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Statistics of velocity fluctuations in a homogeneous liquid fluidized bed
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This work reports an experimental investigation of a liquid-solid fluidized bed involving inertial particles at large Reynolds number. Thanks to optical techniques and index matching, the statistics of the velocity fluctuations of both the particles and the liquid are measured for a wide range of the particle volume fraction α p . The dynamics of the fluctuations suggests that the flow possesses the three following properties: (1) The liquid volume involves a wake region in which vertical fluctuations are negative and an interstitial region where they are positive; (2) The statistics of the horizontal fluctuations are similar to vertical ones, except that they are symmetric; (3) Local instant particle fluctuations are proportional to liquid ones. Assuming these properties are true allows us to derive a model for the probability density functions (p.d.f.s) of the two components of the velocity fluctuations of the two phases. This model involves a single reference p.d.f. that is independent

of α p and one weighting parameter for each phase. The weighting parameter of the liquid phase is an affine function of α p , which characterizes the volume of the wakes relative to that of the interstices. That of the particle phase depends on the preferential concentration of the particles, which tend to avoid the wakes at low α p . This model accurately describes the experimental p.d.f.s up to the third-order moment and reproduces all their peculiar features: skewness of the vertical fluctuations which reverses at a given volume fraction, presence of exponential tails corresponding to rare intense events, symmetry between low and large volume fractions.

I. INTRODUCTION

We report experimental investigations of the velocity statistics in liquid-solid fluidized beds at large Reynolds number, in which dense particles are supported by a continuous upward flow of a liquid. In contrast with gas-solid fluidized beds, the spatial distribution of the particles in such configurations remains statistically uniform over a large range of particle volume fraction α p , typically from 0.1 to 0.5. Both phases experience strong velocity fluctuations that result from the drift velocity between them, which is itself due to gravity. Because of this agitation, liquid fluidized beds are an efficient tool for enhancing heterogeneous chemical reactions or interfacial mass transfer, in particular in crystallization or biofilm growth processes (see [START_REF] Epstein | Applications of liquid-Solid fluidization[END_REF] and references therein). In addition, they build a configuration of dispersed two-phase flow that is especially interesting to study the complex interplay between the fluctuating motions of the two phases in cases where the dispersed phase is homogeneous while its concentration is large.

In dispersed two-phase flows, whatever the nature the dispersed phase (liquid, gaseous or solid particles), the agitation of the continuous phase that is induced by the relative motion of the particules generally involves two contributions [START_REF] Risso | Wake attenuation in large Reynolds number dispersed two-phase flows[END_REF][START_REF] Riboux | A model of bubble-induced turbulence based on large-scale wake interactions[END_REF][START_REF] Amoura | Velocity fluctuations generated by the flow through a random array of spheres: a model of bubble-induced agitation[END_REF]: [START_REF] Epstein | Applications of liquid-Solid fluidization[END_REF] the flow disturbances generated in the vicinity of the particles and (2) the turbulence that results from the collective instability of the flow through a random distribution of obstacles. At low to moderate volume fractions (α p < ∼ 0.1), the mechanisms of the particle-induced fluctuations have been extensively studied in bubble columns (see [START_REF] Risso | Agitation, mixing, and transfers induced by bubbles[END_REF] for a recent review) and the turbulence contribution was found to play an important role, provided the bubble Reynolds number is larger than 100. Regarding large volume fractions (α p > 0.1), we found only a few recent studies that have investigated fluidized beds by means of numerical simulations ( [START_REF] Mehrabadi | Pseudo-turbulent gas-phase velocity fluctuations in homogeneous gas-solid flow: fixed particle assemblies and freely evolving suspensions[END_REF], [START_REF] Tavanashad | Effect of density ratio on velocity fluctuations in dispersed multiphase flow from simulations of finite-size particles[END_REF], [START_REF] Moore | Lagrangian investigation of pseudo-turbulence in multiphase flow using superposable wakes[END_REF]). In such configurations, the distance between the particles is too small for turbulence to freely develop and fluctuations are thus dominated by the flow disturbances around each particle.

On the other hand, the particle fluctuations can be seen as a reaction to the liquid fluctuations, in a similar way as in the Tchen-Hinze theory that described turbulent particle-laden flows by considering that the particles respond to the various scales of the prescribed turbulent fluctuations in an amount which depends upon their inertia ( [START_REF] Abrahamson | Collision rates of small particles in a vigorously turbulent field[END_REF], [START_REF] Gouesbet | Dispersion of discrete particles by continuous turbulent motions. extensive discussion of the tchen's theory, using a two-parameter family of lagrangian correlation functions[END_REF], [START_REF] Deutsch | Eulerian prediction of the fluid/particle correlated motion in turbulent two-phase flows[END_REF]). However, in contrast to turbulent particle-laden flows, the liquid fluctuations in a fluidized bed are a direct consequence of the presence of the particles. The coupling between the liquid and particle fluctuations is therefore much stronger and necessarily depends upon the particle volume fraction. Over several decades, numerous works have addressed the problem of the particle agitation in liquid fluidized beds ( [START_REF] Anderson | A fluid mechanical description of fluidized beds[END_REF], [START_REF] Batchelor | A new theory of the instability of a uniform fluidized bed[END_REF], [START_REF] Ding | A bubbling fluidization model using kinetic theory of granular flow[END_REF], [START_REF] Boelle | Second-order prediction of the particle-phase stress tensor of inelastic spheres in simple shear dense suspensions[END_REF], [START_REF] Yu | Particulate stresses in dense disperse flow[END_REF], [17], [START_REF] Guazzelli | Fluctuations and instability in sedimentation[END_REF], [START_REF] Jj Derksen | Direct numerical simulations of dense suspensions: wave instabilities in liquid-fluidized beds[END_REF]). Despite this continuous effort and the growing capabilities in numerical simulations, a physical model relating the particle agitation to the particle-induced liquid agitation is still lacking. This is primarily due to a lack of experiments in which measurements of the velocity statistics of the two phases are jointly measured, especially in dense inertial suspensions ( [START_REF] Aguilar-Corona | Experimental and theoretical advances in fluid dynamics. environmental science and engineering[END_REF], [START_REF] Ozel | Particle resolved direct numerical simulation of a liquid-solid fluidized bed: Comparison with experimental data[END_REF]).

The present work provides extensive measurements of the statistics of the velocity fluctuations of the liquid and the particles in a liquid-solid fluidized bed involving inertial particles with a particle-to-liquid density ratio of 1.5, a Reynolds number in between 150 and 360, at concentrations ranging from 0.14 and 0.42. In a recent Rapid Communication to Phys.

Rev. Fluids [START_REF] Alméras | Fluctuations in inertial dense homogeneous suspensions[END_REF], a first analysis of these results was presented, limited to the second-order moments of the fluctuations. A physical interpretation of the mechanism controlling the energy of the fluctuations was proposed, leading to a model for the velocity variances of both phases. The main idea was to distinguish two regions within the liquid: (1) the wakes of the particles in which the liquid is entrained at the velocity of the particle; (2) the interstitial region between the particles where the liquid velocity is close to its average value. This suggests assuming that the random fluctuation of each component u i of the liquid velocity is proportional to the product of the average liquid velocity U z and the fluctuation χ of the solid-phase indicator function, which characterizes the fluctuations of the concentration:

u z = -γ z U z χ .
A simple model is thus obtained that relates the variance of the liquid velocity to that of the solid-phase indicator function: χ 2 = α p (1 -α p ). The standard deviation of each component liquid velocity then reads

u 2 i / U z = γ i α p (1 -α p ) . (1) 
This model nicely fits the experimental results in the whole range of solid phase fraction investigated (0.14 ≤ α p ≤ 0.42) by taking γ z = 1.24 for the vertical direction and γ x = 0.79 for the horizontal one.

Regarding the velocity fluctuations v i of the particles, we assume that the fluctuation of the slip velocity u i -v i is controlled by the same mechanism as the one which determines the fluidization law relating the mean liquid velocity U z to the mean particle concentration α p .

This implies that u i -

v i = k i d Uz
dαp χ and leads to the following relation for the standard deviations of the components of the particle velocity

v 2 i u 2 i = 1 + k i u 2 i d U z dα p α p (1 -α p ) . (2) 
This model well reproduces the experimental results by taking k z = 0.35 for the vertical component and k x = 0.21 for the horizontal one.

In the present article, we examine the probability density functions (p.d.f.s) of the velocity fluctuations of the two phases. We show that considering the variance of the solid-phase indicator function is not sufficient to model the evolution with α p of the p.d.f.s of the velocity fluctuations. The asymmetry of the fluctuations between the wake region and the interstitial region must also be accounted for. That being done, the p.d.f.s of the two velocity components of the two phases for all volume fractions can be related to a single p.d.f., which confirms our physical interpretation based on the distinction between two regions.

The paper is organized as follows. The experimental setup and the physical properties of the two phases are presented in section II. The techniques used to measure the velocity fields of both phases are detailed in section III. Experimental results are presented in section IV:

the flow homogeneity is assessed by examining the pair correlation function of the particles in IV A; statistical moments and p.d.f.s of the liquid fluctuations are presented in V B for the liquid and in IV C for the particles. In section V, a model of the p.d.f.s based on the distinction between the wake and the interstitial regions is proposed. Concluding remarks are given in section VI.

II. EXPERIMENTAL SETUP AND PHASE PROPERTIES A. Experimental setup

The fluidization column is schematized in figure 1. It is composed of a cylindrical glass column of internal diameter d=51±1 mm diameter and height H=280 mm. Upstream of the bed entry is mounted a stack of a 20 mm high metal honeycomb of 4 mm meshsize, a 30 mm-high fixed bed of 3 mm metal beads, a thin layer of a synthetic foam topped with a thin mesh metal grid, the whole placed in a conical tube of 70 mm length and 30°semi-angle.

This set-up ensures a good homogeneity of the pressure distribution in the liquid at the bed entry. The outlet section, located above the top of the fluidized bed, is a free surface where 

U f = U 0 (1 -α p ) n , (3) 
where U 0 = 0.19m/s is close to V t and n = 2.31. This result is consistent with Richardson-Zaki's correlation, which proposes n = 4.4Re -0.1 p = 2.35.

III. MEASUREMENT TECHNIQUES

This section describes the non-intrusive optical measurement techniques that are implemented thanks to the matching of the optical indices of the two phases.

A. Solid-phase characterization

The motion of the particles is characterized by means of two-dimensional particle trajectography. It consists in tagging one or two particles in black and following their trajectory through the bed. For that purpose, a camera (Miro Lab 320), equipped with a 60 mm lens, records the successive locations of each tagged particle in the (x,z) plane with an integration time of 250 µs and an acquisition rate of 40 Hz, which corresponds to a maximum particle displacement between two successive images of less than one diameter. Opposite to the camera, is placed a white LED pannel that ensures a uniform background illumination of the image field. A typical image of two marked particles in the bed is displayed in figure 3a.

The center of mass of each tagged particle is detected thanks to an image processing technique based on a thresholding method. First, the lighting inhomogeneities of the LED pannel are attenuated by normalizing each image with a background image. Then, a threshold is performed to binarize the image and detect the darkest pixels. Only objects the size of which is close to the particle diameter are finally retained. In that way, only tagged particles are detected and the position of their center can be localized at each time step. Figure 3b displays typical trajectories of the center of two tagged particles within the fluidized bed. The instantaneous velocity components v x and v z of each particle are then determined along its trajectory by simply dividing the displacement between two images by the time step. This leads to an accuracy on the velocity better than 0.02 cm/s. Then, the statistics of particle velocity fluctuations are computed from data collected on a few trajectories corresponding to an overall time duration of at least 5 min, which was checked to be enough to ensure good convergence. We therefore need to discriminate the particles constituting the dispersed phase from the PIV tracers before the computation of the velocity field. A three-step image processing has been developed in order to mask the Nafion particles. PIV tracers are first filtered by using an adaptative threshold using a kernel of 28×d P IV width and by filling the elements smaller than 166×d 2 P IV with the value of the pixels that surround them (figure 4b). Then, background inhomogeneities are smoothed out by subtracting an instantaneous background image to the current image, which enhances the grey-level gradients at the particle surface (figure 4c). This background image is obtained by the application of a median filter with a kernel of 1.11×d p width. Then, the cleaned image is binarized by applying an adaptative threshold (again with a kernel of 1.11×d p width) and the contours of the Nafion particles (green dashed lines in figure 4d) are closed by combining a dilatation over four pixels and equivalent circles. Finally, the interior of these contours are filled with zeros to generate the mask.

Once Nafion particles have been masked, an instantaneous velocity field is calculated each 1/9 s from a pair of images separated by a time step of 1 ms. The computation is carried out by Davis 8.4 PIV software developed by Lavision, which is based on a multi-pass cross-correlation algorithm. Interrogation windows of 32×32 pixels with a 50% overlap are used, in combination with a median filter. For each operating condition, 1500 uncorrelated velocity fields have been recorded, ensuring a good convergence in the estimation of the statistical properties.

Two global quantities are evaluated for validation purposes. The global particle volume fraction determined from the bed elevation is compared with that derived from the timeaveraged surface fraction of the mask of Nafion particles. The relative difference between these two quantities is found to be less than 7%, whatever the fluidization velocity. In addition, the average liquid vertical velocity determined from PIV measurements is compared to U f /(1-α p ), where the fluidization velocity U f is determined by means of a flowmeter. On average, the discrepancy between the two values is always below 10 %, which is reasonably small for PIV measurements in a dense dispersed flow.

IV. EXPERIMENTAL RESULTS

This section is devoted to the presentation of the experimental results, starting with the spatial distribution of the particles, before addressing the velocity statistics of the liquid and the particles. distance r. The maximum relative error on r 2D caused by the uncertainty in the y-location of the particle centers is a function of r 2D /d p and writes

Err(r 2D ) = {1 + ( r 2D dp ) -2 [1 + (w l /d p )] 2 } 1/2 -1 {1 + ( r 2D dp ) -2 [1 + (w l /d p )] 2 } 1/2 . (4) 
As shown in figure 5b, Err(r 2D ) decreases rapidly towards zero with the inter-particle distance: it is 30% at d p and drops under 10% at 2d p . In the following, all calculations are based on the two-dimensional distance r 2D , which will be written r for sake of simplificity.

The radial pair density G r is computed by counting the number of particles j located at a distance r ij in between r -∆r and r + ∆r of all particles i located in a disk of radius R having its center in the middle of the image [START_REF] Bouche | Homogeneous swarm of high-reynolds-number bubbles rising within a thin gap. part 1. bubble dynamics[END_REF]:

G r (r) = πR 2 N b 1 2πr∆r(N b -1) N b i=1 j =i [H(r ij -r + ∆r) -H(r ij -r -∆r)] , (5) 
where N b is the total number of particles present in the disk of radius R and H is the Heaviside function which is equal to 0 for x < 0 and 1 otherwise. In most cases, the radial step ∆r is taken equal to 0.1×d p and the radius R of the region of interest to H f /6, where H f =52.8 mm is the height of the field of view. However, for α p = 0.14 and α p = 0.42, R is taken respectively equal to H f /5 and H f /4, in order to increase statistical convergence.

In all cases, the number N b of particles is greater than 5000, which ensures a satisfactory statistical convergence. We now examine the angular distribution of the particles by considering the angular pair distribution G θ (θ), which is defined here as the probability density that the separation vector between two particles at a distance r in between 1.5d p and 2.5d p makes an angle θ with the vertical direction. G θ (θ) is plotted in figure 7 for various solid fractions. The particles display a slight preferential alignment in the horizontal direction (θ = 90 deg), which tends to disappear as α p is increases. A similar trend of horizontal clustering was observed in large Reynolds-number bubble swarms [START_REF] Bouche | Homogeneous swarm of high-reynolds-number bubbles rising within a thin gap. part 1. bubble dynamics[END_REF][START_REF] Figueroa-Espinoza | The lifespan of clusters in confined bubbly liquids[END_REF] for gas volume fractions lower than 15% 

V. PHYSICAL INTERPRETATION AND MODELING

In a previous rapid communication [START_REF] Alméras | Fluctuations in inertial dense homogeneous suspensions[END_REF], we have proposed to subdivide the liquid volume into a wake region and an interstitial region. This allowed us to derive models of the variances of the liquid and particle velocities, the mathematical expressions of which are recalled by eqs 1 and 2. Now, we propose to develop this concept to build a model for the probability density functions of the velocity fluctuations. Since the variances have already been modelled, we focus on the p.d.f.s of the normalized fluctuations of the liquid u * i = u i / u 2 i and of the particle

v * i = v i / v 2 i .
We consider first the liquid phase before dealing with the particles.

A. Liquid-velocity p.d.f.s 

f lz (u * z ) = (1 -Φ)f low lz (u * z ) + Φf high lz (u * z ) . ( 6 
)
The weighting parameter Φ ranges between 0 and 1. It characterizes the proportion of intense negative fluctuations, while 1 -Φ characterizes that of intense positive fluctuations.

It is an increasing function of the wake volume fraction, V * w = V W /(V W + V I ), which is itself an increasing function of the particle volume fraction α p . It has to be equal to 1/2 at α p = α pc , where the wake volume is equal to the interstice volume and the distribution is symmetric. Assuming a linear increase of Φ with α p , we get

Φ = 1 2 + k Φ (α p -α pc ) , (7) 
where the prefactor k Φ should be greater than unity, since Φ is expected to pass from almost zero to one while α p increases from α low p > 0 to α high p < 1. Knowing that they have skewnesses of opposite signs and that f low lz is symmetric at Φ(α pc ) = 0.5, eqs. 6 and 7 require that f low lz and f high lz are symmetric with respect to the ordinate axis,

f high lz (u * z ) = f low lz (-u * z ) = f ref (u * z ). (8) 
With a few assumptions, we thus end up with the model defined by eqs. 6-8, which involves two scalar parameters, α pc and k Φ , and a single centred normalized p.d.f., f ref (u * z ), that is independent of α p and can be described by a Gaussian distribution to which an exponential tail is added on the right side. Note that f low lz and f high lz are p.d.f.s of zero average and unit variance, hence f ref is as well. We have now to check whether this model is in agreement with the experiments. Then, we need to determine Φ(α p ). Using eqs 6 and 8, the skewness coefficient of the liquid vertical velocity writes

Sk lz = +∞ -∞ ξ 3 f lz (ξ)dξ = (2Φ -1) +∞ -∞ ξ 3 f ref (ξ)dξ . (13) 
Performing the summation with the experimentally fitted function f ref (ξ), we find

+∞ -∞ ξ 3 f ref (ξ)dξ = 0.4.
Φ is thus simply related to the skewness coefficient by

Φ = 1 2 + 1.25 Sk lz . (14) 
Values of Φ, computed by inserting experimental values of Sk lz in eq 14, are plotted in fig 15a. They are well approximated by eq 7 with α pc = 0.26 and k Φ = 3.1. We note that Φ(α low p ) is small and Φ(α high p

) is almost equal to unity, which justifies the choice of these values of α p to fit extremes p.d.f.s f high lz and f low lz . We have now all the ingredients to build the model p.d.f.s at all particle volume fractions.

Figures 16a-c compare modelled p.d.f.s to measurements, showing that this simple model makes a good approximation of the vertical fluctuations of the liquid. Note that the model is exact up to the third order statistical moment, but only approximated regarding higher order moments, which explains the deviation close to maximum of the p.d.f. of the vertical fluctuations.

Horizontal liquid velocity fluctuations are directly associated to vertical ones by the conservation of the liquid volume. It is hence reasonable to think that their statistical distribution can be modelled in a similar way, as a function of f ref . As in the vertical direction, horizontal fluctuations of large magnitude are located in wakes at small α p and in interstices at large α p . However, positive and negative horizontal fluctuations have equal probability, in both the wake and the interstitial regions. Horizontal p.d.f. f lx (u *

x ) is thus symmetric. In addition, vertical p.d.f.s at low and high α p are symmetrical to each other (eq 8). Consequently, the evolution of V W relative to V I is thus expected to have no influence on the horizontal p.d.f.s. We thus propose to model f lx as the simplest symmetric function based on f ref ,

f lx (u * x ) = 1 2 f ref (-u * z ) + f ref (u * z ) . (15) 
Figure 16d confirms that eq 15 describes very well the experimental distribution, without the need of introducing any additional parameters.

B. Particle-velocity p.d.f.s

In [START_REF] Alméras | Fluctuations in inertial dense homogeneous suspensions[END_REF], we assumed that instant local particle fluctuations are proportional to liquid ones, by involving a factor which depends on the particle volume fraction. This allowed us to derive a reliable model for the variance of the particle velocity (eq 2). Regarding the whole statistical distribution, this assumption leads us to consider that the p.d.f.s of the particle fluctuations must be expressed in a similar way to those of the liquid, by making use of f ref and of the probability P p (resp. 1 -P p ) that the more intense fluctuations seen by the particles are negative (resp. positive). This gives, in the vertical direction,

f pz (v * z ) = (1 -P p )f ref (-v * z ) + P p f ref (v * z ) , (16) 
and in the horizontal direction,

f px (v * x ) = 1 2 f ref (v * x ) + f ref (-v * x ) . (17) 
If the particles were uniformly distributed throughout the liquid volume, P p would be equal to Φ and the p.d.f.s of the two phases would be the same. In fact, we have seen that there is preferential horizontal alignment of the particles at lower α p , which leads the particles to avoid the wakes. As a result, intense fluctuations of negative signs are not experienced by the particles, which explains why the skewness coefficient of their fluctuations is never negative.

Parameter P p is therefore not directly related to the volume fraction of the wake and there is no obvious way to a priori relate it to Φ. Nevertheless, it can be determined from the experimental skewness coefficient in the same manner as what has been done for the liquid phase, by means of eq 13. Figure 17 are obtained, which are in good agreement with experiments.

In the present work, we went further by examining the probability density functions of the velocity fluctuations. We showed that it was possible to derive a model of the normalized p.d.f.s of the fluctuations by assuming the same flow properties. Increasing α p , the relative volume of the wake region increases while that of the interstices decreases. We thus move from a situation where negative u z are rare and intense while positive u z are common but of lower magnitude to a situation where the opposite is true. At low α p , the p.d.f.s f lz of u z are asymmetric with a long tail on the left side and a negative skewness, whereas it is the reverse at large α p . Considering the p.d.f.s at small and large α p are symmetric, we can express f lz by using a single function f ref that is independent of α p (eq 8). This leads to express f lz (u * z ) as a linear combination of f ref (-u * z ) and f ref (u * z ) (eq 6), involving a weight Φ that characterises the relative importance of the wake and the interstices and increases with α p (eq 7). Then, using property (2), the p.d.f. of the horizontal liquid velocity fluctuations f lx is also related to f ref (eq 15). Finally, property (3) suggests that the p.d.f.s of the particle velocity fluctuations f pz (v * z ) and f px (v * x ) are similar to those of the liquid phase (eqs 16-17), except that the weighting function P p (α p ) is different from Φ(α p ) because of the preferential alignment of the particles in the horizontal direction (fig 17). We end up with a model of the p.d.f.s of the two velocity components of the two phases. This model only relies on a single reference p.d.f., which displays a long exponential tail on the right side, and two weighting parameters, Φ for the liquid and P p for the particles. Regarding the liquid, Φ is an increasing affine function of α p that is equal to 1/2 at the point where f lz is symmetric. P p is only equal to Φ when particle locations are independent of each other. In general, it has a more complex evolution which depends on the preferential concentration of the particles. This model is in good agreement with the experiments, which confirms that the dynamics of the fluctuations depicted by properties (1-3) is realistic. Future work should consider other particle Reynolds numbers and density particle-tofluid density ratios in order to investigate how the reference function, f ref , and the weighting parameters, Φ and P p , vary and to determine the limits of validity of the present description.

FIG. 3 .

 3 FIG. 3. Particle tracking in the fluidized bed with matched refractive indices (α p = 35%). (a) Snapshot of the bed where two tagged particles are present. (b) Trajectories of the two tagged particles.
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 2 Figure 2 shows the evolution of the fluidization velocity U f as a function of the particle volume fraction. It is well described by the following empirical law,

B

  . Liquid-phase characterization Planar particle image velocimetry (PIV) is used to determine the liquid velocity field in the (x,z) plane. The flow is seeded with red-fluorescent polystyrene tracers (PS-FluoRed-Fi227, Microparticles GmbH) of diameter d P IV = 48.2±0.6 µm and density 1050 kg/m 3 . A Nd:YAG laser (Litron Lasers nanoPIV, 2×120 mJ, 532 nm) generates a vertical sheet of light parallel to the (x,z) plane of maximal thickness w l ≈ 0.5 mm. A camera (Lavision Imager pro), equipped with a 50 mm lens, is synchronized with the laser pulses and records images of the fluorescent tracers. The image field area is 52.8 × 52.8 mm 2 with a resolution of 22.73 pixel/mm and is located about 8 cm above the bottom of the column.

FIG. 4 .

 4 FIG. 4. Image processing for particle detection (α p = 35 %). (a) Raw PIV image. (b) Filtering of PIV particles. (c) Correction of background inhomogeneity. (d) Determination of particle contours (green dashed lines) and centers (red stars).

Figure 4 (

 4 Figure 4(a) shows an example of a raw image obtained with the PIV setup. We see that the Nafion particles fluoresce in the same range of wavelength as the PIV tracers.

Figure 6

 6 Figure 6 displays the experimental radial pair distribution function G r (r/d p ) for different volume fractions. The peak around r/d p = 1, as well as the non-zero values observed for r/d p < 1, are due to the finite thickness of the laser sheet used to light the particles, as discussed above. For r/d p > 1.5, the measurements are reliable and G r is unity, indicating a uniform distribution of the inter-particle distances.

FIG. 13 .

 13 FIG. 13. Skewness coefficients of the two components of the particle velocity as a function of α p . (The dashed line shows the skewness Sk lz of the vertical fluid velocity).

Figure 14

 14 Figure 14 schematizes the liquid flow by considering that it is divided into two separate regions: (1) the wake region W wherein vertical fluctuations are negative due to the entrainment of the liquid by the particles and (2) the interstitial region I where it is the reverse (u * z > 0) since the average of the fluctuations over the whole volume of liquid is null

FigureFIG. 16 .

 16 Figure 15b displays the experimental p.d.f.s f low lz (-u * z ) measured at α low p

  displays P p as a function of α p . It turns out to remain roughly equal to 0.7 at α p ≤ 0.3 and then increases as 2.1 × (α p -0.3) + 0.7. However, it is interesting to note that at large α p , as the particle locations become independent of each other, P p becomes close to Φ. Differences between particle and liquid Eulerian velocity statistics are indeed due to particle preferential concentration and do not question the proportionality between the local instant fluctuations of the two phases in the vicinity of each particle.Inserting the values of P p into eqs 16 and 17, we obtain the model p.d.f.s of each components of the particle velocity fluctuations and for all particle volume fractions. Figure18

	(a) Vertical direction, α p =0.14	(b) Vertical direction, α p =0.26
	p.d.f.	p.d.f.
	(c) Vertical direction, α p =0.42	(d) horizontal direction, all α p
	p.d.f.	p.d.f.
	FIG. 18. Comparison between model and experimental velocity p.d.f.s. for the particles. Black
	dashed lines: model. Colored lines: experiments.	

compares them to experimental ones. Except from a slight difference in the negative tail of the vertical p.d.f.s at lower α p and the central part the horizontal p.d.f.s at larger α p , the matching is satisfactory. It is remarkable that such a good agreement is obtained by making use of the same reference function f ref as for the modeling of the liquid phase.
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