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Abstract

Peak estimation bounds extreme values of a function of state along trajectories of a dynamical sys-
tem. This paper focuses on extending peak estimation to continuous and discrete settings with time-
independent and time-dependent uncertainty. Techniques from optimal control are used to incorporate
uncertainty into an existing occupation measure-based peak estimation framework, which includes spe-
cial consideration for handling switching uncertainties. The resulting infinite-dimensional linear programs
can be solved approximately with Linear Matrix Inequalities arising from the moment-SOS hierarchy.

1 Introduction

Peak estimation under uncertainty aims to bound extreme values of a state function subject to an adversarial
noise process. Examples include finding the maximum height of an aircraft subject to wind, the maximum
voltage in a transmission line subject to thermal noise, and the maximum speed of a motor subject to
impedance within a tolerance. A system with finite-dimensional state x ∈ RNx evolves under Ordinary
Differential Equation (ODE) dynamics defined by a locally Lipschitz vector field f perturbed by uncertainty
over the time-range t ∈ [0, T ]. The time-independent uncertainty θ ∈ Θ ⊂ RNθ is fixed (such as the
unknown mass of a system component within tolerance), while the time-dependent uncertainty w(t) may
change arbitrarily in time within the region W ⊂ RNw . Let x(t | x0, θ, w(t)) denote a trajectory in time
starting from an initial point x0 subject to uncertainties (θ, w(t)). The uncertain peak estimation problem
with variables (t, x0, θ, w(t)) may be posed as,

P ∗ = max
t∈[0,T ], x0∈X0, θ∈Θ, w(t)

p(x(t | x0, θ, w(t))) (1)

ẋ(t) = f(t, x(t), θ, w(t)), w(t) ∈W ∀t ∈ [0, T ].

This paper produces an infinite-dimensional linear program (LP) in occupation measures to upper bound the
quantity P ∗ from (1). Measure-based peak estimation was introduced in [5] and [2] for a stochastic setting,
and was numerically approximated by a discretizing set of finite LPs. The work in [3] forms a sum-of-squares
program from an LP dual to the measure LP in [2]. Each of these are variations on the optimal control
framework in [11, 9], with an optimal stopping cost rather than an average integral (running) cost.

Occupation measure-based bounds for uncertain peak estimation may be developed by adapting methods
from optimal control. Time-dependent uncertainty is an instance of an adversarial optimal control which
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aims to maximize the state function. Time-independent parameter uncertainty may be incorporated by
adding states, and switched systems can be analyzed by splitting the occupation measure [7]. The true peak
cost P ∗ is upper bounded with an infinite dimensional LP in occupation measures. The infinite LP is then
truncated into a sequence of LMIs by the moment-SOS hierarchy [10].

This paper has the following structure: Section 2 reviews preliminaries such as occupation measures and
peak estimation. Section 3 presents uncertainty models, and a unified uncertain peak estimation model is
presented in Section 4. Section 5 extends uncertain peak estimation to discrete systems. Section 6 presents
the application of uncertain peak estimation to safety analysis. The paper is concluded in Section 7.

2 Preliminaries

2.1 Notation

Let N be the set of natural numbers, Rn be an n-dimensional real Euclidean space, and R[x] be the set of
polynomials in x with real-valued coefficients. For a set X ⊆ Rn, the sets C(X) and C+(X) are respectively
the set of continuous functions on X and its nonnegative subcone. The subcone C1(X) ⊂ C(X) is composed
of continuous functions on X with continuous first derivatives. M+(X) is the set of nonnegative Borel
measures over X, and a duality pairing exists 〈f, µ〉 =

∫
X
f(x)dµ(x) for all f ∈ C(X), µ ∈ M+(X). For

every linear operator L, there exists a unique linear adjoint L† such that 〈Lf, µ〉 = 〈f,L†µ〉, ∀f, µ is satisfied.
An indicator function is IA(x) = 1 for a subset A ⊆ X if x ∈ A and IA(x) = 0 otherwise. The measure
of a set A ⊆ X with respect to µ is µ(A) =

∫
A
dµ =

∫
X
IA(x)dµ. The quantity µ(X) = 〈1, µ〉 is known

as the ‘mass’, and µ is a probability measure if µ(X) = 1. The Dirac delta δx′ ∈ M+(X) is a probability
measure supported only on x = x′. For measures µ ∈ M+(X), ν ∈ M+(Y ), the product measure satisfies
(µ ⊗ ν)(A × B) = µ(A)ν(B) for all A ∈ X, B ∈ Y . The projection map πx : X × Y → X returns
only the x coordinate (x, y) → x. The pushforward by a function f is the linear operator f# satisfying
〈v(x), f#µ〉 = 〈v(f(x)), µ〉 for any test function v ∈ C(X) and measure µ ∈ M+(X). The x-marginal of a
measure µ ∈ M+(X × Y ) may be expressed as the pushforward of a projection πx#µ with duality pairing

〈v(x), πx#µ〉 =
∫
X×Y v(x)dµ(x, y) holding for all test functions v(x) ∈ C(X).

2.2 Peak Estimation and Occupation Measures

The standard (no uncertainty) peak estimation setting involves a trajectory x(t | x0) starting at the initial
point x0 ∈ X0 ⊂ X evolving according to dynamics ẋ(t) = f(t, x(t)) in a space X. The program to find the
maximum value of a state function p(x) along trajectories is,

P ∗ = max
t∈[0,T ], x0∈X0

p(x(t | x0)), ẋ(t) = f(t, x(t)) (2)

The extremum P ∗ may be bounded through the use of occupation measure relaxations [2]. An optimal
trajectory satisfying P ∗ = p(x∗) = p(x(t∗ | x∗0)) is described by a triple (x∗0, t

∗, x∗) [14]. The initial probability
measure µ0 ∈ M+(X0) is distributed over the set of initial conditions. The peak probability measure
µp ∈ M+([0, T ] × X) is a free-time terminal measure. For an optimal stopping time t∗ and subsets A ⊆
[0, t∗], B ⊆ X, the µ0-averaged occupation measure µ ∈M+([0, T ]×X) has a definition [2],

µ(A×B) =

∫
[0,t∗]×X0

IA×B ((t, x(t | x0))) dt dµ0(x0) (3)

The measure µ(A×B) yields the average amount of time a trajectory with initial condition x0 drawn from
µ0 will spend in the region A×B.

The Lie derivative operator Lf may be defined for all test functions v ∈ C1([0, T ]×X),

Lfv(t, x) = ∂tv(t, x) + f(t, x) · ∇xv(t, x) (4)

The three measures (µ0, µp, µ) are linked by Liouville’s equation for all test functions,

〈v(t, x), µp〉 = 〈v(0, x), µ0〉+ 〈Lfv(t, x), µ〉 (5)
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Liouville’s equation ensures that initial conditions distributed as µ0 are connected to terminal points
distributed as µp by trajectories following the polynomial vector field f . Two consequences of (6) are that
〈1, µ0〉 = 〈1, µp〉 (v(t, x) = 1) and that 〈1, µ〉 = 〈t, µp〉 (v(t, x) = t). Equation (5) may be expressed in a

weak sense using the adjoint relaton 〈Lfv, µ〉 = 〈v,L†fµ〉,

µp = δ0 ⊗ µ0 + L†fµ. (6)

A convex measure relaxation of problem (2) is,

p∗ = max 〈p(x), µp〉 (7a)

µp = δ0 ⊗ µ0 + L†fµ (7b)

〈1, µ0〉 = 1 (7c)

µ, µp ∈M+([0, T ]×X) (7d)

µ0 ∈M+(X0). (7e)

Constraint (7c) ensures that both µ0 and µp are probability measures. The objective (7a) is the expectation
of p(x) with respect to the peak measure µp. Program (7) has a dual problem over continuous functions,

d∗ = min
γ∈R

γ (8a)

γ ≥ v(0, x) ∀x ∈ X0 (8b)

Lfv(t, x) ≤ 0 ∀(t, x) ∈ [0, T ]×X (8c)

v(t, x) ≥ p(x) ∀(t, x) ∈ [0, T ]×X (8d)

v ∈ C1([0, T ]×X) (8e)

The variable v(t, x) is termed an auxiliary function in [3], and is an upper bound on the cost function
p(x) by (8d). The graph (t, x(t | x0)) is contained in the sublevel set {(t, x) | v(t, x) ≤ γ} for all x0 ∈ X0.
Programs (7) and (8) satisfy strong duality (p∗ = d∗) when the set [0, T ]×X is compact (Theorem C.20 of
[10]). The measure solution produces an upper bound p∗ ≥ P ∗, and this bound is tight with p∗ = P ∗ when
the set [0, T ]×X is compact (Sec. 2.3 of [3] and [11]).

The work in [2] approximates Problems (7) and (8) by a discretized linear program over a fine mesh. The
method in [3] bounds (8) with a sum-of-squares (SOS) relaxation of polynomial nonnegativity constraints.
The SOS relaxation produces a converging sequence of upper bounds to p∗ = d∗ when [0, T ]×X is compact.
Optimal trajectories can be localized by sublevel sets of v(t, x) and Lfv(t, x) following the method in [3].

2.3 Moment-SOS Hierarchy

The α-moment of a measure µ for a multi-index α ∈ Nn is yα = 〈xα, µ〉. The moment sequence y is
the infinite collection of moments {yα}α∈Nn of the measure µ. There exists a linear (Riesz) functional Ly
converting a polynomial p(x) ∈ R[x] into a linear combination of moments in y:

Ly(p) = Ly
(∑

α∈N pαx
α
)

=
∑
α∈N pαyα (9)

The moment matrix M[y] is a square symmetric matrix of infinite size and is indexed by monomials
(α, β) as M[y]α,β = yα+β [10]. If a polynomial p =

∑
α pαx

α with coefficients pα is treated as a vector p,
evaluation of 〈p(x)2, µ〉 is equivalent to pTM[y]p by the Riesz functional Ly. Nonnegativity of 〈p(x)2, µ〉 for
all p(x) ∈ R[x] requires that M[y] is Positive Semidefinite (PSD).

A basic semialgebraic set K = {x | gi(x) ≥ 0, i = 1, . . . , Nc} may be the support set for a measure
µ ∈ M+(K). Because µ is supported over the region {x | gi(x) ≥ 0}, the evaluation 〈p(x)2gi(x), µ〉 is
nonnegative for all polynomials p(x) ∈ R[x]. The PSD localizing matrix associated with gi(x) ∈ R[x] and
the moment sequence y is,

M[giy]α,β =
∑
γ∈Nn giγyα+β+γ . (10)

A necessary condition for a moment sequence y to correspond with moments of a representing measure
on K is that M[y] and all M[giy] are PSD. This necessary condition is sufficient if K is Archimedean [17].
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A degree-d finite truncation of these matrices keeps moments up to order 2d, which are located in the
upper-left corners of the infinite dimensional matrices. The truncated moment matrix Md[y] has size

(
n+d
d

)
corresponding to the monomials of x with degree ≤ d, and the localizing matrix Md−deg(gi)[giy] has size(
n+d−deg(gi)
d−deg(gi)

)
. An infinite dimensional LP in measures may be posed with a polynomial objective p(x) and

m polynomial constraint functions aj(x) ∈ R[x], ∀j = 1, . . . ,m with b ∈ Rm as,

p∗ = max
µ∈M+(X)

〈p, µ〉 (11a)

〈aj(x), µ〉 = bj ∀j = 1, . . . ,m. (11b)

The degree-d finite truncation of (11) is an LMI with an
(
n+2d

2d

)
-dimensional vector of moments y as a

variable,

p∗d = max
y

∑
α pαyα (12a)

Md(y) � 0, Md−di(giy) � 0 ∀i = 1, . . . , Nc (12b)∑
α ajαyα = bj ∀j = 1, . . . ,m. (12c)

Increasing d results in a decreasing sequence of upper bounds p∗d ≥ p∗d+1 ≥ . . . ≥ p∗, which is convergent if K
is Archimedean. The refinement of upper bounds to (11) by LMIs of increasing complexity is the moment-
SOS hierarchy [10]. The moment-SOS relaxation to the peak estimation program (7) is available in Equation
(15) of [14], which is an LMI in moment sequences (y0, yp, y) up to degree 2d of the measures (µ0, µp, µ).
These moment relaxations are dual to the SOS programs in [3]. Near-optimal trajectories extremizing p(x)
may be recovered from LMI solutions if the moment matrices obey rank conditions [14].

3 Uncertainty Models

This section summarizes techniques for incorporating uncertainty into occupation-measure based frameworks,
and briefly notes their application to peak estimation. The methods mentioned here arose from optimal
control and the approximation of reachability sets. The two basic types of uncertainty are time-independent
(θ ∈ Θ) and time-dependent (w ∈ W ). It is assumed that Θ and W are compact basic semialgebraic sets,
just like X and X0.

3.1 Time-Independent Uncertainty

Time-independent uncertainty θ` for ` = 1 . . . Nθ may take values in a set Θ ⊆ RNθ , and typically arises in
systems with parameter tolerances. The time-independent θ may start at any value in Θ ⊂ RNθ and is then
constant along trajectories. By the methods in [9, 7], the state space may be extended into X×Θ by adding
new states θ with constant dynamics θ̇` = Lfθ` = 0 for each ` = 1 . . . Nθ.

3.2 Time-Dependent Uncertainty

Systems with time-dependent uncertainty may have the noise process w(t) change arbitrarily quickly in W
over time t. Such bounded time-varying noise may be found in driving or piloting tasks with changing
winds. The disturbance w(t) is a Borel measurable function of time rather than the Itô-type stochastic
process considered in [6]. For an input w(t) ∈W and a subset D ⊆W , the disturbance-occupation measure
µw(A×B ×D) is, ∫

[0,T ]×X0

IA×B×D((t, x(t), w(t)) | x0)dt dµ0(x0). (13)

The disturbance w(t) may be relaxed into a distribution ω(w | x, t), which is known as a Young Measure
[20, 11]. The disturbance-occupation measure µw can be disentangled into dµw(t, x, w) = dt dξ(x | t) dω(w |
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x, t) for conditional distributions ξ, ω. Liouville’s equation with a relaxed disturbance ω(w | x, t) influencing
dynamics f(t, x, w) for all v(t, x) ∈ C1([0, T ]×X) is,

〈v(t, x), µp〉 = 〈v(0, x), µ0〉+ 〈Lfv(t, x), µw〉. (14a)

Equivalent expressions are formed by rearranging operators,

〈v, µp〉 = 〈v, δ0 ⊗ µ0〉+ 〈Lfv, µw〉 ∀v (14b)

〈v, µp〉 = 〈v, δ0 ⊗ µ0〉+ 〈v,L†fµ
w〉 ∀v (14c)

〈v, µp〉 = 〈v, δ0 ⊗ µ0 + πtx#L
†
fµ

w〉 ∀v. (14d)

The measures of the two summands on the right hand side of (14c) reside in different spaces, as δ0⊗µ0 ∈
M+([0, T ] × X) while L†fµw ∈ M+([0, T ] × X ×W ). The (t, x)-marginalization πtx#L

†
fµ

w ∈ M+([0, T ] ×
X) allows the measures to be added together inside the duality pairing in (14d). The duality pairings

〈v(t, x),L†fµw〉 and 〈v(t, x), πtx#L
†
fµ

w〉 are equal for all v ∈ C1([0, T ]×X) because v(t, x) is not a function of

w. The weak disturbed Liouville’s Equation is derived from (14d) by treating ∀v(t, x) ∈ C1([0, T ] ×X) as
implicit,

µp = δ0 ⊗ µ0 + πtx#L
†
fµ

w. (15)

Time-varying disturbances may be incorporated into peak estimation by letting µ ∈M+([0, T ]×X×W )
be a disturbance-occupation measure of the form in (13) obeying a disturbed Liouville equation (15). The
support sets of the measures µ0 ∈ M+(X0), µp ∈ M+([0, T ] × X) are unchanged when time-dependent
uncertainty is added.

3.3 Switching Uncertainty

An approach for analyzing switched systems with occupation measures is presented in [7]. Let {Xk}Nsk=1

be a closed cover of X with Ns switching modes. The sets Xk are not necessarily disjoint, and together
satisfy ∪kXk = X (definition of closed cover). Each region Xk has dynamics ẋ = fk(t, x) for some locally
Lipschitz vector field fk. The closed cover formalism generalizes partitions of X (deterministic dynamics)
and arbitrary switching where Xk = X ∀k (polytopic uncertainty). Polytopic uncertainty is a model with
dynamics f(t, x, k) =

∑
k wkfk(t, x) where the disturbance wk ∈ RNs+ satisfies

∑
k wk = 1. Trajectories from

a switching system are equipped with a function S : [0, T ] → 1 . . . , Ns yielding the resident subsystem at
time t−. Such a trajectory under switching may be written as x(t | x0, S(t)). The switched measure program
introduces an occupation measure µk ∈M+([0, T ]×Xk) for each subsystem fk,

µ =
∑
k µk L†µ =

∑
k L
†
kµk. (16)

A valid auxiliary function v(t, x) from (8c) must decrease along all subsystems [15, 18]. Problem (8) may be
modified for switching by enlarging Constraint (8c) to,

Lfkv(t, x) ≤ 0 ∀(t, x) ∈ [0, T ]×Xk, k = 1 . . . Ns. (17)

Remark 1. The closed cover switching formalism may be expanded into a system with general time-dependent
uncertainty if desired. The switching basic semialgebraic sets may be described as Xk = {x | gki(x) ≥ 0 i =
1, . . . , Nk

c } for Nk
c polynomial constraints each. A linear expression of time-dependent uncertain dynamics is

ẋ(t) =
∑Ns
k=1 wk(t)fk(t, x(t)) for processes w(t) ∈ RNs+ satisfying

∑
k wk(t) = 1 for all t ∈ [0, T ]. Additional

constraints must be imposed to enforce that the process wk(t) is zero whenever x(t) 6∈ Xk. These constraints
may be realized as {wkgki(x) ≥ 0, ∀i = 1, . . . , Nk

c , ∀k = 1, . . . Ns}.

4 Continuous-Time Uncertain Peak Estimation

This section combines the uncertainty formulations from section 3 to form a pair of primal-dual infinite-
dimensional LPs. The variables θ ∈ Θ, w ∈W will respectively denote time-independent and time-dependent
uncertainties of sizes Nθ, Nw. The dynamics f have Ns switching subsystems fk(t, x, θ, w) which are valid
in regions Xk ⊆ X.
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4.1 Continuous-Time Measure Program

A combined uncertain peak estimation measure program is detailed in Program (18) with indices k =
1, . . . , Ns for the switching subsystems,

p∗ = max 〈p(x), µp〉 (18a)

µp = δ0 ⊗ µ0 +
∑
k π

txθ
# L

†
fk
µk (18b)

µ0(X0) = 1 (18c)

µk ∈M+([0, T ]×X ×Θ×W ) ∀k (18d)

µp ∈M+([0, T ]×X ×Θ) (18e)

µ0 ∈M+(X0 ×Θ). (18f)

Theorem 4.1. The solution p∗ to program (18) will yield an upper bound to P ∗ in (1).

Proof. First assume Ns = 1 with X1 = X, so there is only one switching domain. An optimal achievement
of (1) reaching the peak value of P ∗ may be characterized by the tuple (x∗0, t

∗, x∗p, θ
∗, w∗(t)). The peak

value p(x∗p) = P ∗ is achieved by following the trajectory x(t | x∗0, θ∗, w∗(t)) until time t = t∗. Measures
(µ0, µp, µ) may be defined from this optimal tuple such that the measures satisfy constraints (18b)-(18f).
The initial measure and peak measure may be set to µ0 = δx=x∗0

and µp = δt=t∗ ⊗ δx=x∗p
⊗ δθ=θ∗ based on

the optimal tuple. The measure µ ∈ M+([0, T ] × X × Θ ×W ) may be defined as the unique occupation
measure satisfying,

〈ṽ, µ〉 =

∫ t∗

t=0

ṽ(t, x(t | x∗0, θ∗, w∗(t)), θ∗, w∗(t))dt, (19)

for all test functions ṽ ∈ C([0, T ]×X ×Θ×W ). The measures (µ0, µp, µ) satisfy constraints (18b)-(18f), so
p∗ ≥ P ∗ when Ns = 1.

Optimal trajectories arising from a system withNs > 1 may be described in a tuple as (x∗0, t
∗, x∗p, θ

∗, w∗(t), S∗(t)),
where S∗(t) is the sequence of switches undergone between times t ∈ [0, t∗]. The measures µ0 and µp may
remain the same as in the non-switched case. Switching occupation measures µk may be set to the unique
occupation measure supported on the graph (t, x(t | x∗0, θ∗, w∗(t)), θ∗, w∗(t)) between times t ∈ [0, t∗] when
S(t) = k. These occupation measures satisfy constraints (18b) and (18d), proving that there exists a feasible
solution to (18b)-(18f) with objective P ∗ for the case of switching.

4.2 Continuous-Time Function Program

Dual variables v(t, x, θ) ∈ C1([0, T ]×X ×Θ) and γ ∈ R can be defined to find the Lagrangian of (18).

L = 〈p(x), µp〉+ 〈v(t, x, θ), δ0 ⊗ µ0 +
∑
k π

txθ
# L

†
fk
µk〉

+ 〈v(t, x, θ),−µp〉+ γ(1− 〈1, µ0〉).

The resulting dual program in (v, γ) is,

d∗ = min
γ∈R

γ (20a)

∀(x, θ) ∈ X0 ×Θ :

γ ≥ v(0, x, θ) (20b)

∀(t, x, θ, w) ∈ [0, T ]×Xk ×Θ×W : ∀k
Lfkv(t, x, θ) ≤ 0 (20c)

∀(t, x, θ) ∈ [0, T ]×X ×Θ :

v(t, x, θ) ≥ p(x) (20d)

v(t, x, θ) ∈ C1([0, T ]×X ×Θ). (20e)

Theorem 4.2. There is no duality gap between (18) and (20) when the set [0, T ]×X ×Θ×W is compact.
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Proof. Necessary and sufficient conditions for there to be no duality gap between measure and function
programs are if all measures are bounded and if the affine map is closed in the weak-* topology (Theorem C.20
of [10]). A measure is bounded if all of its finite-degree moments are bounded. Boundedness will hold if the
mass of the measure is bounded and the support of the measure is compact. In (18) µ0 and µp each have mass
1, and the mass of

∑
k µk ≤ T by Liouville’s equation. Compactness of [0, T ]×X ×Θ×W therefore assures

that all measures are bounded. The image of the affine map (µ0, µp, µk)→ (δ0⊗µ0 +
∑
k π

txθ
# L

†
fkµk−µp, µ0)

induced by constraints (18b)-(18c) is closed in the weak-* topology. Strong duality therefore holds by closure
and boundedness of measures.

The measure µ0 has Nx +Nθ variables, and µp has 1 +Nx +Nθ variables. The Ns occupation measures
µk each have 1 + Nx + Nθ + Nw variables. If the switching structure was not taken into account by the
methods of section 3.3, there would be a single occupation measure µ with 1 +Nx+Nθ +Nw +Ns variables.
The affine uncertainty structure breaks up the large µ (in terms of the number of variables) into Ns smaller
measures (µk).

4.3 Continuous-Time LMI Relaxation

The compact (Archimedean) basic semialgebraic sets in the uncertain peak estimation setting are

X = {x | gi(x) ≥ 0 | i = 1, . . . , Nc} (21a)

X0 = {x | g0i(x) ≥ 0 | i = 1, . . . , N0
c } (21b)

Xk = {x | gki(x) ≥ 0 | i = 1, . . . , Nk
c } (21c)

Θ = {θ | gθi(θ) ≥ 0 | i = 1, . . . , Nθ
c } (21d)

W = {w | gwi(w) ≥ 0 | i = 1, . . . , Nw
c }. (21e)

The degree of gi(x) is di, and other degrees d0i, dθi, dwi, dki are defined on corresponding polynomials.
Monomials forming moments may be indexed as xαtβθγwη for multi-indices α ∈ NNx , β ∈ N, γ ∈ NNθ , η ∈
NNw . Define y0 = {y0

αγ}, yp = {ypαβγ} as the moment sequences for measures µ0 and µp. The moment

sequence for the occupation measure µk is yk = {ykαβγη} for each switching subsystem k. The Liouville

equation (18b) with test function v(t, x, θ) = xαtβθγ has the form,

0 = 〈xαtβθγ , δ0 ⊗ µ0〉 − 〈xαtβθγ , µp〉 (22)

+
∑
k〈Lfk(t,x,θ,w)(x

αtβθγ), µk〉.

Define the operator Liouαβγ(y0, yp, yk) as the linear relation between the moment sequences induced by
(22) assuming that each fk is a polynomial vector field. Given a degree d, define the degrees d′k as d +
ddeg(fk)/2e − 1 for each k. The degree-d LMI relaxation of the uncertain peak estimation problem in (18)
resulting in an upper bound p∗d ≥ P ∗ is,

p∗d =max
∑
α pαy

p
α00 (23a)

Liouαβγ(y0, yp, yk) = 0 by (22) ∀|α|+ |β|+ |γ| ≤ 2d (23b)

y0
0 = 1 (23c)

Md(y
0),Md(y

p),∀k : Md′k
(yk) � 0 (23d)

Md−2(t(T − t)yp) � 0 (23e)

∀k : Md′k−2(t(T − t)yk) � 0 (23f)

Md−d0i(g0iy
0) � 0 ∀i = 1, . . . , N0

c (23g)

Md−dθi(gθiy
0), Md−dθi(gθiy

p) � 0 ∀i = 1, . . . , Nθ
c (23h)

∀k : Md′k−dθi(gθiy
k) � 0 ∀i = 1, . . . , Nθ

c (23i)

Md−di(giy
p) � 0 ∀i = 1, . . . , Nc (23j)

∀k : Md′k−dki(gkiy
k) � 0 ∀i = 1, . . . , Nk

c (23k)

∀k : Md−dwi(gwiy
k) � 0 ∀i = 1, . . . , Nw

c . (23l)
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Constraints (23d)- (23l) are moment and localizing matrix PSD constraints ensuring that there exist
representing measures to the moment sequences (y0, yp, yk) supported on the appropriate spaces. The
sequence {p∗d} will converge to p∗ monotonically from above as d → ∞ if all sets in (21) are Archimedean
[10].

4.4 Continuous-Time Uncertain Examples

Code is available at github.com/jarmill/peak, and is written in Matlab R2020a using Gloptipoly3 [8],
YALMIP [12], and Mosek 9.2 [1] to formulate and solve LMIs. Demonstrations are available in the folder
peak/experiments uncertain and are run here on an Intel i9 CPU at 2.30 GHz with 64.0 GB of RAM.

Dynamics based on Example 1 of [19] (adding w) are,

ẋ(t) =

[
−0.5x1 − (0.5 + w(t))x2 + 0.5

−0.5x2 + 1 + θ.

]
(24)

Figure 1 illustrates maximization of p(x) = x1 starting in X0 = {x | (x1 + 1)2 + (x2 + 1)2 ≤ 0.25} for
time t ∈ [0, 10]. The admissible disturbances w(t) are in w = [−0.2, 0.2]. Fig. 1a has Θ = 0 while Fig. 1b
has Θ = [−0.5, 0.5] for the time-independent uncertainty θ ∈ Θ. In each figure, the black circles are initial
conditions from the boundary of X0, the blue curves are sampled trajectories, and the red plane are level
sets for upper bounds of x1 along trajectories. At the order r = 4 LMI relaxation, Fig. 1a yields a bound
of P ∗ ≤ 0.4925 while Fig. 1b with θ results in P ∗ ≤ 0.7680. The black surface containing all trajectories in
Fig. 1a is the level set {(t, x) | v(t, x) = 0.4925}.

(a) θ = 0 (b) θ ∈ [−0.5, 0.5]

Figure 1: Maximize x1 at order 4 with w(t) ∈ w

The reduced three-wave model is a nonlinear model for the interaction of three quasisynchronous waves
in a plasma [4]. These dynamics with parameters (A,B,G) are,

ẋ1 = Ax1 +Bx2 + x3 − 2x2
2

ẋ2 = −Bx1 +Ax2 + 2x1x2 (25)

ẋ3 = −Gx3 − 2x1x2.

This example aims to maximize x2 on the three-wave system starting in X0 = {x | (x1 + 1)2 + (x2 +
1)2 + (x3 + 1)2 ≤ 0.16}. Order 3 LMI relaxations are used to upper bound x2 over the region of interest
X = [−4, 3] × [0.5, 3.6] × [0, 4] and times t ∈ [0, 5]. The bound P ∗ ≤ 2.6108 is produced with parameter
values A = 1, B = 0.5, G = 2 (no uncertainty), as illustrated in Fig. 2a. Fig. 2b adds uncertainty by
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letting A ∈ [−0.5, 1.5] and B ∈ [0.25, 0.75] vary arbitrarily with time, and G now possesses parametric
uncertainty in [1.9, 2.1] . Uncertainty in A,B are realized by switching between 4 subsystems of (25) with
(A,B) ∈ {0.5, 1.5} × {0.25, 0.75} Uncertainty in G is implemented as G = 2 + θ where θ ∈ [−0.1, 0.1]. The
order-3 bound under uncertainty in Fig. 2b is P ∗ ≤ 3.296.

(a) no uncertainty (b) with uncertainty

Figure 2: Maximize x2 on three-wave system (25)

Section 4.1 of [7] introduces a 1DOF attitude controller for validation of a space launcher system. These
linearized dynamics corresponding to a double-integrator Iφ̈ = u and states x = [φ, φ̇]. The input u =
satL(Kx) is a state feedback controller Kx = 1000(2.475φ+ 19.8φ̇) that saturates at levels ±L = ±380. The
subsystems are linear operation |Kx| ≤ L, positive saturation Kx ≥ L, and negative saturation Kx ≤ −L
(deterministic switching). These valid regions Xk are separated in Fig. 3 by thin dotted diagonal lines.
Maximizing p(x) = |φ| (implemented as φ2) is shown in Fig. 3a. With |φ0| ≤ 15◦ and |φ̇0| ≤ 3◦/sec, a
degree-5 approximation finds a time-independent upper bound of |φ∗| = 20.69◦. The blue curve is the near-
optimal trajectory, starting at the blue circle and extremizing p(x) at the blue star. The nominal moment
of inertia in Fig. 3a is I = 27, 500 kg m2. Time-independent relative uncertainty I may be introduced by
replacing I with I/(1 + θ), where θ ∈ [−0.5, 0.5]. The peak angle is raised to |φ∗| = 51.86◦ at d = 5 at
I ′ = 2I with this new uncertainty in Fig. 3b.

5 Discrete-Time Uncertain Peak Estimation

Uncertain peak estimation can be extended to discrete systems, including switched discrete-time systems. A
discrete system from times t = 0, 1, . . . , T is considered for dynamics x+ = f(x) where x+ is the next state.
A trajectory starting at the initial condition x0 ∈ X0 is xt(x0) The uncertain peak estimation problem for
discrete systems with uncertainties (θ, wt) and Ns subsystems with switching sequence St is,

P ∗ = max
t, x0∈X0, θ∈Θ, wt, St

p(xt(x0, θ, wt, St)) (26)

x+ = fk(xt, θ, wt) if St = k

wt ∈W, St ∈ 1, . . . , Ns ∀t ∈ 0, . . . , T.
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Figure 3: Maximum angle for 1DOF attitude controller

5.1 Discrete-Time Measure Background

Just as the Lie derivative Lfv yields the infinitesimal change in v along continuous trajectories, the quantity
v(f(x)) − v(x) is the change in v along a single discrete step. An occupation measure for sets A ⊆ X with
initial conditions distributed as µ0 ∈M+(X0) may be defined for discrete systems,

µ(A) =

∫
X0

T∑
t=0

IA(f t(x0))dµ0. (27)

The quantity µ(A) is the averaged number of time steps that trajectories distributed as µ0 spend in the
region A. For measures µ0 ∈ M+(X0), µp ∈ M+(X), µ ∈ M+(X), the strong and weak discrete Liouville
equations for all v are:

〈v(x), µp〉 = 〈v(x), µ0〉+ 〈v(f(x)), µ〉 − 〈v(x), µ〉, (28)

µp = µ0 + f#µ− µ. (29)

Time may be optionally included in system dynamics by setting a state t+ = t+ 1 and incorporating t into
dynamics. The pushforward term in (29) would then be v(t + 1, f(t, x)) − v(t, x). Discrete systems with
uncertainties (θ, w) have dynamics and Liouville equations according to,

x+ = f(xt, θ, wt), µp = µ0 + πxθ# (f#µ− µ). (30)

The uncertainty θ ∈ Θ is fixed, and the time-dependent uncertainty has wt ∈ W for every time step
t = 0, . . . , T . Switching uncertainty from Section 3.3 with subsystems fk valid over Xk may be realized by
defining occupation measures µk ∈M+(Xk ×Θ×W ) such that µ =

∑
k µk.

5.2 Discrete-Time Measure Program

A measure program may be formulated to upper bound the peak-estimation task on discrete systems. The
uncertainties available in this formulation are (θ, w) and switching between dynamics fk over Xk. The
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uncertain discrete peak estimation measure problem with variables (µ0, µk, µp) is,

p∗ = max 〈p(x), µp〉 (31a)

µp = µ0 + πxθ# (
∑
k(fk#µk − µk)) (31b)

µ0(X0) = 1 (31c)

T ≥
∑
k〈1, µk〉 (31d)

µk ∈M+(Xk ×Θ×W ) ∀k = 1, . . . , Ns (31e)

µp ∈M+(X ×Θ) (31f)

µ0 ∈M+(X0 ×Θ). (31g)

Remark 2. The composition of pushforwards in (31b) acts as 〈v(x, θ), πxθ# fk#µk〉 = 〈v(fk(x, θ, w), θ), µk〉
for all test functions v(x, θ) ∈ C(X ×Θ).

Theorem 5.1. The optimum p∗ of (31) is an upper bound for P ∗ from discrete program (26).

Proof. This proof follows the same steps as the proof to theorem 4.1. An trajectory achieving a peak value
of P ∗ solving (26) may be expressed as a tuple (t∗, x∗0, x

∗
p, θ
∗, w∗t , S

∗
t ) with P ∗ = p(x∗p) = p(xt∗(x

∗
0, θ
∗, wt)).

Measures may be defined from this tuple to solve problem (31). The probability distributions are µ0 = δx=x∗0
and µp = δx=x∗p⊗δθ=θ∗ . Switching measures µk may be chosen as the unique occupation measures satisfying,

〈ṽk, µk〉 =

t∗∑
t=0

ṽ(xt(x
∗
0, θ
∗, w∗t ), θ∗, w∗t )I(St = k), (32)

for all test functions ṽk ∈ C(Xk×Θ×W ) and for each k = 1, . . . , Ns. The measures (µ0, µp, µk) are feasible
solutions to (31b)-(31g) with objective value P ∗ = p(x∗p) = 〈p(x), µp〉, so p∗ ≥ P ∗ is a valid upper bound to
(26).

Remark 3. Constraint (31d) is a technique from [13] ensuring that the maximal time in optimization is T
and that each µk has a bounded mass.

5.3 Discrete-Time Function Program

With dual variables (v(x, θ) ∈ C(X ×Θ), γ ∈ R) and a new dual variable α ≥ 0, the Lagrangian of (31) is,

L = 〈p(x), µp〉+ 〈v(x, θ), µ0 − µp〉+ α(T − 〈1,
∑
k µk〉)

+ 〈v(x, θ), πxθ#

∑
k fk#µk − µk〉+ γ(1− 〈1, µ0〉).

The corresponding dual problem is,

d∗ = min
γ∈R, α≥0

γ + Tα (33a)

∀(x, θ) ∈ X0 ×Θ :

γ ≥ v(x, θ) (33b)

∀(x, θ, w) ∈ Xk ×Θ×W : ∀k
v(fk(x, θ, w), θ)− v(x, θ) ≤ α (33c)

∀(x, θ) ∈ X ×Θ :

v(x, θ) ≥ p(x) (33d)

v(x, θ) ∈ C(X ×Θ). (33e)

Theorem 5.2. Strong duality p∗ = d∗ between holds between (31) and (33) if T < ∞ and X × Θ ×W is
compact.

Proof. This is affirmed by a similar process to Theorem 4.2. All measures have bounded finite moments given
that their masses are bounded and their supports are compact. The image of the affine map in constraints
(31b)-(31c) is closed in the weak-* topology, concluding the conditions for strong duality by Theorem C.20
of [10].
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5.4 Discrete LMI

The LMI relaxation of (31) can be developed in the same manner as in Section 4.3. The sets (X0, X,W,D)
are defined in the same way as in equation (21). As there is no t term in discrete systems, monomials forming
moments are indexed as xαθγwη. The moment sequences are y0, yp, and a yk for each switching subsystem
k = 1, . . . , Ns. The Liouville equation (31b) with a given test function v(x, θ) = xαθγ is ,

0 = 〈xαθγ , δ0 ⊗ µ0〉 − 〈xαθγ , µp〉 (34)

+
∑
k〈(fk(x, θ, w)αθγ − xαθγ , µk〉.

The operator Liouαγ(y0, yp, yk) is defined as the relation induced by the discrete Liouville equation (??).
The discrete degree-d LMI truncation of (31) is,

p∗d =max
∑
α pαy

p
α0 (35a)

Liouαγ(y0, yp, yk) = 0 by (34) ∀|α|+ |γ| ≤ 2d (35b)

y0
0 = 1 (35c)∑
k y

k
0 ≤ T (35d)

Md(y
0),Md(y

p),∀k : Md(y
k) � 0 (35e)

Md−d0i(g0iy
0) � 0 ∀i = 1, . . . , N0

c (35f)

Md−dθi(gθiy
0) � 0 ∀i = 1, . . . , Nθ

c (35g)

Md−di(giy
p), ∀k : Md−di(giy

k) � 0 ∀i = 1, . . . , Nc (35h)

Md−dθi(gθiy
p), ∀k : Md−dθi(gθiy

k) � 0 ∀i = 1, . . . , Nθ
c (35i)

∀k : Md−dwi(gwiy
k) � 0 ∀i = 1, . . . , Nw

c . (35j)

Constraint (35d) enforces the time limit constraint on occupation measures (31d). The structure of (35)
is similar to (23) with the affine, moment matrix and localizing matrix constraints.

5.5 Discrete Example

An example to demonstrate uncertain discrete peak estimation is to minimize x2 on the following subsystems,

f1(x,w) =

[
−0.3x1 + 0.8x2 + 0.1x1x2

−0.75x1 − 0.3x2 + w

]
(36a)

f2(x,w) =

[
0.8x1 + 0.5x2 − 0.01x2

1

−0.5x1 + 0.8x2 − 0.01x1x2 + w

]
. (36b)

The space under consideration isX = [−3, 3]2, and the time varying uncertainty wt satisfies wt ∈ [−0.2, 0.2] =
∆. The valid regions for subsystems of (36) are X1 = X and X2 = X ∩ (x1 ≥ 0). When x1 ≥ 0 the system
may switch arbitrarily between dynamics f1 and f2, but when x2 < 0, the system only follows dynamics f1.
Figure 4 visualizes minimizing x2 starting from the initial set X0 = {x | (x1 + 1.5)2 + x2

2 = 0.16} between
discrete times t ∈ 0, . . . , T with T = 50. A fourth order LMI relaxation of (31a) is solved aiming to maximize
p(x) = −x2. With w = 0 in Fig. 4a the bound is P ∗ ≤ 1.215 (minx2 ≥ −1.215), while the time varying w
in Fig. 4b yields a bound of P ∗ ≤ 1.837.

6 Safety Analysis

The work in [14] introduced the concept of ‘safety margins’ that are solvable through peak estimation to
certify safety of trajectories. Assume that Xu = {x | pi(x) ≥ 0, i = 1, . . . , Nu} is a basic semialgebraic set
with Nu constraints defining an unsafe set. Xu may be equivalently redefined as Xu = {x | mini pi(x) ≥ 0}.
If the maximum value of mini pi(x) is negative for all points on trajectories starting from x0 ∈ X0 in times
t ∈ [0, T ], then all trajectories are certifiably safe. The quantity of a ‘safety margin’ is an upper bound for
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(a) wt = 0 (b) wt ∈ [−0.2, 0.2]

Figure 4: Minimize x2 on system (36)

mini pi(x) ≥ 0 which may be found through LMI approximations. Finding the safety margin is an instance
of maximin optimization, aiming to maximize the minimum of a set of functions.

A maximin optimization problem may be considered by replacing objectives (18a) or (31a) with,

maxq∈R q (37a)

q ≤ 〈pi, µp〉 i = 1, . . . , Nu. (37b)

The dual formulation introduces variables β ∈ RNu+ as nonnegative multipliers. Constraints (20d) and
(33c) are then replaced by,

v ≥ βT p(x) =

Nu∑
i=1

βipi(x). (38)

over the valid region ([0, T ]×X ×Θ or X ×Θ).
The value q is a lower bound for all of the expectations 〈pi, µp〉. A negative optimal value of q for any

degree of an LMI relaxation is sufficient to certify safety.
An example of a successful safety margin under uncertainty is depicted in Figure 5. The system under

consideration is based on Example 1 of [16], with dynamics for time-varying w,

ẋ = f(x,w) =

[
x2

−x1 + w
3 x

3
1 − x2

]
. (39)

For trajectories originating in X0 = {x | (x1−1.5)2+x2
2 ≤ 0.42}, it is desired to determine if any trajectory

reaches the half-circle unsafe set in red Xu = {x | p1(x) = x2
1−(x2+0.5)2 ≤ 0.25, p2(x) =

√
2

2 (x1+x2+0.5) ≥
0. When w = 1 is constant, the 5th-order LMI (relaxation of maximin peak estimation with infinite time)
computes a safety margin of p∗5 = −0.1417 < 0 certifying safety of all trajectories. This value is nearly
optimal, and the trajectory starting at the blue circle in 5a approximately maximizes mini pi(x) as recovered
by Alg. 1 of [14]. The black contour is the auxiliary function level set {x | v(x) = p∗5}, and the red contour
is the level set of {x | mini pi(x) = p∗5}.

The time-varying case where w ∈ [0.5, 1.5] is shown in Figure 5b. The safety margin of p∗5 = −0.0784 < 0
is computed at the 5th-order LMI relaxation.
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(a) w = 1, p∗5 = −0.1417 (b) w ∈ [−0.5, 1.5], p∗6 = −0.0487

Figure 5: Safety margins on half-circle set

7 Conclusion

The problem of peak estimation with uncertainty may be upper bounded with an infinite-dimensional LP
in occupation measures, and approximated by a sequence of LMIs. Time-independent and time-dependent
(including box, and switching) uncertainties are incorporated into this measure framework for continuous and
discrete systems. Specific application of this method towards the analysis of linear systems was discussed.
Future work includes performing peak estimation with further specialized uncertainty structures.
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via Occupation Measures and LMI-Relaxations. SIAM J. Control Optim., 47(4):1643–1666, 2008.

[10] Jean Bernard. Lasserre. Moments, Positive Polynomials And Their Applications. Imperial College
Press Optimization Series. World Scientific Publishing Company, 2009.

[11] RM Lewis and RB Vinter. Relaxation of Optimal Control Problems to Equivalent Convex Programs.
Journal of Mathematical Analysis and Applications, 74(2):475–493, 1980.
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