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Toulouse, France.
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This article describes recent progress on premixed flame dynamics interacting with
acoustic waves. Expressions are derived to determine the stability of combustors with
respect to thermoacoustic oscillations. The validity of these expressions is general, but
they are illustrated in laminar systems. Laminar burners are commonly used to elucidate
the response of premixed flames to incoming flow perturbations, highlight the role
of acoustic radiation in their stability, identify modes associated with thermoacoustic
intrinsic instabilities and decipher the leading mechanisms in annular systems with
multiple injectors. Many industrial devices also operate in a laminar premixed mode
as, for example, domestic gas boilers and heaters equipped with matrix burners for
material processing in which unconfined flames are stabilized at one extremity of the
system. This article proposes a systematic approach to determine the stability of all
these systems with respect to thermo-acoustic oscillations by highlighting the key role
of the burner impedance and the flame transfer function (FTF). This transfer function
links in frequency space incoming flow perturbations to heat release rate disturbances.
This concept can be used in the turbulent flame case as well. Weakly nonlinear stability
analysis can also easily be conducted by replacing the FTF by a Flame Describing
Function (FDF) in the expressions derived in this work. The response of premixed flames
to harmonic mixture compositions and flowrate perturbations is then revisited and the
main parameters controlling the FTF are described. A theoretical framework is finally
developed to reduce the system thermoacoustic sensitivity by tailoring the FTF.

† Email address for correspondence: thierry.schuller@imft.fr
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1. Introduction

Most combustion systems are designed to operate in stable regimes but it is known
that ‘sometimes’ combustion systems exhibit unwanted oscillations. These combustion
instabilities, also designated as thermo-acoustic instabilities, are a manifestation of
combustion dynamics. They can lead to high amplitude noise and vibration levels. In
worst cases, the resulting oscillations of the flow may give rise to flashback, a process
in which the flame moves into the injector units and reaches the upstream manifold
with serious consequences to the system integrity. In some cases, the large amplitude
oscillations induce flame quenching or partial or total blow-off. The pressure oscillations
can also become large enough to damage the combustor structure or lead to the explosion
of the system.

Due to their detrimental consequences in engines, power and heat generation units,
combustion instabilities (CIs) are an important field of combustion research, combining
the various disciplines involved in reacting flows (fluid mechanics, thermodynamics,
kinetics and transport) but also requiring the introduction of acoustics, hydrodynamic
stability, system dynamics and control theory. The progress made since the initial
developments in the 1950’s in predicting, controlling and damping these undesirable self-
sustained combustion oscillations can be gauged in the successive reviews from Crocco
& Cheng (1956); Putnam (1971); McManus et al. (1993); Candel (2002); Dowling &
Morgans (2005); Lieuwen & Yang (2005); Culick (2006); Huang & Yang (2009); Gicquel
et al. (2012); O’Connor et al. (2015); Poinsot (2017); Juniper & Sujith (2018) and in the
books from Poinsot & Veynante (2011) and Lieuwen (2012).

One of the striking features in these references is that combustion instabilities may
develop in a wide variety of combustion systems. This includes systems operating with
unconfined flames powered by a gaseous fuel with less than one kilowatt thermal power
output, while the most extreme ones were observed in rocket engines in which the
combustion of liquid or solid propellants at high pressure delivers several gigawatts of
thermal power. These instabilities can either be coupled to axial or transverse acoustic
modes of the system as in annular gas turbines and their frequencies may span from a
few Hertz as observed in large industrial boilers featuring a bulk flow oscillation through
the entire boiler up to several kilo Hertz when coupled to a transverse mode as in the
small thrust chamber of liquid rocket engines.

While the ultimate objective is to predict and control CIs in real large-scale turbulent
combustors, understanding combustion instabilities in laminar systems is obviously a
necessary first step. Many practical systems also operate in a premixed laminar mode
and often suffer from CIs. Over the last 50 years, the analysis of the dynamics of laminar
premixed systems has proved to be surprisingly difficult, leading to a large research effort,
see for example Ducruix et al. (2003) and De Goey et al. (2011). Many of the analytical
developments made in Lieuwen (2012) are for laminar systems. It is also worth noting
that a new class of intrinsic thermo-acoustic instabilities has been recently highlighted
with the help of laminar combustion experiments (Hoeijmakers et al. 2014; Emmert et al.
2015).

Premixed laminar flames have an interesting specificity. Because of the simplicity of
the base flow, they can be studied using experiments, pure theory or Direct Numerical
Simulation (DNS). They are probably the most complicated canonical flames for which
all three approaches can be used simultaneously. The capacity of combining these three
approaches and the clean flow conditions in which these flames can be studied, make
laminar premixed flames ideal configurations for investigating flame dynamics. Results
obtained on these flames may then serve as a guide for more complex cases.
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Figure 1. Feedback loop of thermo-acoustic instabilities and open loop Flame Transfer
Function FTF=G(ωr) exp(iϕ(ωr)).

The objectives of this article are to provide an overview of the knowledge in combustion
dynamics, starting from basic descriptions of acoustically coupled combustion instabilities
in laminar premixed systems and closing with some recent research results. The paper
is focused on premixed and laminar flames but many results apply to other types of
flames as well. It is organized to provide a theoretical framework allowing analysis of CIs
coupled by longitudinal as well as azimuthal acoustic modes.

The goal is to focus on analytical results obtained with the help of a series of
simplifications to highlight the critical roles of the injector and flame responses to
flow perturbations in the development of instabilities. Analytical expressions for the
conditions leading to instabilities are derived for a set of generic configurations featuring
the main components of real combustors. These results are used to discuss the respective
influence of the injector dynamics and flame response. Finally, a theoretical framework is
devised to model the flame response to flowrate and mixture composition disturbances.
It is illustrated in a simple case how the flame response can be tailored to reduce its
susceptibility to flow perturbations.

Before examining the way acoustic waves interact with the flow and flame dynamics, it
is worth describing the feedback loop leading to a combustion instability. Thermo-acoustic
instabilities in combustion systems are due to synchronized oscillations between heat
release rate disturbances produced by the flame and acoustic perturbations as illustrated
on the left in Fig. 1. In the absence of unsteady heat release, this coupling ceases. The
main assumption which is used in this work, as in many others, is that the flame response
to incoming flow perturbations produced by an external actuator in a stable configuration
of the combustor can be used to assess the combustor dynamic stability, i.e. its capacity to
induce self-sustained combustion oscillations without external actuator (Candel (2002)).
In the diagram in Fig. 1, this means that the flame response characterized in terms of
heat release rate oscillations can be studied outside the acoustic feedback loop shown on
the left in Fig. 1 by submitting the flame to acoustic disturbances with an actuator as on
the right in Fig. 1. This ‘open loop’ analysis leads to the definition of a Flame Transfer
Function (FTF) linking heat release rate disturbances to acoustic modulations produced
by externally forcing the flow, as will be defined more precisely in section 2.

Another remarkable feature of combustion instabilities is that acoustic laws remain
generally valid for the perturbed flow except at very high sound levels. Assuming acoustic
disturbances and vanishingly small heat release rate perturbations, the FTF combined
with an acoustic model of the combustor provides a framework for the linear stability
analysis of the system dynamics. The gain G and phase lag ϕ of the FTF can be
determined from experiments, simulations or theory. The frequencies f = ωr/2π and
the growth rates ωi of the unstable modes are deduced by examining the stability of the
closed-loop system in Fig. 1. Decoupling the acoustic analysis of the combustor from the
analysis of the flame response to external flow disturbances has been so successful over
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Figure 2. Typical evolution of the gain G and phase lag ϕ of a Flame Describing Function
(FDF) as the acoustic forcing level increases. Growth rate ωi of an unstable mode as a function
of the acoustic forcing level leading to a limit cycle.

the past two decades that it is now used by industry during the design process of real
combustors (Lieuwen & Yang 2005). This framework underlies the theoretical analysis
exploited in the present article.

When the oscillation level of the instability increases in the combustor, nonlinearity
first manifests in the flame response by saturation of the gain and eventually also by a
shift of the phase lag compared to its response at a lower perturbation amplitude. This
is due to the strong nonlinearity of the heat release rate. The other flow perturbations
remain in this respect less altered by the oscillation level and can often be considered
to remain in the linear acoustic regime. Recognizing this feature, Dowling (1999) and
Noiray et al. (2008) developed a weakly nonlinear framework in which the linear Flame
Transfer Function (FTF) filter is replaced by a nonlinear Flame Describing Function
(FDF) that allows to account for effects of the perturbation level. The FDF corresponds
to a set of FTFs, each determined for a range of forcing levels as illustrated on the left in
Fig. 2. Once the FTFs are determined, the methodology developed by Noiray et al. (2008)
shows how to use the FDF to predict limit cycle oscillation levels and their corresponding
frequencies.

The FDF framework is a natural extension of a linear stability analysis based on
FTF, in which the mode frequencies and their growth rates are calculated repeatedly
for increasing forcing levels for which the FDF is known. The stability diagram is finally
deduced from an analysis of the growth rate trajectories as a function of the acoustic
level in the combustor. An example is given in the right plot in Fig. 2. This strategy
has been shown to be quite successful in determining the oscillation level of combustion
instabilities reaching a limit cycle in several combustors, including configurations with
complex geometries and multiple burners.

In this paper, the expressions derived for the frequencies and growth rates of
instabilities are determined explicitly as a function of the gain G and phase lag ϕ of the
FTF, meaning that the same expressions can be used to conduct a weakly nonlinear
analysis provided that the FTF is replaced by the FDF in these expressions. An analysis
of the growth rate trajectories such as the one in Fig. 2 can then be carried out without
difficulty. This is why the rest of the paper focuses on linear acoustic perturbations and
vanishingly small heat release rate disturbances, remembering that it is easy to extend
the results found in this paper by replacing the FTF by the FDF.

Basic principles of flame acoustic interactions are reviewed in section 2. Axial mode
coupling is examined in section 3 for flames burning inside a combustion chamber and
unconfined flames stabilized at the top of a burner. A system featuring a Helmholtz mode
associated with a bulk flow oscillation is also examined. The existence and properties of



6 T. Schuller, T. Poinsot and S. Candel

intrinsic dynamical oscillations are discussed in section 4. Coupling involving azimuthal
modes in annular combustion chambers is examined in section 5. The analysis takes
into account a common plenum feeding a set of injectors and the impedance of these
injectors. Results for the frequencies and growth rates of combustion instabilities derived
in sections 3 to 5 make use of the FTF, which is assumed to be known. The response of
premixed flames to mixture and and flowrate perturbations is then revisited in section 6.
This is used to show how the FTF may be obtained analytically, to highlight the role of
the flame root dynamics and demonstrate how tailoring the FTF by passive or by active
means can be used to lower heat release rate disturbances. References are provided in
each of these sections as required by the developments. This is not intended to be an
exhaustive review of the literature and many more references may be found in the cited
articles.
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2. Tutorial on thermo-acoustics

Thermoacoustic oscillations generally imply a driving process that is in most cases the
heat released by combustion and a coupling mechanism that in most cases takes the form
of resonant acoustic modes of the system. The most common thermoacoustic oscillations
are driven by flames but there are examples where the oscillation is produced by another
thermal process. A well known configuration is that of the “Rijke” tube that comprises a
pipe and a heat source which may be a flame inserted in the tube, a metallic gauze that
is initially preheated or an electrically heated resistive wire arrangement (Rijke 1859b,a;
Mariappan & Sujith 2011). Raun et al. (1993) list a series of devices made of tubes with
heat addition leading to thermo-acoustic instabilities, some of which are illustrated in
Fig. 3. Sound is generated in these configurations at one of the resonant frequencies of
the tube. This is perhaps the simplest device for demonstrations but may not be the best
idealization of more practical situations.

The analysis of combustion instabilities requires a coupling of descriptions of the
unsteady combustion process on one hand with the acoustics of the system on the other
hand. There are many complexities in these two items, so that simplifications are usually
needed to develop the analysis.

One-dimensional acoustics is often assumed because acoustic waves involved in many
CIs are approximately planar, one-dimensional perturbations progressing in the axial
direction. In this respect, the acoustics involved in CIs are simpler than that arising in
aeroacoustic problems where propagation is essentially three-dimensional or takes the
form of higher order duct modes. It is worth noting however that combustion systems
often feature a complex geometry and this may require multidmensional calculations
based on a Helmholtz solver to determine the acoustic field in the system. Section 2.1
presents the basic elements governing acoustic wave propagation in one dimensional
systems. In cases where the wavelength is of the order or smaller than a typical transverse
dimension of the system, combustion may couple to transverse acoustic modes featuring
a more complex two-dimensional distribution that is considered in Section 5.

Acoustic impedance characteristics are of central importance in CI analysis. This
quantity introduced in Section 2.2 is used to describe the acoustic response of inlet(s)
and outlet(s) of combustors. In many instances, these impedances essentially control the
stability of the system because they determine how much acoustic energy is reflected
into the chamber and define the phase of the reflected field with respect to the incident
waves.

During CIs, flames are submitted to unsteady motion caused by the flow perturbations
entering the flame zone. Over the years, one approach has proved to be sufficiently
powerful to analyze CIs and simple enough to be implemented in most models in the
form of a Flame Transfer Functions (FTF). In this framework, the response of the flame
stabilized over an injector in a flow at fixed equivalence ratio depends directly on one
single quantity, the inlet velocity. This concept is presented in Section 2.3. Section 6
shows how to model this function by taking into account flow rate, as well as mixture
composition perturbations.

Stability analysis based on FTF is introduced in Section 2.4. The method is important
because it is not feasible to analyze combustion dynamics issues by only resorting to
multidimensional simulations of the reacting Navier-Stokes equations. Such calculations
will generally require large eddy simulations with important computational resources and
cannot be used to explore the parameter space and determine conditions assuring stabil-
ity. It is then important to derive simpler models reflecting the fundamental mechanims
controlling the dynamics of the system and allowing a physical interpretation. Section 2.4
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Figure 3. Examples of tubes in which self-sustained pressure oscillations are driven by heat
addition.

explains the basis of the stability analysis and shows how it can be used in a simple
academic case where a full solution is also accessible.

2.1. Acoustics in ducts

2.1.1. Planar one-dimensional waves

It is natural to first consider combustion instabilities coupled by longitudinal modes.
This corresponds to a situation where the wavelength λ is larger than the typical
transverse dimension of the system. The frequencies are usually lower than 1 kHz and
the wavelengths of the order of a meter. The combustion region dimension δ is in most
cases much smaller than the wavelength δ/λ << 1 and one may consider that this region
is “compact”. The previous conditions may then be described by considering that the
system is a network formed by a combination of elements of constant transverse dimension
in which planar acoustic waves propagate axially and are affected by flames occupying a
thin region corresponding to a combustion zone (Fig. 4).

A convenient notation to describe acoustic variables during CIs is the following. Any
variable a, pressure, velocity, density or temperature, is decomposed into a time average
value ā and a small perturbation a′: a = a + a′. The analysis is usually performed by
assuming harmonic variations, or a sum of harmonic variations, at an angular frequency
ω. The perturbation a′ is written as a′ = <[ã exp(−iωt)] where i2 = −1 and < designates
the real part of a complex number. All derivations are carried out using the complex
equivalent of a′ which is ã to simplify the algebra. Once ã is obtained, a′ is deduced by
taking the real part of ã exp(−iωt). It is often necessary to calculate the average over
a period T = 2π/ω of a product of harmonic perturbations. Such averages appear for
example in the determination of acoustic energies or fluxes

J =
1

T

∫ T

0

a′b′dt. (2.1)

Some straightforward calculations indicate that it is possible to express this quantity in
terms of the complex amplitudes ã and b̃

J =
1

2
<(ãb̃∗) =

1

2
<(ã∗b̃), (2.2)

where ã∗ is the complex conjugate of ã. For example, the level of oscillation in a combustor
is often measured through the root-mean-square value p′rms of the pressure fluctuation.



Dynamics and control of combustion systems 9

δ

Inlet
impedance

Zi

Outlet
impedance

Zo

Duct 1 Duct 2

A1
+

A
1
-

A
2
+

A
2
-

Flame

Figure 4. A schematic view of combustion instability network models: one-dimensional acoustic
waves travel in a series of ducts. A compact flame is located in one section of the ducts. Inlet
and outlet are characterized by their impedances.

This is deduced by taking the square root of p′2 averaged over the oscillation period

p′2rms =
1

T

∫ T

0

p′2dt =
1

2
<(p̃p̃∗), (2.3)

where use has been made of Parseval’s identity.

2.1.2. Generic form for acoustic perturbations

The longitudinal acoustic field in a duct comprises two traveling waves that are planar
and propagate in opposite axial directions. These waves are also isentropic since the only
place where entropy changes is in the flame zone which is here considered to be compact.
Therefore, in all duct elements composing a combustion system, acoustic perturbations
can be decomposed in right (indexed +) and left (indexed −) traveling waves obeying to
the Helmholtz equation. Using the complex notation of the previous section, one has

p′(x, t) = <
([
A+eikx +A−e−ikx

]
e−iωt

)
, (2.4)

ρ̄cu′(x, t) = <
([
A+eikx −A−e−ikx

]
e−iωt

)
. (2.5)

In (2.4), the wavenumber k may be deduced from the angular frequency and the speed
of sound: k = ω/c. The wave amplitudes A+ and A− are determined using two types of
information:
• The first are the boundary conditions at both ends of the system, which are usually

specified by impedances as described in section 2.2. They are defined in the Fourier space
and link the acoustic pressure to acoustic velocity at the boundaries.
• The acoustic wavelength being large with respect to abrupt changes of the cross

section area and the flame length scales, one may link the acoustic variables by jump
conditions in planes where the cross section changes or where a flame is located as
discussed in section 2.3.
One of the difficulties of combustion stability analysis is to specify impedances at the
inflow and outflow boundaries and to express jump conditions at the flame reflecting the
combustion response to incoming perturbations. These items are successively considered
in what follows.

2.2. Impedances and admittances

The acoustic impedance is usually defined as the ratio of the pressure perturbation
to the normal acoustic velocity Z = p̃/(ũ · n) (Morse & Ingard 1986). In the general
case, it is important to remember that the normal n is an outwards oriented unit vector.
In the one-dimensional case, it is more convenient to use the velocity component in the
axial direction and simply define the acoustic impedance as the ratio Z = p̃/ũ. The
evaluation of Z is simple only in a few cases. For example, on a rigid wall, the velocity
perturbations are zero and the impedance Z is infinite. For a duct exhausting gases into
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an open atmosphere, the pressure fluctuation is nearly zero at the duct open end p′ ' 0
and the impedance Z is close to zero at that boundary. For all other cases, the evaluation
of impedances is not as straightforward.

It is especially complicated for engines where the combustion chamber is fed by a
compressor and blows into a turbine as illustrated in Fig. 5. In such a situation, the
determination of the compressor and turbine impedances is a problem in itself. And
without knowing their values, assessing the dynamic stability of the combustion system
is subject to uncertainty. For the idealized systems discussed in the present article, finding
impedances is somewhat easier.

In many derivations, working with a specific impedance ζ is more convenient because
it is a dimensionless complex number defined by ζ = Z/(ρc) = p̃/(ρcũ), where ρc is the
characteristic impedance of the gaseous mixture. One also defines a specific admittance
as the inverse of the specific impedance β = 1/ζ = ρcũ/p̃. This definition may be used in
combination with the linearized momentum equation to express the boundary condition
in the form

dp̃

dx
= ikβp̃. (2.6)

2.3. Jump conditions, FTF and FDF

One may first consider the relation which governs the level of velocity perturbations on
the two sides of the flame. The analysis is carried out by assuming that the combustion
region is compact in a low Mach number flow. Linearized Rankine-Hugoniot relations
through the flame yield (see for example the recent analysis by Chen et al. (2016))

u′2 − u′1 =
γ − 1

ρ̄c2
Q̇′

S
, (2.7)

p′2 − p′1 = 0, (2.8)

where S is the flame surface area, p̄ denotes the mean pressure, γ is the specific heat
ratio and Q̇′ designates heat release rate fluctuations. Note that the pressure being
nearly constant across the flame region, one may also safely consider that ρ̄c2 = γp
which is nearly constant.

The main difficulty is to relate the heat release rate to the incident disturbances.
Following the same reasoning as that used in early analysis of combustion instabilities
in rocket engines (Crocco 1951, 1952), the heat release rate fluctuation may be linked
to the incident velocity perturbations by a time-lag model. The unsteady heat release
rate Q̇′ produced by the flame only depends on the delayed value of the incoming inlet
velocity u′1

Q̇′ = f(u′1) = nu′1(t− τ), (2.9)

where n is an interaction index and τ designates a time lag. In practice, it is preferable to
use a dimensionless interaction index N linking the relative heat release rate fluctuations
to a delayed relative velocity perturbation

Q̇′

Q̇
= f

(
u′1
ū1

)
= N

u′1(t− τ)

ū1,
(2.10)

where Q̇ and ū1 are the mean total heat release rate and the mean inlet velocity,
respectively. The scaled interaction index N measures the strength of the flame response
to incident perturbations. Large values of N characterize flames that are prone to CI.
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Figure 5. Inlet Zc (compressor) and outlet Zc (turbine) impedances for a gas turbine engine.

The delay τ measures the time needed by the flame to respond to incoming perturbations
originating from the upstream side. It is known that systems with delays may become
unstable. In combustion systems the time lag τ often defines regions of instability by
controlling the phase relationship between heat release rate disturbances and the acoustic
field. Expression (2.10) implies that the interaction index N of the flame is constant for
all frequencies while the phase ϕ = ωτ changes linearly with frequency.

This is only a crude approximation since flames are generally more sensitive to low
frequency disturbances and their response drops down as the frequency is increased, the
flame acting like a low pass filter which rapidly damps high frequency small wavelength
disturbances. This essential feature may be taken into account by introducing a Flame
Transfer Function (FTF) in which the flame response is characterized in the Fourier space
by a gain G and a phase lag ϕ that both depend on the angular frequency ω

F(ω) =
˜̇Q/Q̇
ũ1/u1

= G(ω) exp[iϕ(ω)]. (2.11)

The quantities Q̇ and u1 denote the mean heat release rate and the bulk velocity at the
injector outlet section.

The FTF can be extended to accommodate nonlinear features into a Flame Describing
Function (FDF) framework. The describing function is widely used in control systems
theory to represent nonlinear systems by making use of a family of transfer functions
depending on the amplitude of the input. This concept was used in a theoretical analysis
of the dynamics of a ducted flame (Dowling 1999). Using a measured FDF F(ω, |ũ1|) it
was shown by Noiray et al. (2008) that many nonlinear features observed experimentally
could be predicted theoretically. The FDF in combination with an acoustic analysis
allowed predictions of limit cycle amplitudes, resonant frequency shifting, mode switch-
ing, instability triggering and hysteresis all in good agreement with experiments. The
present analysis is here voluntarily restricted to the linear regime of vanishingly small
perturbation levels |ũ1|. Effects of finite levels of oscillation are documented for example
in Noiray et al. (2008); Palies et al. (2011); Krebs et al. (2013); Ghirardo et al. (2016);
Larea et al. (2017).

Two limits are useful to mention for the FTF or FDF gain G. In the low-frequency
limit, quasi steady combustion takes place and the flame instantaneously converts the
reactive mixture it receives (Q̇ ∝ u). As a consequence G tends in this limit to unity
(Polifke & Lawn 2007)

limω→0G = 1. (2.12)

This property is often used to verify the quality of FTF measurements or reconstruction
from time series data. In the high frequency limit, G drops to zero. Flames act as low-pass



12 T. Schuller, T. Poinsot and S. Candel

filters systems and high frequency modulations do not induce a finite response

limω→∞G = 0. (2.13)

Between these two limits, the FTF gain G can take finite values. Maximum values of
the order of 2 to 5 are observed in some laminar flame experiments (Durox et al. 2009).
One may then rewrite (2.7) in Fourier space:

ũ2 = ũ1(1 + θF(ω)) (2.14)

In the previous expression, use has been made of ˜̇Q = (Q̇/u1)F(ω)ũ1. The parameter θ
in (2.14) stands for

θ =
γ − 1

γ

Q̇

Sp u1
=
Yf (−∆h0

f )

cpT1
=
T2

T1
− 1 > 0. (2.15)

This dimensionless number depends on the ratio of the total heat release rate to the

surface area Q̇/S indicating that the mean power flux essentially controls this relation.

The mean pressure in the chamber also intervenes and Q̇/(pS) has dimensions of a
velocity that needs to be compared to the bulk velocity ū1 of the flow feeding the
combustion region. This quantity may alternatively be expressed as the ratio of the
energy released by combustion and the sensible enthalpy of the incoming flow, where Yf
is the fuel mass fraction, −∆h0

f the fuel heating value, cp the specific heat and T1 the
temperature of the incoming flow. Finally, it may also be viewed as the relative heat
produced by combustion θ = T2/T1 − 1.

2.4. Approaches to study combustion instability and instability criteria

There are three main types of approaches to analyze CI problems:
• Approach 1a consists in solving a set of linearized equations describing the system

dynamics governing the perturbed combustion process and the coupled acoustic motion.
Analytical solution is sometimes possible but in most cases the system is integrated in
the time domain.
• Approach 1b relies on the derivation of a dispersion relation in the frequency domain.

Nonlinear terms may be treated by making use of describing function concepts and only
retaining the first harmonic term. The complex roots of the dispersion relation are then
sought to examine the stability of the system and see if a given acoustic mode will be
amplified or damped.
• Approach 2 is based on energy considerations that are used to derive stability

criteria. This approach does not generally provide the full solution, but may be used
to determine the grow rate of unstable modes as described later.

To illustrate these three approaches, it is instructive to begin by a simple mass/spring
oscillator system where m, k and x are respectively the mass, spring strength and position
of the oscillating mass. A force F is exerted on this system. In coupled systems this force
depends on the position x and velocity ẋ and we assume for simplicity that this relation
is linear:

m
d2x

dt2
+ kx = F (x, ẋ) (2.16)

In approach 1a, (2.16) is solved analytically or numerically by integrating from an
initial state x(0) = x0, ẋ(0) = ẋ0. Under some conditions the system may be led to
oscillate at an angular frequency ω that is close to the eigenfrequency ω0 = (k/m)1/2.
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In approach 1b, the system is described in frequency space. The time derivative is
replaced by −iω. This yields a dispersion relation of the form −mω2 + k = F (1,−iω).
The roots of this equation may then be determined numerically or by considering that
F is small and by making use of a perturbation expansion.

In approach 2, one makes no attempt to obtain a solution. The objective is instead to
derive a stability criterion by examining the total energy in the system. This is obtained
by multiplying (2.16) by ẋ and integrating the result. One obtains

dE

dt
= Fẋ, (2.17)

where E is the total energy in the system

E =
1

2
mẋ2 +

1

2
kx2. (2.18)

In the absence of external forcing F = 0, (2.17) indicates that the energy E is constant.
Oscillations will continue with the same energy. This result does not provide the position
x(t) but only expresses the conservation of energy. If there is a force F applied to the
system approaches 1a or 1b cannot be used if details controlling the force F are not
known. Approach 2, however indicates that

E(t)− E0 =

[
1

2
mẋ2 +

1

2
kx2

]t
0

=

∫ t

0

Fẋdt, (2.19)

which shows that the energy E of the system will grow in time if the term
∫
Fẋdt is

positive or if the force F is in phase with the velocity ẋ. This is an incomplete solution
of the problem but it is useful because it provides a stability criterion. The details of
the force F are not needed to assess the stability of the system. This forced oscillator
is stable if

∫
Fẋdt remains negative. For a swing for example, this means that pushing

the swing (F > 0) when its velocity is positive (ẋ > 0) amplifies its oscillations and vice
versa.

This simple example can be directly extrapolated to thermoacoustic problems. While
the full solution following approach 1 of combustion oscillations is difficult to derive in
many cases because the combustion response is not well known, it is still possible to
construct a stability criterion similar to

∫
Fẋdt < 0. This is often used to analyze the

dynamic stability and determine possible control strategies.
Approach 1 is illustrated in Section 2.5 in a simple case where a flame is stabilized in

a duct. This is analyzed by making use of a few simplifications. Section 2.6 shows how a
stability criterion similar to that obtained previously can be derived for thermoacoustics
and discusses two examples of application.

2.5. Approach 1: longitudinal thermo-acoustics in a channel

The model problem illustrated in Fig. 6 is examined in what follows by making use
of approach 1. A flame is stabilized in a duct at a sudden expansion of the cross section
separating the injection unit (length l1, section S1) from the combustion chamber (length
l2, section S2). The objective is to determine whether the flame can couple to longitudinal
acoustic modes of the system. The analysis is limited to low frequency acoustic waves for
which the wavelength, typically of the order of a meter, is much greater than the flame
length. The flame is “compact” and can be treated as a discontinuity between fresh and
burnt gases.

Under these assumptions, plane acoustic waves propagate in the injection tube and in
the chamber, which are respectively numbered j = 1 and 2. The compact flame is located
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Figure 6. A model for combustion instabilities: a laminar flame is stabilized at the plane x = 0
separating an injection duct (length l1) and a combustion chamber (length l2). The field plotted
in color corresponds to the velocity modulus (Courtine et al. 2015). A+

i and A−i are the acoustic
right- and left- going waves in duct i respectively.

at x = 0. The fluctuating acoustic pressures p′j and velocities u′j in these two ducts are

ρ̄jcju
′
j(x, t) = <

([
A+
j e

ikjx −A−j e
−ikjx

]
e−iωt

)
, (2.20)

p′j(x, t) = <
([
A+
j e

ikjx +A−j e
−ikjx

]
e−iωt

)
, (2.21)

where kj = ω/cj is the wave number in duct j, ω the angular frequency and cj the
speed of sound in duct j. Since the problem involves four unknown quantities, the wave
amplitudes A+

1 , A+
2 , A1

1 and A−2 , four conditions are needed:
• One boundary condition is given at the inlet at x = −l1 and one at the outlet at

x = l2. Very often u′1 = 0 is applied at x = −l1 because one assumes that velocity is
imposed at the inlet corresponding to an infinite impedance Zi →∞. The outlet is open
to the ambient atmosphere and one may consider that p′ = 0 at x = l2. This corresponds
to a vanishing impedance Zo = 0 at the open end of the duct.
• Two conditions are expressed across the flame itself. At the plane x = 0 where the

flame is stabilized, jump conditions from one side of the flame to the other relate pressure
and velocity perturbations, assuming that the flame is compact compared to the acoustic
wavelength. Such conditions were introduced previously. They express the continuity of
pressure and the change of acoustic volume flow rate due the unsteady heat release in
the flame Q̇′ (Crighton et al. 1992; Poinsot & Veynante 2011)

p′2(x = 0, t) = p′1(x = 0, t) and S2u
′
2(x = 0, t) = S1u

′
1(x = 0, t) +

γ − 1

ρ1c21
Q̇′, (2.22)

where ρ̄j is the mean density in section j and γ the ratio of specific heats.The construction
of jump conditions at a compact flame front when the Mach number tends to zero, is
actually an open topic which is beyond the objective of the present article. Readers are
referred to recent papers by Bauerheim et al. (2015) and Chen et al. (2016) on this
subject.

The unsteady heat release rate Q̇′ is then expressed using the time-lag model defined
in (2.10) in which N and τ are assumed to be constant:

γ − 1

ρ̄1c21S1
Q̇′ = N(θ − 1)u′1(x = 0, t− τ) (2.23)

where θ = T2/T1 − 1 measures the relative change in sensible enthalpy released within
the flow by combustion. Assuming harmonic variations for all perturbations a′ = ãe−iωt,
the jump conditions become

p̃2(x = 0, t) = p̃1(x = 0, t) and S2ũ2(x = 0, t) = S1ũ1(x = 0, t)(1 + θNeiωτ ). (2.24)

Equation (2.23) links heat release rate fluctuations to the acoustic velocity at the chamber
inlet x = 0. The previous jump conditions together with the boundary conditions
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expressing that the velocity and pressure, respectively, vanish at the inlet and outlet

A+
1 e

ik1l1 −A−1 e−ik1l1 = 0, (2.25)

A+
2 e

ik2l2 +A−2 e
−ik2l2 = 0, (2.26)

lead to an homogeneous system of equations for the wave amplitudes A−1 , A+
1 , A−2 and

A+
2 , which has a non-zero solution only if

cos

(
ω
l2
c2

)
cos

(
ω
l1
c1

)
−Ξ sin

(
ω
l2
c2

)
sin

(
ω
l1
c1

)(
1 + θNeiωτ

)
= 0, (2.27)

where Ξ = (ρ̄2c2)/(ρ̄1c1)(S1/S2) is a coupling index between cavities upstream and
downstream of the flame (Schuller et al. 2012). The dispersion relation (2.27) gives the
complex angular frequency ω = ωr + iωi. The real part of ω fixes the angular frequency
ωr of the mode while its imaginary part provides the growth rate ωi. If this last quantity
is positive, the mode will be linearly amplified, leading to CI.

The general solution of (2.27) is difficult to formulate without additional simplifica-
tions. For example, an analytical expression can be obtained in a case where the two
channels have equal sections S2 = S1 and lengths l2 = l1 = a and the flame induces a
negligible heat release so that ρ2 ' ρ1 and c2 ' c1 ' c. In this case, Ξ = 1 and θ is a
small number. The dispersion relation becomes

cos2
(ωa
c

)
− sin2

(ωa
c

) (
1 + θNeiωτ

)
= 0. (2.28)

Without the flame, N = 0, the solution of the dispersion relation (2.28) corresponds to
the acoustic eigenmodes of a duct of length 2a. The first mode is such that k0l = π/4
with A+

1 = A+
2 and A−1 = A−2 . It has a zero growth rate =(k0) = 0 and a wavelength

λ0 = 2π/k0 = 8a which is four times the total length of the duct 2a. It is therefore
designated as a “quarter-wave” mode of the system. Its period is T0 = 2π/ω0 = 8a/c.
The associated fields of unsteady velocity and pressure are:

ρ̄jcju
′
j(x, t) = A+<

[
eik0x + ie−ik0x

]
e−iωt (2.29)

p′j(x, t) = A+<
[
eik0x − ie−ik0x

]
e−iωt (2.30)

where A+ is the modal amplitude, which remains arbitrary as no information on ampli-
tudes can be obtained in a linear framework. If the flame is present and the interaction
index N is non zero but still small, the solution for k can be obtained using a small
perturbation expansion around k0 so that k = k0 + k′ with

<(k) = k0 + <(k′) =
π

4a
− θN

4a
cos

(
2πτ

T0

)
and =(k) = =(k′) = −θN

4a
sin

(
2πτ

T0

)
.

(2.31)
For small interaction index N values, the mode wavenumber <(k) is only weakly altered
by the presence of the flame and remains close to its value f0 = π/(4a) for the quarter-
wave mode frequency without the flame. The flame response defined by a non zero
interaction index N 6= 0, however, controls the growth rate of this mode. The combustor
is unstable if =(k) > 0, which implies sin(2πτ/T0) < 0 that is obtained when

s+ 1/2 <
τ

T0
< s+ 1, (2.32)

where s is an integer. Any flame with a time delay τ such that (1/2+s)T0 < τ < (1+s)T0

will lead to CI in the absence of other damping mechanisms. Note also that this condition
defines instability “bands” for τ . Increasing τ from zero corresponds to a stable quarter-
wave mode for τ < T0/2 followed by a band of instability when T0/2 < τ < T0, followed
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by a new stability zone when τ exceeds T0 and so on... One may also note that this
analysis needs to be repeated for higher-order modes. In the present case, the 3/4, 5/4,
7/4 modes also have their own instability bands and the flame is stable only when
τ falls outside of all these instability bands. This may seem a difficult condition to
ensure but in practice, high-order modes are also rapidly damped by various dissipation
mechanisms and energy losses at the system boundaries. These mechanisms are neglected
in the present analysis. It is rare to see CIs coupled to high-order modes, except for
high-frequency instabilities that are often coupled by transverse modes at frequencies in
excess of 1 kHz. In that case the combustion region is no longer compact but each of
the flames formed by the various injectors remains compact with respect to the acoustic
wavelength. In practice, there are indeed values of τ which are stable for all modes.

Even if the assumptions made to derive the stability criterion (2.32) are crude, this
analysis contains all the ingredients of many low-order models used in thermoacoustics:
• It requires that all convective and chemistry effects be modeled as a function of

a purely acoustic quantity, which is here, the inlet flow velocity. Models linking the
unsteady heat release rate Q̇′ to the acoustic inlet velocity u′1(x = 0, t) are ubiquitous.
More advanced models may be found in the literature (Paschereit et al. 2002; Truffin
& Poinsot 2005; Taraneh et al. 2015) and two of them need to be mentioned. The first
extends the FTF concept by considering that the flame response may be represented by
a Flame Describing Function (FDF) where the gain G and phase lag ϕ, not only depend
on frequency but also on the forcing amplitude |u1| (Noiray et al. 2008; Durox et al.
2009; Palies et al. 2011). A second extension of the flame transfer function concept was
made to account for the fact that, in many systems, the fresh stream velocity may not
be the only quantity inducing unsteady combustion. Fluctuations in equivalence ratio φ
have been identified as another important perturbation that may affect the combustion
process (Lieuwen & Zinn 1998; Sattelmayer 2003; Birbaud et al. 2008). These fluctuations
may be caused for example by a difference in the response of the air and fuel injection
devices to incident pressure waves. It is then important to consider the flame response
to equivalence ratio disturbances and this may be represented by an FDF that accounts
for the two types of incident perturbations˜̇Q

Q̇
= F1 (ω, |ũ1|)

ũ1(x = 0)

ū1(x = 0)
+ F2

(
ω, |φ̃1|

) φ̃1(x = 0)

φ̄0(x = 0)
, (2.33)

where ũ1 and φ̃1 are the velocity and equivalence ratio perturbations at the burnet
outlet. This problem is investigated in Section 6 for linear flow disturbances when the
disturbance levels |ũ1| and |φ̃1| may be considered to be small.
• The analysis leads to a stability criterion that depends on the time lag τ between

heat release rate and flow rate disturbances at the burner inlet. When the wavenumber k
is determined, the modal structure, i.e. the shape of p′ and u′ as a function of the spatial
coordinates, can be obtained too. As an example, Fig. 7 displays the structure of the first
two modes, namely the 1/4 and 3/4 wave modes, in a duct with u′ = 0 at the inlet and
p′ = 0 at the outlet.

2.6. Approach 2: the Rayleigh criterion

The previous section was based on a full solution of the acoustic equations after a
simplification of the problem in which the flame is considered to be compact and acoustic
propagation is assumed to be longitudinal. This section now explores an approach of
type 2 where the objective is to derive a stability criterion by writing an acoustic energy
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Figure 7. The structure of the 1/4 and 3/4 wave modes in the model of Fig. 6.

balance, analog to the mechanical energy E defined in (2.17). This is done by starting
from the Navier-Stokes equations expressed here in vector form, using material derivatives
defined by

Da

Dt
=
∂a

∂t
+ u · ∇a,

for a quantity a transported by the flow. Neglecting body forces, the momentum balance
writes

ρ
Du

Dt
= −∇p+∇ · τ , (2.34)

where τ is the viscous stress tensor. Starting from the enthalpy (or energy) conservation
equation and assuming equal specific heats for all species, negligible heat diffusion and
low Mach number, a governing equation can be written for pressure (Poinsot & Veynante
2011)

∂p

∂t
= −γp∇ · u + (γ − 1)q̇, (2.35)

where q̇ is the volumetric rate of heat release by the flame.
To derive an energy balance for the acoustic perturbations, (2.34) and (2.35) are

linearized around a mean state in the chamber by writing

ρ = ρ̄+ ρ′, u = ū + u′ and p = p̄+ p′. (2.36)

The linearized equation for the acoustic velocity u′ is simplified from (2.34) at low mean
Mach number to yield

ρ̄
∂u′

∂t
= −∇p′, (2.37)

where ρ̄ can be a function of space. The equation for pressure perturbations is obtained
by linearizing (2.35) leading to (Crighton et al. 1992; Candel et al. 1996)

1

γp̄

∂p′

∂t
+∇.u′ =

γ − 1

γp̄
q̇′, (2.38)

where q̇′ is a disturbance of the volumetric rate of heat release by combustion. The
linearized equations (2.37) for u′ and (2.38) for p′ can now be combined to form an
equation for the acoustic energy in reacting flows

e =
1

2
ρ̄u′2 +

1

2

p′2

ρ̄c20
. (2.39)

This is done by multiplying (2.38) by p′, taking the scalar product of the momentum
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equation (2.37) by u′ to get

∂e

∂t
+∇ · f = r, with r =

(γ − 1)

γp̄
p′q̇′ and f = p′u′. (2.40)

The source term r features the product of the local unsteady pressure p′ with the
unsteady rate of heat release q̇′ in the flame. This yields a stability criterion that is
similar to that obtained for a simple mass spring oscillator. When r is positive, i.e.
if the pressure oscillations p′ are in phase with the unsteady volumetric rate of heat
release q̇′, r increases the acoustic energy and the instability is locally amplified. On the
other hand, if the volumetric rate of unsteady heat release is maximum when pressure
is minimum, the instability decreases. This criterion for combustion instability was first
proposed by Rayleigh (1878). The index r changes with time and location. Some regions
excite the oscillation by burning in phase with pressure leading to positive r values while
others damp the instability by burning out of phase with pressure (Poinsot et al. 1987;
Samaniego et al. 1993).

The overall effect of flame/acoustics coupling can only be predicted by integrating
(2.40) over space and time. Consider a typical combustion chamber as in Fig. 8. Integra-
tion of the local energy balance (2.40) over the whole combustor volume V surrounded
by surface A yields

d

dt

∫
V

edV +

∫
A

f · ndA =

∫
V

rdV, (2.41)

where n is the local normal vector to the surface A. In (2.41), all terms are time
dependent. The acoustic flux term f ·n is usually zero at all walls but may differ from zero
at the inlet and outlet sections. It indicates how much of the acoustic energy produced
in the combustor is lost at the boundaries.

To provide meaningful information on the growth of the instability, expression (2.41)
must also be averaged over time. For harmonic oscillations, this can be done over a period
of oscillation T (see Table 1 for notations)

p′ = <(p̃(t)e−iωt), u′ = <(ũ(t)e−iωt) and q̇′ = <(˜̇q(t)e−iωt), (2.42)

where p̃(t), ũ(t) and ˜̇q(t) are slowly varying functions over a time scale t much longer
than the acoustic period T . Whether these functions grow with time for a given angular
frequency ω determines the stability of the combustor. Integrating (2.41) over a period
of oscillation T = 2π/ω and dividing by T yields

d

dt
E +Q = R, (2.43)

where E is the period-averaged acoustic energy in the whole combustor

E =

∫
V

EdV and E =
1

T

∫ T

0

edt =
1

4ρ̄c2
p̃p̃∗ +

1

4
ρ̄ũ · ũ∗. (2.44)

The period-averaged acoustic flux leaving the combustor is

Q =

∫
A

FdA and F =
1

T

∫ T

0

f · ndt =
1

2
<(p̃ũ∗) · n = <(Z)ũ · ũ∗. (2.45)

The latter expression exhibits the impedance Z = p̃/(ũ · n) at the inlets and outlets,
highlighting their effects on acoustic losses.
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Figure 8. Control volume for energy balance in a typical combustion chamber.

Finally, the average source term is

R =

∫
V

RdV and R =
1

T

∫ T

0

rdt =
(γ − 1)

Tγp̄

∫ T

0

p′q̇′dt =
(γ − 1)

2γp̄
<(p̃˜̇q∗). (2.46)

Flame/acoustic coupling now appears in the R term. This space-averaged integral over

the combustor volume V of the period-averaged value of p̃˜̇q∗ must be positive to increase
the acoustic energy of the oscillation.

The growth rate ωi of the acoustic energy may now be deduced. It is expressed by
assuming that the perturbation amplitudes change slowly with time in comparison to
acoustic times so that p̃, ũ and ˜̇q functions may be written

p̃(t) = p̂eωit, ũ = ûeωit, and ˜̇q(t) = ˆ̇qeωit, (2.47)

where ωiT << 1. The energy balance (2.43) becomes in this case

ωi = (R−Q) /(2E). (2.48)

The growth rate ωi is the difference between the combustion source term R and the
acoustic losses P at the boundaries. Equation (2.48) can be interpreted as a generalized
Rayleigh criterion. Combustion becomes unstable when ωi > 0 meaning that from
energetic consideration the instability criterion is

R > Q. (2.49)

At this point it is interesting to connect this analysis to the example investigated in
Section 2.5 and sketched in Fig. 6. In this example, the flame is assumed to have a
negligible feedback on the mean flow because the interaction index N is small, so that,
for the quarter wave mode for example, the pressure fluctuations p′ at the flame front
and the unsteady rate of heat release Q̇′ are given by

Q̇′(t) ∝ u′1(x = 0, t− τ) = A+
1

1

ρici
<
[(
eik0x + ie−ik0x

)
e−iω(t−τ)

]
, (2.50)

p′(x = 0, t) = A+
1 <
[(
eik0x − ie−ik0x

)
e−iωt

]
. (2.51)

For this compact flame, the Rayleigh criterion can be formed by taking the product of
these two quantities. Its averaged value over time is

R =
(γ − 1)

2γp̄
<(p̃ ˜̇Q∗) ∝ − (γ − 1)

γp̄
A2

1+ sin(ωτ). (2.52)

CI only develop when sin(ωτ) < 0 which is the criterion obtained by making use of
approach 1 in the previous section. As announced, both methods provide similar stability
criteria. Approach 1 provides the full solution, while approach 2 requires some knowledge
on the acoustic u′ and p′ fields and only provides a stability criterion.

A last example combining all notions presented in this tutorial is given. Consider a
burner of any shape where an injection system feeds a combustion chamber in which
a compact flame is stabilized as in Fig. 4. The compact flame response to incoming
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Table 1. Definitions of acoustic energies, fluxes and source terms.

Energy Flux Source term Characteristic

e f r local, instantaneous

E F R local, period-averaged

E Q R volume (or surface) averaged and period-averaged

flowrate disturbances is modeled by a time-lag model Q̇′ ∝ nu′(t− τ). If the impedance
of the injection system (at the cross section area expansion in Fig. 4) is characterized by
Z = |Z|eiΘ, the Rayleigh criterion provides a useful description of the physics of CIs in

this system. The Rayleigh term R ∝ 1
T

∫ T
0
p′Q̇′dt is

R ∝ 1

T

∫ T

0

p′nu′(t− τ)dt =
1

2
<[|Z|ũũ∗nei(φ−ωτ)] =

1

2
|Z||ũ|2n cos(Θ − ωτ), (2.53)

which shows that the stability of the chamber in Fig. 4 is controlled by the difference
between the injector phase Θ and that corresponding to the time delay in the flame
response ωτ . This simple example illustrates a major result of CI studies. The stability
of a combustor does not depend on the flame delay τ only, but is also controlled by the
injector impedance phase lag Θ. A combustion chamber can be stable when it is installed
on one injection system and unstable when another injection system is installed.

Approach 1 is generalized in the next section and applied to a series of canonical
configurations.
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3. Axial modes in laminar burners

The main objective of this section is to provide a theoretical framework allowing us to
get analytical results that may serve as guidelines in a variety of practical configurations.
The development essentially follows approach 1 lines of reasoning. The results obtained
are particularly useful when measured or calculated FTFs are available (Schuller et al.
2003a). It is shown that the model in conjunction with a flame transfer function yields
insights on conditions leading to instability and their growth rates as can be tested in
axial setups or in annular combustor experiments.

One again considers low-frequency one-dimensional acoustic waves propagating in
ducts and interacting with a compact unsteady flame sheet as in the tutorial section.
The objective is to generalize the expression (2.27) to other system geometries with more
complex boundary conditions and with an improved description of the flame response to
flow perturbations. It is then shown how to determine the oscillation frequency of CIs
and their growth rates with a new method disregarding the feedback from acoustics on
the flame dynamics. This methodology leads to drastic simplifications of the stability
analysis and its validity domain is assessed.

The system dynamics may be symbolically represented as in Fig. 9. The acoustic field
needs to comply with the jump conditions for the perturbed axial flow components (2.7)
and (2.8) across the flame sheet and with the system acoustic boundary conditions. The
flame response is here represented by its FTF

F(ω) =
˜̇Q/Q̇
ũ1/u

= G(ω) exp(iϕ(ω)), (3.1)

which features a gain G and phase-lag ϕ that eventually both depend on the angular
frequency ω. It is useful to represent the injector acoustic response by its specific
admittance β1 = 1/z1 in the fresh reactants, just upstream of the flame location as
in Fig. 9. Similarly, the acoustic response of the combustion chamber is represented by
its specific admittance β2 = 1/z2 at the flame location in the burned gases. By definition,
one has

β1 =
ρ1c1ũ1

p̃1
and β2 =

ρ2c2ũ2

p̃2
. (3.2)

In such a representation, flame acoustic coupling obeys the following dispersion relation

β2

Γ
− β1 (1 + θF) = 0. (3.3)

in which β1 and β2 both generally depend on the angular frequency ω, θ = T2/T1−1 was
already defined and Γ = (ρ2c2)/(ρ1c1) corresponds to the ratio of characteristic specific
impedances from burned gases to fresh reactants. Table 3 in Annex A lists expressions
for the upstream β1 and downstream β2 admittances seen by a compact combustion
region that can be assumed in many practical devices. The dispersion relation (3.3) and
the expressions synthesized in Annex A for the admittances are used in the following to
complete the stability analysis in a set of systems operating under laminar conditions.

This procedure is illustrated with the example studied in Section 2.5 with a flame
stabilized at the interface between an injection tube with an infinite acoustic impedance
at the inlet boundary and a zero impedance at the flame tube exhaust section (Fig. 6).
In this case, one has β1 = i tan(k1l1) that corresponds to the upstream admittance seen
by the flame (a closed-end tube) and β2 = i(S2/S1)cotan(k2l2) that corresponds to the
downstream admittance seen by the flame (a sudden cross-section area expansion plus a
flame tube open to atmospheric conditions). Introducing these quantities in (3.3) leads
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Figure 9. Flame sheet interacting with upstream and downstream acoustic waves represented
by their admittances.

to
cos(k2l2)

Ξ sin(k2l2)
− sin(k1l1)

cos(k1l1)
(1 + θF) = 0, (3.4)

where Ξ = Γ (S1/S2) = (ρ2c2S1)/(ρ1c1S2).
The next step is to reduce (3.3) to a fractional relation N (ω)/D(ω) = 0. Provided
D(ω) 6= 0, the complex angular frequencies are the roots of N (ω) = 0. The problem is
then reduced to the search of these roots. It is convenient to isolate the FTF F in the
expression of N . This can be written in the following form

N (ω) = H(ω) + F(ω)L(ω) = 0. (3.5)

In the above selected example (3.4), this leads to the dispersion relation (2.27), where
H(ω) = cos(k2l2) cos(k1l1) − Ξ sin(k2l2) sin(k1l1), L(ω) = −Ξθ sin(k2l2) sin(k1l1) and
F(ω) = N exp(iωτ). Instead of directly solving (2.27) for small N values as in section
2.5, a new method based on the general expression (3.5) is now introduced.

The acoustic modes ω0 are first determined by considering that the flame is absent and
setting F = 0 in (3.5). The modes are then obtained by solving H(ω0) = 0. To complete
the stability analysis of these modes, the angular frequency is expanded as ω = ω0 + ω1,
where ω1 is considered small compared to the resonant angular frequency ω0, ω1 � ω0.
Introducing this expansion in (3.5), a first order perturbation analysis yields

H(ω0) + ω1

(
∂H
∂ω

)
ω0

+ F(ω0)L(ω0) ' 0, (3.6)

where the FTF is taken at the resonant angular frequency ω0. One strong simplification
made in (3.6) is to consider that changes of F(ω)L(ω) with respect to ω around ω0 can be
neglected compared to those associated to changes of H(ω). In doing so, it is hypothesized
that the flame response mainly perturbs the system acoustics, but the feedback from
acoustics on the flame dynamics may be disregarded as a first approximation. It will be
shown that this is valid in many cases and in particular when the FTF gain G(ω) is
small.

This method has several advantages since one only needs to have a limited set of
information on the flame response. The FTF F(ω0) needs only to be known at the
resonant frequencies ω0. When determined from experiments or numerical simulations,
the FTF can only be reconstructed for real forcing frequencies and remains undetermined
at complex frequencies featuring a growth rate. The approximation made in (3.6) is thus
also consistent with the knowledge that is available on the FTF and that is restricted to
real forcing frequencies.

This approximation is however violated when the CI is controlled by the system feed-
back on the flame dynamics, in which case the thermo-acoustic instability is essentially
determined by changes of the FTF F with the complex angular frequency ω. This is
for example the case for the so-called intrinsic thermo-acoustic instabilities in which
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case the system is the flame itself. These “pathological” cases are analyzed in the next
section. The following derivations focus on all other cases in which the system dynamics
is mainly determined by its acoustic modal distribution that is only slightly perturbed
by the unsteady heat release in the compact combustion region.

Solutions of (3.6) are sought close to resonance at ω0 in the absence of unsteady
combustion when F = 0 is set in (3.5). Since in this case H(ω0) = 0, the deviation of the
complex angular frequency is given by

ω1 = −F(ω0)L(ω0)(
∂H
∂ω

)
ω0

. (3.7)

This expression generalizes the result derived in the tutorial for any geometry and is
used in this work to explore the stability of a set of configurations sketched in Fig. 10.
Cases (a) and (b) correspond to generic systems used at the EM2C laboratory to
investigate the combustion dynamics of laminar conical flames and turbulent swirling
flames. The framework developed above is well suited to analyze the stability of these
combustors. The reader is referred to the PhD thesis from Boudy (2012) and Palies
(2010) for detailed investigations of CI in these configurations and comparisons between
theoretical predictions and measurements. Case (a) is also the one studied in the tutorial
section and one may easily check that (3.7) and approach 1 presented in section 2.5 lead
to the same results for the frequencies and growth rates of combustion oscillations. For
ρ1 = ρ2 = ρ, c1 = c2 = c, l1 = l2 = a, S2 = S1, Ξ = 1 and F(ω) = N exp(iωτ), acoustic
modes are solution of H(ω0) = 0, leading in this specific case to ωn0 a/c = π/4 + nπ/2,
where n = 0, 1, 2, ... . The perturbation ωn1 around each eigenmode ωn0 = π is given by
(3.7)

ω1 = − θ

4ca
(−1n)Neiω0τ , (3.8)

which coincides with (2.31) obtained with approach 1 for n = 0.

The two last configurations in Fig. 10 are further analyzed below. One starts with case
(c), the classical Rijke tube configuration and follows with case (d), which is a simplified
model for laminar flames enclosed in a domestic boiler.

3.1. Rijke tube

The upstream and downstream admittances seen by the flame in the Rijke tube shown
in Fig. 10(c) are given by Fig. 3 in Annex A

β1 = −icotan (k1l1) and β2 = icotan (k2l2) . (3.9)

To ease analytical developments, the simplifications used in the tutorial are repeated
here. The density and speed of sound are assumed to be unaltered in the burned gases
leading to c2 = c1 = c, Γ = 1 and k2 = k1 = k. Following the same procedure as in
previous examples, the numerator N (ω) of the dispersion relation (3.5) becomes

sin(kl) + cos(kl1) sin(kl2)θF = 0, (3.10)

where l = l1+l2 is the total length of the Rijke tube. Acoustic modes without combustion,
F = 0, are given by

H(ω) = sin(kl) = 0 i.e. kn0 =
ωn0
c

= (n+ 1)
π

l
, where n = 0, 1, 2, ... (3.11)
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Figure 10. (a)-(b) Flame in labscale burners investigated at EM2C laboratory. (c) Flame in a
Rijke tube. (d) Flame in a domestic boiler with admission and exhaust manifolds.

These modes have frequencies fn0 = (n+ 1)c/(2l) and wavelengths λn0 = 2l/(n+ 1). The
first mode λ0 = 2l called the half wave mode is usually the one around which oscillations
are observed in Rijke tube experiments.

The Jacobian around each mode ωn0 is ∂H/∂ω(ωn0 ) = (−1)n+1(l/c). Assuming small
perturbations due to unsteady combustion with complex angular frequency ω around the
resonant frequencies ωn0 , (3.7) yields the deviation ωn1 of the complex angular frequency
with respect to mode n

ωn1 = (−1)n
c

l
θF cos

(
(n+ 1)π

l1
l

)
sin

(
(n+ 1)π

l2
l

)
. (3.12)

In this expression use has been made of L(wn0 ) = θ cos(kn0 l1) sin(kn0 l2). One may further
simplify this expression and get

ωn1 = (−1)n
c

l
θF 1

2
sin

(
(n+ 1)π

l2 − l1
l

)
. (3.13)

The corresponding growth rate is the imaginary component of this complex expression

ωn1i = (−1)n
c

l
θG(ωn0 ) sin(ϕ)

1

2
sin

(
(n+ 1)π

l2 − l1
l

)
. (3.14)

In the absence of damping, the system becomes unstable when the growth rate takes
positive values ωn1i > 0 and one may readily note that this condition depends on the sign
of the phase lag ϕ of the FTF at the modal angular frequency ωn0 and the position of the
flame inside the tube. Assuming the flame lies in the lower part of the tube l1/l 6 1/2 and
restricting the analysis to the fundamental mode by setting n = 0 in the previous relation
yields a necessary conditions for the appearance of a combustion oscillation coupled to
the half wave mode λ0 = 2πc/ω0 = 2l in the Rijke tube

2sπ < ϕ(ω0) < (2s+ 1)π. (3.15)

Here, s designates an integer s = 0, 1, ... . Assuming ϕ = ω0τ one deduces that the time
lag τ between heat release rate and flowrate disturbances at the burner outlet will lead
to instability when

s <
τ

T
< s+

1

2
, (3.16)

where T = 2π/ω0 = 2l/c is the oscillation period. When l1 = 0 or l1 = l/2 the first
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mode at frequency f0 = c/(2l) is marginally stable (ω1i = 0). A flame in the upper part
of the tube l1 > l/2 would lead to an instability coupled to the fundamental oscillation
mode n = 0 for π < ϕ(ω0) < 2π modulo 2π. A flame located in the bottom part of the
tube may only induces a CI coupled to the first mode provided that the FTF phase lag
complies with 0 < ϕ(ω0) < π modulo 2π.

The CI has a maximum growth rate when the combustion region is set at l1 = l/4 and
the FTF phase lag is ϕ = π/2. This corresponds to a time lag τ = l/(2c). The angular
frequency ω = ω0 + ω1r and growth rate of the CI around the fundamental oscillation
mode n = 0 are in this case given by

ω = π
c

l
+

c

2l
θG(ω0) and ωi1 =

c

2l
θG(ω0). (3.17)

One may see in this specific case that the deviation of the angular oscillation frequency
ω1r with respect to ω0 = πc/l also corresponds to the growth rate ω1i of the CI. More
complete derivations can be found in the references cited in the review on Rijke burners
from Raun et al. (1993).

3.2. Bulk oscillations in domestic boilers

Case (d) in Fig. 10 is now examined. It comprises an air and fuel admission channel
used to stabilize a fully premixed compact flame at x = l1. Burned gases are released in
a large cavity of volume V2 = S2l2 and are exhausted through a tube of section S3 and
length l3 at atmospheric pressure. The inlet β1 and exhaust β2 admittances seen by the
flame are according to Fig. 3 in Annex A

β1 = −icotan (k1l1) and β2 = i
S2

S1

(S3/S2) cos(k3l3) cos(k2l2)− sin(k3l3) sin(k2l2)

(S3/S2) cos(k3l3) sin(k2l2) + sin(k3l3) cos(k2l2)
.

(3.18)
The most problematic combustion instabilities in boilers are often observed at very
low frequencies and are generally accompanied by large bulk flow oscillations. Their
wavelengths are much larger than any characteristic dimensions of the system, but the
present analysis can still be used to capture these self-sustained oscillations as will be
shown in what follows.

As the wavelengths are large, one may assume that the Helmholtz numbers are small,
k1l1 � 1, k2l2 � 1 and k3l3 � 1. One further assumes that the combustion chamber
cavity and the exhaust tube are both filled with burned gases at the same temperature
and that c3 = c2. The following geometrical conditions are also often verified by design
for many practical systems S2/S3 � l2/l3, l3/l2, meaning that the combustion chamber
transverse dimensions are large with respect to the exhaust tube dimensions. In this case,
the combustion chamber volume acts as a spring in which the gases can be periodically
compressed and expanded. As the wavelength is large compared to the admission and
exhaust tube lengths, flow oscillations are in phase in these elements.

Mathematically, these features are retrieved by a Taylor series expansion of the admit-
tances (3.18) in Helmholtz numbers. This leads to the following simplifications for the
admittances β1 and β2 seen by the flame, which are valid at low frequencies

β1 '
1

k1l1
and β2 ' i

S3

S1

1− (k2/kH)2

k2l3
, (3.19)

where ω2
H = c22k

2
H = c22S3/(V2L3) is the natural angular frequency of the Helmholtz

resonator formed by the combustion chamber volume V2 and exhaust tube of section S3

and length l3 filled with burned gases. Including the expressions for β1 and β2 in (3.3)
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and cancelling the numerator N (ω) = 0 yields

S3

S1Γ
k1l1

(
1−

(
k2

kH

)2
)
− k2l3(1 + θF) = 0. (3.20)

Setting F = 0 in this expression yields the first acoustic mode of the system

H(ω) =
S3

S1Γ

ωl1
c1

(
1−

(
ω

ωH

)2
)
− ωl3

c2
= 0, (3.21)

This bulk oscillation features an angular frequency ω0 defined by

ω0

ωH
=

(
1− Γ c1

c2

l3
l1

S1

S3

)1/2

. (3.22)

One may next assume that the bulk oscillation of the full system has a frequency close
to the Helmholtz mode ω0 ' ωH . The growth rate of perturbations around the angular
frequency ω0 is given by (3.7). One has in the present case

∂H
∂ω

(ω0) ' −S3

S1

2

Γ

l1
c1

and L(ω0) ' −ωHθ
l3
c2
. (3.23)

The deviation ω1 = ω − ω0 of the complex angular frequency follows

ω1

ωH
' −S1

S3

Γ

2

c1
c2

l3
l1
θF(ωH). (3.24)

CIs develop when the FTF phase lag evaluated at the Helmholtz natural frequency of
the system is between (2s+ 1)π < ϕ(ωH) < 2(s+ 1)π with a growth rate given by

ωi1
ωH
' −S1

S3

Γ

2

c1
c2

l3
l1
θG(ωH) sin(ϕ(ωH)). (3.25)

Assuming ϕ(ωH) = ωHτ , CIs develop when the time lag τ lies between

s+
1

2
<
τ

T
< s+ 1, (3.26)

where T = 2π/ωH is the period of the self-sustained bulk flow oscillation and s = 0, 1, 2, ...
. One sees that a CI can develop around the first mode which is characterized by a bulk
oscillation of the flow variables in the boiler. The stability bands of this mode depend on
the FTF phase lag ϕ = ωτ and differ from the stability bands found for CIs coupled to
the first longitudinal mode in a Rijke tube. This emphasizes that the phase relationship
between flowrate and heat release rate disturbances leading to CI depends on the modal
distribution and position of the flame in the system. CIs at higher frequencies may also
develop, but one then needs to consider the full expressions appearing in (3.18) for the
admittances β1 and β2 to complete the stability analysis.

3.3. Unconfined flames stabilized at injector boundaries

In the previous examples, acoustic reflection takes place upstream and downstream
the combustion region and both reflections contribute to generate CIs by perturbing the
flow impinging on the flame. In many material processing burners, flames are anchored at
one of the system boundaries and are unconfined as illustrated in Fig. 11. In these cases,
acoustic reflection is limited to the upstream side of the flame and ideally there is no
reflection from the downstream side of the flame towards the injector. The CI mechanism
in these unconfined flames raises some interesting issues.
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Figure 11. (a)-(b) Laboratory scale burners used to analyze unconfined flame dynamics. (c)
Burner for material processing with air induction system. (d) Unconfined burner with a nearly
anechoic injector.

Although the flames are unconfined, these burners often develop strong self-sustained
CI oscillations accompanied by high noise emission levels. The acoustic intensity radiated
in the plant is sometimes so high that the process needs to be discontinued. Feedback
of the combustion noise produced by the flame outside the injector and radiating noise
back towards the injection unit has been identified as the main mechanism leading to
CI in these systems. Burners (a) and (b) in Fig. 11 were analyzed in the work of Noiray
(2007) and Schuller (2003). Configuration (c) in Fig. 11 with air induction in a plenum
followed by a series of small flames stabilized over a grid is typical of many material
heating devices. The last system (d) in Fig. 11 is a labscale burner with high acoustic
losses (Hoeijmakers et al. 2016) and this case is further examined in section 4.

The following developments are valid for configurations (a), (b) and (c), but analysis
of CIs is only made here for system (a), which is retained for its geometrical simplicity.
Burner (a) in Fig. 11 comprises a tube of length l with a rigid plate at the bottom
corresponding to a fully reflecting boundary condition at z = 0. Small compact conical
flames are anchored at the top of the burner on a perforated plate, which is assumed
to be transparent to acoustic waves in this analysis without loss of generality. Without
combustion, acoustic modes correspond to an acoustically closed-open configuration, with
ũ(0) = 0 and p̃(l) = 0 and are given by the characteristic equation

cos(kl) = 0 i.e. kn0 = (2n+ 1)
π

2
where n = 0, 1, 2, ... (3.27)

These modes at frequencies fn0 = (2n+ 1)c/(4l) have all vanishing pressure fluctuations
p̃(l) = 0 at the boundary z = l where combustion takes place. As a consequence flames
cannot apparently feed acoustic energy back in the injection unit because the product
p′q̇′ = 0 vanishes at this location. This idealized model cannot reproduce the CIs
observed in these systems because small pressure disturbances at the burner outlet still
persist in reality.

This problem was considered in the works from Schuller (2003) and Noiray (2007)
with the main results synthesized in Durox et al. (2009). The pressure fluctuation p̃1

at the burner outlet indeed remains small, but slightly differs from zero. It is generally
characterized by a radiation impedance (Rienstra & Hirschberg 2018). Flames have a
small finite extension and act as monopole point sources located at a distance δ/l � 1
above the burner outlet. The sound pressure radiated by these flames back towards the
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burner outlet may be estimated from combustion noise theory (Strahle 1978). Combining
this acoustic radiation feedback mechanism with a time-lag model for the flame response
and a model for the acoustic response of the cavity yields the characteristic equation
of the system dynamics from which conditions leading to CIs can be deduced (Durox
et al. 2002; Schuller et al. 2003a; Noiray et al. 2006). One difficulty to make accurate
predictions with this approach is to estimate the empirical coefficients associated to
acoustic energy feedback inside the injector.

To circumvent this issue, a different method based on (3.3) is used to determine the
burner stability. The geometry considered comprises a tube of length l1 filled with fresh
gases and augmented by a small additional length δ2 called an end correction at the end
of which pressure disturbances vanish. The end correction δ2 is associated to the inertia
of the acoustic flow at the burner outlet and appears in the radiation impedance as
Z/(ρ2c2) ' ik2δ2, where k2δ2 � 1. Its value depends on the shape of the nozzle (Peters
et al. 1993). This small compact region downstream of the flame sheet is assumed to be
filled with burned gases. This configuration is represented in Fig. 12(a). The upstream
and downstream admittances seen by the flames at z = l1 are in this case (see Tab. 3 in
Annex A) given by

β1 = i tan(k1l1) and β2 = icotan(k2δ) '
i

k2δ2
, (3.28)

because k2δ2 � 1. In the absence of unsteady combustion, F = 0, (3.3) yields

ρ̄1c1
ρ̄2c2

1

k2δ2
− tan(k1l1) ' 0. (3.29)

Modes of this system are solution of

H(ω) = cos(k1l1)− sin(k1l1)k1δ2
ρ̄2

ρ̄1
' cos

(
k1

(
l1 +

ρ̄2

ρ̄1
δ2

))
= 0. (3.30)

The system behaves as if the original tube of length l1 was augmented by an additional
length δ1 = δ2(ρ̄2/ρ̄1) filled with fresh reactants as shown in Fig. 12(b). Introducing the
effective length le = l1 + δ1, the angular frequencies ωn0 of these modes are

ωn0
c1

= kn0 = (2n+ 1)
π

2le
. (3.31)

Taking into account effects of unsteady combustion F 6= 0 in (3.3) yields

cos(k1l1)− sin(k1l1)k2δ2
ρ̄2c2
ρ1c1

(1 + θF) = 0. (3.32)

One then gets

∂H
∂ω

(ωn0 ) = (−1)n+1 le
c1

and L(ωn0 ) ' −(−1)n(2n+ 1)
π

2

δ1
le
θ. (3.33)

This yields the deviation of the complex angular frequency

ωn1 = −(2n+ 1)
π

2
c1
δ1
l2e
θF(ωn0 ), (3.34)

from which one deduces the growth rate

ωn1i = −(2n+ 1)
π

2

c1
le

δ1
le
θG(ωn0 ) sin(ϕ(ωn0 )). (3.35)
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Figure 12. (a) Closed-open tube with a flame at its extremity augmented by the end correction
δ2 filled with burned gases. (b) Equivalent closed-open tube augmented by the end correction
δ1 filled with fresh gases.

In the absence of flow damping mechanisms, CIs develop around acoustic mode eigenfre-
quencies ωn0 when the phase lag of the FTF verifies

(2s+ 1)π < ϕ(ωn0 ) < 2(s+ 1)π or s+
1

2
<
τ

T
< s+ 1, (3.36)

where s = 0, 1, 2, ... . The instability bands for the time lag τ between heat release
rate and flowrate disturbances are the same as the ones found for the bulk mode in
the boiler, but again differ from those leading to CIs in the Rijke tube. Note the same
analysis applied to configurations (b) and (c) in Fig. 11 would lead to the instability
band π < ϕ(ω0) < 2π for the bulk flow mode.

The end correction for an unflanged tube of radius R1 is a well known quantity and
takes a constant value at low frequencies δ1 = 8R1/(3π) (Peters et al. 1993). Including
this expression in the growth rate ωn1i given by (3.35) fixes the growth rate of CIs of
unconfined systems without any adjustable parameter. Equation (3.35) also shows that
the growth rate of CIs is proportional to δ1/le ∼ R1/l � 1, which is a small number.
These derivations indicate that the growth of CIs is lower in unconfined systems than
in confined systems due to a much lower acoustic energy feedback from the downstream
side of the flame. Such CIs are easier to hinder before a limit cycle with high oscillation
amplitudes is reached than in confined systems.

As a summary, it has been shown that in systems with negligible acoustic losses, one
may readily infer the frequency bandwidths which are susceptible to trigger CIs by only
examining the phase lag ϕ of the FTF at the modal frequency ωn0 . These instability bands
depend on the structure of acoustic mode considered and the position of the flame in
the system. The expressions derived in this section provide guidelines to determine these
CI bands for each system and can be generalized to other configurations. They may also
be used to determine to which parameters the growth rate of these instabilities are the
more sensitive and help to devise control solutions.

One remaining question is what would happen if acoustic reflection was also minimized
on the upstream side of the flame as in Fig. 11(d)? In this example, the injection unit
is also equipped with an anechoic horn in the fresh reactant stream. This problem is
considered in the next section.



30 T. Schuller, T. Poinsot and S. Candel

4. Intrinsic thermo-acoustic instabilities

A recent striking result of thermoacoustic research on laminar flames is the identifica-
tion of so-called intrinsic thermoacoustic (ITA) modes. This has probably been possible
because laminar flames are simple and allow a deeper analysis that would not have
been possible in more complex systems. For a long time and in most of this article too,
the picture used for combustion instability scenarios has linked heat release oscillations
to acoustic modes of the combustion chamber. These acoustic modes are caused by
acoustic reflections at the chamber inlet and outlet which are characterized by their
respective reflection coefficients R1 and R2 as in Fig. 13. The view of Fig. 13 has multiple
consequences when it comes to controlling instabilities:
• When a combustor is unstable, the usual identification procedure has been to

determine the acoustic modes of the system and check whether the frequency of the
instability matches one of the acoustic eigenfrequencies.
• To reduce the oscillation, one is led to increase acoustic losses at inlet and outlet.

Diminishing R1 and R2 lowers the growth rate of the modes by augmenting the acoustic
energy fluxes lost at the system inlet and outlet.

However, recent investigations by TU Eindhoven and TU Munich groups (Hoeijmakers
et al. 2014; Emmert et al. 2015) indicate that another path may be leading to CI
that involves “intrinsic” thermoacoustic (ITA) modes. The theory for ITA modes starts
from the following question. What would happen for the flame if both extremities were
perfectly anechoic?

4.1. Theoretical analysis

According to the standard CI theory, a system with anechoic terminations would
feature no acoustic eigenmode and high acoustic losses. Ideally, it corresponds to a
situation in which acoustic waves would only propagate away from the flame region
and the combustion process should be stable. Therefore the two acoustic waves A+

1

and A−2 would be zero in Fig. 13. However, it turns out that that there is another
theoretical solution. This can be seen by adopting the framework of the previous section
and assuming that the upstream β1 and downstream β2 specific admittances seen by the
flame are those corresponding to anechoic boundaries

β1 = −1 and β2 =
S2

S1
. (4.1)

Note that β2 corresponds here to the combination of a sudden expansion of the cross-
section area from S1 and S2 and an anechoic outlet to comply with the geometrical
configuration studied in Fig. 13. This geometry is used to anchor a conical flame at the
sudden expansion of the cross-section. If S2 would be reduced to S1, one would have
β2 = 1 in (4.1), but more difficulty to anchor the flame. In this case, the dispersion
relation (3.3) takes a simple form

1 +Ξ(1 + θF) = 0. (4.2)

where Ξ = Γ (S1/S2) was already defined. In the absence of unsteady combustion, F = 0,
this system does not feature any acoustic modes and one cannot follow the linearized
framework introduced in section 3 to analyze the system stability. With combustion, this
characteristic equation however still features roots. Following Hoeijmakers et al. (2014);
Emmert et al. (2015), the FTF is written as F = G(ωr) exp(iωτ), where ω = ωr + iωi,
roots of the characteristic equations are the solutions of

G(ωr) exp(−ωiτ) (cos(ωrτ) + i sin(ωrτ)) = −Ξ + 1

Ξθ
. (4.3)
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Figure 13. Combustion instabilities due to chamber modes: a resonant mode between the
flame and the acoustic eigenmodes of the chamber reflecting on its inlet and outlet.

Since the right hand side of this equality is a real number, one is left with

sin(ωrτ) = 0 and G(ωr) exp(−ωiτ) cos(ωrτ) = −Ξ + 1

Ξθ
. (4.4)

This leads to an infinite number of intrinsic modes with

ωnr = (2n+ 1)
π

τ
and ωni =

1

τ
ln

(
ΞθG(ωnr )

Ξ + 1

)
, (4.5)

where n = 0, 1, 2, ... . Acoustic disturbances at frequencies fn = ωnr /(2π) = (2n+1)/(2τ)
are amplified when their growth rate ωni is positive, a condition which is met for FTF
gain values exceeding the threshold level

G(ωnr ) > Gc =
Ξ + 1

θΞ
. (4.6)

These CIs are not supported by an acoustic resonance in the system and are therefore
called intrinsic thermoacoustic modes because they are specific to acoustic waves
produced by the combustion region and interacting directly with itself.

These intrinsic modes were not examined in section 3 that was essentially concerned
with combustion systems featuring confined or unconfined flames and resonant cavities.
In these former systems, the angular frequency ω was considered to be a real quantity
fixed to ω0 in the evaluation of the flame response F in the perturbed dispersion relation
(3.6). It is however possible to release this approximation and obtain a more complete
characteristic equation

H(ω0) + ω1

(
∂H
∂ω

)
ω0

+ L(ω0)F(ω0) + ω1

(
∂LF
∂ω

)
ω0

= 0. (4.7)

In most practical systems, the rate of change ∂H/∂ω is much greater than ∂(LF)/∂ω
and this latter contribution can generally be neglected. In doing so, one however assumes
that the flame response to acoustic disturbances is intrinsically stable. This is obviously
not the case for ITA modes. In this latter case, change of F with ω is the triggering
mechanism. Expression (4.6) also shows that the problem for ITA modes cannot be
linearized as in (4.7). One may refer to the recent study from Orchini et al. (2020) for
a deeper analysis of this problem. Moreover, this raises another difficulty since FTF
determined experimentally and numerically are only known for real forcing frequencies,
but this problem is out of the scope of the present study. In the following, one describes
the main features of ITA modes.

4.2. Characteristics of intrinsic thermoacoustic modes

Consider the configuration sketched in Fig. 13 in which R1 = R2 = 0. The first ITA
mode (n = 0) has a real angular frequency ωr = π/τ and a period T = 2τ . It is amplified
if ωi is positive which is the case when G(ωr) > Gc. This first ITA mode is very different
from usual thermoacoustic modes:
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• Its stability is not controlled by the flame delay τ as for the CI studies in the
previous section but rather by the FTF gain G, i.e. by the strength of the flame response
to acoustic perturbation. FTF with small gains G cannot lead to unstable modes. Only
flames with large interaction indices, i.e. large FTF gains G, can produce ITA modes
which may explain why they have not been identified until recently.
• Its period T is not linked to any acoustic period of the combustor which is terminated

by anechoic sections on both sides and does not support any acoustic mode. The
oscillation period T is solely related to the flame time lag τ .

ITA modes have other surprising properties. They respond to changes in boundary
conditions differently from classical thermoacoustic modes. They may also coexist with
standard thermoacoustic modes (Bomberg et al. 2015; Silva et al. 2017). For example,
adding acoustic dissipation at inlet and outlet in a burner can make ITA modes more un-
stable, a property that is totally unexpected for classical acoustic modes. It is interesting
to examine a map derived by Hoeijmakers et al. (2014) of the eigenfrequency locations
in the (ωi, ωr) plane for a combustor model similar to Fig. 6. Two configurations are
investigated. In Fig. 14 left, for a case where the ITA mode is stable (G(ωr) 6 Gc), a
classical unstable standing mode exists when R1 = 1 and R2 = −1. When the reflection
coefficients of inlet and/or outlet decrease, this mode becomes more stable as expected.
However, when anechoic conditions at the inlet and outlet are implemented by setting
R1 = R2 = 0, the system reaches the condition where the ITA mode may appear. Since
the mode is stable, it does not grow and the system behaves as expected. Making the
inlet and outlet anechoic drives the system to stability. On the other hand, if the ITA
mode is unstable when G(ωr) > Gc, as in the right plot in Fig. 14, the standing mode
that is unstable when R1 = 1 and R2 = −1 is replaced by an unstable ITA mode when R1

and R2 vanish. In this situation, making inlet and outlet anechoic does not stabilize the
system. It transforms the initially unstable standing mode into an unstable ITA mode.

The threshold level for the FTF gain G(ωr) > Gc = (1+Ξ)/(θΞ) can be determined for
a perfect gas with constant molecular weight. Using the definition of Ξ = (ρ2c2)/(ρ1c1) =
(T1/T2)1/2(S1/S2), one obtains

G(ωr) > Gc =
1

T2/T1 − 1

(
1 +

S2

S1

(
T1

T2

)1/2
)
. (4.8)

For most laminar premixed flames, the maximum values of the FTF gain G are of the
order of unity. ITA modes can appear only when G exceeds the critical threshold Gc.
Equation (4.8) shows that the critical threshold Gc decreases when the section ratio
S2/S1 between the combustion chamber and the inlet duct is reduced or when the
temperature ratio T2/T1 is increased. Intense flames in chambers with small sectional
area or strong confinement are more prone to intrinsic instabilities. This may explain
why ITA instabilities have not been observed very often up to now. They are induced
when the power per unit volume goes up corresponding to high values of T2/T1 or when
the chamber volume is diminished. Since future engines will use smaller, higher power
density chambers, ITA might appear in such devices. Their control requires some different
thinking as ITA modes respond in unexpected ways to increased acoustic losses that may
actually make them even more unstable.

4.3. Origin of intrinsic thermoacoustic modes

The mechanisms driving the instability loop of ITA modes with no interactions with
the acoustic chamber modes are not fully clear. Courtine et al. (2015) used DNS of ITA
modes in a laminar flame similar to Fig. 6. They modified the confinement S2/S1 from
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Figure 14. Trajectories of ITA modes for a toy model similar to Fig. 6 when the reflection
coefficients of the inlet and outlet vary (from Hoeijmakers et al. (2014)). Left: stable ITA mode
(G(ωr) 6 Nc). Right : unstable ITA mode (G(ωr) > (Γ + 1)/(θΓ )). The color scale corresponds

to the value of (R2
1 +R2

2)1/2 and measures the separation from a perfectly anechoic system.

1.5 to 6 and confirmed that the smallest confinement ratios lead to unstable ITA modes.
Figure 15 shows the modulus and phase of the pressure and velocity fluctuation signals
obtained from theory (solid lines) and from DNS (symbols). The structure of the first
ITA mode can be obtained by substituting the expression (4.5) for ω into (2.22) leading
to

|p̃2|
|p̃1|

= 1 and
|ũ2|
|ũ1|

=
S1

S2

[
θG(ωr)e

−ωiτ − 1
]
, (4.9)

for modulus and

arg[p̃1] = − π

c1τ
x,

arg[ũ1] = − π

c1τ
x,

arg[p̃2] =
π

c2τ
x,

arg[ũ2] =
π

c2τ
x+ π,

(4.10)

for phases.
Theoretical results deduced from (4.9) and DNS agree as shown in Fig. 15 and this

confirms the expected ITA nature of the mode. Only acoustic propagation is observed
on both sides of the flame zone. The phase unwraps at the speed of sound on both sides
of the flame and the unsteady pressure modulus is the same everywhere indicating that
the flame is the acoustic source and waves propagate away from it in both directions
without any reflection. No acoustic node is observed anywhere. The ratio of unsteady
velocities between the burned and the cold gases |ũ2|/|ũ1| is also well captured even if
hydrodynamic mechanisms in the flame zone induce unsteady velocities that cannot be
captured by theory.

The mechanisms controlling the mode can be isolated using the DNS results. Figure 16
displays snapshots of the flow during one unstable cycle (left) and the time evolution of
chamber pressure, reference point velocity in the inlet duct and total heat release rate. All
time signals are strongly nonlinear, even pressure, something unusual for thermoacoustic
instabilities. The chamber pressure and the reference point velocity are perfectly out of
phase as expected from Crocco’s relation (2.23) when the period of the mode is twice the
flame delay τ . Since the chamber pressure and the reference velocity are also out of phase
in Fig. 15, the rate of heat release and the chamber pressure are in phase as expected
from the Rayleigh criterion.

Figure 16 left shows that the cycle begins when a vortical perturbation visualized by the
Q criterion (Hussain & Jeong 1995) is initiated at the corners of the dump plane at instant
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Figure 15. First ITA mode structure for the configuration of Fig. 6 (Courtine et al. 2014).
Solid line: theory (4.9). Symbols: DNS.

Figure 16. Unstable loop driving the first ITA mode in Fig. 6 (Courtine et al. 2015).

t1. This vortical perturbation travels along the flame front and increases its surface (time
t2). At instant t3, the flame reaches its maximum length and heat release is maximum
too. At this time the velocity in the inlet duct is minimum and the flame has to retract
very rapidly towards the dump plane by the usual flame restoration mechanism. This
creates an acoustic wave propagating upstream and impinging on the injector corner.
At this instant, time t4, mode conversion takes place at the corner, transforming the
acoustic wave into a new vortical wave and closing the cycle. Mode conversion (Birbaud
et al. 2007) is an important part of the unstable loop. It transforms acoustic waves into
vorticity at the corners of the dump plane (Blanchard et al. 2015). All mechanisms take
place between the dump plane and the extreme position of the flame.

The cycle can be synthesized as downstream convection of the vortical wave created by
mode conversion at the dump plane followed by a fast acoustic propagation leading to a
new mode conversion. No acoustic reflection from the chamber inlet or outlet is involved.
This was also verified by Courtine et al. (2015) who performed the same simulation in
a chamber where the lengths of inlet and combustion chamber were multiplied by two,
leading to exactly the same mode.

While theory as well as numerical investigations converge on the reality of ITA modes
(Hoeijmakers et al. 2014; Courtine et al. 2015; Silva et al. 2015; Emmert et al. 2017),



Dynamics and control of combustion systems 35

Figure 17. Experimental configuration to study ITA modes for laminar flames (PhD of P. G.
M. Hoeijmakers, 2014).

experimental work has been limited up to now to that of Hoeijmakers et al. (2016). To
construct a setup exhibiting an ITA mode, the difficulty is that inlet and outlet must
both be anechoic to ensure that R1 = R2 = 0. This can be obtained by installing horns
on inlet and outlet. However, doing so perfectly is difficult, especially on the exhaust
side where hot gases leave the chamber and a heat exchanger is required to protect the
exhaust duct. Figure 17 shows the experiment at TU Eindhoven, including a large horn
at the flow inlet and a set of laminar premixed flames in the chamber.

The previous evidence indicates that ITA modes need to be considered in addition
to the more standard thermoacoustic modes. In the standard view the flame generates
acoustic disturbances that are reflected back at the system boundaries. This ignores ITA
modes which result from a resonant loop within the flame zone itself. Thermoacoustics
in a combustion chamber is governed by two different loops, one associated to the flame
injector interaction, governed by the FTF and the injector impedance and another one
controlled by the geometry of the combustor, in particular its inlet/outlet reflection
coefficients. ITA modes, observed for zero reflection coefficients are essentially driven by
the flame dynamics and decoupled from the resonant cavity modes. There are however
possible interactions between thermoacoustic modes and ITA modes making the latter
potentially unstable. How these two types of modes interact in a real configuration with
partially reflecting boundary conditions still raises open questions that merit further
investigations (Emmert et al. 2017; Silva et al. 2017).

Recently, Orchini et al. (2020) made a further step in this direction and developed
a theoretical framework to classify all modes of a given thermoacoustic system. Their
analysis does not rely on any assumption regarding acoustic reflection at the system
boundaries and the existence of ITA modes is proved to be only linked to the FTF
gain. Their analysis also shows how ITA modes and classical thermo-acoustic modes may
interact leading eventually to the formation of exceptional points.

4.4. Coupling with intrinsic thermoacoustic modes

The previous analysis indicates that there is a growing number of studies examining
the complex interplays between these modes, but despite numerous theoretical analysis
suggesting occurence of ITA modes in real combustors (see for example Ghani et al.
(2019)), direct experimental evidence of ITA modes are rare and the results are so far
limited to the setup studied by Hoeijmakers et al. (2016) with high acoustic losses.

Dedicated experimental setups instrumented for FTF characterization and with con-
trollable acoustic boundary conditions are missing. The atmospheric laminar INTRIG
setup used at IMFT laboratory and shown in Fig. 18 offers some interesting perspective
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Figure 18. INTRIG setup used at IMFT to study coupling between intrinsic and acoustic
modes. The length of the combustion chamber can be fixed to 0.10, 0.20 or 0.35 m. The flame
occupies a large fraction of the combustion chamber. From Miguel-Brebion et al. (2016).

in this respect. A relatively long two dimensional methane/air wedge flame is stabilized
on a rod as shown on the right picture in Fig. 18. The rod can eventually be cooled by
an internal water recirculation circuit to study its impact on flame anchoring (Miguel-
Brebion et al. 2016). Results presented herein were obtained for the uncooled setup in
which reactants are injected at an equivalence ratio φ = 0.75 and the flow is uniform
upstream the bluff body anchoring the flame with a bulk velocity u = 1.07 m/s.

The FTF was measured when the setup is equipped with a short combustion chamber
L = 0.10 m downstream the bluff body. In this case the system is free of CI and is
designated as stable. Results plotted in Fig. 19 reveal that this long flame interacting
with the sidewalls features a large frequency bandwidth with gain values largely exceeding
unity. The FTF gain threshold Gc = 0.67 is plotted as a dashed horizontal line in Fig. 19.
It has been calculated with (4.8) for fresh reactants at Tu = 292 K and an average value
of the burnt gases temperature measured in the setup at Tb = 970 K. The plot on the
right in Fig. 19 shows that the FTF phase lag ϕ regularly increases. It has been divided
by 2π to ease reading. More information has been added on this figure. Regions that are
susceptible to trigger a CI coupled to the 1/4-wave mode of the setup are indicated by
gray horizontal bands. These regions correspond to positive values of the Rayleigh index
that are conditioned by the values taken by the FTF phase lag ϕ (see section 2)

2n+ 1

2
6

ϕ

2π
6 n+ 1, (4.11)

where n = 0, 1, 2, ... . Finally, the red horizontal lines in the phase plot in Fig. 19
correspond to conditions that need to be satisfied by the FTF phase lag ϕ in order
to trigger an ITA instability as determined by the expression (4.5), i.e. when

ϕ

2π
= fnr τ =

2n+ 1

2
. (4.12)

These conditions also match those associated to marginally stable 1/4-wave modes and
correspond to the bottom boundaries of the gray bands in the right plot in Fig. 19.
To better emphasize conditions leading to ITA instability, circles have been added on
the gain and phase lag plots in Fig. 19. Open circles correspond to situation where the
FTF gain is higher than the threshold G > Gc (4.8). Black filled disks comply with the
condition (4.12) for the phase lag, but violate the condition (4.8) on the FTF gain.

When the short combustion chamber is replaced by a longer one L = 0.35 m, the
system transits to a self-sustained combustion oscillation for the same flow operating
conditions. The power spectral density of the acoustic pressure recorded by a microphone
in the chamber is plotted in Fig. 20. Raw data were averaged with a Welch periodogram
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Figure 19. Gain G (left) and phase lag ϕ (right) of the FTF in the INTRIG setup equipped
with an uncooled bluff body and a short combustion chamber L = 0.10 m. Adapted from
Miguel-Brebion (2017).
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Figure 20. Pressure spectrum recorded in the INTRIG setup quipped with an uncooled bluff
body and a short combustion chamber l = 0.10 m. Adapted from Miguel-Brebion (2017).

method to obtain a statistical meaningful information on the spectral pressure distri-
bution. This is why the peaks spread over a short frequency bandwidth around their
maximum in Fig. 20, but one clearly identifies a series of well defined peaks over the back
ground noise. The frequency fa = 275 Hz associated to the 1/4-wave acoustic mode of the
system without unsteady heat release (F = 0) calculated with the methodology described
in section 3 corresponds to the square symbol superimposed on the dashed vertical line in
this plot. Intersection of this line with the FTF phase lag ϕ is also superimposed on the
phase lag plot in Fig. 19 and confirms that fa falls within a gray unstable band (square
symbol) meaning that the 1/4-wave mode associated to fa is unstable. One also sees that
the largest pressure peak observed in Fig. 20 is close to fa.

Another striking feature is that the frequencies of the series of pressure peaks below
the frequency fa in Fig. 20 well coincide with the frequencies of unstable ITA modes
(circles) determined with the help of Fig. 19. This is at least the case for the lowest ITA
frequencies. The frequency difference match ITA predictions within less than 4% for the
first 7 peaks. When the frequency approaches fa more deviation can be seen between the
symbols (circles and square) and the pressure peaks. Finally, for frequencies higher than
fa, the pressure peaks are less marked in Fig. 20 and are rapidly damped, but one may
still discern some coherence with the frequencies of the stable ITA modes (black disks)
as determined with the help of Fig. 19.

Similar observations were made for another operating condition when the bluff body is
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cooled by water circulation. A close match is again found between the frequencies of the
pressure peaks recorded during a self-sustained CI with the ITA frequencies determined
with the help of the FTF in a stable situation. These peak frequencies associated to
ITA modes rapidly vanish in the pressure spectrum for frequencies higher than the first
acoustic mode of the system. These observations corroborate to some extent the analysis
from Orchini et al. (2020). Conditions to trigger ITA modes seem to be independent
from the acoustic boundary conditions of the system. The INTRIG setup features some
damping, but reflects acoustic waves at both the inlet and outlet. As the ITA frequencies
get closer to the first acoustic mode frequency, complex dynamics seems to take place
in Fig. 20 probably underlying the interplays between these modes. It is moreover here
found that once the ITA frequency is higher than the first acoustic mode of the system,
frequencies associated to ITA modes rapidly disappear in the pressure spectrum. Note
however that this condition is concomitant to a drop of the FTF gain below the critical
threshold level G 6 Gc in Fig. 19. It is thus difficult with these data to fully interpret
this feature.

These preliminary results need to be taken with caution and more experiments are
indubitably needed to confirm the trends for example by varying the length of the
combustor. These data are yet not available for the INTRIG setup. However, these
experiments probably show for the first time evidence of ITA modes coexisting with
a classical thermo-acoustic mode in a setup with partially reflecting boundaries. The
experimental methodology combining a highly responsive flame coupled to a system
featuring a series of low frequency ITA modes before the first acoustic mode of the
system offers some interesting perspective to study the coupling between these modes.
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5. Azimuthal modes in annular chambers

We have examined up to now instabilities coupled by longitudinal acoustic modes.
There are however instances where coupling involves transverse modes, i.e. modes that
do not have a planar structure in the transverse direction. This section is more specifically
concerned with the analysis of combustion instabilities coupled by azimuthal modes in
configurations where the combustor is annular, a situation that is found in aircraft engines
and in many gas turbines. Oscillations observed in these devices are most often coupled
by azimuthal modes because the largest dimension of these systems is the perimeter.
The corresponding eigenfrequencies have the lowest values and fall in the range where
the flames have their highest gains and are most susceptible to incident perturbations.
Azimuthal instabilities observed in these devices give rise to many issues and they are
the subject of a large scale effort aimed at developing an understanding of the basic
mechanisms, performing comprehensive simulations and deriving low order predictive
tools.

A theoretical framework is provided here to tackle these problems in an idealized
fashion. The geometry of the chamber and of the flame are represented by simplified
network models. The flame response is included in the form of a FTF (or an FDF if
one wishes to account for nonlinear characteristics) and the injectors are characterized
by their impedance. It is assumed that the flames established over each injector in the
combustor are compact with respect to the wavelength and that the spacing between
injectors is also small with respect to this wavelength. The general objective is to provide
simple guidelines for stability analysis of annular systems. This is then illustrated in
combination with measurements of the FTF to analyze conditions leading to instability
in the MICCA annular setup from EM2C laboratory.

The analytical framework is derived by considering annular systems in which the
annulus is thin compared to its mean radius so that the system may be unwrapped as
shown in Fig. 21. The annular combustor is replaced by an equivalent rectangular system
by imposing periodicity conditions on the lateral walls. This unwrapping is convenient
but not essential and many results obtained have a greater degree of generality. Analytical
results are derived that can be used to interpret current experimental investigations of
instabilities coupled by azimuthal modes.

A first objective is to derive analytical expressions for the frequencies and growth
rates of CIs coupled by azimuthal modes relying on a Compact Flame Dynamical
Model (CFDM), in which the flame is represented as a compact discontinuity separating
upstream and downstream regions as shown in Fig. 22(a). In this first representation,
no difference is made between injectors and the combustion region is supposed to spread
out as a single flame sheet covering the entire cross section of the combustion chamber.
Simplified expressions are obtained with the CFDM by discarding effects of the acoustic
field on flame dynamics.

A second objective is to develop an energy balance analysis (EBA) in section 5.2
to show that the growth rate of CIs can be deduced from the ratio of the integrated
energy flux difference across the combustion region to the integrated energy density over
the combustor volume. It is shown that expressions derived for growth rates with the
EBA match those derived from wave field calculations in which the feedback of from the
acoustic field was discarded.

A third objective is to derive a general dispersion relation from a model, designated
DFSM for Discrete Flame Source Model, in which combustion over each injector is
represented by a set of N flames periodically distributed in the annular system and acting
like point sources as shown in Fig. 22(b). A general dispersion relation is deduced from



40 T. Schuller, T. Poinsot and S. Candel

Figure 21. (a) Annular combustor system. The distance between the inner and outer cylinders
forming the side walls is small compared to the mean radius d << (Ri + Re)/2. (b) The
annular combustor is unwrapped by cutting the geometry by an axial plane. (c) The equivalent
rectangular combustor has a width P = π(Ri + Re), its length is equal to that of the initial
annular system. The depth is equal to the distance between the inner and outer cylinders
d = Re −Ri.

Figure 22. (a) Compact Flame Dynamical Model (CFDM). The combustion region is thin
compared to the wavelength and it is treated as a discontinuity separating an upstream region
1 from a downstream region 2. (b) Discrete Flame Source Model (DFSM). Combustion takes
place in a set of N discrete flames acting like point sources. The point sources are separated by
a distance ∆x such that N∆x = P.

a wave equation describing this configuration in section 5.3. The roots of this dispersion
relation can then be determined by making use of a perturbation analysis leading to a
third alternative to determine the growth rates of CI coupled to azimuthal modes.

The agreement between expressions derived from CFDM, EBA and DFSM illustrated
on mixed azimuthal-longitudinal modes as well as for CI coupled to purely azimuthal
modes gives confidence in the application of these expressions to stability analysis.

It is then possible to use the previous results to interpret experimental data instability
studies. As an illustration, the theoretical growth rates are used in combination with an
experimental determination of the FTF to derive necessary conditions for instability in
an annular combustor equipped with matrix laminar injectors and predict the possible
bands of instability of this system.

5.1. Compact Flame Dynamical Model (CFDM)

One now considers the generic unwrapped annular system shown in Fig. 22(a), where
regions (1) and (2) are filled with fresh reactants and burned gases, respectively, and are
separated by a flame sheet at a distance a from the combustor backplane. It is assumed
that the acoustic pressure is a function of the axial x and transverse y directions only
and is uniform in the z direction, corresponding to the radial coordinate. The Fourier
transforms of the pressure fields in regions (1) and (2) are solutions of the Helmholtz
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equation and take the generic form

p̃j =
(
A+
j e

ikjxx +A−j e
−ikjxx

)
eikjyy, (5.1)

where (kjx)2 + (kjy)2 = k2
j = (ω/cj)

2 and j = 1, 2 is an index associated to region (1) or

(2). The quantities A+
j and A−j are complex constants.

This pressure field needs to comply with the acoustic boundary conditions of the system
in the transverse and axial directions. Due to the periodicity of the pressure field in the
transverse direction (Fig. 23), one has

exp(ikjyP) = exp(ikjy0) = 1, i.e. kmjyP = 2π(m+ 1), (5.2)

for m=0,1,2,... . In these expressions, P = π(Ri + Re) = πD designates the mean
perimeter of the annular system. One may also note that the transverse coordinate y
is linked to the azimuthal angle θ by y = θD/2 indicating that kmjyy = (m + 1)θ. All
linear combinations of the real valued functions ψj(y) = cos(kmjyy) or sin(kmjyy) satisfy
(5.2) so that the pressure field in the annular system may be rewritten as

p̃1 =
(
Aeik1xx +Be−ik1xx

)
ψ1(y), (5.3)

p̃2 =
(
Ceik2xx +De−ik2xx

)
ψ2(y). (5.4)

The components u′ and v′ of the acoustic velocity vector u′ are deduced from the
linearized momentum balance. For the axial components, one gets

ρ1c1ũ1 =
k1x

k1

(
Aeik1xx −Be−ik1xx

)
ψ1(y), (5.5)

ρ2c2ũ2 =
k2x

k2

(
Ceik2xx −De−ik2xx

)
ψ2(y). (5.6)

For the transverse acoustic velocity components, one has

ρ1c1ṽ1 = −i
km1y
k1

(
Aeik1xx +Be−ik1xx

)
ψ′1(y), (5.7)

ρ2c2ṽ2 = −i
km2y
k2

(
Ceik2xx +De−ik2xx

)
ψ′2(y), (5.8)

where ψ′j(y) = − sin(kmjyy) if ψj(y) = cos(kmjyy) and ψ′j(y) = cos(kmjyy) if ψj(y) =
sin(kmjyy).

The acoustic field also needs to comply with the jump conditions for the axial flow
components (2.7) and (2.8) across the flame sheet. Assuming again that they can be
represented by their specific admittances β1 = ρ1c1ũ1/p̃1 and β2 = ρ2c2ũ2/p̃2 (see
Fig. 23), one is left with the same dispersion relation (3.3) as for pure axial modes

β2

Γ
− β1 (1 + θF) = 0. (5.9)

This general expression sets the wave numbers k1x and k2x for the axial acoustic
components and thus fully defines the angular frequencies ω of the acoustic modes

ωm
cj

=

[(
2π(m+ 1)

P

)2

+ (kjx)2

]1/2

, (5.10)

where j = 1 or 2. When the axial wave number vanishes kjx = 0, one is left with purely
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Figure 23. Boundaries in transverse and axial directions determining the structure of the
acoustic field in annular systems.

azimuthal modes designated here as “(m+1)A” modes of frequencies fj = (m+ 1)cj/P.
When the acoustic field also features an axial component, the wave numbers kjx take
discrete values in (5.10) and modes are of mixed azimuthal-longitudinal type. To
fully characterize the axial acoustic field, one needs to specify the upstream β1 and
downstream β2 admittances seen by the flame sheet.

Two different generic configurations represented in Tab. 2 are further investigated.
The first one in the left column is an annular combustor comprising a plenum of
height a, which has the same cross section as the annular combustion chamber and
a flame sheet covering the entire annular section. The burned gases are exhausting
in this case at atmospheric pressure. This configuration is a simplified model of the
MICCA annular combustor studied at EM2C (Bourgouin et al. 2015; Prieur et al. 2017,
2018). A more advanced model of the MICCA combustor is presented in section 5.4.
In this case the modes are of mixed type meaning that they feature both an axial
and azimuthal acoustic components. The right column in Tab. 2 shows an annular
combustion chamber terminated by a compact choked nozzle, which is simulated by an
acoustic velocity node ũ1(l) = 0. This model also takes into account the response of the
burners by considering their admittance β1 = β which remains uniform over the annular
cross section. This type of model often serves in theoretical analysis of the dynamics of
purely azimuthal modes corresponding to β = 0 (Noiray et al. 2011; Ghirardo et al. 2016).

Replacing the expressions for β1 and β2 in Tab. 2 for the two configurations in Eq. (3.3)
yields the dispersion relations reproduced in the last line in Tab. 2, where it has been
further assumed that ρ1 = ρ2 = ρ and c1 = c2 = c to simplify the expressions. In this
case, k2x = k1x = kx, k2y = k1y = ky and k2 = k1 = ω/c. Note that this is not a
restriction of the method, it is used here to make the expressions more compact.

5.1.1. Instabilities coupled by a mixed azimuthal-longitudinal mode

The dispersion relation associated to the left configuration in Tab. 2 is reproduced here
for convenience

cos(kxl)− θF(ω) sin(kxa) sin(kxb) = 0, (5.11)

where a+ b = l. Roots of this equation determine the system dynamics and in particular
its stability with respect to acoustic perturbations.

In the absence of unsteady flame response F = 0, (5.11) reduces to

H(ωn) = cos(knx l) = 0 i.e. knx l = (2n+ 1)
π

2
, n = 0, 1, 2, ... (5.12)

Inserting these expressions for knx in Eq. (5.10) fully determines the eigenfrequencies of
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Table 2. Schematic of the two generic unwrapped annular combustors investigated. Left:
Annular combustor with a plenum (0 6 x < a), flame (x = a) and combustion chamber
exhausting to the atmosphere. Right : Annular combustion chamber with a burner admittance
β (x = 0−), flame (x = 0+) and a combustion chamber equipped with a compact sonic nozzle.
The table gives the expressions for the upstream β1 and downstream β2 specific admittances
seen by the flame sheet and the associated dispersion relation when ρ1 = ρ2 = ρ and c1 = c2 = c.

Configuration

y

x

l

a

u (0)=0
1

p (l)=0
1

z

∼

∼

Flame sheet

y

x

l

1�cu (0)= p (0)1

u (l)=01

z

∼

∼ ∼

Flame sheet 0+

0
-

β1 =
ρ1c1ṽ1
p̃1

i
k1x
k1

tan (k1xa) β(ω)

β2 =
ρ2c2ṽ2
p̃2

i
k2x
k2

cotan (k2x(l − a)) −i k2x
k2

tan (k2xl)

Dispersion cos(kxl)− sin(kxa) sin(kx(l − a))θF β cos(kxl) + i
kx
k

sin(kxl) + cos(kxl)βθF
relation = 0 = 0

this annular system

fnm = c

[(
2n+ 1

4l

)2

+

(
m+ 1

P

)2
]1/2

, where n = 0, 1, 2, ... and m = 0, 1, 2, ...

(5.13)
These expressions confirm that in the absence of flame, the only possible modes are
of mixed azimuthal-longitudinal type and are designated as “(m+1)A-(2n+1)L” modes.
Purely azimuthal modes are found in the limit of large chamber lengths l→∞.

In the following, one considers that the system operates close to the resonant
frequencies fnm, which is a combination of the (2n+1)/4 wave axial mode of frequency
(2n + 1)c/(4l) and the (m+1) pure azimuthal mode of frequency (m + 1)c/P. The
frequency of the mixed (m+1)A-(2n+1)L mode in (5.13) is always higher than the
frequencies corresponding to the purely (2n+1) axial and purely (m+1) azimuthal
modes.

A stability analysis of modes at frequencies fnm = ωnm/(2π) = knm/(2πc) is now carried
out with effects of unsteady heat release. One makes here the same approximation as
for the stability analysis of longitudinal modes for which perturbations of the complex
angular frequencies were deduced by neglecting the feedback from acoustics on heat
release disturbances

ω1 ' −
L(ωnm)F(ωnm)

(∂H/∂ω)ωn
m

. (5.14)

It will be later shown with the EBA approach that this approximation is also pertinent
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for CIs coupled to azimuthal modes. To do so, one first needs to determine(
∂H
∂ω

)
ωn

m

=

(
∂H
∂kx

)
knx

(
∂kx
∂ω

)
ωn

m

=
1

c

knm
knx

(
∂H
∂kx

)
knx

. (5.15)

For H(ω) = cos(knx l), one gets(
∂H
∂ω

)
ωn

m

= − l
c

knm
knx

sin(knml). (5.16)

For L(ωnm) = −θ sin(knxa) sin(knxb), use of (3.7) leads to the following expression for the
complex perturbation in angular frequency ω1 with respect to the modal eigenfrequency
ωnm

ω1 = − k
n
x

knm

sin(knxa) sin(knxb)

sin(knx l)

c

l
θF(ωnm). (5.17)

At resonance knx l = (2n + 1)π/2 and sin(knx l) = (−1)n and the FTF is expanded as
F(ωnm) = G(ωnm) exp(iϕ(ωnm)). The latter expression reduces to

ω1 = −(−1)n
knx
knm

sin
(

(2n+ 1)
πa

2l

)
sin

(
(2n+ 1)

πb

2l

)
c

l
θG(ωnm) exp(iϕ(ωnm)). (5.18)

The angular frequency disturbance is a complex number ω1 = ∆ωr + iωi, from which
one deduces the deviation of the angular frequency ∆ωr with respect to ωnm and the
growth rate ωi of this perturbation

ωi = −(−1)n
knx
knm

sin
(

(2n+ 1)
πa

2l

)
sin

(
(2n+ 1)

πb

2l

)
c

l
θG(ωnm) sin(ϕ(ωnm)). (5.19)

These relations yield the stability bands of all mixed (m+1)A-(n+1)L azimuthal-
longitudinal modes, which are unstable for positive growth rates ωi > 0. The first 1A-1L
mode is obtained for m = 0 and n = 0 at frequency

f0
0 = f0 =

ω0

2π
= c

[(
1

4l

)2

+

(
1

P

)2
]1/2

. (5.20)

The corresponding wavenumber is k0
0 = ω0/c and k0

xl = π/2. This mode is unstable when
sin(ϕ(ω0)) < 0, i.e.

(2p+ 1)π < ϕ(ω0) < 2(p+ 1)π, p = 0, 1, 2, ... (5.21)

In the unstable bands, one also deduces that when (1 + 2p)π < ϕ(ω0) < (3/2 + 2p)π,
the instability frequency is slightly higher than the resonant frequency f0. When (3/2 +
2p)π < ϕ(ω0) < 2(p+ 1)π, the instability frequency is lower than the resonant frequency
f0.

It is also worth noting that if the flame is located at x = a = 0, the system would
be unconditionally stable because the axial acoustic velocity normal to the flame front
vanishes at this location due to the boundary condition ũ1(0) = 0. This problem is
revisited in the next section by further considering the role of the response of the injectors
in triggering instabilities.

5.1.2. Effects of the burner impedance on a pure 1A azimuthal mode

Close to the chamber backplane, the axial acoustic velocity vanishes and the acoustic
field would be mainly oriented in the transverse direction. An unsteady flame sheet trans-
verse to the axial direction would not produce any significant heat release fluctuations



Dynamics and control of combustion systems 45

in response to this acoustic forcing. Direct effects of the transverse acoustic field were
shown to lead to limited high frequency heat release disturbances (Baillot & Lespinasse
2013; O’Connor et al. 2015) that cannot explain the low frequency and large self-sustained
combustion oscillations coupled by azimuthal modes observed in many annular chambers.
While the direct effect of transverse fluctuations might alter some of the features of the
flow and combustion dynamics in annular systems (Ghirardo & Juniper 2013; Saurabh
et al. 2017; Prieur et al. 2018), a more powerful mechanism is at work.

To limit the pressure drop through the injectors, their response to the pressure
oscillation in the annular chamber often induce large perturbations of the mass flowrate
through the discharge nozzle (Krebs et al. 2002; Wolf et al. 2012). This mechanism
indirectly generates large acoustic velocities normal to the flame front and needs in turn
to be considered in the stability analysis. It is shown in the following how to introduce
this feature by taking into account the burner impedance.

The analysis is here carried out by considering a velocity node at the combustor
exhaust ũ2(l) = 0. This situation prevails when the outlet boundary of the combustor
has a high impedance like in gas turbines equipped with choked nozzles. The response
of the burners and the plenum to pressure fluctuations in the annular chamber is
characterized by an inlet admittance β(ω) = ρcũ1(0)/p̃1(0) (Krebs et al. 2002). One also
further assumes that the flame is located at the chamber backplane by setting a = 0.
This situation corresponds to that shown in the right column in Tab 2. Only the main
steps of the stability analysis are briefly outlined.

The dispersion relation reduces in this case to

β cos(kxl) + i
kx
k

sin(kxl) + cos (kxl) θβF(ω) = 0. (5.22)

Without unsteady heat release, the eigenfrequencies are the solutions of

H(ωn) = β cos(knx l) + i
knx
k

sin(knx l) = 0. (5.23)

The modal structure now explicitly depends on the burner admittance β. For small
admittances β → 0, modes correspond to the roots of sin(knx l) = 0. For large admittances
β → ∞, modes are determined by cos(knx l) = 0. In the general case, it is more difficult
to determine explicit expressions of these modes.

It is now convenient to limit the analysis to the first resonant mode of the system ω0

obtained for k0
x and k0. At resonance, one has

β(ω0) = −ik
0
x

k0
tan(k0

xl). (5.24)

By following the same methodology as in the previous section, roots of (5.22) are
sought around resonance at ω0 where H(ω0) = 0 and the perturbed angular frequency is
given by

ω1 = −L(ω0)F(ω0)(
∂H
∂ω

)
ω0

, (5.25)
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with L(ω0) = θβ(ω0) cos(k0
xl) and(

∂H
∂ω

)
ω0

= i
l

c
cos(k0

xl) +
i

c

(k0
y)2

k0
xk

2
0

sin(k0
xl) + i

l

c
tan(k0

xl) sin(k0
xl), (5.26)

where (k0
x)2 + (k0

y)2 = k2
0 and use has been made of (5.24). It is difficult to get analytical

solutions without further simplifications.

In the limit of compact annular chambers k0
xl� 1, modes are of purely azimuthal type

and axial gradients vanish, k0
x → 0 and k0

y = (k2
0 − (k0

x)1/2)1/2 ' k0 = 2π/P. One finds
in this limit (

∂H
∂ω

)
ω0

' i l
c

1 +

(
k0
y

k0

)2
 = i2

l

c
and L(ω0) ' θβ(ω0). (5.27)

The perturbed angular frequency is finally given by

ω1 = i
1

2

c

l
θβ(ω0)F(ω0). (5.28)

In this expression, the specific admittance β and flame transfer function F are evaluated
at the angular frequency ω0. The imaginary component of ω1 yields the perturbation
growth rate

ωi =
1

2

c

l
θ< [β(ω0)F(ω0)] . (5.29)

The growth rate of CIs is found to be proportional to the susceptibility θ = T2/T1−1 and
the product of the injector specific admittance β and flame transfer function F which
are both estimated at the resonance angular frequency ω0.

5.2. Energy balance analysis (EBA)

The objective of the following analysis is to retrieve the growth rates ωi for mixed
azimuthal-axial modes given by (5.19) and purely azimuthal modes in (5.29) with an
alternative method relying on acoustic energy balance calculations. In this approach,
there is no approximation regarding the effects of acoustic feedback on heat release
disturbances. For this one first calculates the acoustic energy flux originating from
the flame. One then obtains the acoustic energy density in the system. Calculations
are carried out first for a mixed azimuthal-longitudinal mode and then for a purely
azimuthal mode.

The analysis begins by considering the acoustic energy flux flowing through a surface S
characterized by a normal unit vector n. This flux integrated over a period of oscillation
T = 2π/ω is given by F in (2.45). With perturbations expressed in Fourier space, the
acoustic energy flux in the normal direction F may also be written as

F =
1

2
<[p̃∗1ũ1] =

1

2
<[p̃1ũ

∗
1]. (5.30)

Across the flame sheet, the acoustic pressure being constant (2.8) and the velocity jump
being given by (2.14), their products also write

p̃∗2ũ2 = p̃∗1ũ1 (1 + θF(ω)) (5.31)

Taking the real component of this expression leads to

F2 − F1 = θ< [Y1F(ω)]
1

2
|p̃1|2, (5.32)
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where Y1 = ũ1/p̃1 = ρ̄1c1β1 denotes the injector admittance. Alternatively, the acoustic
flux F1 through the injector may also be expressed as a function of the injector admittance
F1 = <[Y1](1/2)|p̃1|2.

Integration of (5.32) over the cross section area S of the flame yields an expression
for the supplementary acoustic energy flux resulting from the flame response to acoustic
perturbations that delivers unsteady perturbations in heat release rate

R =

∫
S

(F2 − F1)dS =

∫
S

θ< [Y1F(ω)]
1

2
|p̃1|2dS. (5.33)

This expression yields an alternative form of the Rayleigh index R appearing in the
acoustic energy balance (2.40) and highlights the main parameters controlling the sus-
ceptibility of the system to combustion instabilities. The excess of acoustic power is
proportional to θ = T2/T1 − 1. It is also proportional to the real component of the
product of the injector admittance Y1 and FTF F . This latter contribution is intrinsic
to the flame/injector system describing its frequency response to acoustic perturbations.

The growth rate of oscillations can then be deduced by taking the ratio of the power
flow into the system due to the flame to the total acoustic energy in the combustor
volume V (Cantrell & Hart 1964) as explained in the tutorial section

2ωi =
R−P
E

=

∫
S

(F2 − F1)dS/

∫
V

EdV , (5.34)

where P = 0 because p̃ or ũ are zero at the system boundaries in the selected examples
and ωi = =(ω) is the imaginary component of the angular frequency.

A “stiff” injector is defined by an infinite impedance or a vanishing admittance Y1 ' 0
corresponding to a vanishing velocity perturbation ũ1 ' 0. Increasing the acoustic
stiffness of the air injector is a way to reduce the system susceptibility to CIs, but this is
generally accompanied by an increase of the pressure drop. In many practical systems,
the pressure drop through the air injection units needs to be minimized leading to
designs with a relatively low impedance featuring a “loose” injector response to acoustic
perturbations. For a pressure release air injector, p̃1 ' 0 and Y1 → ∞, the excess of
acoustic flux is in this case solely determined by the FTF F . The role of the injector
specific admittance β for CIs coupled to azimuthal modes is further discussed in section
5.4.

5.2.1. Energy balance analysis for mixed azimuthal-longitudinal modes

Calculations are first carried out for the configuration shown in Tab. 2 featuring a rigid
wall on the upstream side x = 0 and an open boundary at the outlet x = l with a flame
sheet at x = 0. They make use of results from the previous section and in particular
those obtained by considering that the oscillation is close to a resonant mode of the
system. Due to the pressure release outlet, modes are of mixed azimuthal-longitudinal
types.

The pressure and axial velocity just upstream of the flame are as follows

p̃1 = A cos(kxx)ψ(y) and ρ̄cũ1 = iA
kx
k

sin(kxx)ψ(y), (5.35)

where A is a constant and ψ(y) = cos(kmy y) or sin(kmy y) or a linear combination of these
two functions. The specific admittance upstream of the flame is in this case

β = i
kx
k

sin(kxa)

cos(kxa)
, (5.36)
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where k = (k2
x+k2

y)1/2 = ω/c. The admittance is purely imaginary and as a consequence
the acoustic energy flux F1 on the upstream side of the flame is zero F1 = 0. Expression
(5.32) yields the acoustic flux downstream the flame

F2 = −θ 1

2ρ̄c
|p̃1|2

kx
k

sin(kxa)

cos(kxa)
G(ω) sin[ϕ(ω)]. (5.37)

This flux is positive if

sin(kxa)

cos(kxa)
sin[ϕ(ω)] < 0. (5.38)

Considering for example the 1A-1L mode for which k0
x = π/(2l) so that both sin(k0

xa)
and cos(k0

xa) are positive, the condition for instability is π < ϕ < 2π, modulo 2π. When
this condition is satisfied the power flow from the flame region is positive and it was
seen previously that this condition on the phase lag ϕ of the FTF was also necessary to
obtain an instability coupled by the 1A-1L mode of the chamber.

It is convenient to rewrite the energy flux F2 in (5.37) by making use of the pressure
field expression calculated in the section x = a and noting that

|p̃1(x = a)|2 = |A|2 cos2(kxa)|ψ(y)|2. (5.39)

Inserting this expression in (5.37) leads to

F2 = −θ G(ω)
1

2ρ̄c
|A|2 kx

k
sin(kxa)cos(kxa) sin[ϕ(ω)]|ψ(y)|2. (5.40)

One may now assume that the pressure field corresponds to a resonance of the system such
that cos(knx l) = 0. This yields discrete values of the axial wavenumber knx = (2n+1)π/(2l),
where n = 0, 1, 2, ... . It is also easy to show that cos(knxa) = (−1)n sin(knxb) where b = l−a
and the acoustic energy flux becomes

F2 = −(−1)nθ G(ω)
1

2ρ0c
|A|2 k

n
x

kn
sin(knxa)sin(knxb) sin[ϕ(ω)]|ψ(y)|2. (5.41)

One may now calculate the energy density in the system integrated over an oscillation
period of the mode

E =
1

2

[
1

2

|p̃1|2

ρ̄c2
+

1

2
ρ̄|ũ1|2 +

1

2
ρ̄|ṽ1|2

]
. (5.42)

It is important to include in this expression the kinetic energy corresponding to the
longitudinal and transverse velocity components. This quantity has to be integrated
in the longitudinal and transverse directions and over the thickness d of the system
corresponding to the distance between the inner and outer walls of the combustor. One
finds after some algebra that the integrated value of the last two terms (corresponding to
kinetic energy) is equal to the integrated value of the first term (corresponding to elastic
energy) ∫

V

[
1

2
ρ̄|ũ1|2 +

1

2
ρ̄|ṽ1|2

]
dV =

∫
V

1

2

|p̃1|2

ρ̄c2
dV, (5.43)

and one obtains ∫
V

1

2

|p̃1|2

ρ̄c2
dV =

1

2

|A|2

ρ̄c2
lPd

4
, (5.44)

where P denotes the perimeter of the midline circle crossing the center of each burner in
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the annular chamber. This finally leads to∫
V

EdV =
|A|2

ρ̄c2
lPd

8
. (5.45)

It is then necessary to integrate the acoustic fluxes F1 and F2 over the surface S. It was
already indicated that F1 = 0 and one obtains∫

S

F2dS = −(−1)nθ G(ω)
1

2ρ̄c
|A|2 k

n
x

kn
sin(knxa)sin(knxb) sin[ϕ(ω)]

Pd
2
. (5.46)

The last two expressions inserted in (5.34) yield the growth rate of perturbations

ωi = −(−1)n
knx
kn

sin(knxa)sin(knxb)
c

l
θ G(ω) sin[ϕ(ω)]. (5.47)

This exactly coincides with the expression (5.19) obtained previously for the growth rate
of instabilities coupled to a mixed azimuthal-longitudinal mode under the assumption
that the presence of the flame and its transfer function only weakly perturb the wave
field in the system. This energy balance approach validates the approximation adopted
in determining the growth rates of CIs with (3.7).

5.2.2. Instabilities coupled by a purely azimuthal mode

It is next interesting to examine the stability of a purely azimuthal mode with the
energy method exploited previously. The geometry considered is that in the right column
in Tab. 2 with a flame sheet lying at the bottom of the combustion chamber at x = a = 0.
In this case, modes are uniform in the axial direction and have the form

ψ(y) exp(−iωt), (5.48)

where ψ(y) is equal to cos(kyy) or sin(kyy) or consists of a linear combination of these
two functions. The wavenumber k reduces in this case to k = ky = ω/c. The periodicity
condition (5.2) yields the modal angular frequencies kmy = (m + 1)2π/P = ωm/c, with
m = 0, 1, 2, .... And the structure of the corresponding pressure and velocity fields is then
given by

p̃1 = Aψ(y), (5.49)

ρcũ1 = 0, (5.50)

ρcṽ1 = −iAψ′(y), (5.51)

where ψ′(y) = − sin(kmy y) if ψ(y) = cos(kmy y) and ψ′(y) = cos(kmy y) if ψ(y) = sin(kmy y).
It is worth noting that in this case, there is so far no axial acoustic velocity acting on
the flame sheet.

As a consequence, the acoustic flux in the normal direction on the upstream side of the
flame corresponding to this purely azimuthal mode vanishes. However, if one assumes that
on the upstream side of the flame, the pressure field acts on the injector outlet producing
a normal velocity ũ1, this will produce an incoming acoustic flux. Assuming the injector
may be represented by its specific admittance β, the incoming acoustic energy flux writes

F1 =
1

2

<[β]

ρ̄c
|p̃1|2 =

1

2

|A|2

ρc
<[β]|ψ(y)|2. (5.52)

One may now use (5.32) in which the pressure field is replaced by (5.49) to get

F2 − F1 =
γ − 1

γ
θ< [F(ωn)β]

1

2

|A|2

ρc
|ψ(y)|2. (5.53)
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It is now easy to calculate the integral of the fluxes over the surface S∫
S

(F2 − F1)dS =
γ − 1

γ
θ< [F(ωn)β]

1

2

|A|2

ρc

Pd
2
. (5.54)

The next step is to determine the acoustic energy density and integrate this density
over the combustor volume. The energy density now only comprises two terms, the first
corresponds to the elastic energy associated with the pressure while the second is the
kinetic energy pertaining to the velocity in the transverse direction

E =
1

2

[
1

2

|p̃1|2

ρ̄c2
+

1

2
ρ̄|ṽ1|2

]
. (5.55)

One may again show that when these two terms are integrated over the volume they
yield equal contributions and that∫

V

EdV =
lPd

4

|A|2

ρc2
. (5.56)

One deduces the following expression for the growth rate by making use of (5.34)

ωi =
1

2

c

l
θ< [β(ωn)F(ωn)] . (5.57)

Again this expression for the growth rate corresponds to (5.29) obtained with the
CFDM for an instability coupled to a purely azimuthal mode. Note that it does not
depend on the axial position of the flame but is a function of the injector response
through its specific admittance β. This expression also differs from that obtained from a
mixed azimuthal-longitudinal mode by a factor of 2 which comes from the fact that the
acoustic energy in this mode is twice that of the modes featuring an axial structure.

It is interesting to express the injector admittance as β = B(ωn) exp(iπ + iδ) and to
use F(ωn) = G(ωn) exp(iϕ) leading to

ωi = −1

2
θ
c

l
G(ωn)B(ωn) cos(ϕ+ δ). (5.58)

which shows that growth rate of CIs are positive if the phase ϕ belongs to the interval
[π/2− δ, 3π/2− δ], Modulo 2π.

5.3. Discrete Flame Source Model (DFSM)

A third way to analyze azimuthal instabilities is now explored. In this model,
designated as Discrete Flame Source Model (DFSM), one considers a set of discrete
unsteady combustion sources periodically distributed in the annular system and one
assumes that these combustion regions may be assimilated to point sources as in
Fig. 22(b). The sound field is then obtained by making use of a modal expansion of the
pressure (Culick 2001). This is then used to derive a dispersion relation and perform a
stability analysis.

One begins with a reactive flow wave equation that may be cast in the form (Crighton
et al. 1992)

∂2p′

∂t2
+ 2α

∂p′

∂t
− ρc2∇ ·

(
1

ρ
∇p′

)
= (γ − 1)

∂q̇′

∂t
. (5.59)

This equation includes a damping term with a damping rate α. On the right hand side
is the volumetric unsteady heat release rate term which constitutes a source of the wave
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field.

It is convenient to use the normal modes of a wave equation without the damping term
(α = 0) and without the unsteady flame (q̇′ = 0). These modes are solutions of

ρc2∇ ·
(

1

ρ
∇ψn

)
+ ω2

nψn = 0. (5.60)

These normal modes are orthogonal if the boundary conditions imposed to the pressure
field are of the Dirichlet, Von Neumann or mixed type. We assume that this is the case
so that ∫

V

ψnψmdV = Λnδmn. (5.61)

In this expression Λn represents the energy of the n-th mode and δmn = 0 when m 6= n
and δmn = 1 when m = n. The pressure field is now expanded as

p′(x, t) =
∑
n

ηn(t)ψn(x), (5.62)

where ηn(t) are the amplitudes of this modal expansion. Inserting this expression in
the wave equation and projecting on one of the modes, one obtains a set of differential
equations for the modal amplitudes

d2ηn
dt2

+ 2α
dηn
dt

+ ω2
nηn =

1

Λn
(γ − 1)

∫
V

∂q̇′

∂t
ψndV. (5.63)

To pursue this analysis one has to specify the unsteady heat release source terms.
One considers that there are N injection points periodically distributed in the annular
combustor. It is also assumed that each flame acts like a point source

q̇′ =

N−1∑
j=0

Q̇′jδ(x− xj). (5.64)

The right hand side of (5.63) becomes

J =
1

Λn
(γ − 1)

∫
V

∂q̇′

∂t
ψndV =

1

Λn
(γ − 1)

N−1∑
j=0

dQ̇′j
dt

ψn(xj), (5.65)

and the amplitude equations become

d2ηn
dt2

+ 2α
dηn
dt

+ ω2
nηn =

1

Λn
(γ − 1)

N−1∑
j=0

dQ̇′j
dt

ψn(xj). (5.66)

These equations may now be written in the frequency domain

(−ω2 − 2iαω + ω2
n)η̃n = (−iω)

1

Λn
(γ − 1)

N−1∑
j=0

˜̇Qjψn(xj). (5.67)

The unsteady heat release rate is expressed by making use of the FTF˜̇Qj = Q̇j F(ω)
ũj
u
. (5.68)

Next, it is reasonable to assume that the mean heat release rate is the same for all flames

and write Q̇j = Q̇0. The velocity perturbation at the jth injection point may be expressed
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in terms of the pressure at that point by making use of the injector impedance

ũj =
p̃j
Z(ω)

=
1

Z(ω)

∑
m

η̃mψm(xj). (5.69)

The amplitude equations in frequency space become

(ω2 + 2iαω − ω2
n)η̃n = (iω)

1

Λn
(γ − 1)

Q̇0

u

F(ω)

Z(ω)

N−1∑
j=0

∑
m

η̃mψn(xj)ψm(xj). (5.70)

At this point it is worth considering the modal eigenfunctions ψn(xj). In some general
configurations, it is possible to write these modal functions as a product of a function
corresponding to the transverse structure and another function describing the axial
distribution

ψn(xj) = ψ⊥n(x⊥j)ψ‖n(xj), (5.71)

where x⊥j and xj respectively designate the transverse and axial positions. One may
now assume that the sources corresponding to all flames are located at the same axial
position xj = a. This allows a considerable simplification of the double sum appearing
in (5.70)

N−1∑
j=0

∑
m

η̃mψn(xj)ψm(xj) =
∑
m

η̃mψ‖n(a)ψ‖m(a)

N−1∑
j=0

ψ⊥n(x⊥j)ψ⊥m(x⊥j). (5.72)

In the annular case situation one may consider that the transverse position corresponds
to a single coordinate yj so that ψ⊥n(x⊥j) = ψ⊥n(yj), and the last sum can be calculated
approximately as an integral by multiplying this sum by ∆y = P/N

I =
N−1∑
j=0

ψ⊥n(x⊥j)ψ⊥m(x⊥j) =
1

∆y

N−1∑
j=0

ψ⊥n(yj)ψ⊥m(yj)∆y, (5.73)

which has the form of a Riemann sum. When ∆y is sufficiently small this sum is
approximately equal to an integral:

I ' 1

∆y

∫ P
0

ψ⊥n(y)ψ⊥m(y)dy. (5.74)

Considering a typical expression of the transverse modal structure ψ⊥n(y) = cos(kny y)
or sin(kny y) one finds that ∫ P

0

ψ⊥n(y)ψ⊥m(y)dy =
P
2
δmn, (5.75)

leading to

I =
N

2
δmn. (5.76)

The right hand side of Eq. (5.70) becomes

(iω)
1

Λn
(γ − 1)

Q̇0

u

F(ω)

Z(ω)

N

2
[ψ‖n(a)]2 η̃n. (5.77)

It is now convenient to use the specific admittance and write Z = ρc/β, noting that Q̇ =

NQ̇0 and multiplying by γp = ρc2. One also has to take into account that Λn = Pdl/4
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for mixed azimuthal-longitudinal modes and Λn = Pdl/2 for purely azimuthal modes.
One then obtains for the right hand side of (5.70)

2s (iω)
γ − 1

γ

Q̇

pSu

c

l
F(ω)β(ω)[ψ‖n(a)]2s η̃n, (5.78)

where s = 0 for purely azimuthal modes and s = 1 for mixed azimuthal-longitudinal

modes. This expression features the factor θ = (γ − 1)/γQ̇/(pSu) = T2/T1 − 1 already
exhibited in the preceding analysis. Inserting this latter expression in (5.70) one obtains
the following dispersion relation

ω2 + 2iαω − ω2
n = 2s (iω)θ

c

l
F(ω)β(ω)[ψ‖n(a)]2s. (5.79)

This expression can be used to determine the roots ω corresponding to each of the
perturbed modes of the system. If the imaginary part of ω is positive the system is
unstable. Expression (5.79) can be used to study the stability of fairly general systems.
The roots of this equation can be determined numerically if the flame transfer function
F and the specific injector admittance β are known. It is, however, possible to obtain
analytical expressions by performing a perturbation as done below.

One assumes for this analysis that the right hand side of the dispersion relation is small.
One also assumes that α corresponds to a low dissipation level and can be considered to
be small as well. The angular frequency is expanded as ω = ωn + ω1 where ω1 is a small
perturbation. Inserting this expansion in (5.79) and retaining first order terms only, one
finds the following expression for the angular frequency perturbation

ω1 = −iα+ i 2s−1 θ
c

l
F(ωn)β(ωn) [ψ‖n(a)]2s. (5.80)

The imaginary part of the perturbed angular frequency is easy to deduce

ωi1 = =(ω1) = −α+ 2s−1 θ
c

l
<[F(ωn)β(ωn)] [ψ‖n(a)]2s. (5.81)

It is now possible to compare this expression with those deduced previously. For this one
may assume that the damping rate vanishes.

Examining first the case of purely azimuthal modes by setting s = 0, one finds that

ωi1 =
1

2

γ − 1

γ
θ
c

l
<[F(ωn, |ṽ|)β(ωn)], (5.82)

which coincides with the expression (5.57) derived previously from the CFDM and the
EBA analysis.

It is natural to compare the growth rate to the angular frequency of the mode. For
purely azimuthal modes one has ωn = n2πc/P and one finds

ωi1
ωn

=
1

2
θ

1

2πn

P
l
<[β(ωn)F(ωn)], (5.83)

indicating that the ratio of the growth rate to the angular frequency is proportional to
θ = T2/T1 − 1, to an aspect ratio P/l and to the real part of the product βF , which
characterizes the injector admittance and flame transfer function. The ratio ωi1/ωn is
also inversely proportional to the mode number n.

In the case of mixed azimuthal-longitudinal modes one has for s = 1

ωi1 = θ
c

l
<[F(ωn)β(ωn)] [ψ‖n(a)]2. (5.84)
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Considering an axial modal structure of the form ψ‖n(x) = cos(knxx), one finds that

β = i
knx
k

sin(knxa)

cos(knxa)
, (5.85)

and the growth rate becomes

ωi1 = −θ c
l
G(ωn)

knx
kn

sin(knxa) cos(knxa) sin[ϕ(ωn)], (5.86)

which again coincides with what was obtained previously in (5.47) with the CFDM and
the EBA analysis.

5.4. Application to the MICCA annular combustor

To illustrate the methodology derived in this work, the previous expressions are
used to deduce the regions of instabilities observed in experiments carried out in the
MICCA annular combustor equipped with matrix injectors shown in Fig. 24(a) and
analyzed by Bourgouin et al. (2015); Prieur et al. (2017). The combustor is operated
in a laminar premixed mode for which self-sustained combustion instabilities coupled to
azimuthal modes were identified. The FDF of a single injector has also been determined
experimentally and is shown in Fig. 25. The remaining task is to model the burner
admittance β seen by the flames and analyze the system dynamic stability.

The analysis is carried out in the case where the injection system is formed by 16 small
cylindrical channels terminated by a perforated plate constituting the matrix injector as
sketched in Fig. 24(b). Each cylindrical channel is connected to the upstream annular
plenum as shown in Fig. 24(c). One assumes that the waves travelling in the annular
plenum have a transverse structure and that the wavenumber in the longitudinal direction
is kx. It is then possible to examine an idealized system formed by a portion of the
annular plenum corresponding to a single injector. The plenum sector and injector channel
respectively feature cross sections S1 and S2. The sizes of the plenum and injection
channels are L and h. The plenum is terminated by a rigid wall at the bottom and one
assumes that the wave field in the axial direction has a plane wave structure.

Considering that the matrix plate has a large porosity and is essentially transparent
to the waves propagating in the system. One may show after some straightforward
calculations that the specific impedance at the channel exhaust is equal to

p̃2

ρ̄cũ2
= −i k

kx

(S2/S1 + 1) cos (kx(L+ h))− (1− S2/S1) cos (kx(L− h))

(S2/S1 + 1) sin (kx(L+ h))− (1− S2/S1) sin (kx(L− h))
. (5.87)

It is worth checking this expression by looking at two limits. The corresponding specific
impedance obtained by setting S1 = S2 has the form

p̃2

ρ̄cũ2
= −i k

kx
cotan (kx(L+ h)) , (5.88)

which coincides with the expression for β1 in Tab. 3 for a closed-open tube of length
L + h. The second limiting case is obtained by considering that the first cavity has a
vanishing surface area S1 = 0. In that case one deduces from the general expression that

p̃2

ρ̄cũ2
= −i k

kx

cos(kxh)

sin(kxh)
, (5.89)

which again coincides with the specific impedance β1 given in Tab. 3 for a constant area
channel of length h terminated by a rigid boundary at x = 0 and open to atmosphere at
x = h.
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Figure 24. (a) MICCA annular combustor equipped with matrix laminar injectors. (b) Top
view of showing the 16 matrix injectors. (c) Cut A-A view with the main dimensions. Adapted
from Bourgouin et al. (2015).
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Figure 25. Gain (left) and phase lag (right) of the Flame Describing Function of the matrix
injectors used in the MICCA annular system. Adapted from Bourgouin et al. (2015). This FDF
corresponds to a bulk velocity u0 = 1.4 m.s−1 for a propane/air mixture at equivalence ratio
φ = 1.00. The horizontal lines define the possible unstable bands. One finds that one of the
resonant modes of the system corresponding to a frequency f = 490 Hz falls exactly in the
center of this band.

One may next derive an expression for the specific impedance that accounts for the
presence of the matrix injector treated as a thin grid and traversed by a mean flow of
velocity u0. It is convenient to introduce the matrix porosity σ = πa2

h/d
2
h where ah and dh

are the hole radius and spacing between adjacent holes center points. It is known that the
grid introduces an unsteady pressure difference between its upstream and downstream
sides designated in what follows as sections 2 and 3. One may write

KR(p̃3 − p̃2) = iρωd2
hũ2, (5.90)

where KR designates the Rayleigh conductivity of the plate orifices (Howe 1998). Noting
that the acoustic velocities on the two sides of the grid are equal ũ2 = ũ3 one obtains

p̃3

ρ̄cũ3
=

p̃2

ρ̄cũ2
+ i

ω

c

d2
h

KR
. (5.91)

To estimate the effect of the grid it is convenient to consider the case where the Strouhal
number St = ωah/u0 is small compared to one. A first order approximation of the
Rayleigh conductivity is in that case KR ' −iah(π/2)St (Howe 1998) and one finds

p̃3

ρ̄cũ3
' p̃2

ρ̄cũ2
− 2

u0

c

1

σ
. (5.92)

The second term in the previous expression is often negligible with respect to the first.
This is the case for example for the MICCA configuration equipped with matrix injectors.
The porosity is in that case σ = 0.35 while the mean velocity in the grid holes is about
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u0 = 1.4 m.s−1. In that case 2(u0/c)(1/σ) ' 0.02 while the first term is of order one. One
may then consider that the specific admittance β on the downstream side of the matrix
injectors is well approximated by

β =
ρ̄cũ3

p̃3
' ρ̄cũ2

p̃2
, (5.93)

which is given by (5.87).
This can then be used in conjunction with expression (5.86) for the growth rates

of mixed azimuthal-longitudinal modes to examine the stability bands of the system.
One finds that the first unstable band corresponds to π < ϕ < 2π. This band and
the next one are drawn in the gain and phase plots of the matrix injector FDF in
Fig. 25. One finds that a possible band of instability covers the frequency band ranging
from 380 to 660 Hz. Experiments by Bourgouin et al. (2015) indeed confirm that the
system exhibits a CI coupled to an azimuthal mode at a frequency of 490 Hz. This
mode is linearly unstable if the growth rate exceeds the damping rate in the system.
The reader is referred to the studies from Bourgouin et al. (2015); Larea et al. (2017);
Moeck et al. (2019) for a complete analysis of the linear and non linear dynamics of
spinning and standing CI coupled to azimuthal modes in the MICCA annular combustor.

It has been shown in sections 3 for CIs coupled to axial modes and in this section
for CIs coupled to azimuthal modes that one of the key element to assess the stability
of the combustor is to get an accurate knowledge of the flame transfer function FTF
and possibly of the FDF that might allow nonlinear analysis of combustion instabilities.
The FDF plotted in Fig. 25 has been determined from experiments. In the next section,
theoretical elements are provided to derive expressions for the FTF of laminar premixed
flames submitted to incoming flow disturbances.
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6. Transfer functions of laminar premixed flames

Determination of the FTF/FDF of flames to different types of flow perturbations is an
active field of research and mostly relies on experimental and numerical means. Studies
carried out on a variety of geometrical configurations including conical and dihedral
flames stabilized on a burner rim, inverted conical flames interacting with a modulated
shear layer, ducted “V” flames and swirling “V” flames anchored on a central rod,
“M” shaped flames as well as flames impinging on plates or lateral walls have provided
much information on the underlying mechanisms and on the flame response to incoming
velocity perturbations (Ducruix et al. 2000; Durox et al. 2005; Chapparro et al. 2006;
Kartheekeyan & Chakravarthy 2006; Kornilov et al. 2007; Cuquel et al. 2013b).

Theoretical models accompanied by numerical validations have been derived in parallel
yielding analytical descriptions and useful dimensionless parameters controlling the flame
dynamics (Fleifil et al. 1996; Dowling 1999; Schuller et al. 2003a; Preetham et al.
2008; Blumenthal et al. 2013; Steinbacher et al. 2019). This research motivated by
practical instability problems encountered in gas turbines is also driven by the need
for a fundamental understanding of combustion dynamics phenomena.

While the effect of velocity perturbations is essentially understood, that of composition
non-uniformities is less well documented. Early discussions of the “equivalence ratio
mechanism” may be found in Baade (1978); Keller & Daily (1985); Keller (1995). More
recently, it has been convincingly argued (Lieuwen & Zinn 1998; Richards & Janus 1998;
Lieuwen et al. 2001) that such perturbations may drive some of the most damaging
instabilities occurring in gas turbines. The mechanism involves the differential response
of the injection system to pressure perturbations in the chamber. If the mass flow rate of
fuel and air oscillate in response to a pressure fluctuation, this will induce perturbations
in equivalence ratio. When convected to the flame these perturbations give rise to a non-
steady rate of heat release. Energy may then be fed into the acoustic mode sustaining
the pressure oscillation which defines the perturbation in composition of the mixture.
It is then not difficult to derive instability criteria based on characteristic acoustic and
convective time scales of these phenomena. Models portraying the interactions between
acoustics, equivalence ratio fluctuations and heat release are derived in Hubbard &
Dowling (2001); Sattelmayer (2003); Shreekrishna et al. (2010); Schuermans et al. (2010).
Responses of conical and “V” flames to equivalence ratio perturbations were examined
by Birbaud et al. (2008) and Hemchandra (2012) using direct numerical simulations.
Experimental findings and modeling are also reported in Peracchio & Proscia (1999);
Schildmacher et al. (2006); Weigand et al. (2007).

One central piece of information is related to the interaction between the incoming
perturbation in equivalence ratio and the flame response. This problem is less easy to
study experimentally because it is difficult to generate perturbations in composition
without simultaneously inducing pressure and velocity fluctuations. This explains why
such experiments are rare. One may also refer to the work of Lee & Anderson (1999);
Venkataraman et al. (1999); Johnson et al. (2000); Lee et al. (2000) for experiments and
analysis on large-scale configurations, and Ratner et al. (2002); Schwarz et al. (2010) for
perturbed conical and jet flames stabilized on a laboratory scale burner.

The problem is treated theoretically in some studies by making use of simplifying
assumptions (Hubbard & Dowling 1998, 2001; Cho & Lieuwen 2005). The most complete
analysis is probably contained in Cho & Lieuwen (2005); Shreekrishna et al. (2010) but
the results make use of an heuristic expression for the volumetric rate of heat release which
is not easy to interpret or use for deriving combustion control schemes. This problem is
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revisited in the present section to obtain simpler expressions featuring a unified form
providing the flame response to combined velocity and equivalence ratio perturbations.

The theoretical analysis relies on a flame sheet assumption and a quasi-steady evolution
of the laminar burning velocity. This yields a balance equation for a perturbed G-
field, which generalizes results first obtained by Hubbard & Dowling (1998) and then
improved by Cho & Lieuwen (2005). The formalism developed in the following section is
used to estimate the different contributions to the transfer function of a lean premixed
dihedral flame stabilized on a two dimensional slit of unit depth submitted to incoming
velocity and equivalence ratio modulations convected from the burner outlet. Using
an appropriate normalization, two wave numbers controlling the flame dynamics are
identified.

Expressions are established for the flame wrinkling process from which the gain
and phase lag of the flame surface area perturbation with respect to the incoming
flow perturbations are derived. While velocity perturbations only modify the flame
surface area, mixture composition oscillations also change the local mass rate of burning.
An expression is derived for the heat release rate response which clearly features the
respective contributions of flame surface area perturbations and fluctuations of mass
burning rate averaged over the mean flame surface area. The relative fluctuation of heat
release rate is finally expressed as a linear combination of relative velocity and equivalence
ratio perturbations.

It is shown that this relation can be used to develop passive and active control solutions
aimed at minimizing the flame response to incoming perturbations. The proposed passive
technique yields a drastically reduced flame response at low frequencies by the adjustment
of the fuel injection position in the system. Design criteria are derived for two dimensional
conical flames, but the technique can be adapted to any flame geometry once the flame
transfer functions to velocity and equivalence ratio perturbations are known. This passive
technique can be further improved by an active control scheme based on fuel modulation.
These two techniques could be used separately or in combination to reduce the flame
sensitivity to incident perturbations thus diminishing the associated level of driving and
the possible development of instability.

6.1. Response to velocity and mixture composition oscillations

As in many of the previous studies, the flame is treated as a thin sheet modeled by
an interface G(x, t) = 0 separating fresh reactants from burnt gases (Williams 1985) as
illustrated in Fig. 26(a). The flame sheet is a solution of the kinematic equation

∂G

∂t
+ v · ∇G = Sd(φ,x, t)|∇G|, (6.1)

where v is the local velocity at the flame front and Sd is the normal burning velocity with
respect to the fresh gases. Using these notations the unit normal vector defined by n =
−∇G/|∇G| is oriented from the burnt gases (G > 0) towards the fresh reactants (G < 0).
In the present analysis stretch effects are ignored and it is assumed that the burning
velocity Sd is only a function of the local equivalence ratio and that this quantity responds
in a quasi-steady manner to fluctuations of the equivalence ratio φ (Hubbard & Dowling
1998; Cho & Lieuwen 2005). The former assumption is not valid for large perturbations
levels where nonlinear stretch effects reduce the front wrinkling (Preetham et al. 2006).
The latter assumption is not suitable for high frequency perturbations (Lauvergne &
Egolfopoulos 2000). When dealing with perturbations of small amplitude at relatively
low frequencies, one can consider that the flame burning velocity is equal to the laminar
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Figure 26. (a) Flame sheet G = 0 seperating fresh reactants form burnt gases. Steady (b) and
perturbed (c) dihedral flame stabilized on a 2D slit of half-width R. α: flame angle. H: flame
height, L: flame length, v̄: mean axial flow velocity, and v‖ = v̄ cosα: component of the mean
axial flow velocity parallel to the flame front.

burning velocity SL and that it is only a function of the local equivalence ratio φ

Sd(φ,x, t) = SL(φ). (6.2)

The dynamics of the flame sheet is investigated for perturbations of the velocity field
v and fluctuations of the local equivalence ratio φ

v = v + v′, and φ = φ̄+ φ′. (6.3)

Perturbations φ′ and v′ are assumed to be small compared to the mean values φ̄ and v.
The laminar burning velocity may be linearized around the steady state operating point

SL = SL + S′L = SL

(
1 + a

φ′

φ

)
, where a =

φ

SL

(
∂SL
∂φ

)
φ=φ

. (6.4)

In this expression S̄L = SL(φ̄) is the steady state laminar burning velocity
corresponding to φ̄. The coefficient a stands for the ratio of the relative change of
laminar burning velocity SL(φ) to the relative equivalence ratio perturbation around
the operating point φ̄. Values for a deduced from direct numerical simulations with the
detailed UC San Diego chemistry mechanism (http://combustion.ucsd.edu) are plotted
in Fig. 27 for lean propane/air, methane/air and hydrogen/air mixtures injected at 300
K, 1 bar and 10 bars. For a methane/air mixture at atmospheric pressure and φ0 = 0.8,
one has S̄L = 0.26 ms−1 and a = 2.00. Note also how the coefficient a is modified by
the pressure increase in Fig. 27. As already indicated the linearized approximation (6.4)
is only valid at low frequencies and does not account for dynamical effects observed at
higher frequencies.

Introducing (6.3) and (6.4) in the transport equation (6.1) and writing the G-field as
a sum of mean and perturbed components G(x, t) = G0(x) + G′(x, t), one obtains the
following equations, for the mean and first order perturbed fields G and G′

v · ∇G = S̄L|∇G|, (6.5)

∂G′

∂t
+

[
v − SL

∇G
|∇G|

]
· ∇G′ = −v′ · ∇G+ aSL|∇G|

φ′

φ
. (6.6)
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Figure 27. Evolution of a = ∂(SL/SL)/∂(φ/φ̄) as a function of the equivalence ratio φ for
propane/air (dashed lines), methane/air (solid lines) and hydrogen/air (dashed dotted lines)
mixtures injected at T = 300 K and p = 1 bar (left) and p = 10 bar (right).

Using (6.5) and the definition of the unit normal vector n = −∇G/|∇G|, the last
expression takes the form

∂G′

∂t
+ [v − (v · n) n] · ∇G′ =

(
v′ − aφ

′

φ̄
v

)
· n|∇G|. (6.7)

In this expression v− (v · n) n = v‖ is the mean flow velocity parallel to the mean flame
front (see Fig. 26(b)). This front is displaced in its normal direction by the effective normal
velocity perturbation v′v−φ⊥ resulting from an imbalance between normal velocity v′ · n
and laminar burning velocity S′L disturbances

v′v−φ⊥ = v′ · n− aφ
′

φ̄
v · n = v′ · n− S′L. (6.8)

Introducing these notations, one finally gets

∂G′

∂t
+ v‖ · ∇G′ = v′v−φ⊥|∇G|. (6.9)

This transport equation for the perturbed field G′ shows how mixture compositions φ′

and velocity v′ perturbations wrinkle the flame. Fluctuations in mixture composition and
velocity perturbations induce disturbances of the flame position in the normal direction,
which are then convected along the flame front by the component of the mean local flow
velocity v‖ parallel to the mean flame front. This generalizes a result of Boyer & Quinard
(1990) derived for uniform velocity modulations to any flow non-uniformities affecting
flame wrinkling.

At this point it is interesting to note that velocity and equivalence ratio perturbations
wrinkle the flame in a similar fashion but with opposite signs. In the case of a lean
premixed flame, a positive velocity perturbation leads to a positive flame displacement,
while an increase in equivalence ratio leads to a further increase of laminar burning
velocity and thus to a negative flame displacement. This property described by Cho
& Lieuwen (2005) in their analysis of the flame response to low frequency mixture
composition oscillations is here directly deduced from an examination of the perturbed
G-equation.

Three case studies are worth considering. The first is a flame submitted to velocity
perturbations in a mixture with a fixed composition. This problem was analyzed in many
previous studies (Fleifil et al. 1996; Ducruix et al. 2000; Schuller et al. 2003b; Lieuwen
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2004). The second is that of a flame submitted to mixture composition oscillations
as considered by Hubbard & Dowling (1998); Cho & Lieuwen (2005). The third case
corresponds to a flame submitted to combined perturbations in velocity and mixture
composition. It is probably the most realistic case because flame wrinkles produced by
equivalence ratio perturbations convected by the flow were shown to alter the flow field
as a feedback (Birbaud et al. 2008).

In this third case, one explores a control scheme which will lead to a minimal response
in terms of heat release fluctuations. These case studies are investigated in detail below
for a dihedral flame stabilized on a two dimensional slit. Expressions for flame wrinkles
and flame surface response are derived first, followed by expressions for heat release
fluctuations.

6.1.1. Flame wrinkles

The geometry of the problem is that of a dihedral flame anchored on a two dimensional
burner submitted to harmonic disturbances as in Fig. 26(b). In the reference frame (X,Y )
attached to the mean flame front G = Y = 0, G′ = ξ(X, t) and (6.9) reduces to a one
dimensional problem for the transverse flame displacement ξ(X, t) with respect to its
mean position

∂ξ

∂t
+ v‖

∂ξ

∂X
= v′v−φ⊥(X, t). (6.10)

Using the following change of variables X ′ = X and t′ = t − X/v‖, one first seeks an
expression of ξ in terms of these variables. With these new variables, the problem becomes

v‖
∂ξ

∂X ′
= v′v−φ⊥

(
X ′, t′ +

X ′

v‖

)
. (6.11)

Integration leads to

ξ(X ′, t′) =
1

v‖

∫ X′

0

v′v−φ⊥

(
X ′′, t′ +

X ′′

v‖

)
dX ′′ + ξ0(t′). (6.12)

For the original set of variables X and t, one finally obtains

ξ(X, t) =
1

v‖

∫ X

0

v′v−φ⊥

(
X ′′, t− X −X ′′

v‖

)
dX ′′ + ξ0

(
t− X

v‖

)
. (6.13)

Regardless of the structure of the flow disturbances impinging the flame, the flame
acts as a mode converter and the resulting wrinkles are convected along the flame sheet
as a wave that travels at a velocity v‖ (Baillot et al. (1992)). The first term in (6.13)
corresponds to contributions of all velocity disturbances along the flame sheet inducing
flame wrinkling and the second one is associated to wrinkles produced by the flame root
displacement. The flame is here assumed to be attached to the burner rim and ξ0 = 0.
This excludes effects associated with the dynamics of the anchoring point (see however
Kornilov et al. (2007) for a study of this case). This assumption has consequences, which
are discussed later in this article.

Determining the structure of the perturbed mixture field and the perturbed velocity
field in the fresh reactant stream is a complex problem which is out of the scope of the
present study (Birbaud et al. 2006, 2008). It is here assumed that harmonic oscillations
of the velocity or the equivalence ratio at the burner outlet propagate towards the flame
as convective modes and can be modeled by the following relations

v′ = ṽ exp(iky − iωt), and φ′ = φ̃ exp(iky − iωt). (6.14)
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In these expressions, ω is the angular frequency, y is the axial distance from the burner
outlet and the wavenumber k = ω/v̄ is based on the mean flow velocity v̄. To simplify
the analysis, perturbations are assumed to be uniform in the transverse direction x. It is
rather natural to assume that the composition perturbations propagate as a convective
mode as well. The representation of velocity perturbations in a similar form is less
straightforward. In fact many of the previous studies on flame transfer functions like
those from Fleifil et al. (1996); Ducruix et al. (2000) consider a uniform perturbation in
velocity. This yields a suitable gain but it is also deduced from these models that the phase
saturates at a level which is not found in experiments. Detailed studies of the perturbed
velocity field on the upstream side of the flame (Baillot et al. 1992; Birbaud et al. 2006)
indicate that a convective mode prevails in much of the frequency range of interest. The
convective representation of the perturbed velocity field v′ = ṽ exp(iky−iωt) exploited in
Schuller et al. (2003b) yields a transfer function which more closely follows experimental
data.

This perturbed velocity field leads to transverse velocity disturbances in the reference
frame attached to the flame given by v′⊥(X, t) = ṽ sinα exp(ikX cosα− iωt). Substitut-
ing this expression in (6.13) leads to an expression for the normal front displacement
ξ̃(X) exp(−iωt). With variables expressed in the laboratory (x, y) frame of reference one
finally deduces an expression for flame wrinkles ξ̃(x) exp(−iωt) where (Schuller et al.
2003b)

ξ̃(x) cosα

R
=
ṽ

v̄

1

iω∗

1

1− cos2 α

[
exp

(
iω∗

x

R

)
− exp

(
iω∗

x

R
cos2 α

)]
. (6.15)

This expression features two control parameters. The first is a dimensionless reduced
frequency ω∗ = (ωR)/(SL cosα), where R is the burner half-width and α the flame
angle with respect to the mean flow direction. This quantity can also be interpreted as
a dimensionless convective wavenumber ω∗ = k‖L, where k‖ = ω/v‖ is a wavenumber
based on the component of the axial flow velocity v‖ = v̄ cosα parallel to the mean flame
front position, and L = R/ sinα is the flame length L measured along the flame front.
The second control parameter is the flame angle α with respect to the flow direction,
which appears explicitly in (6.15).

6.1.2. Perturbations in flame surface area

For the two dimensional configuration of unit depth considered hereby, (6.15) inte-
grated over the flame yields a simple expression for the amplitude of the fluctuation of
the flame surface area

Ã = 2

∫ L

0

ξ̃

tanα
dX =

2

tanα

[
ξ̃(R)− ξ̃(0)

]
. (6.16)

This relation shows that the flame dynamics is controlled by the motion of the flame
tip (Baillot et al. 1996) and by that of the anchoring point as discussed by Kornilov et al.
(2007). In the present study, this last effect is neglected because the flame is considered
to be attached to the flame burner rim by imposing ξ̃(0) = 0. The case of a prescribed
motion of the anchoring point may be analyzed along similar lines of reasoning but this
is not pursued here. An illustration of the effect of flame anchoring dynamics due to
unsteady heat losses is made in section 6.3.

Introducing Eq. (6.15) into Eq. (6.16), one obtains an expression for relative fluctu-
ations of the flame surface area Ã/Ā as a function of relative velocity perturbations at
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the burner outlet ṽ/v̄

Ã

Ā
=
ṽ

v̄
FA(ω∗, k∗) for φ = φ̄. (6.17)

The mean surface area is given by Ā = 2R/(sinα). The flame surface area transfer
function FA(ω∗, k∗) depends explicitly on two dimensionless numbers, the reduced fre-
quency ω∗ = k‖L and the dimensionless wavenumber k∗ = kH, where k = ω/v̄ is the
wavenumber based on the mean flow velocity v̄, and H the flame height measured along
the vertical y axis

FA (ω∗, k∗) =
exp(iω∗)− exp(ik∗)

iω∗ − ik∗
. (6.18)

In Schuller et al. (2003b), the flame surface area transfer function was expressed as a
function of ω∗ and α in order to analyze the incidence of the flow direction on the
flame response. It is here preferable to choose the product k∗ = kH instead of α. This
representation is equivalent because cos2 α = k∗/ω∗. The analysis carried out by Cho &
Lieuwen (2005) yields a flame surface transfer function in terms of two Strouhal numbers
analogous to ω∗ and k∗. It is apparent that ω∗ = k‖L and k∗ = kH are physically
meaningful because these two parameters depict the two processes which give rise to
flame wrinkling. The flame displacement is due to a wave propagating along the flame
front (through ω∗) and to another wave convected along the burner axis (through k∗).

The response in flame surface area for mixture compositions oscillations φ′ convected
from the burner outlet in an unperturbed velocity field v can be directly deduced from
the results presented above using (6.19). This remark notably simplifies the analysis. It
was shown that mixture composition oscillations φ′ in a constant flow field v induce the
same flame wrinkling as velocity modulations v′ in a mixture kept at constant equivalence
ratio φ̄ provided that at the flame front location Y = 0 the following relation is satisfied

v′ = −aφ
′

φ̄
v. (6.19)

In the case of a conical flame submitted to convective disturbances in a constant flow
field v, this local relation is satisfied for perturbations that verify at the burner outlet

ṽ

v̄
= −aφ̃

φ̄
. (6.20)

Flame surface area perturbations due to mixture compositions oscillations at the burner
outlet in a constant flow field v are then deduced by combining (6.17) and (6.20)

Ã

Ā
= −aFA(ω∗, k∗) for v = v. (6.21)

In this expression, FA(ω∗, k∗) is the flame surface area transfer function defined by (6.18).

In the general case of mixture composition and velocity oscillations the flame surface
area transfer function is obtained by combining both effects

Ã

Ā
=

(
ṽ

v̄
− aφ̃

φ̄

)
FA(ω∗, k∗). (6.22)

It is interesting to note that a special case exists where effects of velocity and mix-
ture composition disturbances cancel at the flame front. This corresponds to mixture
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composition and velocity oscillations, which at the burner outlet are such that

ṽ

v̄
= a

φ̃

φ̄
. (6.23)

In this situation, the right hand side of (6.9) vanishes implying no flame wrinkling.
This property can be used as a control strategy to cancel flame wrinkling due to velocity
disturbances by imposed mixture composition oscillations or conversely to cancel flame
wrinkling due to mixture composition disturbances by imposed velocity modulations.
The possible cancelation or minimization of the flame response to incident perturbations
will be discussed later on but it is first important to obtain an expression for the unsteady
heat release rate.

6.1.3. Fluctuations in heat release rate

For a lean mixture, the global rate of heat release is obtained by integrating the local
value over the flame :

Q̇ =

∫
A

ρYf (−∆h0
f )SLdA, (6.24)

where ρ is the reactant stream density, Yf is the fuel mass fraction and (−∆h0
f ) is

the energy released by combustion of a unit mass of fuel. For methane, (−∆h0
f ) =

50 MJ kg−1.
In the case of velocity perturbations in a mixture kept at a fixed composition φ̄, the

flame surface is wrinkled, but the density, fuel mass fraction and laminar burning velocity
remain unchanged. The heat release rate transfer function is then governed by the flame
surface area transfer function (Fleifil et al. 1996; Dowling 1999; Ducruix et al. 2000;
Schuller et al. 2003b; Lieuwen 2004)˜̇Q

Q̇
=
Ã

Ā
=
V

v0
FA(ω∗, k∗), for φ = φ̄. (6.25)

Considering now the general case of small disturbances of the mixture composition φ1

and disturbances of the velocity field v1, the mixture density, the fuel mass fraction, the
laminar burning velocity are also perturbed due to changes in the composition. The flame
surface area is wrinkled due both to mixture and velocity perturbations as shown in the
previous section. To estimate the contribution of each component to the heat release rate
variation, quantities appearing in (6.24) are decomposed into their mean and fluctuating
components ρ(φ) = ρ̄+ρ′, Yf (φ) = Y f +Y ′f , SL(φ) = SL+S′L and dA(φ,v) = dA+dA′.

Using the decomposition (6.24), relative heat release rate fluctuations can be expressed
as a sum of all the relative contributions˜̇Q

Q̇
=

1

ρ

∫
ρ̃dĀ∫
dĀ

+
1

Y f

∫
ỸfdĀ∫
dĀ

+
1

SL

∫
S̃LdĀ∫
dĀ

+

∫
dÃ∫
dĀ

. (6.26)

The first three terms reflect perturbations of density, fuel mass fraction and laminar
burning velocity averaged over the mean flame surface area Ā. These quantities only
depend on the mean flow properties (φ̄ and v) and on perturbations of the mixture com-
position φ′. The last term representing relative flame surface area fluctuations depends
also on the perturbed velocity field v′. Note that (6.26) is not restricted to the dihedral
configuration explored herein but is also valid for other flame geometries in lean premixed
systems.

Perturbations in density, fuel mass fraction and laminar burning velocity can all be
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expressed in terms of equivalence ratio perturbations φ′ and (6.26) may be written as˜̇Q
Q̇

= m(φ̄)

∫
φ̃dĀ

φ̄
∫
dĀ

+

∫
dÃ∫
dĀ

. (6.27)

The function m(φ̄) only depends on the mean mixture equivalence ratio φ̄

m(φ̄) =

[
∂(ρ/ρ̄)

∂(φ/φ̄)
+
∂(Yf/Ȳf )

∂(φ/φ̄)
+
∂(SL/S̄L)

∂(φ/φ̄)

]
φ=φ̄

. (6.28)

The first integral ratio in (6.27) is a function of mixture disturbances only, whereas the
second integral ratio depends on both mixture composition and velocity perturbations.

Similar calculations were carried out by Hubbard & Dowling (1998) and Cho &
Lieuwen (2005) in their analysis of flame response to mixture composition oscillations.
Their derivation was based on an empirical relation for the volumetric heat release rate
∆H(φ) = ρYf (−∆h0

f ). The present study differs from those carried out previously in
that it separates the various contributions to the local mass burning rate per unit flame
surface area, i.e. fluctuations of ρYfSL, from the contribution of the flame surface area
fluctuations. The first term in (6.27) is the flame response due to fluctuations of the
mass burning rate averaged over the mean flame surface area. The second one is the flame
response to flame surface area fluctuations already considered in the previous section. For
the sake of simplicity the frequency response of the mass burning rate averaged over the
mean flame surface area will be called the averaged mass burning rate transfer function.

The following calculations provide analytical expressions for the three terms appearing
in m(φ̄) in (6.28). The fresh mixture obeys the perfect gas law ρ = pW/RT , where R is
the perfect gas constant and W is the molar mass of the fresh mixture given by

1

W
=

Yf
Wf

+
Ya
Wa

. (6.29)

In this expression Yf and Ya are the fuel and air mass fractions satisfying Yf + Ya = 1,
Wf and Wa are the corresponding molar masses. It is then easy to obtain the derivatives
appearing in (6.28) [

∂(Yf/Ȳf )

∂(φ/φ̄)

]
φ=φ̄

=
1

1 + αstφ̄
. (6.30)

The coefficient αst = (Yf/Ya)st is the mixture ratio at stoichiometry. For a methane-
air mixture αst = 0.0581. Relative variations of the fuel mass fraction versus relative
variations of the equivalence ratio are of the order of unity because αst is a small quantity.
The second term appearing in (6.28) is obtained after some straightforward calculations

[
∂(ρ/ρ̄)

∂(φ/φ̄)

]
φ=φ̄

= αst

(
W

Wa
− W

Wf

)[
∂(Yf/Ȳf )

∂(φ/φ̄)

]2

φ=φ̄

. (6.31)

As the stoichiometric mixture ratio αst is small and the term in (6.30) is of the order of
unity, relative changes in the mixture density with respect to relative perturbations in
the equivalence ratio are negligible. The third term in Eq. (6.28) can be identified as the
relative rate of change of the burning velocity[

∂(SL/S̄L)

∂(φ/φ̄)

]
φ=φ̄

= a. (6.32)

This term is very sensitive to the steady state equivalence ratio φ̄. For perturbations
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around stoichiometry where the curve SL = SL(φ) takes a flat shape, this contribution
is small. For lean mixtures, this contribution to the function m(φ̄) can be the main one.
Considering the case of a methane-air mixture at φ0 = 0.8, the contribution is large
because a = 2.30.

These calculations indicate that the function m(φ̄) may be approximated by m(φ̄) '
1+a for lean mixtures. At this point one may already deduce the averaged mass burning
rate transfer function ˜̇Q

Q̇
= m(φ0)

∫
φ̃dĀ

φ̄
∫
dĀ
' (1 + a)

∫
φ̃dĀ

φ̄
∫
dĀ

. (6.33)

This expression represents the heat release rate transfer function component due to
mixture composition oscillations released in a constant velocity field without taking
into account flame wrinkling. It corresponds to fluctuations of the local mass burning
rate averaged over the mean flame surface area. The local fluctuations of the mixture
composition induce fluctuations of the local mass burning rate, which are filtered by
averaging over the flame surface.

One still has to calculate the integrals appearing in (6.33) for the case of a conical
flame stabilized on a two dimensional slit. The average of equivalence ratio fluctuations
is easily obtained in this configuration. For perturbations φ′ = φ̃ exp(iky− iωt), one gets∫

φ̃dĀ

φ̄
∫
dĀ

=
φ̃

φ̄
Fm(k∗), (6.34)

where Fm(k∗) is given by

Fm(k∗) =
exp(ik∗)− 1

ik∗
. (6.35)

This is a function of the dimensionless wavenumber k∗ = kH only and is represented in
Fig. 28.

The last term in (6.27) is the contribution of flame surface wrinkling to heat release
fluctuations. It corresponds to the flame surface area transfer function defined by (6.22),
which depends both on mixture composition oscillations and velocity perturbations∫

dÃ∫
dĀ

=
Ã

Ā
=

(
ṽ

v̄
− aφ̃

φ̄

)
FA(ω∗, k∗). (6.36)

Combining the averaged mass burning rate transfer functionm(φ̄)Fm(k∗) and the flame
surface area transfer function FA(ω∗, k∗), one finds an expression for the heat release rate
transfer function ˜̇Q

Q̇
=
φ̃

φ̄

[
m(φ̄)Fm(k∗)− aFA(ω∗, k∗)

]
+
ṽ

v̄
FA(ω∗, k∗). (6.37)

Velocity and mixture composition contributions are now well separated and their re-
spective effects are easily distinguished. Fluctuations of heat release rate in response to
velocity perturbations are solely due to fluctuations in flame surface area. When sub-
mitted to mixture composition perturbations, the flame responds directly to fluctuations
of the mass burning rate averaged over the mean flame surface area and indirectly to
fluctuations of the flame surface area. These direct and indirect effects were already
mentioned by Hubbard & Dowling (1998); Cho & Lieuwen (2005), but the present
derivation provides more compact and unified expressions, which are easier to discuss
in terms of gain and phase and simpler to use for control purposes.
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Note that by controlling velocity and mixture compositions oscillations at the burner
outlet, the averaged mass burning rate transfer function can be determined for perturba-
tions verifying (6.23). In this particular case, fluctuations of the heat release rate occur
without flame wrinkling. This is analogous to a situation where a flat flame would be
submitted to mixture composition oscillations (Lauvergne & Egolfopoulos 2000), except
that the heat release response is averaged over the mean flame surface area.

6.2. The FTF of a dihedral flame

Results are now examined in the case of a lean methane-air dihedral flame stabilized
on a two dimensional slit as shown in Fig. 26(b)-(c). It is first interesting to get insight
into the expressions for the averaged mass burning rate transfer function Fm defined by
(6.35) and the flame surface area fluctuation transfer function FA given by (6.18). These
expressions are closely related. The FTF gain |F | and phase lag ϕ of these two functions
F = |F |eϕ take particularly simple forms for a dihedral flame

|Fm(k∗)| =
| sin(k∗/2)|
|k∗/2|

, and |FA(ω∗, k∗)| =
| sin ((ω∗ − k∗)/2) |
|(ω∗ − k∗)/2|

, (6.38)

ϕFm
=
k∗
2
, and ϕFA

=
ω∗ + k∗

2
, (6.39)

The gains in (6.38) are typical of low pass filters, each depending on a unique dimen-
sionless number. One is associated with k∗ for the mass burning rate response while the
other features the difference ω∗ − k∗ for flame surface area fluctuations. The gain and
phase of these filters are plotted in Fig. 28 for different values of the flame angle α, i.e.
different ratios k∗/ω∗ = (H/L)2 = cos2 α.

Fluctuations of the mass burning rate Fm averaged over the mean flame surface area Ā
due to incoming convective equivalence ratio perturbations are filtered out as k∗ increases.
Complete cancellation is obtained for a set of discrete frequencies fn corresponding to
situations where an integer number of convective wavelengths λn = v̄/fn based on the
axial flow velocity v̄ exactly match the flame height H , i.e. when kn = 2(n + 1)π/H
with n = 0, 1, 2, .... The phase ϕm = ωτm of the mass burning rate transfer function Fm
is associated with a constant time delay τm = (1/2)H/v̄. This corresponds to the mean
time for a convective perturbation generated at the burner outlet and traveling parallel
to the burner symmetry axis to reach the flame:

τm =
1

A

∫
A

dy

v
=
H

2v̄
(6.40)

One would find τm = (1/3)(H/v̄) for a conical flame submitted to a uniform harmonic ve-
locity modulation (Ducruix et al. 2000). These are typical responses for purely convective
phenomena.

The response of the flame surface area transfer function FA is more complicated. It
results from interferences of two waves featuring different phase velocities, one traveling
parallel to the axial direction and the other along the flame front. This mechanism
identified by Baillot et al. (1996) is clearly described below. At one flame front location,
wrinkling results (i) from the perturbation of the velocity field induced at this location by
a convective wave traveling parallel to the burner symmetry axis with a phase velocity v̄
and (ii) from the motion induced by a velocity perturbation produced in the past at the
anchoring point location and which has travelled along the flame front at a lower phase
velocity v‖ = v̄ cosα. Depending on the ratio of the flame height over flame length H/L or
equivalently on the flame angle α (cosα = H/L), constructive or destructive interferences
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Figure 28. Gain (left) and phase (right) of the filters FA and Fm as function of the dimensionless
wavenumber k∗ for different values of α = π/16, π/8, π/4 and 3π/8. k∗/ω∗ = (H/L)2 = cos2 α.

will not occur at the same frequency affecting the flame surface area response. As a
consequence, the cut-off frequency of the flame transfer function will be modified.

Figure 28 shows how the gain |FA| changes when the flame angle α is varied. The
smaller the flame angle, the longer the flame and the higher the frequency response
bandwidth. Long flames are more sensitive to perturbations in flame surface area than
short ones. For the particular flame angle α = π/4, when H = R, the transfer functions
gains |FA| and |Fm| match because 2k∗ = ω∗, implying that flames are more sensitive
to flame surface area fluctuations than to fluctuations of the mass burning rate in the
high frequency range when α < π/4. For larger flame angles α > π/4, conclusions are
reversed, but this situation is unlikely to occur since conical flames are usually unstable
for flame angle α > π/4 and flashback into the burner. The phases ϕA = ωτA in Fig.
28(b) exhibit a convective behavior with a constant time lag τA as for Fm, but with two
contributions. The first one is identical to τm, the mean time required for a perturbation
produced at the burner outlet and convected by the mean flow v̄ to reach the flame front.
But this time delay is also augmented by the mean time L/v required for a perturbation
to travel along the flame front with a phase velocity v‖ = v̄ cosα

τA =
H

2v̄
+

L

2v‖
. (6.41)

The phase of the transfer function is quite sensitive to the second ratio appearing in
this expression because it takes larger values than the first one: L > H and v‖ < v̄. The
phase lag ϕA of FA is thus sensitive to whatever affects perturbations convected along
the flame front, as for example the flame angle as shown in Fig. 28 or the dynamics of the
anchoring point (Kornilov et al. 2007). Releasing the hypothesis of zero flame movement
at the flame anchoring point location ξ(R) 6= 0, only flame wrinkling due to perturbations
convected along the mean flame front are affected, while perturbations convected by the
mean flow remain unchanged. This influences the second ratio appearing in (6.41), and
explains the central role of anchoring point dynamics in a complete description of the
flame response to incoming perturbations.

After these discussions on the general behavior of the flame surface area FA and
averaged mass burning rate Fm transfer functions, the specific case of a methane/air
dehidral flame with reactants injected at atmospheric pressure at room temperature
through a slit of width 2R = 11 mm with a mean velocity v̄ = 1.0 m s−1 and a mean
equivalence ratio φ0 = 0.8 is examined. The corresponding laminar burning velocity
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is SL = 0.26 m s−1 for which a = 2.00 (see Fig. 27). This flame has an aspect ratio
H/L = 0.97, a situation where Fm and Fa cut-off frequencies are well separated as
depicted by Fig. 29. This corresponds to an elongated flame with an angle α = 15o (see
Fig. 26(b)). Contributions to the function m(φ) (6.28) appearing in the averaged mass
burning rate transfer function are as follows. Those associated the fuel mass fraction
Yf (6.30), mixture density ρ (6.31) and flame speed SL (6.32) are 0.96, -0.04 and
2.00, respectively, indicating that 1 + a = 3.00 is a good first order approximation of
m(φ̄) = 2.92 ' 1 + a.

The gain and phase of the flame response submitted to mixture composition oscillations
shown in Fig. 29 features a complex behavior, which results from the superposition of
contributions of the flame mass burning rate transfer function mFm and of the flame
surface area transfer function −aFA. The gain of the flame surface area transfer function
corresponding to a velocity modulation in a homogeneous mixture is also plotted in
Fig. 29 as dashed lines. This lean flame is clearly more sensitive to equivalence ratio
oscillations than to velocity fluctuations (Cho & Lieuwen 2005). Contributions from
mFm and −aFA are in phase opposition at low frequencies as shown in the region close
to the origin in Fig. 29-right. At higher frequencies the heat release rate transfer function
is dominated by flame surface area fluctuations as expected for frequencies above the
filter Fm cut-off frequency (Fig. 29-left). The same remark holds for the description of
the phase evolution. The FTF phase lag follows at low frequencies the behavior of Fm,
and the behavior imposed by flame surface area fluctuations −aFA in the high frequency
range.

6.3. The effects of wall temperatures

So far the flame root was assumed to be fixed. It is known however from experiments
that combustion instability characteristics change with time. A system which oscillates
at cold start may become stable 10 minutes later or vice versa. Obviously, such an
effect cannot be due to the flow itself but rather to its evolution with a changing wall
temperature. These temperatures affect thermoacoustics in different ways:
• Walls cool down burnt gases, decreasing their temperature and the local speed of

sound and thereby affecting the eigenmodes of the chamber. Adiabatic and non-adiabatic
configurations exhibit different stability regions. This is easily observed in simulations
where changing the wall heat transfer condition from adiabatic to isothermal is sufficient
to induce or damp modes (Sengissen et al. 2007; Garby et al. 2013).
• Heat losses in regions that are critical for flame stabilization play a more fundamental

role. Since these regions (flame holders for example) control the flame root, they also affect
its response to perturbations (Kedia et al. 2011). This point is discussed here because it
is often ignored in developing simulations even though recent studies indicate that it can
be a critical issue.

It is well-known that heat losses introduced by flame-holders or by walls close to the
stabilization zone of flames induce strong changes in the flame geometry even in the
absence of any instability (De Goey et al. 2011; Kedia & Ghoniem 2015; Mercier et al.
2016). For porous burners, the whole stabilization process and the flame response to
unstable perturbations is controlled by heat losses to the porous plate (Raun & Beckstead
1993; Rook et al. 2002; Schreel et al. 2002). Even for standard Bunsen burners, the
temperature of the lateral walls (Kedia & Ghoniem 2013; Duchaine et al. 2011) influences
flame stabilization and the flame response to flow perturbations. It is therefore not
surprising that instabilities are also affected by the temperature field of the solid on
which the flame is anchored.

An example of wall temperature effects on combustion instabilities is given by Mejia
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Figure 29. Gain (left) and phase (right) of the heat release rate response of a methane/air
dihedral flame submitted to equivalence ratio oscillations in an homogeneous flow field.
v̄ = 1 m s−1, SL = 0.26 m s−1 , H/L = 0.97.

Figure 30. Effects of wall temperature on a laminar premixed dihedral flame Mejia et al. (2014).
Left: flame stabilized on a water-cooled slot. Right: evolution of pressure oscillations and slot
wall temperature versus time. The cooling system is started at t = 490 s.

et al. (2014) who show that the self-excited mode of a laminar premixed flame stabilized
on a slot is directly controlled by the slot wall temperature. This metal temperature
was controlled by liquid cooling and measured by a thermocouple. When the flame is
ignited, walls are cold and the instability begins right away at a high level (110 dB in
the vicinity of the flame). The wall temperature increases slowly and when it does, the
pressure oscillations decrease. After 300 s, the walls are warm (close to 120 ◦C) and the
instability has completely vanished. At = 490 s, the liquid cooling system is activated.
The wall temperature decreases again and the instability comes back and the oscillation
reaches its initial level. This demonstrates that the temperature of the wall plays a strong
role in the determination of the stability characteristics of this flame.

The impact of the flame-holder temperature on stability is not well documented. The
flame-holder is often assumed to be adiabatic so that the flame is anchored on this
element. This allows a theoretical analysis of the flame response to forcing using G-
equation formulations (Fleifil et al. 1996; Ducruix et al. 2000). In these approaches, the
flame front is perfectly anchored and unable to move. Dowling (1999) found that at high
oscillation amplitudes, the flame root oscillates around its mean position and used this
observation to model a saturation of the flame response. Lee & Lieuwen (2003) proposed
to separate the FTF of an anchored flame submitted to small flow perturbations into two
contributions associated with:
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• Flame front contribution that corresponds to the movements of the flame when it is
perturbed all along its shape by the perturbed flow field
• Flame root contribution that corresponds to the movements the flame induced by

of the movement of point where the flame anchors when it is perturbed.
While the first contribution has been studied by many authors, the second contribution

associated with flame root motion remains the weak part of this approach because it
requires a solution for the temperature field in both gas and solid near-wall regions
where the flame touches the wall. Following the analysis of Rook et al. (2002) carried
out for planar flames facing a porous plate, Cuquel et al. (2013a) derived a formulation
linking the flame root and the flame front dynamics. Figure 31 illustrates these two
mechanisms and shows how the stand-off distance between the flame holder and flame
root can be estimated experimentally from a direct image of light emission in a slot
stabilized premixed flame.

When the flame is submitted to acoustic fluctuations, perturbations propagate along
the flame front (flame front contribution) but the flame root moves too (flame root
contribution). The movement of the flame during an oscillation cycle is displayed in
Fig. 32-left while the movement of the flame root (marked by a cross) is displayed in
Fig. 32-right.

Mejia et al. (2014) showed that accounting for the flame root dynamics allowed to
explain the effects of the wall temperature on their combustor stability. It modifies the
FTF sufficiently to transform a stable into an unstable flame (and vice versa) and explains
the observations of Fig. 30. Controlling the temperature of the flame holder appears thus
as a way to alter the FTF, but in many systems this temperature cannot generally be
tuned with enough precision and one only requires that it does not exceed an upper limit
to avoid damaging the system.

6.4. Controlling the FTF

As shown above, one possibility to control the FTF is to modify the flame root
dynamics. Accurate modeling of the flame root and flow interplay dynamics close to
solid boundaries and their contribution to the FTF remains however an immature field
(Lee & Lieuwen 2003; Kedia & Ghoniem 2013; Cuquel et al. 2013a). Modeling efforts
need to be pursued by further dedicated experiments and simulations. Controlling by
passive or active means the flame root dynamics appears however as a promising way to
modify the FTF (see for example Lacoste et al. (2013)). An alternative way to alter the
shape of the FTF is now envisaged.

It is possible to derive a control scheme based on the previous analysis conducted for
the response of lean premixed flames to velocity and mixture composition disturbances.
The principle is to compensate the effect of velocity perturbations by adjusting the level
of equivalence ratio fluctuations. To examine this possibility it is necessary to consider a
practical system comprising an air manifold, a fuel injector located at a finite distance d
from the burner exhaust. An actuator is placed on the fuel injection line.

It is assumed in this example that the fuel injection impedance is very high so that
under normal operation and in the absence of any actuation only the air mass flow rate
ṁa is fluctuating. In this situation the equivalence ratio φ oscillates and its relative
fluctuations are opposed to the relative fluctuations in air mass flow rate

φ̃

φ̄
= −

˜̇ma

ṁa

. (6.42)

As fuel is injected at a distance d from the burner exhaust, this introduces a delay
τd = d/v̄ and the equivalence ratio perturbations reaching the burner exhaust are such
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Figure 31. Left: the two mechanisms contributing to the FTF of an inverted V-flame stabilized
on a slot (Cuquel et al. 2013a; Mejia et al. 2014)). Right: visualisation of the stand-off distance
between flame holder and flame root (Mejia et al. 2014).

Figure 32. Left: visualization of the flame movements for an inverted V-flame submitted to a
60 Hz forcing with a flame holder temperature of 50 ◦C. The + symbol marks the flame root
and the trajectories of the flame root are displayed for three different temperatures of the flame
holder (50, 90 and 150◦C) Mejia et al. (2014).

that

φ̃

φ̄
= −

˜̇ma

ṁa

exp(iωτd). (6.43)

Since for an hydrocarbon fuel and air lean mixture, the fuel flow rate is much smaller
than the air flow rate, the relative fluctuations of air mass flow rate is approximately
equal to the relative velocity fluctuation of the fuel/air mixture so that

φ̃

φ̄
= − ṽ

v̄
exp(iωτd). (6.44)

If the actuator operates, the fuel flow rate is perturbed and the previous expression
becomes

φ̃

φ̄
= − ṽ

v̄
exp(iωτd) +

˜̇mf

ṁf

exp(iωτd). (6.45)

Using this relation in combination with expression (6.37), one finds that˜̇Q
Q̇

=
ṽ

v̄
[FA − eiωτd(mFm − aFA)] +

˜̇mf

ṁf

(mFm − aFA)eiωτd . (6.46)

It is then possible to reduce the combustion response by actuating the fuel flow rate
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in proportion to the velocity fluctuations such that˜̇mf

ṁf

= H(ω)
ṽ

v̄
where H(ω) = 1− e−iωτd FA

mFm − aFA
. (6.47)

This expression indicates that it is in principle possible to develop a control scheme
in which velocity fluctuations are detected on the injector feeding manifold and serve as
input to a filter H(ω), which yields the level of fuel flow rate fluctuation that must be

imposed by the actuator to suppress heat release fluctuations ˜̇Q in the flame. However,
it might be difficult to use this expression to modulate the fuel flow rate in a fixed
parameter feedback loop. In practice, it will be easier to use an adaptive filter with
velocity fluctuations as input and fuel modulations as output. The coefficients of this
filter could be continuously adjusted to minimize heat release fluctuations.

While cancelling all heat release fluctuations over the entire frequency range of the
flame response may be very difficult due to the limited response of the actuation devices,
an alternative passive and less demanding strategy is to attempt minimizing the heat
release fluctuations by modifying the injector design and in particular the position where
fuel is introduced in the system. In this passive scheme ˜̇mf = 0 and one is left with˜̇Q

Q̇
= J

ṽ

v̄
, where J(ωτd, ω∗, k∗) = FA − eiωτd(mFm − aFA). (6.48)

One may now try to minimize

|J |2 = |FA|2 + |Fm − aFA|2 + 2a|FA|2 cos(ωτd)− 2<
[
mFAF

∗
me
−iωτd

]
. (6.49)

Introducing the expressions (6.38) and (6.39) for the FTF FA(ω∗, k∗) and Fm(k∗) for a
dihedral flame in (6.49) and differentiating it with respect to the time lag τd yields

∂|J |2

∂τd
= −2aω sin(ωτd)|FA|2 − 2mω|FA||Fm| sin

(ω∗
2
− ωτd

)
. (6.50)

The function |J |2 is minimum when

sin(ωτd) = −m
a

|Fm|
|Fa|

sin
(ω∗

2
− ωτd

)
(6.51)

Assuming ωτd � 1 and taking the low frequency limit ω∗ → 0 in which case |FA| ∼ 1 and
|Fm| ∼ 1, one ends up with a condition for the time lag τd between mixture composition
and velocity disturbances

ωτd '
m

m− a
ω∗
2
. (6.52)

This condition fixes the distance d = v̄τd at which the fuel needs to be introduced with
respect to the burner outlet in order to minimize heat release disturbances

d

R
=

1 + a

2

1

sinα cosα
, where sinα =

SL
v̄

and a =
φ̄

S̄L

∂SL
∂φ

. (6.53)

One sees that the normalized distance d/R depends on the operating point (through a)
and flame shape (through α). The previous calculations indicate that control of flames
may be accomplished by making use of methods that can tailor the flame response and
reduce its sensitivity to incident perturbations. They also show that this may require
some delicate trade-offs.
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7. Conclusion

The basics of acoustics and thermo-acoustics are first reviewed by examining instabil-
ities of combustion systems coupled by one dimensional low frequency acoustic modes.
Two methods are introduced to analyze the combustor stability. The first one considers
small perturbations around the acoustic modes of the combustor, which are determined
in the absence of combustion response. The second one relies on an energy balance for
acoustic disturbances. Both methods require some knowledge of the relation between heat
release rate perturbations and acoustic variables. This relation is conveniently represented
by making use of a Flame Transfer Function in the frequency domain linking heat release
rate perturbations to incoming velocity disturbances. It is shown that the combustor
stability is essentially governed by the product of the FTF and the injector admittance,
a result that is validated for longitudinal modes, and also for azimuthal modes in annular
chambers.

A method based on the FTF is then introduced to analyze the dynamics of low
frequency instabilities in combustion systems featuring a single injection element. This
method, which relies on the approximation that the heat release rate disturbances
only weakly alter the combustor acoustics, is used to derive expressions for oscillation
frequencies and growth rates for a set of combustors operating in a laminar mode. It
is applied to the analysis of a compact flame confined inside a combustor coupled by a
bulk mode of oscillation or by one of the higher modes of the combustor. It is also shown
that the FTF can be used to predict combustion instabilities when an unconfined flame
is stabilized at one extremity of the system.

The expressions derived in this work obtained in a linear framework can also be used
to conduct a weakly nonlinear stability analysis by replacing the FTF by the FDF in the
expressions found for the growth rates of the modes and by following the trajectories of
these growth rates as a function of the forcing level. This may be used to determine the
limit cycle levels and the corresponding oscillation frequencies reached by the combustion
instability.

This framework is however shown to fail in predicting combustion instabilities in
configurations in which acoustic waves are highly attenuated in the upstream and
downstream regions separating the flame sheet. The special instabilities that arise in such
cases, called intrinsic thermoacoustic modes, are examined to determine the conditions
leading to their appearance in combustors with anechoic boundaries. These instabilities
are shown to result from an internal feedback loop and are fully determined if the FTF
is known. The competition of these intrinsic modes with combustion instabilities coupled
by acoustic modes is the subject of current research.

A theoretical framework is then proposed for combustion stability analysis of annular
combustors, in which the acoustic field does not only depend on the axial direction,
but also features a transverse or azimuthal component. This situation is examined by
making use of a compact flame model. This model is used to derive a relation between
incoming and outgoing acoustic energy fluxes. These flux expressions are then inserted in
energy balance analysis (EBA) to derive growth rates for mixed azimuthal-longitudinal
and for purely azimuthal modes. It is shown that results obtained coincide with those
derived from a wave field analysis of a compact flame dynamical model (CFDM). Another
model based on a discrete flame source representation (DFSM) is also considered and a
dispersion relation is derived which describes the dynamics of the system in frequency
space. A perturbation analysis provides expressions for the growth rates which coincide
with those deduced from the EBA and CFDM methods when the number of injectors
regularly distributed in the azimuthal direction is large. These expressions highlight
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the role of the injector impedance and flame transfer function. They can be used to
guide instability analysis and may serve to interpret experimental data pertaining to
combustion instabilities coupled by azimuthal modes in annular combustors.

The last section introduces a framework that may be used to determine the transfer
function of flames to incident velocity and mixture composition non-uniformities. It is
shown that relative heat release fluctuations may be written as a linear combination of
terms corresponding to these two types of perturbations. Explicit forms are provided
for the flame area perturbation transfer function FA and for the average mass rate of
burning transfer function Fm. These two functions can be expressed as low pass filters
only depending on two reduced wavenumbers, the first corresponding to perturbations
convected in the axial direction at the mean flow velocity while the second describes
perturbations travelling in the mean flame direction. The non-steady release of heat thus
features two components which operate in a distinct fashion. This result leads to methods
which could be used to control the level of heat-release perturbation. This level can be
minimized by adjusting the equivalence ratio perturbation to the velocity perturbation
by making use of a compensating transfer function. This theoretical principle is shown
to be applicable to an intermediate range of frequencies where the transfer functions FA
and Fm take finite values.
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Appendix A. Inlet and outlet admittances of combustor components
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Table 4. Downstream admittance β2 = ρ̄2c2ũ2/p̃2 seen by a flame sheet at x = 0 for a chamber
exhausting in a tube. c3 = c2 = c, k2 = k3 = k. Helmholtz mode wave number : k2H = S3/(V2l3).

Combustion chamber
with an exhaust tube

β2 Compact model

p

l
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∼

∼ p = 0∼
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S
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i
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S1

(S3/S2) cos(kl3) cos(kl2)− sin(kl3) sin(kl2)

(S3/S2) cos(kl3) sin(kl2) + sin(kl2) cos(kl2)
i
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