvalue problem on the fixed domain D. The main contribution
of this article is describing how the penalized eigenvalue problem can be solved in a more
efficient way, by reducing the size of the computational domain around each cell.

LetD ⊂ Rd be a bounded open set and ω one of its subsets. The classical results of [DMM87]
allow us to find the eigenvalues of the Dirichlet Laplace operator on ω as solutions of a problem
define on D. More precisely, for a measure µ we can consider the problem

−∆u+ µu = λ(µ)u on D

for u ∈ H1
0 (D). In the case where µ is given by

µ(X) =

{
0 if cap(X ∩ ω) = 0

+∞ otherwise

then λ(µ) is precisely the first eigenvalue of the Dirichlet Laplacian operator on ω. Here cap
denotes the capacity. For more details about the capacity or the penalization using capacitary
measures see [BB05] and [HP05]. This formulation inspired the numerical method presented
in [BBO10]. The key point is that, instead of working with the set ω, we can use a density
approximation. If ϕ is close to the characteristic function of ω then solving

(−∆ + C(1− ϕ))u = λ(C,ϕ)u (2)

for u ∈ H1
0 (D) and C � 1 will give us approximations of the eigenvalues and eigenfunctions

of ω. In [BBO10] it is proved that when ϕ = χω and C → ∞ then λk(C,ϕ) converges to λk(ω)
as C → ∞. There is also a quantitative convergence result presented in [BV16] which gives an
error estimate in terms of C

|λk(Ω)− λk(µC)|
λk(Ω)

≤ KC−1/(N+4),

where µC = C(1− χω).
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Consider D a rectangular box in Rd endowed with a finite differences uniform grid. We
consider an ordering for the points of this grid, which will allow us to represent the discretiza-
tion of a function u on this grid by a column vector ū. Let L be the matrix associated to the
Laplace operator on this grid, in the sense that Lū computes the discrete laplacian using 2d+ 1
point stencils on the finite difference grid. We consider the discrete version of (2) given by

(L+ Cdiag(1− ϕ))ū = λū (3)

In this way we may give an approximation of the eigenvalues and eigenfunctions of a set using
a finite difference grid on a larger set and an approximation of its characteristic function. This
immediately shows why formulation (3) is so well adapted to study partitioning problems:
we can perform computations on a fixed grid in order to find quantities related to some of its
subsets.

Together with this advantage comes a drawback: we have a fixed computation grid regard-
less of the size of the cell ω, for which we wish to compute the eigenvalue. For example, if a
cell occupies only a small part of the grid we have the same computational cost as if the cell
occupied the whole grid. In addition to this we do not gain anything by working on the whole
grid, on the contrary. Precision may be lost when penalizing too many points, since we add the
term C(1−ϕ) on the diagonal on the matrix of the laplacian. If C is large and ϕ is close to zero
for many points, then the resulting matrix is ill conditioned. We propose that prior to the eigen-
value computation to look if the cell is localized to just one part of the grid and then restrict
the computational domain to a suitably sized neighbourhood around the cell. In the sequel
we call computational neighbourhood of a cell, the region to which we restrict the computations
regarding a particular cell.

First we locate all the points where the current density ϕ is greater than some treshold. In
the computations we took the points where ϕ > 0.01. In [BBN16] the authors considered a rect-
angular neighbourhood of the cell with an eventual padding of 5 to 10 rows of discretization
points to allow enough interaction between cells. A more careful analysis shows that the neigh-
bourhood does not need to be rectangular. Indeed, we see that having some exterior points in
the computational neighbourhood of the cell is necessary, since these points will be penalized
in formulation (3) and we recover the Dirichlet boundary conditions for the eigenvalue prob-
lem. Moreover, it is enough to choose our computational neighbourhood such that every point
near the boundary of the cell has some exterior neighbours which are considered in the com-
putation. We will call two points of the finite difference grid neighbours if they are situated at a
minimal vertical or horizontal distance on the grid. We call two points x, y on the grid neigh-
bours of order p if the `1-distance between x and y is equal to ph, where h is the discretization
parameter. Equivalently, we can reach {x} starting from {y} by travelling p vertical or horizon-
tal grid segments joining adjacent vertices. In the first picture of Figure 1 the blue points are all
the neighbours of the red point and the red point and green points are neighbours of order 4.
The neighbours of order at most p can be computed starting from an initial adjacency matrix
N , which contains 1 on position i, j if nodes i and j are neighbours. In general, we will fix p
between 5 and 10, and for cell number iwe define its associated computational neighbourhood
to be the family of all points on the grid which are neighbours of order at most p with some of
the points in {ϕ > 0.01}. The procedure is presented in detail in Algorithm 1.

We shall call this computational neighbourhood R in the sequel. We compute the eigen-
value of the cell corresponding to ϕ by using only the grid points inside R. In order to do
this, we select from the matrix L only the lines and columns corresponding to indices of points
which are contained in the computational neighbourhood R. In the initial phase of the com-
putation we start from random densities and the proposed algorithm does not bring much
improvement. However, when the cells become localized the gain in speed is significant. Fig-
ure 1 contains a few examples of such reduced computational neighbourhoods. If we want to
consider the same kind of algorithm on a periodic grid it is enough to modify the adjacency
matrix N so that we include neighbours along the sides of the computational domain.
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Algorithm 1 Find neighbours on the grid up to a certain order
Require: • L: Finite difference matrix for the Laplacian.

• k: depth of the neighbour search
1: construct neighbours adjacency matrix N starting from L: N = (aij), aij = 1 if and only if
Lij 6= 0 and i 6= j. Else aij = 0.

2: Initialize Nf = N . (at this stage we only have neighbours up to order 1)
3: for i = 1 : k do
4: Nf = min(Nf +N ·Nf , 1)
5: end for

return Nf

Figure 1: Illustration of neighbours on the grid and example of reduced computational grids.
Dark points represent points in the actual cell and light points represent additional points along
the neighbourhood of the cell considered in the computation.

If we want to use the approach in [BBO10] for the study of three dimensional partitions
the problem quickly becomes too costly from a computational point of view since matrices
involved are really large. Just to have an idea, working with finite differences without grid
localization in 2D we can treat discretizations of up to 500 × 500. This corresponds to a 60 ×
60 × 60 discretization on the cube, with a denser matrix. Moreover, it is a classical known
fact that the structure of the matrix resulting from the finite differences discretization of the
Laplacian in R3 makes the 3D computations more costly. Computing eigenvalues for such a
grid in 3D is extremely slow. This was the main reason for which no conclusive 3D results were
obtained in [BBO10]. On the other hand, when using a grid refinement procedure like the one
described above computational costs are reduced and three dimensional computations become
possible. We present a few computations of 3D optimal spectral partitions in Section 3. Some
examples of reduced grids corresponding to three dimensional cells are presented in Figure 2.

Figure 2: Examples of reduced grids in 3D. Cells are defined as functions on the whole grid,
but only the values corresponding to the points shown are used in the computation. Points
in the cell are represented with dark blue. Points in the computational neighbourhood are
represented with cyan.
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Figure 3: Defining the computation grid on various surfaces. The blue points represent the and
the red points are additional points taken in the computation neighbourhood.

Since we are also interested in working with partitions on surfaces we recall the finite ele-
ment approach presented in [BV16]. If S is a surface in R3 with a corresponding triangulation
then we may consider the mass matrix M and the rigidity matrix K associated to the Lagrange
P1 finite elements on this triangular grid. The equation satisfied by Laplace Beltrami eigenval-
ues corresponding to a density ϕ : S → [0, 1] is∫

S
∇u∇v + C

∫
S

(1− ϕ)uv = λ

∫
S
uv,

for every v ∈ H1(S). For simplicity we keep the same notation for a function defined on S and
its finite element approximation. In the finite element formulation this becomes

vTKu+ CvTdiag(1− ϕ)Mu = λvTMu,

for every vector v. Thus we are left with a generalized eigenvalue problem

(K + Cdiag(1− ϕ)M)u = λMu, (4)

which can also be solved using the Matlab function eigs. Note that in [ER15] the authors
studied partitions on three surfaces (the sphere a torus and another parametric surface) for
up to 32 cells. Partitions of the sphere into cells which minimize the sum of the first Laplace-
Beltrami eigenvalues were also studied in [Bog16] using a formulation based on fundamental
solutions. One of the drawbacks of the approach used in [Bog16] is the fact that it was limited
to the case of the sphere and that the number of discretization points was limited to about 5000,
since the generalized eigenvalue problem obtained was not sparse.

In this setting we propose a similar grid restriction procedure which will allow us to work
with a much larger number of discretization points while decreasing the computation time.
On the sphere we preform computations on discretizations containing over 160000 points. See
section 3.5 for more details. If ϕ is the current density then we look for the points where ϕ
is greater than 0.01. Once we have identified these points we search for all their neighbours
which are at a distance of at most 5 edges on the triangulation. The search of neighbours along
the edges of the triangulation follows exactly Algorithm 1 using the point to edge connectivity
matrix. In Figure 3 we present some examples of reduced computational neighbourhoods on
various surfaces. In the end we compute the eigenvalue corresponding to the current cell by
solving a problem of the type (4) only on the restricted part of the surface.

In each of the situations presented above, partitions of the domain D will be represented by
n-tuples of functions (ϕ1, ..., ϕn) defined on D which verify the partition condition

ϕ1 + ...+ ϕn = 1

point-wise at each grid point. The initial condition will always be generated randomly and
then projected on the constraint. In [BBO10] the authors proposed the following projection:

ϕi 7→
|ϕi|∑n
i=1 |ϕi|

.

6



Apart from the fact that this projects a family of functions on constant sum equal to 1 constraint,
this also makes every function ϕi have values in [0, 1]. This is important in light of the fact that
the application

ϕ 7→ λ1(C,ϕ) (5)

is concave in ϕ [BBO10]. Thus when minimizing
∑n

i=1 λ1(ϕi, C) each ϕi will become an ex-
tremal point in the family of functions with values in [0, 1], and these extremal points are exactly
the characteristic functions, taking values in {0, 1}.

At each iteration of the optimization algorithm we have the following:
· compute the computational neighbourhood of ϕi
· compute the associated eigenvalue and eigenfunction by solving (3), (4) on the restricted grid
· using the eigenfunction, compute the associated gradient of λ1 with respect to each point of

the grid. According to [BBO10] this is given by

∂iλ1(C,ϕ) = −Cu2i

where u is the solution of (3), (4) associated to λ1(C,ϕ).
· evolve each function in the direction of the gradient

ϕi = ϕi + αCu2i ,

· since the evolution in the direction of the gradients will break the partition condition we
project back on the constraint using the algorithm in [BBO10], described above (5).
· test if the new partition has a lower energy. If yes, then we continue, if not then we decrease

the value of the step size α.
· continue repeating these steps until we reach a preset maximal number of iterations, or the

step α is smaller than 10−6.
The considerations above allow us not only to work on rectangular domains, but also in

general domains in the following way. Suppose D is a generic domain. Then we consider
a rectangular domain D′ ⊃ D which contains it. On D′ we construct the finite difference
framework with the property that any point in D′ \D will always be penalized in (3), (4). This
is equivalent to imposing ϕ = 0 outside D.

All figures were created using Matlab standard commands: plot, plot3, surf, patch.

2.1 Automatic classification of cells

Since we are interested in studying partitions with many cells, we would like a way to auto-
matically classify these cells, which would be more rigorous than visual inspection. In 3D it
is even more difficult to visualize clearly what happens in the interior of the computational
domain, hence the necessity of the tools presented below.

For two dimensional domains and surfaces we have an immediate way of classifying cells
by counting neighbours. We will loosely use the terms pentagons, hexagons, heptagons to
denote cells with five, six or seven neighbours. When looking at patches of cells with six neigh-
bours these seem to be made out of polygonal hexagons, in the classical sense. However, when
pentagons or heptagons are present, boundaries seem to be slightly curved in certain cases.

Counting the neighbours of each cell is not a difficult task. At the end of the optimiza-
tion procedure described previously, we have each cell ωi represented by a density function
ϕi : D → [0, 1] evaluated at the nodes of the discretized domain. As in the construction of the
computational cell, we make use of the matrix of neighbours N . We recall that N is symmetric
and line ` of N contains ones on positions corresponding to nodes neighbours to node ` and
zero on the other positions. Given two density functions ϕi, ϕj we test if they are adjacent in
the partition in the following way. Find indices Ii and Ij for positions where ϕi, ϕj are greater
than 0.5. Then compute the submatrix of N corresponding to lines Ii and columns Ij . If this
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Algorithm 2 Counting neighbours for each cell
Require: · n: number of cells

· ϕi, i = 1, ..., n the density functions corresponding to the numerical optimizer
· adjacency matrix N of neighbours on the grid

1: For 1 ≤ i ≤ n find indexes Ii of the points in the grid where ϕi > 0.5.
2: For each 1 ≤ i < j ≤ n decide that cells i and j are neighbours if the submatrix of N

corresponding to lines Ii and columns Ij contains non-zero elements.

submatrix contains non-zero elements then we conclude that cells i and j are neighbours in the
partition. This procedure is described in Algorithm 2.

In 3D, things are more complicated. Counting neighbours is not difficult, but it does not
bring such significant information as in 2D, since polyhedral domains with the same number
of faces may have quite different structure. In order to detect cells which are similar we use a
heuristic method based on the spectra of the Laplace-Beltrami operators on closed surfaces. It
is known that the spectrum of the Laplace operator does not completely characterize a shape.
There are known isospectral domains which are not isometric. However, experimental works in
[RWP06] and [LSS+10] show that spectral analysis of the Laplace-Beltrami spectrum may help
in the automatic classification of surfaces. Since this is not difficult to implement, in view of the
fact that we study spectral problems in this work, we applied these ideas in order to classify the
cells obtained in the 3D computations. The method manages to provide remarkably accurate
classifications for the test cases we tried.

As in the 2D classification, we are given the output of the optimization algorithm, consist-
ing of density functions ϕi : D → [0, 1]. Knowing the values of ϕi on a structured grid, we
may use the isosurface command in Matlab in order to construct a couple (p, T ) defining a
triangulation of the level set {ϕi = 0.5}. Here p contains the coordinates of the points and T
contains on each line indexes of points belonging to the same triangle. Given (p, T ) we may use
P1 Lagrange finite elements in order to approximate the first few Laplace-Beltrami eigenvalues
of the surface. Once the mass matrix M and the rigidity matrix K are constructed, one simply
needs to solve the generalized eigenvalue problem Kv = λMv. For this we use the command
eigs in Matlab.

Algorithm 3 Automatic classification of surfaces using Laplace-Beltrami spectrum
Require: · n: number of cells

· ϕi, i = 1, ..., n the density functions corresponding to the numerical optimizer
· ε: treshold for spectrum comparison
· k the number of Laplace-Beltrami eigenvalues computed for each surface

1: for each ϕi, i = 1, ..., n compute the triangulation (pi, Ti) of the level set {ϕi = 0.5}.
2: for each i = 1, ..., n compute the mass matrix Mi and rigidity matrix Ki associated to the

triangulation (pi, Ti).
3: for each i = 1, ..., n compute the first k smallest eigenvalues of the generalized eigenvalue

problem Kiu = λMiu and store them in a vector vi.
4: normalize each vi: vi ← vi/‖vi‖.
5: compute the matrixM = (‖vi − vj‖)1≤i,j≤n.
6: decide that two surfaces are similar ifMij < ε.

Once we have computed the first k Laplace-Beltrami eigenvalues λ1, ..., λk for each surface
corresponding to {ϕi = 0.5} we normalize the vector vi = (λ1, ..., λk). We use normalized
vectors since eigenvalues change proportionally when we dilate the domains. Next we want
to see for which cells the normalized vectors of eigenvalues are correlated. In order to to this
we simply compute the norm of the differences between vi and vj . We assume that cells i and j
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are similar if ‖vi − vj‖ < ε, where ε is a chosen threshold, which in our tests was ε = 0.01. The
procedure is described in Algorithm 3.

3 Numerical Simulations and Observations

3.1 Dimension two

The proposed algorithm can be used to compute optimal spectral partitions efficiently for var-
ious domains in dimension two. For up to 100 cells two dimensional computations take just a
few minutes. It is possible to work on general geometries like the disk, the equilateral triangle,
ellipses, polygons, etc. Note that even if we need to consider a computational region which is
rectangular and contains our domain, the computational complexity remains the same when
we use the grid restriction procedure. Some results on various geometries are available in Fig-
ure 4.

As was already noted in [BBN16], for the equilateral triangle we observe that partitions into
k(k + 1)/2 elements seem to be made out of polygons of three types. This may be due to the
fact that the edges of the equilateral triangle have the right orientations to make it compatible
with hexagonal patterns. More precisely, for numbers of cells n of the form n = k(k + 1)/2,
i.e. triangular numbers, we obtain cells which are polygons of three types: three quadrilaterals
corresponding to the corners, 3(k−2) pentagons on the edges and hexagonal cells in the interior.

Figure 4: Partitions on various domains

For planar domains we observe the emergence of hexagonal patches, as soon as the number
of cells is large enough so that the boundary does not have much influence on the interior cells.
Thus, it seems that numerical simulations, in accordance with previous simulations [BBO10],
[CBHy05], confirm the Caffarelli-Lin conjecture.

We start by presenting the example of the square with 512 cells on a 512× 512 grid. We take
random densities on a 32× 32 grid and we perform an optimization on this grid in order to get
an initial condition. We double the size of the grid points along each axis direction and we in-
terpolate the previous result on the new grid. We optimize again the result and we double the
grid size until we reach the desired resolution. In Figure 5 we present the result obtained using
the approach given above. We observe the presence of patches of regular hexagons as expected.
We underline here that this test was made on a laptop with a 3.5GHz quad-core processor and
16GB of RAM in a few hours of computation time. Having more cells and better resolution
is possible, as it can be seen in Figures 5, 6. Working with sparse matrices we optimize the
memory cost used for storing the computational structure. For example in Figure 5, we present
a case with 1000 cells on a grid of size 1000 × 1000 the computation takes about 12 hours and
RAM consumption is less than 16GB when using sparse matrices to represent the cells. The
1000× 1000 computation was made on a machine with an 8-core Xeon processor with 32 GB of
RAM. However, the code was not parallelized, so eigenvalues were not computed in parallel.
The RAM usage was of about 4GB in general, with spikes up to 12GB when performing the it-
eration step, probably due to the fact that several variables containing information of the size of
the whole partition structure were present: among these one contains the current densities and
one contains the gradient. Also, additional variables were created during the projection step.
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This example is presented to show the advantage of the grid restriction method with respect
to the algorithm presented in [BBO10], where for the same computation a supercomputer was
needed1. With a fully parallelized code and a super computer the improved algorithm could
go even further.

Figure 5: 512 cells on a grid of size 512× 512 and 1000 cells on a grid of size 1000× 1000.

Figure 6: Optimal partitions on unions of hexagons for 217, 271, 397 and 1027 cells. The parti-
tion of 397 cells is computed on a grid of size 1024× 1024 and the partition into 1027 cells on a
grid of size 510× 510.

It is possible to observe exact hexagonal patterns if we look at partitions of 2D shapes which
are exact union of regular hexagons. These types of domains have also been investigated by
Bonnaillie-Noël, Helffer and Vial in [BNHV10] by adding cracks with Dirichlet conditions. In
the computations presented here, we always start with an initial condition consisting of ran-
dom densities and we arrive at an exact partition made of regular hexagons. This is further
evidence that the Caffarelli-Lin conjecture seems to be true. The partitions obtained are given
in Figure 6.

3.2 Computation of circle packings

In [BV14] the authors introduced the multiphase problem

min
n∑
i=1

λ1(ωi) + α|ωi| (6)

where the minimization is made in the class of families (ωi)
n
i=1 of non-overlapping subsets

ωi of the domain D. Note that in this case the ωi do not form a partition of D. In fact in
1The computation in [BBO10] was made at Texas Advanced Computing Center
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Figure 7: Examples of computations of circle packings using our algorithm.

Figure 8: Similarities between optimal circle packing configurations and minimal spectral par-
titions

[BV14] the authors show that as soon as α > 0 there are no triple points and there are points
of D which are not covered by any of the sets ωi. In [BV16] the authors proved that if D is
Lipschitz, then there are no singular points on ∂D and they proposed a numerical algorithm for
the study of such multiphase configurations. The numerical algorithm should take into account
the non-overlapping condition and this was achieved by adding a supplementary phase which
represents the part of D not covered by any of the sets ωi. This allows the use of a similar
algorithm, since we turn the non-overlapping condition in to a partition condition. The grid
reduction procedure presented before can also be applied for the multiphase problem, leading
to an acceleration of the optimization algorithm for problem (6) presented in [BV16].

The reason we mention problem (6) here is to underline the potential connection between
the spectral partitioning problem, corresponding to α = 0 in (6), and the circle packing prob-
lem. The circle packing problem seeks the maximal radius of n disks which can be placed in D
without overlap. Since for given α > 0 the one phase problem

minλ1(ω) + α|ω|

is solved by a disk of radius rα =
(
λ1(B1)
απ

)1/4
, we see that for α large enough, n disks of radii

rα fit into the domain D (which is assumed open and Lipschitz). Moreover, as α decreases,
the optimal radii rα increase. There is a critical value α0 for which rα0 is equal to the maximal
radius of a family of n disks which fits intoD. We see that in this way, the spectral optimization
problem (6) includes the circle packing problem for a particular value of α. This shows that the
optimal circle packing can be obtained as a result of a direct optimization problem. Another
such formulation has been proposed in [BBF18] using again a relaxed formulation, but not of
spectral nature.

11



Figure 9: Optimal candidates in the case of the sphere. n ∈ {72, 90, 120}

Figure 10: Partitions on other types of surfaces

At a first sight it may seem that using a spectral formulation for the computation of the
optimal circle packing is not feasible numerically. However, using the optimized algorithm
presented in this article, we may approach successfully the optimal circle packing problem in
certain cases. Some examples are shown in Figure 7. One may check these results against best
known ones presented at packomania.com. Another reason why problem (6) was recalled here
is to underline the similarity between some circle packing configurations and the correspond-
ing optimal partition minimizing the sum of eigenvalues. It turns out that in the cases where
the symmetries of the circle packing configurations are also symmetries of D, the distribution
of the cells in the spectral partition is very similar to the one of the disks in an optimal cir-
cle packing. See Figure 8 for a few examples. We may wonder if there is a general connection
between the circle packing problem and the minimization of the sum of the fundamental eigen-
values. There is a resemblance even in the asymptotic case: it is conjectured that the hexagonal
tiling of the plane minimizes the sum of the fundamental eigenvalues. On the other hand it is
known that the densest circle packing in the plane is the one corresponding to a hexagonal grid
[FT72].

3.3 Surfaces

Initial computations of spectral partitions on surfaces were motivated by Bishop’s conjecture
[Bis92]. It is known that if we consider the partition of the sphere into two cells (ω1, ω2) then
the sum of the first Laplace-Beltrami eigenvalues is minimized in the case of two hemispheres.
This is in close relation to the symmetrization techniques used in [FH76] and the monotonicity
formulas proved by Alt, Caffarelli and Friedman in [ACF84]. The case of partitions with three
cells is still open for the sum, although Bishop [Bis92] conjectured for some time now that
the Y partition consisting of three slices of the sphere of angle 2π/3 is the optimal one. The
computations in [ER15],[OWO14],[WO18] and [Bog16] confirm numerically that it is probable
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that Bishop’s conjecture is valid. A number of other conjectures arise from these numerical
computations, notably those related to regular partitions of the sphere: 4, 6 and 12 cells. We
recall that if instead of the sum we wish to minimize the largest eigenvalue then the optimal
partition is known for n = 3 on the sphere. It is proved in [HHOT10] that the Y partition into
three slices of angle 2π/3 is optimal.

On the other hand, we may ask what happens if we consider many cells in a partition of a
surface. We may wonder if the analogue of the Caffarelli-Lin conjecture is also valid in the case
of certain surfaces. The algorithm described in Section 2 allows us to study such partitions. In
the case of the sphere computations were made for n ≤ 150. Using Algorithm 2 we observe that
for each n ≥ 14 the numerical minimizer is composed of n − 12 hexagons and 12 pentagons.
This is to be expected, due to Euler’s formula E + 2 = V + F , where E denotes the number
of edges, V the number of vertices and F the number of components of the partition. This
formula implies that there is no hexagonal partition of the sphere. Moreover, if only hexagons
and pentagons are present, then we must have n− 12 hexagons and 12 pentagons. Some of the
results in the case of the sphere are presented in Figure 9.

Studying other types of surfaces reveals a similar behavior, as can be seen in Figure 10 for
a torus of radii R = 1, r = 0.6, a Banchoff-Chmutov surface2 and a surface diffeomorphic to a
ball3. Hexagonal patterns tend to emerge with additional pentagons or heptagons. As already
noted in [ER15], pentagons tend to appear in areas of high curvature and heptagons in areas
with small curvature.

3.4 Dimension Three

As recalled in the introduction, previous works mostly relate to two dimensional partitions,
since working in 3D requires heavy computational costs if we work on the whole grid. The
grid restriction procedure described in Section 2 allows us to diminish the computational cost
and work with resolutions up to 100×100×100. We present below some numerical simulations
concerning partitions of various three dimensional objects.

Figure 11: Some results for the case of the 3D partition of the cube for n = 4, 6, 8, 9, 14

Figure 12: Some numerical optimal partitions for the ball. The regular cases: n = 3, 4, 6, 12. The
last image is for n = 13, the first instance when we have a cell in the interior of the partition.

2defined as the zero level set of the function T4(x) + T4(y) + T4(z), where T4(x) = 8x4 − 8x2 + 1
3taken from [ER15], attributed to Dziuk, defined as the zero level set of Φ(x, y, z) = (x− z2)2 + y2 + z2 − 1
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Figure 13: Some numerical optimal partitions for the regular tetrahedron for n = 2, 4, 10, 20, 35.

Figure 14: Some computations on the periodic cube: the Weaire-Phelan structure for n = 8, the
Kelvin structure for n = 16 and the rhombic dodecahedron structure for n = 32.

Optimal candidates in the case of the cube for various values of n are shown in Figure
11. Some computations for the case of the ball are presented in Figure 12. We also consider the
case of a regular tetrahedron in Figure 13. In order to simulate partitions of R3 we may consider
periodic conditions for a cube. Some results in the periodic case are presented in Figure 14.

Concerning partitions in a small number of cells, we make some global remarks. For 2 cells,
it seems that for the cube and the ball, the partitions which minimize the sum of eigenvalues
are formed of congruent cells. As already noted in the two dimensional case (see [BBN16]),
working on symmetric domains does not guarantee that optimal partitions with only 2 cells
will be made of equal cells. We observe the same thing in 3D, when working on the regular
tetrahedron. Like on the equilateral triangle (see [BBN16], for example) we see that one of the
two cells is near a corner as can be seen in Figure 13.

If we consider four cells we observe that the cube, the ball and the regular tetrahedron
all seem to have optimal candidates made out of equal cells. This is not too surprising, since
the regular tetrahedron has the right symmetries in order to decomposed into four congruent,
symmetric pieces. On the other hand, the cube can be obtained from the regular tetrahedron
by adding four regular pyramids, one on each face.

In the case of the cube, we note that for 6 cells we obtain again a type of partition made out
of equal cells. For 9 cells we obtain a first partition which has a cell which does not touch the
boundary. Having in mind the results in [HK17], we know that the partition into 8 cubes is
not minimal for the max, since the 8th eigenvalue of the cube is not Courant-sharp. For more
details about the terminology regarding minimal partitions for the largest eigenvalue you may
look in the article cited above or in [BBN16]. Since the partition in 8 cubes is not optimal for
the max, it cannot be optimal for the sum. This is due to the fact that the optimal partition for
the max gives an upper bound for the one minimizing the sum. In our computations for k = 8
we do not manage to obtain something better than the partition into 8 cubes, which is a good
candidate to be a local minimizer.

For the ball we obtain that for n = 2, 3 the optimal candidates are partitions into two half
balls and three equal slices of angle 2π/3. Moreover, symmetric partitions corresponding to
regular polyhedra are obtained for n = 4, 6, 12. For all n ≤ 12 we observe an interesting
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Figure 15: Presentation of optimal partitions in the ball and on the sphere for n = 7, 8

Figure 16: Automatic classification using the spectrum of the Laplace-Beltrami operator for the
cells of the partition of the tetrahedron into 120 cells: 4 corner cells, 36 cells along the edges, 60
cells corresponding to the faces, 20 cells in the interior.

connection between the partitions obtained on the ball and those obtained for the Laplace-
Beltrami operator in the unit sphere. It seems that the cells of the optimal candidates for the ball
are cones determined by sets on the sphere. More precisely, the sets observed in partitions of the
ball with less than 12 cells are of the form ω× [0, 1] = {λx : x ∈ ω, λ ∈ [0, 1]}where ω is a subset
of S2. Moreover, in these cases the structure of the partitions on the ball resembles the one on
the sphere. For some examples see Figure 15 (As a parallel, we recall that in 2D the situation is
similar on the disk. For n ≤ 5 optimal partitions seem to be made out of equal sectors, which
correspond to optimal partitions of the Laplace-Beltrami on the circle. Indeed, noting that the
one dimensional Laplace-Beltrami eigenvalues are explicit in terms of the length of the curves,
it is possible to prove that the partition in to arcs of circles of equal length is optimal on the
circle.)

In the case of the regular tetrahedron, as in the case of the equilateral triangle in the plane,
there are some numbers of cells which give rise to interesting structures. We consider numbers
which are sums of the first k triangular numbers Ti = i(i + 1)/2. These are called pyramidal
numbers and we observe that they give rise to partitions which seem polyhedral. There is an
explicit formula for such numbers, given by Pn = n(n + 1)(n + 2)/6. The first terms in this
sequence are 1, 4, 10, 20, 35, 56, 84, 120. We observe that partitions of the regular tetrahedron
into Pn cells seem to be polyhedral. Moreover, the traces of these partitions on the sides of the
regular tetrahedron have the same structure as the partition of the equilateral triangle into Tn
cells. For pyramidal numbers greater than 35 there are also cells which are in the interior of
the regular tetrahedron. A closer inspection of these cells shows that they seem to be rhombic
dodecahedra. This case provides an excellent test case for Algorithm 3. Running the algorithm
on the cells of the partition of the tetrahedron for n = 120 provides the results given in Figure
16. We observe that the algorithm detects correctly cells which are similar.

We may wonder what is the 3D equivalent of the spectral honeycomb problem in the plane.
In order to simulate partitions of R3 we may work on the periodic cube. For the 1× 1× 1 cube
and n = 16 we obtain the Kelvin structure where all cells are equal and resemble a truncated
octahedron. For n = 8 we obtain the Weaire-Phelan structure consisting of pieces of two types:
6 identical polyhedral cells with faces consisting of 12 pentagons and 2 hexagons and 2 irregular
dodecahedra having 12 pentagons as faces. Running the Algorithm 3 on cells of Figure 14
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Weaire-Phelan Kelvin Rhombic
dodecahedron

8.a (×6) 8.b (×2) 12 16 20 32

45045p: 27.33 41656p: 26.97 35905p: 27.76 126183p: 27.11 105967p: 27.00 114162p: 26.94
196122p: 27.25 219074p: 26.88 153788p: 27.61 198993p: 27.13 221404p: 26.96 296884p: 26.91

Figure 17: Eigenvalues of cells obtained in the periodic case

allows us to automatically see that for n = 16 we have 16 similar cells, while for n = 8 we obtain
6 cells of one type and 2 cells of another type, corresponding to the Weaire-Phelan structure
[WP96]. Note that the simulations performed in the case of the regular tetrahedron presented
above and shown in Figure 16 give another candidate, which is the partition into rhombic
dodecahedra. Indeed, numerical results on the periodic cube for n = 4 and n = 32 consist of
tilings with rhombic dodecahedra. For n = 12 and n = 20 we also obtain tilings of the cube
with congruent cells. In each of these cases Algorithm 3 was used in order to automatically
classify the cells of the partition. For n ∈ {12, 16, 20, 32} the algorithm concluded that we have
only one class of congruent cells, while for n = 8 we have two classes, one containing 6 cells
and the other the remaining 2 cells. Results for n ∈ {4, 8, 16} agree geometrically with those
presented in [WO18] and [CHy08].

It seems that simulations in the periodic case do not give enough information about the
three dimensional optimal partition in the asymptotic case. The results obtained depend on
the number of cells and on the sizes of the rectangular box considered in the computation.
Nevertheless, the fact that the rhombic dodecahedra partition can be obtained as numerical
optimizer in the periodic case and that this structure seems to appear in the optimal partition of
the regular tetrahedron for pyramidal numbers of cells makes it a good candidate. Moreover,
the rhombic dodecahedron partition is the Voronoi diagram associated to an optimal sphere
packing in 3D, as shown in [Hal05]. If we make again the connection between the sphere
packing problem and the minimization of spectral partitions via the multiphase problem (6),
the rhombic dodecahedron partition has similar properties as the honeycomb partition in 2D,
which makes it a suitable candidate to be an optimizer in 3D.

We give a brief analysis of the cells obtained in the case of the periodic cube. Since we obtain
different structures when considering different values of n, we should compare the value of
the functional associated to each of these partition. This is difficult to do in the relaxed case,
since the finite difference grid is not fine enough to give enough precision. Also, the error
may depend on the discretization, the number of cells. Moreover, since we are looking for an
asymptotic estimate on the number of cells, we should renormalize the eigenvalues so that the
cells have the same volume. In order to achieve this, we do the following:
· construct a triangulation of the surface of the cell ω using isosurface or Distmesh [oPS04].
· build a tetrahedral mesh using iso2mesh [FB09].
· use P1 finite elements on the 3D mesh to compute the eigenvalue λ1(ω) more precisely.
· compute the scale invariant quantity λ1(ω)Vol(ω)2/3.
The shapes obtained in the periodic case as well as the values of their rescaled eigenvalues
are presented in Figure 17. We present two values for each cell, for different discretization pa-
rameters. In the table you can find the number of points and the corresponding eigenvalue.
Even though the lowest eigenvalue was obtained for one of the cells in the Weaire-Phelan con-
figuration, it is the one which repeats two times among the 8 cell configuration. The lowest
average eigenvalue is obtained for the rhombic dodecahedron configuration. Thus, heuristics
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presented in the previous paragraph and the computations presented in Figure 17 suggest that
the rhombic dodecahedron partition might be a good optimal candidate in 3D. Note that all
shapes presented Figure 17 were obtained directly from their density functions. This makes
them have smoothed edges and vertices, therefore the values presented in Figure 17 may be a
bit different than the ones corresponding to the exact shapes.

We compare our results in the periodic case with different computations existing in the lit-
erature. The values of the energies given in [CHy08] are too close to tell which configuration is
better, but the rhombic dodecahedron partition and the Weaire-Phelan one obtained for n = 8
are also among their best candidates. Both [CHy08] and [WO18] use averaged energies based
on the density functions obtained in the optimization algorithm to evaluate the performance
of the partitions obtained. The average energies used divide the sum of the eigenvalues (or
the total energy) by n1+2/d (n5/3 in dimension 3) in order to obtain a scale invariant quantity.
It should be underlined that, when applied to two partitions with different number of cells on
the same grid, partitions with more cells may have a lower average energy simply because the
denominator is larger and the approximation errors increase (more cells on the same discretiza-
tion).

In view of the fact that the rhombic dodecahedron partitions seems to give the lowest av-
erage eigenvalue and that it also appears inside the partition of the regular tetrahedron, we
conjecture that this could be the three dimensional analogue of the honeycomb partition. We
computed the scale invariant eigenvalues for an exact rhombic dodecahedron for three meshes:
81216 elements: λ1 = 27.0461, 148433 elements: λ1 = 27.0385, 249523 elements: λ1 = 27.0348.

3.5 Computation complexity

We present in the following the parameters for some of the computations, which give an idea
on the complexity of the problems the algorithm can solve. We also present the observed limits
which need to be respected in order to have an efficient computation. The final parameters for
some of the computations are presented in Table 1. Their signification is given below:
· Geometry: the domain for which we compute the partition
· n: the number of cells in the partition
· grid: discretization parameters
· degrees of freedom: number of variables in the optimization problem. Can also be computed

as n × (number of points in the discretization grid). When we work on a non-rectangular
domain D, only points inside D are considered.
· average size of the eigenvalue problem: the size of the matrix for which we compute the eigen-

value in the numerical algorithm. Also equal to the average number of points taken in the
computational neighbourhoods for each of the cells.

Let us give a few remarks regarding the information presented in Table 1. First of all, we
see that the number of degrees of freedom can get really large, depending on the discretization
and on the number of cells. For the case of 1000 cells on the grid of size 1000 × 1000 we have
an optimization problem with one billion variables. What makes the optimization problem
solvable numerically, even for so many variables, is the fact that for each grid point only few
of the cells in the partition have a density function which is strictly positive there. Thus, even
though all variables are free, the number of non-zero variables is much less than the number of
degrees of freedom.

Let us note a second aspect regarding the limits imposed on the grid discretization param-
eters and the average eigenvalue problem size. We observe that for the same discrete grid,
having more cells decreases the size of the eigenvalue problem size. This is due to the fact that
more cells need to be distributed on the same number of points, which makes the computa-
tional neighbourhoods smaller. In practice, given a certain number of cells, one can consider
finer and finer discretizations until the size of the eigenvalue problem reaches around 800002

in 2D or 700002 in 3D without having a too great computational cost for one cell. This compu-
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Geometry n grid deg. of freedom average eig. pb. size
square 3 480× 480 691 200 81000

hex. union 61 400× 400 5 138 884 2250

square 1000 1000× 1000 1 000 000 000 2000

cube 3 60× 60× 60 648 000 70000

cube 4 60× 60× 60 864 000 65500

cube 14 80× 80× 80 6 643 728 50000

cube 16 70× 70× 70 5 488 000 35000

tetrahedron 35 100× 100× 100 11 648 280 18100

tetrahedron 84 100× 100× 100 27 955 872 8500

tetrahedron 120 100× 100× 100 39 936 960 7500

sphere 3 10242 pts 30 726 4400

sphere 32 163842 pts 5 242 944 7500

sphere 120 163842 pts 19 661 040 2700

Table 1: Parameters for various computations

tational cost scales with the number of cells considered in the partition. Larger grid sizes may
lead to a more important memory consumption and this should also be taken into considera-
tion, as it was already discussed in the beginning of Section 3.

4 Conclusions

The algorithm described in previous sections shows significant improvement compared to
[BBO10]. This allows great gains in computational cost for 2D and surface partitions and it
allows us to work in 3D, on sufficiently large resolutions. The computations presented in 2D
reinforce the Caffarelli-Lin conjecture that the honeycomb partition asymptotically minimizes
the sum of the eigenvalues of the cells in the plane.

Computations made on surfaces show that a similar behaviour is present: optimal parti-
tions contain patches of regular hexagons, while some other shapes may be necessary to fulfil
Euler’s relation regarding the number of faces, edges and vertices in the configuration.

Numerical results in 3D show interesting behaviour. We made computations on the cube,
the ball and the regular tetrahedron, but the optimization algorithm does not pose any problem
if we want to adapt it to other type of cells. Tests in the periodic case show different structures
which may be candidates as optimizers in the asymptotic case in R3. Among these we have the
rhombic dodecahedral structure which also appears in the interior of the partition of the regular
tetrahedron into a pyramidal number of cells. Further analysis of the value of the eigenvalues
of the cells obtained in the periodic case suggests that the partition into rhombic dodecahedra
is likely to be optimal as asymptotic minimizer for the sum of the eigenvalues for a tiling of R3.
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[BBO10] Blaise Bourdin, Dorin Bucur, and Édouard Oudet. Optimal partitions for eigenval-
ues. SIAM J. Sci. Comput., 31(6):4100–4114, 2009/10.

[BDLO17] Elie Bretin, Roland Denis, Jacques-Olivier Lachaud, and Edouard Oudet. Phase-
field modelling and computing for a large number of phases. preprint HAL:
https://hal.archives-ouvertes.fr/hal-01628403, November 2017.
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[CTV03] M. Conti, S. Terracini, and G. Verzini. An optimal partition problem related to
nonlinear eigenvalues. J. Funct. Anal., 198(1):160–196, 2003.

[DMM87] Gianni Dal Maso and Umberto Mosco. Wiener’s criterion and Γ-convergence. Appl.
Math. Optim., 15(1):15–63, 1987.

[ER15] Charles M. Elliott and Thomas Ranner. A computational approach to an optimal
partition problem on surfaces. Interfaces Free Bound., 17(3):353–379, 2015.

[FB09] Qianqian Fang and D. A. Boas. Tetrahedral mesh generation from volumetric bi-
nary and grayscale images. In 2009 IEEE International Symposium on Biomedical
Imaging: From Nano to Macro, pages 1142–1145, June 2009.

[FH76] S. Friedland and W. K. Hayman. Eigenvalue inequalities for the Dirichlet prob-
lem on spheres and the growth of subharmonic functions. Comment. Math. Helv.,
51(2):133–161, 1976.
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[HP05] Antoine Henrot and Michel Pierre. Variation et optimisation de formes, volume 48 of
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