
HAL Id: hal-03181001
https://hal.science/hal-03181001v1

Submitted on 25 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Graph-based ahead monitoring of vulnerabilities in large
dynamic transportation networks

Angelo Furno, Nour-Eddin El Faouzi, Rajesh Sharma, Eugenio Zimeo

To cite this version:
Angelo Furno, Nour-Eddin El Faouzi, Rajesh Sharma, Eugenio Zimeo. Graph-based ahead monitor-
ing of vulnerabilities in large dynamic transportation networks. PLoS ONE, 2021, 16 (3), pp1-35.
�10.1371/journal.pone.0248764�. �hal-03181001�

https://hal.science/hal-03181001v1
https://hal.archives-ouvertes.fr

RESEARCH ARTICLE

Graph-based ahead monitoring of

vulnerabilities in large dynamic transportation

networks

Angelo FurnoID
1*, Nour-Eddin El Faouzi1, Rajesh Sharma2, Eugenio Zimeo3*

1 LICIT UMR_T9401, University of Lyon, ENTPE, University Gustave Eiffel, Lyon, France, 2 Institute of

Computer Science, University of Tartu, Tartu, Estonia, 3 Department of Engineering, University of Sannio,

Benevento, Italy

* angelo.furno@univ-eiffel.fr (AF); eugenio.zimeo@unisannio.it (EZ)

Abstract

Betweenness Centrality (BC) has proven to be a fundamental metric in many domains to

identify the components (nodes) of a system modelled as a graph that are mostly traversed

by information flows thus being critical to the proper functioning of the system itself. In the

transportation domain, the metric has been mainly adopted to discover topological bottle-

necks of the physical infrastructure composed of roads or railways. The adoption of this met-

ric to study the evolution of transportation networks that take into account also the dynamic

conditions of traffic is in its infancy mainly due to the high computation time needed to com-

pute BC in large dynamic graphs. This paper explores the adoption of dynamic BC, i.e., BC

computed on dynamic large-scale graphs, modeling road networks and the related vehicular

traffic, and proposes the adoption of a fast algorithm for ahead monitoring of transportation

networks by computing approximated BC values under time constraints. The experimental

analysis proves that, with a bounded and tolerable approximation, the algorithm computes

BC on very large dynamically weighted graphs in a significantly shorter time if compared

with exact computation. Moreover, since the proposed algorithm can be tuned for an ideal

trade-off between performance and accuracy, our solution paves the way to quasi real-time

monitoring of highly dynamic networks providing anticipated information about possible con-

gested or vulnerable areas. Such knowledge can be exploited by travel assistance services

or intelligent traffic control systems to perform informed re-routing and therefore enhance

network resilience in smart cities.

Introduction

In the context of smart transportation, it is reasonable to consider road networks as weighted

and directed graphs, to better capture road diversity (e.g., length, capacity, free-flow travel

time, etc.), but also as dynamic complex networks in order to model evolving traffic condi-

tions (e.g., link speed, flow, etc.) and exogenous events (e.g., accidents, natural catastrophes,

etc.).

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0248764 March 24, 2021 1 / 35

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Furno A, Faouzi N-EE, Sharma R, Zimeo E

(2021) Graph-based ahead monitoring of

vulnerabilities in large dynamic transportation

networks. PLoS ONE 16(3): e0248764. https://doi.

org/10.1371/journal.pone.0248764

Editor: Irene Sendiña-Nadal, Universidad Rey Juan

Carlos, SPAIN

Received: September 5, 2020

Accepted: March 4, 2021

Published: March 24, 2021

Copyright: © 2021 Furno et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting information

files. The following anonymization process has

been performed on the dataset for privacy/

confidentiality issues: (1) A limited subset of road

network attributes from the "Rhone-ROADS

Dataset", which includes road geometry, nature of

the road segment, geographical location

(neighborhood) of the road segment, number of

lanes, speed limits, link capacity have been

removed. The IGN provider does not authorize in

fact the sharing of detailed information/features on

French road segments. (2) Individual GPS taxi

https://orcid.org/0000-0001-9658-9179
https://doi.org/10.1371/journal.pone.0248764
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0248764&domain=pdf&date_stamp=2021-03-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0248764&domain=pdf&date_stamp=2021-03-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0248764&domain=pdf&date_stamp=2021-03-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0248764&domain=pdf&date_stamp=2021-03-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0248764&domain=pdf&date_stamp=2021-03-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0248764&domain=pdf&date_stamp=2021-03-24
https://doi.org/10.1371/journal.pone.0248764
https://doi.org/10.1371/journal.pone.0248764
http://creativecommons.org/licenses/by/4.0/

The dynamic nature of transportation networks depends on multiple factors, such as travel

demand, passenger behaviors, road conditions, weather-related phenomena and accidents.

Similarly, recommendations deriving from trip planners might have a significant impact on

traffic dynamics, by generating unbalanced traffic distribution and thus easily saturating criti-

cal areas of the network. In fact, even in the presence of smart trip planners that take into

account global and real-time traffic conditions, traffic unbalance still exists due to sudden

appearance of disruptions and accidents. Similarly, travel information can direct the network

state towards inefficient equilibria, due the presence of unequipped users’ as well as selfish or

bounded-rational behaviors from equipped ones [1, 2].

In this context, it appears beneficial to have global information about traffic conditions in

order to improve the quality of local decisions by taking under control their impact on the

whole transportation system. This information can be inferred from local data about traffic

conditions that, today, can be easily collected via ubiquitous sensors (such as loop detectors,

travel assistants, mobile phone apps, etc.) that help to monitor large urban areas. However,

processing these data to provide predictive estimations of short-term traffic states and their

impact on the whole network is a challenge.

Several domain-specific approaches, often leveraging simulators based on physical models

of traffic propagation and people mobility, have been proposed by researchers to estimate

short-term traffic conditions from monitored data [3–5]. However, these approaches struggle

to scale with relevant accuracy to large urban areas, and usually do not take into account the

impact of the underlying topology of the transport network and its dynamic nature [6, 7]. On

the other hand, approaches based on graphs modelling represent viable alternatives to predict

the behavior of dynamic transportation networks.

Current lines of research exploiting graphs in the transportation domain are mainly focused

on static topological information related to nodes and intersections [8–10], so neglecting the

dynamic information coming from sensors. Among the few exceptions in that sense are solu-

tions based on graph convolution neural-network based approaches (e.g., [7, 11]), which how-

ever are still at very early stages of development and suffer from extremely high computation

times, thus being rather inappropriate for large-scale real-time traffic monitoring [12]. Among

the metrics for complex networks that take into account both network topology and traffic

dynamics, we propose dynamic Betweenness Centrality (BC), i.e., BC continuously computed

over a dynamic graph. In our previous work [13], we use the terms dynamic or temporal graph

to denote timestamped, periodic snapshots of a network, whose topology (i.e., vertex and edge

sets) and edge weights may vary in time. In particular, we assume that the set of edge weights

considered at time t are average values computed by aggregating all the different instantaneous

values observed over the temporal window [t−T, t[, while the vertex and edge sets are those

actually present at instant t − 1.

BC has been effectively exploited in many domains to identify the components (nodes) that

are mostly traversed by information flows and therefore potential critical spots. These spots

are particularly relevant in transportation networks, since they are subject to hardly predictable

hazardous and cascading effects. The latter may have tremendous impacts on the operation of

the urban infrastructure at large scales and with extreme rapidity.

Recent literature [13, 14] has proved that BC may identify or anticipate the appearance of

critical spots in monitored transportation networks, thus justifying the application of graph-

based approaches to perform ahead monitoring of traffic distribution in large-scale, dynamic

road networks. An obstacle to the adoption of this approach is the computation time needed

for the evaluation of BC, especially when the size of the network is large.

Several solutions have been proposed in recent years to reduce the computation time of this

metric [15–17] for undirected, unweighted and static graphs, whereas approaches for highly

PLOS ONE Graph-based ahead monitoring of vulnerabilities in large dynamic transportation networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0248764 March 24, 2021 2 / 35

observations ("Rhone-Taxis dataset") have not

been released. Concerning point (1), we highlight

that removed data do not prevent to reproduce the

results in the paper, as they have only been used as

inputs to the KNR-interpolation mechanism that

generates the larger-scale instances of the

observed dynamic graph. Both kinds of dynamic

weighed graphs datasets have been fully and

publicly shared by the authors as supplemental

material. Explicit consent to access the additional

data features specified at point (1) can, if

necessary, be sought by interested researchers by

directly contacting the IGN provider via the contact

form available on the website: https://www.ign.fr,

by specifying the research purposes motivating

such specific need (which go beyond the scope of

the paper). Concerning point (2), the individual

traces represent sensitive information that we

cannot share due to privacy concerns, and which is

again unnecessary to reproduce the results

included in our paper. The results of our

manuscript can in fact be reproduced based on the

aggregate speed information that have been

publicly shared in the "Rhone-Obs" dynamic

datasets and in its KNR interpolated version. In the

remote eventuality detailed traces are required,

researchers can contact our data officer Dr./Eng.

Bernard Schnetzler at the following address:

bernard.schnetzler@univ-eiffel.fr. A confidential

agreement will be stipulated with the interested

researchers, in case of properly justified

motivation.

Funding: This work has been supported by the

French ANR research project PROMENADE (grant

number ANR-18-CE22-0008), the GAUSS project

(MIUR, PRIN 2015, Contract 2015KWREMX) and

the EU H2020 SoBigData++ project.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0248764
https://www.ign.fr
mailto:bernard.schnetzler@univ-eiffel.fr

dynamic graphs are still unsatisfactory, mainly due to the high computation time required. By

highly dynamic graphs, we refer in this paper to graphs whose dynamic attributes, i.e., edge

weights, change frequently, as in the case of transportation networks.

This paper proposes an approach to compute BC values on periodic snapshots of dynamic

graphs representing transportation networks. The proposed approach can be thus leveraged to

promptly detect anomalies or abrupt changes of network properties and traffic dynamics, by

monitoring the sudden variations of the weighted shortest paths that traverse the links of the

network.

The contributions of the paper are the following:

• the adoption of dynamic BC for ahead monitoring of transportation networks conditions.

• the analysis of static and dynamic BC in different scenarios and with various graphs by

exploiting a large dataset of traffic-related real observations (GPS traces of vehicles). Interest-

ingly, and originally with respect to [18] and our other previous papers on the topic [19–22],

the analysis shows the relevance of using BC for resilience enhancement and, particularly,

the need for a stringent requirement in terms of computation time.

• an extensive evaluation of our algorithm in terms of performance, scalability and accuracy

on large dynamic road-network graphs, showing that it outperforms other state of the art

algorithms for computing BC of dynamic graphs.

Our paper, via the proposed approach, lays the foundations for a novel data-driven, com-

plex network-based control system for supporting resilience enhancement of large-scale road

networks.

The rest of the paper is organized as follows. First, we present related work. Then, we

describe our model and metrics to characterize road-network vulnerability. A case study,

related to the analysis of both static and dynamic BC atop a large-scale road network is pre-

sented. Finally, we conclude the work by also highlighting future directions.

Related work

Graph models, network theory and BC, a metric originally proposed in [23], have proven to be

a natural conceptual framework to study topological bottlenecks of complex systems [24, 25]

from multiple domains.

Over the last decade, BC has been particularly exploited in the context of transportation

networks [9, 26, 27] for traffic flow prediction [9, 10, 26, 28, 29], vulnerability detection [30–

32], identification of network attacks [33] and urban activities [34], to name a few. An impor-

tant aspect in transportation networks is the relative importance of paths, since the distribu-

tion of traffic largely varies depending on the nature of roads and paths [35]. Various works

have therefore modeled the importance of traffic on paths by applying weights to the network

edges [33, 34, 36] and have shown that centrality-based attacks can have an impact at a much

larger scale on the network [24, 33] when considering weights. Wang et al. examine in [37] the

mathematical relationships that exist between BC and edge weights in a weighted network.

Specifically, the authors prove that if the network is in a weakly disordered regime, edges with

smaller weights tend to carry more traffic in the network, thus introducing negative correla-

tion between edge BC and edge weights. This is particularly interesting in the context of trans-

portation networks that are spatial, mostly regular, graphs on which we can thus expect

negative correlation between edge weights (travel times) and weighted BC.

Other works have studied the effect of high-load on roads to evaluate resilience and effi-

ciency in transportation networks for cities in US [38], Italy [39], and China [34]. Commuters’

PLOS ONE Graph-based ahead monitoring of vulnerabilities in large dynamic transportation networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0248764 March 24, 2021 3 / 35

https://doi.org/10.1371/journal.pone.0248764

flow and time-schedule delays have been used for associating weights to the graph edges of the

Singapore’s subway transportation network [36]. By using GPS traces, authors in [34] study

two large-scale intra-city urban networks and traffic flows in the cities of San Francisco, US,

and Shanghai, China.

As an important limitation, most of the existing works consider networks and their attri-

butes (e.g., weights) as static entities. This is an unrealistic modelling approach as traffic, and

consequently edge weights, rapidly evolve as a consequence of change in travel demand, acci-

dents, congestion, etc. Some approaches have been nevertheless proposed for calculating BC

on dynamic graphs, such as by using hyper-graphs [40] or by a random-sampling technique

[16]. In their recent work [17], Chehreghani et al. improve the solutions proposed in [16, 40]

to efficiently update BC values on dynamic graphs. However, their approach presents several

limitations. Firstly, it only addresses unweighted graphs. Secondly, the approach exhibits good

performance (however in the order of seconds) on large-scale graphs only when considering

mildly dynamic settings (edge/node updates are assumed to be relatively infrequent). Similarly,

an efficient algorithm for incremental BC computation has been proposed in [41]. This paper

proposes a framework for computing betweenness centrality in evolving unweighted graphs.

The authors also claim their framework can work for directed graphs even if, for simplicity,

they demonstrate their approach only on undirected network. The algorithm has good perfor-

mance when BC has to be recalculated as a consequence of adding or removing only one node.

Conversely, in highly dynamic settings, as those that can be expected in our application

domain (i.e., weighted transportation networks with multiple nodes/edges appearing or disap-

pearing and, above all, edge weights changing every second), the approaches proposed both in

[17] and [41] become largely inefficient and therefore impracticable.

BC for dynamic analysis has been proposed in [28], based on: i) free-flow travel time and ii)
congested-flow travel-time. In this paper, the authors perform only an analysis of the correla-

tion existing between BC and node congestion by distinguishing on-peak and off-peak scenar-

ios, thus highlighting that a more dynamic definition of BC, computed over a weighted graph,

can become an effective proxy for (dynamic) traffic volume information. Differently from this

paper, we take a step forward by analyzing the impact of static and dynamic BC on a large

graph derived from a real road network and by proposing the adoption of a fast algorithm to

perform dynamic BC computation in short time slots with the aim of predicting possible

future bottlenecks (ahead monitoring). In fact, we are motivated by the need of defining a

monitoring system for providing travellers with dynamic information on the best paths to fol-

low in order to globally improve network performance (i.e., reducing bottlenecks and vulnera-

bilities) and managers with an early warning system to identify possible vulnerabilities.

The main limitation of BC when used as an indicator of vulnerability over large-scale net-

works is its extremely high computation time, even when computed by the fastest general solu-

tion for exact BC computation proposed by Brandes in [15] or the recent heuristics proposed

by Saryuce et al. with their BADIOS framework in [42, 43], as proved and discussed in the per-

formance analysis section. For instance, in the very recent work [14], BC is calculated on

weighted graphs for some nodes of the network, using the Brandes algorithm to identify criti-

cal nodes with respect to traffic conditions, revealing some interesting results from the point of

view of correlation with the most vulnerable nodes of the transport network. However, the

proposed approach does not provide a significant advance with respect to the Brandes algo-

rithm and no performance evaluation (both in terms of accuracy and execution time) is

shown. Therefore, to perform fast computation of BC, we decided to exploit approximation

[19], by excluding the computation of some shortest paths to improve performance. In [44],

the authors only consider paths up to fixed length k. Brandes and Pich [45] also proposed an

approximated algorithm for faster BC calculation by choosing only k� n pivots as sources for

PLOS ONE Graph-based ahead monitoring of vulnerabilities in large dynamic transportation networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0248764 March 24, 2021 4 / 35

https://doi.org/10.1371/journal.pone.0248764

the Single-Source Shortest Paths (SSSP) algorithm through different strategies, showing that

random selection of pivots can achieve accuracy levels comparable to other heuristics. How-

ever, this approach overestimates the BC of unimportant nodes that are close to a pivot. To

overcome this problem, various solutions have been proposed, e.g., a generalization framework

for betweenness approximation has been proposed in [46]. The idea is to scale BC values in

order to reduce them for nodes close to pivots. In [47], a solution to reduce the pivots for

nodes with high centrality is proposed via adaptive sampling techniques. A recent work [48]

based on approximation shows large fluctuations of accuracy over the top-100 nodes on a

scale-free graph. A random, shortest path based [49] approximation approach was presented

in [50]. For directed and unweighted networks, an approach is presented in [51], where, simi-

larly to [52], authors pre-compute reachable vertices for all the graph nodes.

Starting from the considerations above, we started in previous work the exploration of a dif-

ferent approach taking into account that the border nodes of clusters obtained through modu-

larity-based clustering techniques are the nodes with a high value of BC since they are crossed

by all the nodes inside the cluster to reach all the other nodes of the graph. Therefore, we

focused on the identification of pivots, as explained later in this paper, that avoid BC errors of

border nodes and the nodes outside the cluster of the pivot, for each cluster obtained by clus-

tering the initial graph.

A first result on unweighted graphs has been presented in [53] while an improvement for

reducing computation time for a static weighted graph in [18]. In [22], we have addressed the

technical and technological aspects of the algorithm implementation in order to verify its scal-

ability, when a large number of computing resources is used. This paper extends our previous

work, by: i) performing an extensive analysis and performance evaluation of our approach on

both static and dynamic weighted networks in the context of transportation; and ii) posing the

bases for a novel proactive monitoring system that uses fast BC computation to quickly com-

pute BC values at the current time slot and compute alternative paths for route recommenda-

tion for resilience enhancement.

Network model and algorithm

In this section, we introduce the main assumptions we consider to model a dynamic transpor-

tation network, the related graph model, the metric we use to analyze it, and the algorithm pro-

posed for efficient computation of this metric (BC) over large-scale, dynamic, weighted and

directed networks.

Modeling assumptions

In our study, we take into account three fundamental real-world, well-known properties of

large-scale urban traffic networks: i) not all roads are bidirectional, especially in city centers;

ii) traffic does not equally distribute among road segments [35, 37]; iii) traffic on each road

segment is dynamic, as it changes according to unpredictable events and the travel demand

[28, 29, 34]. Concerning our graph-based modelling, we assume that: i) nodes represent inter-

sections of the road network, while directed edges correspond to directed route segments (also

called links in the following); ii) edge weights represent, if not otherwise specified, the travel

time observed to traverse the corresponding link (average over a time period or free-flow travel

time depending on the analyzed scenario); iii) people tend to prefer the shortest (fastest) paths

to reach their destinations.

The choice of travel time as edge weight stems from the importance of such variable as a

proxy to identify the appearance of congestion on specific road segments. However, it is worth

to remark that link travel time per se is not sufficient to identify critical network traffic

PLOS ONE Graph-based ahead monitoring of vulnerabilities in large dynamic transportation networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0248764 March 24, 2021 5 / 35

https://doi.org/10.1371/journal.pone.0248764

condition in the near-future. In fact, road links with high travel time at a given moment might

not necessarily represent critical links of the network at that specific instant or in following

ones, as they might not appear on a significant number of shortest paths connecting different

pairs of origins/destinations (OD). Conversely, a link characterized by a low travel time, close

to free-flow conditions, could represent a critical link, as it might belong to multiple shortest

routes connecting a large number of OD pairs.

The considerations above derive from the global behavior of the network: by relying on the

assumption that users tend to choose shortest paths to reach their destinations, when conges-

tion appears, or hardly predictable accidents occur on a given path, the network is not at equi-

librium and people may look for alternative shortest paths to reach their destinations, possibly

following the indications provided by real-time travel planners. The previous assumptions are

realistic if we consider that modern vehicles are equipped with smart navigation systems and

planners may significantly affect users’ route choice. This phenomenon can easily lead to grid-

locks and large-scale propagation of congestion. In fact, travelers might easily saturate areas of

the network (possibly still in free-flow conditions) that are central to the global functioning of

the urban system (i.e., nodes traversed by a significant number of alternative shortest paths

and thus associated with high values of node BC).

Under the assumptions above, by continually computing node BC of large urban-scale road

networks, weighted by travel times collected by sensors, control strategies could be designed to

smartly re-distribute traffic flow for balancing node BC values over time with the aim of keep-

ing the BC distribution close to the one observed in free-flow conditions. Therefore, we can

conclude that: i) it is reasonable to analyze non-uniform distributions of (node) BC values in

real-world (dynamic) road networks; ii) the nodes characterized by higher values of BC poten-

tially represent critical regions (intersections) of the network, since they correspond to the

nodes where traffic can be expected to most-likely concentrate in the near future; iii) as short-

est paths depend on traffic flows, edge weights should reflect actual traffic conditions to make

BC values more relevant from a dynamic system perspective; iv) a significant variability of cen-

trality values has to be expected in time over the different nodes of the network due to traffic

dynamics and hardly-predictable events.

By relying on the continuous quick computation of node BC over a time-varying weighted

graph, such a system could be used to promptly advise vehicles about the availability of reason-

able path alternatives to the shortest one, whose choice can contribute to the global improve-

ment of network performance. Such alternatives should be computed by taking into account

the current distribution of BC values in a given, possibly congested, area and by identifying the

paths that allow for a more homogeneous distribution of BC values in the given area during

the next time step.

Network model

We assume the following definitions throughout the paper. Let G(V, E, T, W, f(E, T)) be a

dynamic, weighted and directed graph, where V denotes the set of nodes and E� V × V the set

of edges. N = |V| denotes the number of nodes in the graph. W represents the set of weights

and T the set of time units. For instance, for very large networks, Tmay represent hours of the

day. We highlight that the length of the considered time unit (e.g., 1 hour) represents the

period of observations before a new computation of BC is launched, and translates therefore

into a time constraint for computing betweenness centrality. Function f: E × T –>Wmaps

each edge eij 2 E at time slot t 2 T to a weight w 2W. We denote Ĝ(V, E, Ŵ) as a directed and

weighted instance of the dynamic graph G related to a specific time slot t̂ and therefore associ-

ated to a subset of weights Ŵ �W. The algorithm reported in the following are related to a

PLOS ONE Graph-based ahead monitoring of vulnerabilities in large dynamic transportation networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0248764 March 24, 2021 6 / 35

https://doi.org/10.1371/journal.pone.0248764

specific instance Ĝ of the dynamic graph G, i.e., BC computation is iteratively performed (in a

quasi-real time fashion) at the beginning of time slot t̂ þ 1 on the instance of the dynamic

graph related to time slot t̂ .
A path p(vi, vj), between two nodes vi and vj of Ĝ, consists of a set of nodes and edges that

connect these two nodes. The length of a path between any two nodes vi and vj, represented by

len(p(vi, vj)), is the sum of the weights of the edges (or hops) to reach vj from vi. If nodes vi and

vj are directly connected, then the path length is the weight of the link, or 1 for unweighted

graphs. A shortest path between any two nodes vi and vj, denoted as sp(vi, vj), is the path with

the minimum length, among all the paths connecting the two nodes. Multiple shortest paths

may exist between the same pair of nodes, i.e., multiple paths having the same length. The dis-

tance d(vi, vj) = len(sp(vi, vj)) is the length of the shortest path between nodes vi and vj. We

denote svivj as the number of shortest paths between vi and vj, while svivjðvkÞ represents the

number of shortest paths from vi to vj that cross node vk.
Node betweenness centrality (BC) [54] is a flow metric that measures the relative number

of shortest paths crossing a node.

We define betweenness centrality for weighted networks as in [33]. Let swvivj denotes the

total number of weighted shortest paths from vi to vj and swvivj(vk) the number of them travers-

ing vertex vk, then, the weighted betweenness centrality of vertex vk is defined as:

BCðvkÞ ¼
X

vi 6¼vk 6¼vj2V

swvivjðvkÞ

swvivj
; ð1Þ

Algorithm

We exploit modularity for clustering weighted directed graphs with the Louvain method

[55, 56]. The algorithm initially searches for small communities to aggregate, by maximizing

the modularity gain. Then, it creates a new graph whose nodes are the communities identi-

fied in the previous step. These two steps are iteratively repeated until there is no further

modularity gain derived by aggregating clusters in larger communities. In our W2C-Fast-

BC algorithm, the weights used to compute weighted modularity are assumed as in the

notion of closeness (nodes are tighter if the interconnecting edges have lower weight, i.e.,
distance or travel time), i.e., “smaller is tighter”. This choice is motivated by the fact that we

want to reduce the number of border nodes for each cluster. Therefore, we generate commu-

nities whose nodes are highly locally inter-connected with short (or fast to travel) local

paths. Conversely, when computing shortest paths in SSSPs, edge weights are assumed as in

the notion of length (or travel time), i.e., “higher is farther”. We use a distributed variant of

the Louvain algorithm for weighted and directed graphs [57, 58]: all vertices select a new

community simultaneously, updating the local view of the graph after each change. Even

though some choices will not maximize modularity, after multiple iterations, communities

will typically converge thus producing a final result relatively close to the sequential version

of the algorithm.

Given a graph Ĝ, we split it into a set of clusters (i.e., C) by using the Louvain (Alg. 1, line 2)

method for weighted graphs [57, 58]. The implementation leverages a Scala parallel solution

partially based on the Distributed Graph Analytics (DGA) by Sotera: https://github.com/

Sotera/distributed-graph-analytics.

Algorithm 1 W2C-Fast-BC: algorithm for fast computation of betweenness centrality

(pseudo-code of the main function)

1: function W2C-FastBC(Ĝ;C; kFrac)

PLOS ONE Graph-based ahead monitoring of vulnerabilities in large dynamic transportation networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0248764 March 24, 2021 7 / 35

https://github.com/Sotera/distributed-graph-analytics
https://github.com/Sotera/distributed-graph-analytics
https://doi.org/10.1371/journal.pone.0248764

2: C weightedLouvainClusteringðĜÞ
3: bordernodesi findBorderNodesðĜ;CiÞ

4: localδi computeLocalδ(i, C, bordernodes)
5: localBCi localδs(i) + localδz(j)
6: superClassesi WkMeansClustering(Ci, classesi, kFrac)
7: Pi selectPivotOf(superClassesi, localBC)
8: δi computeδFrom(Pi)
9: δi (δi − localBC) � |superClassesi|
10: BCi δs(i) + δz(j)
11: for i 1, |V| do
12: BCi BCi + localBCi
13: end for
14: return BC
15: end function

The main result of clustering is the identification of border nodes (an array for each cluster).

A border node is a node having at least one neighbor node in a different cluster (line 3).

Then, a parallel execution of the Brandes algorithm (based on Dijkstra) is performed inside

each cluster to compute the local BC (lines 4-5). This computation generates the partial inner-

cluster contribution to the BC of each node and additional information, such as the weighted

shortest paths and the distances from a node of a cluster towards each border node of the same

cluster. It is worth noting that the local contributions of BC, i.e., the ones computed taking

into consideration only the nodes inside a cluster as source or destination, could be affected by

an error due to the so called external nodes, i.e., nodes that are external to the cluster but are

crossed by shortest path(s) between two nodes of the cluster. We are currently working to a

solution to this problem in designing an exact version of the algorithm proposed in this paper.

The preliminary results are reported in [59].

The information above is used also to identify the nodes inside each cluster Ci that equally

contribute to the dependency score of each node of the graph (class of equivalence, see [20, 53]

for more details). In particular, a class of equivalence inside a cluster Ci is defined with refer-

ence to the values of dependency score (BC contribution) computed on the nodes outside Ci
with an SSSP exploration started from a node of the class: all nodes in the class equally contrib-

ute to the BC of the nodes outside Ci. Taking into account that nodes belonging to the same

class produce the same dependency score on each node of the graph outside cluster Ci, one

representative node should be identified as a source node (called class pivot, line 7) for apply-

ing Dijkstra’s algorithm (line 8) to perform SSSP on nodes 2G − Ci in order to compute the

contribution of all the nodes of the class by multiplying the dependency score due to the pivot

by the cardinality of the pivot’s class.

The partial dependency score calculated for the pivot is then multiplied by the cardinality

of the pivot class (line 9). This method avoids re-applying Dijkstra’ algorithm to another node

of the same class, thus ensuring fast calculation of BC if P� N, where P represents the set of

pivots selected andN represents the number of nodes of the graph. However, since we multiply

by the cardinality of a class the dependency scores of the nodes both outside and inside Ci, we

introduce an approximation error since the simplification applies only to the nodes outside Ci.
We are working also to remove this source of error in the exact version of the algorithm [59].

To further reduce the computation time, we have extended the concept of class by introduc-

ing super classes through an additional clustering operation inside each initial Louvain-derived

cluster (line 6). A super class is a group of classes belonging to the same Louvain cluster; it is

obtained via a second clustering operation (K-means) applied to the nodes of each Louvain

cluster, by considering as the nodes’ features: i) the normalized distances from the Louvain

cluster’s border nodes; and ii) the amount of shortest paths towards them. This grouping is

PLOS ONE Graph-based ahead monitoring of vulnerabilities in large dynamic transportation networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0248764 March 24, 2021 8 / 35

https://doi.org/10.1371/journal.pone.0248764

aimed at reducing the amount of classes (and consequently the number of pivots) but intro-

duces further approximation since the nodes belonging to a superclass could contribute with

different scores to the BC values of the nodes of the graph.

To perform class grouping, we exploit a parallel implementation of the K-means algorithm

by using a different K for each initial Louvain cluster. K is defined as a fraction (K-Fraction) of

the initial number of classes belonging to each Louvain cluster. For example, by considering a

K-fraction equals to 0.4, the algorithm adopts a 0.4 fraction of the number of classes in each

Louvain cluster. This way, we are able to drive the behavior of the algorithm towards the

desired computation time. However, when the computation time decreases, the approxima-

tion worsens, as deeply illustrated in our previous work [19, 20, 53].

Differently from the first two sources of errors, this last one can not be removed since it is

induced to relax the constraints of class identification to have larger classes and consequently a

lower number of pivots. However, it is important to highlight that removing errors has an

impact on performance; this consideration leads to the conclusion that approximation and

computation time should be considered as a whole and consequently when approximated

results are acceptable, as in the domain we are discussing in this paper, the current version of

W2C-Fast-BC is to prefer. The final value of BC is obtained for each node by summing up

all partial contributions (produced by the reduce operation of line 10) with local BC values

(lines 12).

Case study: Traffic on a road network

In this section, we discuss how dynamic betweenness centrality can help in understanding

transportation traffic dynamics and providing insights for predicting traffic flows.

Dataset

For our analysis, we consider a very-large directed graph, namely Rhone-ROADS, corre-

sponding to the entire road network of the Rhone department, France. The graph includes the

whole agglomeration of Lyon and its surroundings, with a geographical extent of approxi-

mately 3,300 Km2. This dataset was created using digital maps supplied by the French National

Institute of Geographic Information (IGN). The network consists of 117,605 nodes and

248,337 edges. By extracting the largest connected component of the resulting network, the

final undirected and unweighted graph (see Fig 1a) included 75,474 nodes and 96,406 edges

(see Table 1 for the main characteristics of the datasets).

By considering the graph only as undirected and unweighted, many relevant properties of

the road network and its dynamics could be missed. Therefore, in the first part of our evalua-

tion, we consider multiple weighted, directed and static graphs that have been derived from

the Rhone-ROADS network by selecting some of the available topological attributes (e.g., road

segment lengths, capacity, free-flow travel times, etc.) as weight for the edges. Moreover, to

evaluate our algorithm for efficient BC computation also in more realistic dynamic settings,

we leverage an additional dataset for extracting reliable time-varying traffic information for a

portion of the Rhone-ROADS network.

Our second dataset, namely Rhone-TAXIS, contains anonymized GPS traces of taxi trips,

observed over the Rhone department. The source dataset has been collected by the French

operator Radio Taxi via a fleet of approximately 400 taxis, during 2011-2012. The dataset logs

geo-referenced taxi trips, segmented according to a variable sampling interval (between 10 and

60 seconds), with a global average of 800,000 measurements per day. We deem elementary taxi
trip each measured trip segment from the same taxi trace. An elementary taxi trip includes the

time-stamped start and arrival GPS positions of the associated taxi. These measures permit to

PLOS ONE Graph-based ahead monitoring of vulnerabilities in large dynamic transportation networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0248764 March 24, 2021 9 / 35

https://doi.org/10.1371/journal.pone.0248764

Fig 1. The Rhone-department road network. Maps throughout this research article were created using open-source

data from OpenStreetMap and OpenStreetMap Foundation, which is made available under the Open Database

Licence. Map tiles are from OpenStreetMap cartography, which is licensed as CC BY-SA (see https://www.

openstreetmap.org/copyright). (a) Rhone-ROADS: the Rhone-department network, graphically shown as an

undirected and unweighted graph (b) Rhone-OBS: The Rhone-department sub-network shown on top of the Rhone-

ROADS. The graph only includes edges with at least one observed elementary taxi trip (in purple).

https://doi.org/10.1371/journal.pone.0248764.g001

PLOS ONE Graph-based ahead monitoring of vulnerabilities in large dynamic transportation networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0248764 March 24, 2021 10 / 35

https://www.openstreetmap.org/copyright
https://www.openstreetmap.org/copyright
https://doi.org/10.1371/journal.pone.0248764.g001
https://doi.org/10.1371/journal.pone.0248764

estimate the travelled distance, and therefore the instant speed, on the traversed road segment

via a map-matching operation. Map-matching has been performed via the open-source Mapil-

lary Python map-matching library https://github.com/mapillary/map_matching. As an indica-

tor of traffic dynamics, we adopt in the following the median speed observed over each road

segment (i.e., an edge of the network) during a fixed-duration of observation (e.g., 1-hour time

slots). In order to improve the quality of the Rhone-TAXIS dataset and properly compute our

traffic indicator, we have filtered out elementary trips with unrealistic speeds (i.e., higher than

130 Km/h).

A preliminary analysis of our dataset has shown a relatively low number of observations

especially during evening and night-time (i.e., the daily average of elementary trips per-hour is

approximately equal to 8748.5, with very high spatio-temporal variance and several time slots

with 0 observations during the period March-May 2011). Therefore, to build realistic traffic

dynamics, we perform an aggregation along the temporal dimension by reconstructing a typi-
cal working day from the whole set of elementary trips. Thus, we extract hourly median speeds

for all edges with observations and generate a 24-sized array of median-speeds (i.e., one per

1-hour time slot of the typical day) for some of the Rhone-ROADS network edges. We choose

the median operator as it is traditionally more robust than the average one and therefore more

appropriate to derive realistic traffic measures. Clearly, the number of edges with median

speed changes according to the spatio-temporal distribution of elementary trips on the Rhone-

ROADS graph.

In Fig 2a, we report the evolution, over each hour of the typical working day, of the number

of observed elementary trips in the whole Rhone-ROADS network. Fig 2b describes instead

the variation in time of the number of edges for which it was possible to compute the median

speed. Finally, Fig 2c shows the temporal profile of the median speed, aggregated over the

whole network in each time slot (i.e., median of all the median speeds associated to the edges

at a given hour). The network median speed profile appears to be realistic from a traffic per-

spective, with the highest spikes at night/early-morning time (e.g., around 4:00) and the lowest

ones at morning and afternoon rush hours (e.g., 8:00 and 17:00). We underline the fact that

this aggregation step only stems from the limited size of the taxi fleet associated to our dataset

(approx. 400 vehicles) and the consequent low spatio-temporal resolution of the observations.

A larger dataset would have allowed us to refine the analysis by increasing both the temporal

(e.g., 10-minutes slots) and the spatial (e.g., a larger portion of the Rhone-ROADS graph)

resolution.

Table 1. Description of the considered datasets.

Name Description Size Dataset Main Attributes Source

Rhone-

ROADS

Multi-attribute, directed, static graph of the Rhone

department road network.

117,605 nodes and 248,337

edges.

Edge attributes: road segment length, width, number of

lanes, speed limit, importance of the road segment

(from 1 = max to 5 = min), post-code of the road

segment area (INSEE), link geometry.

IGN

Rhone-

TAXIS

Map-matched, time-stamped, geo-referenced trips

of floating taxis on working days of March, April

and May 2011.

5,662,844 GPS geo-referenced

elementary trips related to

103,639 unique taxi trips.

Elementary-trip attributes: unique taxi’s trip identifier,

GPS-logged coordinates of the segment starting point,

GPS-logged coordinates of the segment arrival point,

segment travel time.

Radio

Taxi

Rhone-

OBS

Multi-attribute, directed sub-graph derived by

joining the Rhone-TAXIS dataset and the Rhone-

ROADS network: each edge of the subnetwork has

at least one elementary trip associated to it.

35,940 nodes and 59,132

edges.

Edge attributes: static attributes from Rhone-ROADS;

per-edge median speeds derived from the elementary

trips (24 median speed values for each edge,

corresponding to the median of all speeds observed

over the edge during the twenty-four 1h-time-slots

from 00:00 to 23:00), as derived from Rhone-TAXIS.

Derived

dataset

https://doi.org/10.1371/journal.pone.0248764.t001

PLOS ONE Graph-based ahead monitoring of vulnerabilities in large dynamic transportation networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0248764 March 24, 2021 11 / 35

https://github.com/mapillary/map_matching
https://doi.org/10.1371/journal.pone.0248764.t001
https://doi.org/10.1371/journal.pone.0248764

Fig 2. Spatio-temporal characterization of taxi observations. (a) Hourly number of elementary trips for the typical

working day (b) Number of edges from the Rhone-ROADS with median speed (c) Evolution of the network median

edge-speed over time.

https://doi.org/10.1371/journal.pone.0248764.g002

PLOS ONE Graph-based ahead monitoring of vulnerabilities in large dynamic transportation networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0248764 March 24, 2021 12 / 35

https://doi.org/10.1371/journal.pone.0248764.g002
https://doi.org/10.1371/journal.pone.0248764

Regarding the spatial dimension, Fig 1b graphically presents the sub-network (i.e., the pur-

ple framed area) of the Rhone-ROADS graph for which at least one elementary trip is available

during the typical working day. We call this sub-network Rhone-OBS graph, as reported in

Table 1. Rhone-OBS comprises 35,940 nodes and 59,132 edges. With respect to Fig 2b, it is

worth noting that the maximum number of edges with median speed is observed at 9:00 and

corresponds to approximately 31,000 edges. The 59,132 edges of the considered Rhone-OBS

graph derive from the fact that, during the 24 hours, the set of edges with median speed may

vary significantly. Thus, the 59,132 edges represent the total number of different edges with at

least one non-null value of median speed, over the 24 hours.

From visual inspection of Fig 1b, it appears that most of the observed elementary trips are

condensed within the city of Lyon, as the activity of the taxi operator. Taxi usages from cus-

tomers, appear to be concentrated around the urban area of the city and its airport area in

the South-Eastern region. In addition, a few observations are available in the outskirts and

within rural areas. While the Rhone-OBS graph is used in the following two sub-sections

(BC on Static Graphs and BC on Dynamic Graphs) to analyze the significance of computing

BC on weighted and dynamic graphs, it is worth to highlight that such graph is too small to

evaluate the performance of our approach in a realistic large-scale urban road network sce-

nario, which is expected to justify the adoption of our W2C-Fast-BC algorithm for ahead

road network monitoring. Therefore, in order to prove the efficiency of our solutions with

large scale networks, we leverage a dynamic graph having the same size of the Rhone-

ROADS network in the Performance Analysis section. In particular, for those edges without

GPS observations, traffic dynamics are derived from the smaller Rhone-OBS graph via a spa-

tial interpolation technique discussed in the Dynamic Graphs sub-section of the Performance
Analysis section.

BC on static graphs

As a preliminary step for the evaluation of BC on dynamic graphs, we analyze the Rhone-OBS

graph in three static configurations, i.e.: i) undirected and unweighted, ii) weighted according

to the length of each road segment and directed according to road direction, iii) weighted

according to Free-Flow Travel Time (FFTT) and directed according to road direction. The

objective of such an analysis is to shed light on the usefulness of the BC metric with weighted

(and directed) graphs, thus proving that different kinds of weights may grasp different notions

of vulnerability. A similar analysis is conducted also in dynamic settings, as reported in the

next sub-section. For consistency, both the static and the dynamic analyses have been per-

formed on the same Rhone-OBS graph.

The three static configurations of the graph are graphically represented in Fig 3: for each

node, we report BC values as circles with diameter proportional to the value of BC. Edges are

filtered out for the sake of readability.

The visual inspection of the different figures of BC, makes it evident the effect of using dif-

ferent weights for BC computation. Particularly, it can be noticed that on the undirected,

unweighted version of the Rhone-OBS graph (Fig 3a), top-BC nodes are mostly positioned

over the city ring road and on top of major highways; urban arterials host the majority of top-

BC nodes in the case of the road-length weighted directed graph (Fig 3b); finally, for the

directed, FFTT-weighted instance of the Rhone-OBS graph (Fig 3c), top-BC nodes can be

observed on both arterials and ring roads, with a more homogeneous distribution of BC values

with respect to the unweighted, undirected case.

PLOS ONE Graph-based ahead monitoring of vulnerabilities in large dynamic transportation networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0248764 March 24, 2021 13 / 35

https://doi.org/10.1371/journal.pone.0248764

Fig 3. Three static topological instances of the Rhone-OBS graph: Comparison of BC values. (a) Undirected,

unweighted (circle size proportional to node’s BC) (b) Directed, length-weighted (circle size proportional to node’s

BC) (c) Directed, free-flow-travel-time-weighted (circle size proportional to node’s BC).

https://doi.org/10.1371/journal.pone.0248764.g003

PLOS ONE Graph-based ahead monitoring of vulnerabilities in large dynamic transportation networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0248764 March 24, 2021 14 / 35

https://doi.org/10.1371/journal.pone.0248764.g003
https://doi.org/10.1371/journal.pone.0248764

BC on dynamic graphs

In order to produce a dynamic graph, the Rhone-OBS graph has been leveraged to extract mul-

tiple weighted graph instances, depending on the specific time slot we consider in our analysis.

Several instances of the Rhone-OBS graph, related to different hours of the typical day, are

graphically shown in Fig 4.

To extract the graph associated to a specific time slot t (e.g., t = 05:00 in Fig 4a, t = 08:00 in

Fig 4b, etc.), we retain only the edges with non-null value of the median speed at time t, as esti-

mated from the taxi trips related to the same time slot t. The final graph associated to time slot

t includes the median speed observed at t over each retained edge. Thus, we calculate the

weight of each edge as the estimated travel time to cross the corresponding road segment, by

dividing its length by the estimated median speed. This produces the final weighted graph

used for computing the weighted shortest paths. We remark that this approach is conceptually

equivalent to an on-line operational situation, where the graph naturally emerges from sensor-

collected data used to continuously compute up-to-date traffic information on each edge with

given periodicity.

In Fig 4, we also graphically reports the traffic dynamics associated to the different snap-

shots of the observed road network. Edges are colored as a function of the speed ratio, defined

as the ratio of the observed median speed at time t and the maximum speed (i.e., speed limit)

allowed on the edge. Black and red colors indicate highly-congested situations on the edge, i.e.,
lower values of the speed ratio, while greens and blues indicate a smooth, non-congested situa-

tion at time t. The figures clearly highlight that congestion is less intense during early-morning

and late-evening time slots. However, as also previously reported in Fig 2a, a lower number of

taxi trips is observed during these moments of the day. Moreover, extremely low observations

take place during deep-night and very-early morning time (i.e.., from 01:00 to 05:00) as a con-

sequence of low taxi usages, which also reduces the statistical relevance of the estimated speeds.

Fig 2a and 2b indicate that the morning peak hour period (6:00—11:00) contains the largest

number of observations (and therefore the largest observed traffic flow) from our dataset, and

that such observations are mostly spread over the network, with around 200,000 to 380,000

individual hourly trips, concerning approximately 25,000 to 31,000 edges of the network. Simi-

larly, regarding flow dynamics, Fig 2 confirms that during this time interval, traffic flow is

highly sensitive to congestion, following the classic pattern associated to peak hours: the high-

est median speed of approximately 9 m/s, observed at 6am, drops down to a local minimum of

6.9 m/s at 8am and gradually comes back to a local maximum of 7.4 m/s at 11am, due to

reduced traffic flow and congestion reduction. Therefore, we focus the rest of the evaluation

on the more statistically relevant graph instances related to time range 06:00 − 11:00 which

also represent the ones most sensitive to traffic flow dynamics. The repetitive nature of traffic

congestion further justifies the hypothesis of focusing on only one peak hour of the day.

In Fig 5, we present the spatial distribution at different hours of high-BC nodes, computed

on the weighted dynamic graph. The visual inspection of the sub-figures denotes high variabil-

ity in time and space of the nodes with higher values of travel-time weighted BC (termed

TTBC in the following), as also confirmed in Fig 6, which depicts the evolution over time of

TTBC value associated to the node with the largest value of TTBC at given time slot.

These results provide first hints on the importance of using dynamic, weighted graphs in

the computation of BC as well as the need for a rapid algorithm for computation of up-to-date

BC values. In that sense, the figures unfold interesting dynamics of people’s mobility in the city

of Lyon: during morning peak hours (Fig 5c and 5d), higher TTBC nodes concentrate along

the high-speed Lyon ring road, which thus represents one of the most important (and there-

fore critical) connecting roads of the city, being traversed (in those time slots) by the largest

PLOS ONE Graph-based ahead monitoring of vulnerabilities in large dynamic transportation networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0248764 March 24, 2021 15 / 35

https://doi.org/10.1371/journal.pone.0248764

Fig 4. The dynamic taxi graph: Median-speed-to-max-speed ratio at different hours of the day. Edge color (from

black/red to yellow) indicates higher speed-ratio, i.e., reduced congestion) (a) 05:00 (b) 08:00 (c) 20:00.

https://doi.org/10.1371/journal.pone.0248764.g004

PLOS ONE Graph-based ahead monitoring of vulnerabilities in large dynamic transportation networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0248764 March 24, 2021 16 / 35

https://doi.org/10.1371/journal.pone.0248764.g004
https://doi.org/10.1371/journal.pone.0248764

number of the weighted shortest paths. Similarly, some specific arterials traversing the city

center also appear as associated with higher TTBC. It is worth noting that such critical roads

change frequently, depending on the specific time slot, thus unveiling high traffic dynamics at

morning peak hours.

Fig 5. Nodes’ travel-time-weighted BC over the dynamic graph in the time range [05:00–10:00]. The size of each

circle in the subplots is proportional to node’s BC. (a) 06:00 (b) 07:00 (c) 08:00 (d) 09:00 (e) 10:00 (f) 11:00.

https://doi.org/10.1371/journal.pone.0248764.g005

PLOS ONE Graph-based ahead monitoring of vulnerabilities in large dynamic transportation networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0248764 March 24, 2021 17 / 35

https://doi.org/10.1371/journal.pone.0248764.g005
https://doi.org/10.1371/journal.pone.0248764

Fig 6. Evolution over time of the top-BC node for some time slots of the dynamic taxi graph. (a) Node with the

highest BC at 06:00: evolution of its BC over time (b) Node with the highest BC at 08:00: evolution of its BC value over

time (c) Node with the highest BC at 10:00: evolution of its BC value over time.

https://doi.org/10.1371/journal.pone.0248764.g006

PLOS ONE Graph-based ahead monitoring of vulnerabilities in large dynamic transportation networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0248764 March 24, 2021 18 / 35

https://doi.org/10.1371/journal.pone.0248764.g006
https://doi.org/10.1371/journal.pone.0248764

In order to dig deeper into the interactions between TTBC and traffics dynamics, we per-

formed a more specific analysis of the temporal correlation between dynamic BC (TTCB) and

traffic flows. The latter are derived from an additional dataset provided by the Lyon municipal-

ity. Flow data are collected via vehicle counting sensors (loop detectors) installed along multiple

road segments of the city. Such sensors reports the hourly flow values observed along a subset

of the edges of our Rhone-OBS graph. Hence, we calculate the linear correlation score (which

can be either positive or negative) for each edge l of the network. This correlation is computed

by considering, for a given edge l of the graph, the vector corresponding to the per-edge TTBC

values over the considered time slots and the vector of the corresponding observed vehicle

flows (measured as veh/hour). Due to the sparsity of the available flow data (loop detectors are

only available for a limited number of edges of our Rhone-OBS network), the reported correla-

tion analysis refers to edge TTBC and not to node TTBC, which is the metric computed by our

W2C-Fast-BC algorithm. However, the main insights from such correlation analysis can be

safely generalized to node’s TTBC as well [28, 34]. In fact, it is possible to compute per-node

aggregate traffic flows by summing up the flow values available on incoming/outgoing edges

and observe similar behaviors as those reported in Fig 7c. A more detailed correlation analysis

is outside the scope of this paper and will be matter of future work. The spatial map reported

in Fig 7a highlights the heterogeneity of this correlation.

We analyze the detail of these dynamics (related to dynamic BC and flows) by focusing on a

specific region of the analyzed graph including two roads with a mirror behavior in terms of

temporal correlation, i.e., Quai Dr. Gailleton (QDG) and Quai Claude Bernard (QCB). QDG is

a road segment typically attracting larger flow than QCB, as confirmed by an observed average

flow of QDG equals to 2,679 veh/hour, significantly higher than the one observed on QCB

(967 veh/hour). From the available speed data, we know that congestion is typically observed

on QDG at 2 different time slots, i.e., 08:00 and 08:30. Therefore, an increase of travel time is

also observed on the link at these time slots. This is coupled to a decrease of TTBC, which

exhibits therefore an anti-correlation behavior. Conversely, the QCB link, which is character-

ized by a lower demand, appears to be in free-flow conditions during the whole observed time

period. As travel time is higher for QDG in congestion period, QCB becomes therefore a via-

ble, attractive alternative for drivers to avoid congestion on QDG. In line with expectations,

we observe indeed a TTBC increase, as well as an increase of flow on such road segment. This

explains why the QCB edge exhibits a highly positive temporal correlation during the analyzed

time slots (08:00 and 08:30). After the congestion phase (08:00 and 08:30), the flow globally

decreases in the area. As QDG becomes more and more fluid, the corresponding travel time

decreases to free-flow travel time and TTBC increases, i.e., thus again maintaining an anti-cor-

related tendency. Contextually, QCB appears to lose its attractiveness compared to QDG as the

flow decreases on this edge. TTBC decreases as well confirming the positively correlated trend.

The analysis is confirmed by the evolution of the flow and the TTBC, which are known from

the available data for both QDG and QCB as reported in Fig 7c.

To summarize, BC computed on static weighted graphs (e.g., free-flow travel time

weighted) can provide information on critical edges, i.e., road segments on which a high flow

and possible congestion should be expected. More interestingly, by studying BC on a dynamic

graph (i.e., travel-time weighted as in TTBC), it becomes possible to spot different kind of

behaviors. Dynamic BC appears to be highly anti-correlated with respect to traffic flow dynam-

ics in areas that are critical by nature (e.g., high-capacity attractive roads) where, even if con-

gestion can be occasionally observed, relevant flows will still be observed, while travel time

may increase thus reducing TTBC. On the other hand, dynamic BC will be highly positively-

correlated to traffic flow in buffer areas that become more attractive in term of travel time only

when nearby roads become congested, thus collecting higher flows. This observation leads to

PLOS ONE Graph-based ahead monitoring of vulnerabilities in large dynamic transportation networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0248764 March 24, 2021 19 / 35

https://doi.org/10.1371/journal.pone.0248764

Fig 7. Per-edge temporal correlation between BC and flow (a) and zoom on a specific region (b,c). (a) Per-edge

temporal correlation (only edges equipped with loop detectors have a non-null value) (b) Zoom on an area with two

roads: Qaui Dr. Gailleton and Quai Claude Bernard (c) Evolution of the TTBC and flow on the road: Qaui Dr.

Gailleton and Quai Claude Bernard.

https://doi.org/10.1371/journal.pone.0248764.g007

PLOS ONE Graph-based ahead monitoring of vulnerabilities in large dynamic transportation networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0248764 March 24, 2021 20 / 35

https://doi.org/10.1371/journal.pone.0248764.g007
https://doi.org/10.1371/journal.pone.0248764

the possibility of understanding how traffic flows will distribute in the near future based on BC

values computed on previously collected travel times, which allow to weigh the graph. There-

fore, the result of BC computation and its interpretation represent a sort of anticipated moni-

toring of traffic flows distribution.

Finally, an intermediate situation exists, with “neutral” areas (mildly positively or negatively

correlated in terms of TTBC and flow) being characterized by either low or medium/high traf-

fic demand and usually capable to dispatch such flow, without becoming congested. It is worth

to remark that the considerations above further confirm the need for providing an efficient

solution to rapidly compute BC on large-scale and very dynamic weighted graphs.

Performance analysis

We exploited our W2C-Fast-BC algorithm [18] to perform static and dynamic analysis of the

metropolitan road network of Lyon. W2C-Fast-BC is written in Scala with the Apache-Spark
framework, leveraging multi-core processing for parallel execution. In particular, since our

algorithm computes approximated values of BC, we take the error under control by calculating

it for each value of the K-fraction parameter of the algorithm. It is worth noting that we are

interested in identifying the top-n critical nodes of a road network and in the following we

consider n = 1000, which means that we want to discover with a global analysis the first 1000

critical intersections of the road network. Consequently, the average error that we compute is

related to only the first 1000 nodes of the analyzed graph.

As a preliminary step to evaluate the performance of W2C-Fast-BC, we have compared our

approach to both Brandes [15] and BADIOS [42, 43], which represent the two most relevant

approaches for fast computation of exact betweenness centrality from the state-of-the-art. To

perform a fair comparison and remove any bias due to the adopted programming language

and the associated runtime environment, we have compared our W2C-Fast-BC implementa-

tion to a custom Scala implementation of Brandes. Concerning BADIOS, we have considered

the open-source C++ implementation provided by its authors and compared it to the C++

implementation of Brandes, included within the BADIOS framework for benchmark

purposes.

The reported analysis has been performed in sequential mode for two reasons: first of all, a

sequential execution permits to clearly quantify the benefit of our technique with respect to

Brandes only as a consequence of the reduced number of SSSP explorations, whose number

corresponds to the cardinality of the identified set of pivot nodes. Secondly, the available

implementation of BADIOS does not support parallelism. As another important limitation,

the available implementation of BADIOS does not implement any support for weighted

graphs. Thus, we have considered an unweighted version of the Rhone-ROADS graph from

Table 1 for this performance benchmark. We highlight that BADIOS has been setup in our

tests to exploit all of the different optimisation techniques proposed by the authors.

Table 2 reports the speedup values (computed as the ratio of the sequential execution time

of the analyzed solution to the sequential execution time of the considered Brandes implemen-

tation) obtained when comparing W2C-Fast-BC and BADIOS with respect to the correspond-

ing implementation of Brandes (i.e., the Scala and C++ implementation of Brandes,

respectively). First of all, it is worth to note that our W2C-Fast-BC solution largely outper-

forms Brandes with a speedup larger than one in all considered configurations. In particular,

we highlight the higher speedups that can be achieved when selecting a K-fraction parameter

lower than 0.5. Regarding BADIOS, a speedup of approximately three is observed on the

Rhone-ROADS network. Even though this could represent an interesting result in specific

application scenarios with less stringent requirements in terms of computation time, we

PLOS ONE Graph-based ahead monitoring of vulnerabilities in large dynamic transportation networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0248764 March 24, 2021 21 / 35

https://doi.org/10.1371/journal.pone.0248764

remark that the objective of our paper is to support ahead monitoring of a large-scale transpor-

tation network. This objective imposes a near real-time requirement on the execution time

and, therefore, demands for larger speedup values with respect to Brandes. From the reported

speedup values, it appears that such objective can be achieved with our approach when using a

K-fraction parameter lower than 0.4. As reported in Table 2, the average error of W2C-Fast-

BC with K = 0.4 is very low (0.043%) for the top-1000 nodes, i.e., the nodes with the highest

BC values. The error increases when K is smaller. However, it is still less than 1%.

The following sub-sections aim at generalizing these preliminary results related to the per-

formance of our approach, by specifically focusing on two aspects: i) assessing the accuracy

and efficiency of our solution on static, directed and weighted graphs; ii) identifying a mini-

mum tolerable threshold in terms of both execution time and percentage error with dynamic

weighted graphs in the context of our case study. Given the inability of the available BADIOS

implementation of treating weighted graphs and the relatively lower speedup achieved with

respect to our solution on unweighted graphs, the rest of the performance analysis only con-

siders our custom Scala implementation of Brandes for weighted graphs as benchmark. Both

Brandes and W2C-Fast-BC have been implemented using the map-reduce framework, which

naturally supports parallelism. In particular, the following evaluations leverage two Spark

workers, each configured to use 5 cores for parallel execution.

Spark was configured to work in the standalone cluster mode on two Intel Xeon E5 2640

2.4 GHz multi-core machines, each equipped with 56 virtual cores and 128 GB of DDR4 RAM.

Static, directed, weighted graphs. As a first static graph, we exploit the original directed

Rhone-ROADS graph, where edges are both directed and weighted according to the lengths

(in meters) of the road segments. Thus, the computation of shortest paths through the Dijkstra

algorithm reduces the BC of the nodes traversed by longer paths between pairs of nodes. We

remark that the road-length does not account for traffic dynamics.

The values of nodes’ weighted BC via our novel W2C-Fast-BC algorithm is reported in Fig

8a. W2C-Fast-BC introduces an important speedup of approximately 3.2 (1,688 seconds

against 5,465 seconds), with respect to the exact, weighted, Brandes-based computation of BC,

when considering a K-Fraction = 0.2 (Fig 8b). Also, the percentage error (Fig 8c) remains

under a |0.8%| threshold for the top-1000 BC values. The slightly lower speedup (3.2) obtained

with K-Fraction = 0.2 on the road-length weighted graph with respect to the unweighted case

Table 2. Performance evaluation in sequential settings: Comparison of W2C-Fast-BC with respect to Brandes [15] and of BADIOS [42, 43] to Brandes.

W2C-Fast-BC

configurations

W2C-Fast-BC avg. perc. error (top- 1000 nodes) [%] Speedup of W2C-Fast-BC to (Scala) Brandes Speedup of BADIOS to (C++) Brandes

K # pivots

0.01 972 0.93 29.79

3.00

0.1 9,684 0.175 8.22

0.2 19,368 0.089 4.54

0.3 29,047 0.050 3.35

0.4 38,732 0.043 2.45

0.5 48,445 0.038 1.96

0.6 57,905 0.023 1.70

0.7 67,518 0.020 1.51

0.8 77,192 0.015 1.26

0.9 86,439 0.009 1.26

1.0 94,354 0.004 1.05

https://doi.org/10.1371/journal.pone.0248764.t002

PLOS ONE Graph-based ahead monitoring of vulnerabilities in large dynamic transportation networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0248764 March 24, 2021 22 / 35

https://doi.org/10.1371/journal.pone.0248764.t002
https://doi.org/10.1371/journal.pone.0248764

Fig 8. Directed graph weighted with discretized road-lengths. (a) Nodes’ BC values (circle size proportional to

node’s BC) (b) Execution times (W2C-Fast-BC and Brandes BC) with 10 cores (c) Percentage error of W2C-Fast-BC

with K-fraction = 0.2 (top-1000).

https://doi.org/10.1371/journal.pone.0248764.g008

PLOS ONE Graph-based ahead monitoring of vulnerabilities in large dynamic transportation networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0248764 March 24, 2021 23 / 35

https://doi.org/10.1371/journal.pone.0248764.g008
https://doi.org/10.1371/journal.pone.0248764

(4.54, as from Table 2) can be explained by considering the higher complexity of the Dijkstra

algorithm and the higher number of classes due to higher-variance of the shortest-path length.

Finally, it is worth to highlight the crucial role that the second level of clustering plays in lower-

ing the computation time by reducing the number of SSSP explorations. This can be appreci-

ated by analyzing the number of pivots reported, as percentages of the total number of graph

nodes, in the top X-axis of Fig 8b. In particular, when using a K-fraction = 1, the reduction in

the number of SSSP explorations is only due to the class detection mechanism based on Lou-

vain clustering for the retrieval of border nodes. In such case, 58,797 pivots i.e., a fraction of

approximately 50% of the graph nodes (117,605), is used to perform SSSP explorations, result-

ing in a total computation time larger than the one obtained with the Brandes algorithm, due

to the overheads introduced by Louvain clustering and local BC computation that overcomes

the benefit of a reduced number of SSSP explorations. However, by relying on the second level

of clustering, even with rather high values of the K-fraction parameter (i.e., 0.7—0.9), the num-

ber of pivots is reduced to 20-30% of the total number of graph nodes, thus permitting to

achieve an improvement with respect to Brandes in terms of computation time. By further

reducing the K-fraction parameter to 0.2, the number of pivots lowers to 12,795, i.e., 11% of

the total number of nodes, thus achieving the mentioned speed-up of 3.2 and achieving our

requirements of near real-time computation.

As a second static graph, we weigh edges by considering free-flow-travel-time (FFTT), an

information easily derivable for all edges of the Rhone-ROADS network by dividing the road

length by the road segment speed limit. FFTT-weighted BC values computed via the

W2C-Fast-BC algorithm are reported in Fig 9a, with K-Fraction parameter equal to 0.2. It is

worth noting that the analysis is related to free-flow traffic conditions, and therefore does not

take into account transient situations (e.g., accidents or congestions) that can deeply change

the weight (i.e., travel time) distribution on the edges.

The considerations on performance of road-length-weighted BC apply also to the FFTT-

weighted BC, with a slightly higher speedup approximately equal to 5.2 and a |0.6%| bounded

percentage error on the BC value for the top-1000 nodes. The number of SSSP explorations in

this case corresponds to 12,727, i.e., a 10.8% fraction of the total number of nodes.

Dynamic graphs. To obtain a dynamic, weighted network, larger than the one observed

from taxi trips (i.e., Rhone-OBS), we consider an interpolation technique aimed at estimating

the hourly value of median speed (and therefore of travel-time) for those edges of the original

Rhone-ROADS network with no available observation from taxi trips at time slot t. To that

purpose, we use a non-parametric supervised machine-learning technique, namely KNR-inter-
polation, based on K-nearest-neighbor regression [60]. Each edge has been modeled as a data

point with associated multiple features (i.e., the attributes of Table 1 of the Rhone-ROADS net-

work). The median speed, available for some edges (labeled instances) and missing for other

ones (unlabeled instances) at a given time slot t, represents the feature we want to predict. We

trained a K-nearest neighbors regressor on the labeled instances using the weighted Euclidean

distance and the average criterion to predict the median speed for the unlabeled instances. In

the weighted Euclidean distance, more distant data points are weighted less in the final regres-

sion formula to increase the robustness of the estimation. The value of K has been determined

automatically via 10-fold cross-validation, typically resulting in the order of 40-50 neighbors.

In Fig 10a, we graphically show the KNR-interpolated dynamic graph, in the snapshot related

to 08:00. We remark that the interpolation has been performed over the whole typical day to

construct the final dynamic graph. Fig 10a also presents, via the same color code used in Fig 4,

the speed-ratios either estimated via taxi traces (for the framed portion of the graph) or via the

KNR interpolation technique. The resulting graph has the same size of the Rhone-ROADS

PLOS ONE Graph-based ahead monitoring of vulnerabilities in large dynamic transportation networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0248764 March 24, 2021 24 / 35

https://doi.org/10.1371/journal.pone.0248764

Fig 9. Directed graph weighted with discretized free-flow-travel-times. (a) Nodes’ BC values (circle size

proportional to node’s BC) (b) Execution times (W2C-Fast-BC and Brandes BC) with 10 cores (c) Percentage error of

W2C-Fast-BC with K-fraction = 0.2 (top-1000).

https://doi.org/10.1371/journal.pone.0248764.g009

PLOS ONE Graph-based ahead monitoring of vulnerabilities in large dynamic transportation networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0248764 March 24, 2021 25 / 35

https://doi.org/10.1371/journal.pone.0248764.g009
https://doi.org/10.1371/journal.pone.0248764

network and is therefore large enough to perform a relevant performance analysis, as the one

presented in the static topological evaluation.

The top-1000 values of BC associated with this graph are reported in Fig 10b. As Fig 10c

shows, the exact algorithm for computing BC on the weighted graph requires a computation

time of more than one hour, therefore unable to complete within the duration of the time slot,

thus making the computation of BC values at time slot 08:00 completely useless to provide any

knowledge (i.e., prediction of traffic flows for the next time slot) that could be exploited to

inform travelers about congested roads. In comparison, our W2C-Fast-BC computes BC val-

ues in 987 seconds (i.e., approximately 15 minutes) with a tolerable percentage error of 0.8%

over the top-1000 BC nodes. The number of SSSP explorations performed on the 08:00 snap-

shot weighted graph corresponds to 12,727, i.e., a 10.6% fraction of the total number of nodes.

Similar results have been observed over the whole dynamic graph, thus proving the adequacy

of our solution for quasi real-time monitoring of dynamic, weighted road-networks. The infor-

mation derived from BC computation along with the related possible reorganization of traffic

flows allow urban planners and managers to perform what we call as ahead monitoring, since

it is possible to estimate where traffic is likely to be more intense in the near future.

Threats to validity. The W2C-Fast-BC solution proposed in this paper is subject to differ-

ent sources of randomness, noise and measurement inaccuracies. In this section, we provide a

discussion of the most important aspects that could impact the validity of BC-based estimation

and the way such threats to validity have been addressed in this paper or will be investigated as

matter of future work.

First of all, our solution is impacted by the randomness of the Louvain method and that of

the K-means clustering, which are used, respectively: i) for the first level of clustering of our

W2C-Fast-BC algorithm to identify border nodes and determine pivot nodes; ii) for the

Fig 10. The interpolated dynamic taxi graph: Median-speed-to-max-speed ratio at different hours of the day. (a)

KNR-interpolated graph at 08:00 (b) Top-1000 nodes’ BC values at 08:00 (c) Execution time of W2C-Fast-BC vs Brandes-

BC at 08:00 (d) KNR-interpolated top-1000 BC percentage error at 08:00.

https://doi.org/10.1371/journal.pone.0248764.g010

PLOS ONE Graph-based ahead monitoring of vulnerabilities in large dynamic transportation networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0248764 March 24, 2021 26 / 35

https://doi.org/10.1371/journal.pone.0248764.g010
https://doi.org/10.1371/journal.pone.0248764

second clustering step aimed at grouping pivot nodes with similar properties with respect to

the border nodes of a given cluster. We remind here that a low-quality first-level clustering

could generate a higher number of border nodes thus increasing the chances of having external

shortest paths, i.e., shortest paths between nodes of a same cluster that include nodes outside

the given cluster, a source of error in the computation of BC values with W2C-Fast-BC. To

handle this aspect, our solution performs, in parallel, multiple runs of the Louvain method and

selects the cluster set that corresponds to the highest value of the modularity index computed

as part of the Louvain method. In our experiments, we set the number of concurrent iterations

equal to 10, but this value can be further increased depending on the concurrency level allowed

by the execution environment. This assures that the produced clusters are internally tight as

well as loosely connected among one another. Selecting the configuration with higher modu-

larity allows for reducing the number of border nodes. Concerning the second level of cluster-

ing, it is important to assure that the pivot nodes clustered together via K-means do present

similar properties in terms of distance and number of shortest paths to border nodes to keep

the error low when reducing the number of SSSP explorations. In this regard, we have consid-

ered a 0-tolerance threshold and a maximum number of allowed iterations in the order of hun-

dreds of millions as the convergence criteria of the K-means algorithm in order to assure the

best quality during this second level of clustering. As matter of future work, we are currently

investigating more advanced solutions to: i) improve the quality of the first level of clustering,

by exploiting algorithms that minimize the total edge cut between the different generated clus-

ters, thus further reducing the number of border nodes. Solutions such as the well-known

METIS algorithm [61] and its more recent parallel improvements [62] appears as a valid lead

to pursue in order to achieve the aforementioned objective; ii) remove the error associated to

classes of equivalence and the pivot mechanism [59].

Concerning data availability, in our empirical evaluation we use consecutive GPS position

observations from taxis on-board GPS sensors and the derived instantaneous speed measure-

ments, which have been post-processed and associated to specific road segments of the under-

lying network via a map-matching solution. It is important to remind that we derive hourly

typical travel-time graph weights by exploiting road length information and multiple speed

observations related to a multitude of vehicles traversing each road segments, collected over

different days. Nonetheless, samples can be unavailable or very limited due to low traffic flow,

thus hampering the quality of the aggregate travel-time information and, therefore, the possi-

bility of retrieving realistic hourly snapshots of the road network traffic dynamics, especially

during non-peak hours and nighttime periods. Therefore, it appears realistic to study the accu-

racy of our W2C-Fast-BC solution over time and evaluate its robustness with respect to a vary-

ing number of available observations, as presented in Fig 2a and discussed in Section BC on
Dynamic Graphs. In the following, we analyze the robustness of our solution W2C-Fast-BC for

BC-estimation (with a K-fraction parameter set to 0.2) with respect to Brandes, when using a

KNR-interpolated graph. The results are reported in Fig 11. With a mean absolute percentage

error on the top-1000 highest-BC nodes bounded between 0 and 1%, the figure underlines the

substantial insensitivity of the error to time variations and the related variability in the number

of available data observations (see Fig 2a). Obviously, this is an effect largely due to the KNR-

interpolation technique that allows identifying links with similar properties and retrieve values

of the median speed variable for those one with missing observations.

Regarding noise, sensors are naturally subject to faults and inaccuracies that might generate

imprecise, biased or anomalous measurements. In our context, position and speed measure-

ments are acquired via civil-use GPS navigation systems, which are notoriously subject to sev-

eral sources of error, largely studied in many papers from the related literature [63]. In order

to account for the presence of noise in our empirical evaluation, we evaluate in the following

PLOS ONE Graph-based ahead monitoring of vulnerabilities in large dynamic transportation networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0248764 March 24, 2021 27 / 35

https://doi.org/10.1371/journal.pone.0248764

the robustness of our W2C-Fast-BC solution with respect to Brandes when a simple model of

the noise that can be present in the measurements acquired via GPS sensors is considered. To

this purpose, we analyze stochastic variations of the previously described hourly weighted

KNR-interpolated snapshot graphs, by considering the presence of an additive gaussian noise

on the available travel-time measurements. More specifically, for a given KNR-interpolated

hourly snapshot graph Gt, we modify the travel-time weight wl, associated to the generic net-

work link l of the graph Gt, by drawing a random sample from a 0-centered Gaussian distribu-

tion N l. In our experiments, we consider a different Gaussian distribution for each road link l,
by setting its standard deviation to a fixed fraction C of the link free flow travel time fftl, i.e.,
N lð0;C � fftlÞ. By this choice, we therefore assume errors in GPS measurements generate an

additive noise on the median travel time of each link from Gt and that such error depends on

the free flow travel time of the road segment, i.e., larger errors are more likely to take place on

longer-to-travel road segments. The randomly sampled noise is thus added to wl, by capping

possibly negative weights to the minimum observed travel time from the edge weights of Gt.
By repeating this operation for all the links of Gt, we finally obtain a noisy instance Ĝt of the

original snapshot graph that we use to estimate BC values via both W2C-Fast-BC and Brandes.

In Table 3, we report statistics related to the accuracy of W2C-Fast-BC with respect to Bran-

des, when both algorithms are leveraged to compute the BC values for all nodes of the noisy

instances Ĝt. Given the previous considerations on the insensitivity of the KNR-interpolated

graph to the different availability of samples over the hours of the day, we focused our analysis

Fig 11. Dynamic evolution of the mean absolute percentage error with W2C-Fast-BC (K-fraction = 0.2) on the interpolated dynamic graph (on

top-1000 nodes’ BC values). The shaded portion of the graph corresponds to measured values of standard deviation at each time step.

https://doi.org/10.1371/journal.pone.0248764.g011

PLOS ONE Graph-based ahead monitoring of vulnerabilities in large dynamic transportation networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0248764 March 24, 2021 28 / 35

https://doi.org/10.1371/journal.pone.0248764.g011
https://doi.org/10.1371/journal.pone.0248764

on the KNR snapshot graph related to 08:00, i.e., G08:00, to compute the noisy instances consid-

ered in our evaluation. The following statistical indicators are considered to evaluate the accu-

racy of BC estimation in the different noise scenarios: i) mean absolute percentage error for

the top-1000 BC nodes, ii) number of BC nodes present in the exact top-1000 BC ranking, iii)
normalized inversion count for the top-1000 BC nodes ranking. The inversion count of an

array corresponds to the number of inversions required to sort the array. When considering

the ranking obtained via an approximate BC computation algorithm, it represents the number

of inversions required to correctly rank the array according to an exact BC computation. In

the normalized version of the index, the count is divided by the maximum number of inver-

sions, i.e., N�ðN� 1Þ

2
, for an array of size N. To perform a statistically relevant sensitivity analysis,

we consider different values of theC fraction (i.e., 2.5, 5, 10 and 20), and 10 different random

instances of Ĝt for each choice of C. Results are averaged over the different realizations. The

choice of the specified range for the C fraction is motivated by the magnitude of the travel-

time link error that derives from it. For instance, with a C fraction equal to the smallest value

of 2.5, we observe a variation of the travel time weights in the order of ±(5 to 10) seconds for

approximately hundreds of links out of 248,337, on average. With a C fraction equal to the

largest value of 20, we observe instead a variation of the travel time weights in the order of ±(5

to 100) seconds for approximately 25,000 links out of 248,337, on average. The variations

induced by the selected range of values for theC parameter appear to reasonably cover a wide

range of scenarios in terms of noise intensity. The statistics in Table 3 indicate that the accu-

racy of W2C-Fast-BC on the top-1000 nodes is not sensitive to the underlying variations of the

graph when compared to Brandes, as the mean absolute percentage error remains extremely

low and the ranking accuracy is very high (number of retained nodes and normalized inver-

sion count) in all configurations. Additionally, such performance figure does not significantly

variate with respect to the level of introduced noise. This is indeed an expected results of our

algorithm, i.e., our algorithm is capable of identifying the most critical nodes of the network

very accurately, even in presence of noise that can change the spatial distribution of the most

critical nodes of the network.

To further investigate this aspect, we apply again both W2C-Fast-BC and Brandes on the

ten random instances of Ĝ08:00 and compare the results obtained in the two cases with respect

to the exact values of BC and rankings computed on the original snapshot graph G08:00. To

that purpose, all the indicators in Table 3 have been recalculated using the values of BC

obtained via Brandes on graph G08:00 as reference values. We underline that, in this context,

the absolute percentage error does not represent a real error, but rather the percentage abso-

lute difference with respect to the baseline BC values computed on the graph without noise.

Similarly, the errors related to BC ranking only indicate that the most BC critical nodes are dif-

ferent in presence of noise (Ĝ08:00) with respect to the base scenario (G08:00). Statistics for

W2C-Fast-BC and Brandes are reported in Tables 4 and 5, respectively. The reported values

Table 3. Accuracy of W2C-Fast-BC with respect to Brandes on the noisy graph. Mean and standard deviation are reported for each accuracy indicator as obtained by

aggregating over the 10 instances of the noisy graph Ĝ08:00 for each value ofC.

Gaussian noise C Top-1000 mean abs. perc. err. [%] # of retained Top-1000 nodes Normalized inversion count [%]

mean std mean std mean std

2.5 0.14 0.01 997.80 1.69 0.28 0.03

5 0.13 0.02 998.10 1.73 0.28 0.03

10 0.14 0.02 998.20 1.14 0.31 0.04

20 0.14 0.02 998.50 0.85 0.30 0.03

https://doi.org/10.1371/journal.pone.0248764.t003

PLOS ONE Graph-based ahead monitoring of vulnerabilities in large dynamic transportation networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0248764 March 24, 2021 29 / 35

https://doi.org/10.1371/journal.pone.0248764.t003
https://doi.org/10.1371/journal.pone.0248764

clearly indicate that an increasing presence of noise (i.e., higher C fractions for the computa-

tion of the standard deviation of the normal distribution) determines a more relevant change

in the distribution of BC values, thus significantly changing both the values of BC (as indicated

by the percentage error) and the nodes that are most critical in terms of BC. In addition, the

comparison of the statistics in the two tables highlights that our algorithm is only negligibly

more sensitive to noise than Brandes, as the three reported indices are comparable up to the

first decimal digit in almost all cases for the two algorithms.

The reported sensitivity analyses make possible to conclude that our W2C-Fast-BC solution

with KNR-based interpolation is extremely accurate as well as robust to both limited availabil-

ity of observations and presence of noise in the observations, when used to compute the BC of

the most critical nodes of the network (i.e., those with highest values of BC).

Conclusion

In this paper, we have proven, through an in-depth analysis performed on a large real network,

that betweenness centrality is a useful indicator of both structural bottlenecks (in static,

unweighted and weighted graphs) and traffic conditions (in dynamic, weighted graphs). At the

same time, we have pointed out that in a dynamic context the estimation of traffic flows

requires fast computation of BC. A requirement that we satisfy with our algorithm able to

compute good approximation of BC values in short times.

For the study, we have used two datasets: one related to the whole road network of Lyon,

whose weights have been computed using free-flow travel times and road lengths, and another

one containing GPS traces of taxi trips, with a partial coverage of the whole road network, for

estimating dynamic weights from average travel times.

The results of BC computation over the network representing the Lyon metropolitan area

(both in a static and dynamic scenario) confirm that our algorithm is very fast and at the same

time able to keep the error below a desired threshold, so posing the basis for its exploitation as

core component of a ahead monitoring system.

Possible improvements in terms of approximation errors will be evaluated in comparison

with performance degradation due to the removal of the sources of error at the first clustering

Table 4. Sensitivity of W2C-Fast-BC to different levels of random noise introduced on G08:00.

Gaussian noise C Top-1000 mean abs. perc. err. [%] # of retained Top-1000 nodes Normalized inversion count [%]

mean std mean std mean std

2.5 1.19 0.59 982.80 7.94 1.88 1.03

5 6.08 2.68 933.50 26.88 8.66 3.82

10 18.37 6.72 782.80 81.63 19.03 6.14

20 27.60 6.77 655.50 58.17 24.31 4.39

https://doi.org/10.1371/journal.pone.0248764.t004

Table 5. Sensitivity of Brandes to different levels of random noise introduced on G08:00.

Gaussian noise C Top-1000 mean abs. perc. err. [%] # of retained Top-1000 nodes Normalized inversion count [%]

mean std mean std mean std

2.5 1.15 0.60 983.00 8.14 1.80 1.02

5 6.07 2.68 933.60 27.29 8.58 3.83

10 18.35 6.71 782.60 81.91 18.96 6.14

20 27.57 6.79 655.50 58.71 24.23 4.39

https://doi.org/10.1371/journal.pone.0248764.t005

PLOS ONE Graph-based ahead monitoring of vulnerabilities in large dynamic transportation networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0248764 March 24, 2021 30 / 35

https://doi.org/10.1371/journal.pone.0248764.t004
https://doi.org/10.1371/journal.pone.0248764.t005
https://doi.org/10.1371/journal.pone.0248764

level with the integration of the new version of the algorithm aimed at computing the exact

value of BC.

Our W2C-Fast-BC algorithm is planned to be plugged into a dynamic and adaptive distrib-

uted control system aimed at performing resilience enhancement by keeping, over space and

time, the values of BC close to the ones observed in free-flow conditions so as to achieve a

more uniform distribution of traffic flows and, consequently, guarantee more efficient network

states at equilibrium.

In the future, we intend to extend our analysis by exploiting a dataset with a larger coverage

for dynamic weights as, due to a limited coverage of GPS data, we have been forced to apply an

interpolation technique based on non-parametric regression to realistically scale the dynamic

analysis on a larger network. Moreover, we plan to evaluate and eventually integrate BC with

other information related to a preventive or statistical knowledge of traffic distribution that

could contribute to the definition of a more effective traffic predictor based on betweenness

centrality.

Supporting information

S1 File.

(TXT)

S1 Data.

(ZIP)

S2 Data.

(ZIP)

S3 Data.

(ZIP)

S4 Data.

(ZIP)

S5 Data.

(ZIP)

S6 Data.

(ZIP)

S7 Data.

(ZIP)

Acknowledgments

The authors would like to thank Lorenzo Goglia for his support in the comparative evaluation

of W2C-Fast-BC with the BADIOS framework, as well as Loïc Bonnetain and Elise Henry for

their support in the analysis of the correlation between TTBC and traffics dynamics. The

authors also acknowledge the French National Agency of Research, the Italian CINI “Smart

Cities and Communities” National Lab and the SAI project for supporting this work.

Author Contributions

Conceptualization: Angelo Furno, Eugenio Zimeo.

Data curation: Angelo Furno, Eugenio Zimeo.

PLOS ONE Graph-based ahead monitoring of vulnerabilities in large dynamic transportation networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0248764 March 24, 2021 31 / 35

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0248764.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0248764.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0248764.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0248764.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0248764.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0248764.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0248764.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0248764.s008
https://doi.org/10.1371/journal.pone.0248764

Formal analysis: Angelo Furno, Eugenio Zimeo.

Funding acquisition: Angelo Furno, Eugenio Zimeo.

Investigation: Angelo Furno, Eugenio Zimeo.

Methodology: Angelo Furno, Eugenio Zimeo.

Project administration: Angelo Furno, Eugenio Zimeo.

Resources: Angelo Furno, Eugenio Zimeo.

Software: Angelo Furno, Nour-Eddin El Faouzi, Rajesh Sharma, Eugenio Zimeo.

Supervision: Angelo Furno, Eugenio Zimeo.

Validation: Angelo Furno, Eugenio Zimeo.

Visualization: Angelo Furno, Rajesh Sharma, Eugenio Zimeo.

Writing – original draft: Angelo Furno, Nour-Eddin El Faouzi, Rajesh Sharma, Eugenio

Zimeo.

Writing – review & editing: Angelo Furno, Nour-Eddin El Faouzi, Rajesh Sharma, Eugenio

Zimeo.

References
1. van Essen M, Thomas T, van Berkum E, Chorus C. From user equilibrium to system optimum: a litera-

ture review on the role of travel information, bounded rationality and non-selfish behaviour at the net-

work and individual levels. Transport reviews. 2016; 36(4):527–548. https://doi.org/10.1080/01441647.

2015.1125399

2. Batista S, Zhao CL, Leclercq L. Effects of users’ bounded rationality on a traffic network performance: a

simulation study. Journal of Advanced Transportation. 2018; 2018. https://doi.org/10.1155/2018/

9876598

3. Mahmassani HS, Lu CC, Dong J. Value of information: Provision of anticipatory descriptive travel infor-

mation through a real-time traffic estimation and prediction system. In: 12th World Congress on Intelli-

gent Transport Systems 2005; 2009. p. 5022–5033.

4. Abadi A, Rajabioun T, Ioannou PA. Traffic flow prediction for road transportation networks with limited

traffic data. IEEE transactions on intelligent transportation systems. 2014; 16(2):653–662.

5. Ren Y, Ercsey-Ravasz M, Wang P, González MC, Toroczkai Z. Predicting commuter flows in spatial

networks using a radiation model based on temporal ranges. Nature communications. 2014; 5(1):1–9.

https://doi.org/10.1038/ncomms6347

6. Gauthier P, Furno A, El Faouzi NE. Road network resilience: how to identify critical links subject to day-

to-day disruptions. Transportation research record. 2018; 2672(1):54–65. https://doi.org/10.1177/

0361198118792115

7. Li Y, Yu R, Shahabi C, Liu Y. Diffusion convolutional recurrent neural network: Data-driven traffic fore-

casting. arXiv preprint arXiv:170701926. 2017;.

8. Bilotta S, Nesi P. Traffic flow reconstruction by solving indeterminacy on traffic distribution at junctions.

Future Generation Computer Systems. 2020;.

9. Kazerani A, Winter S. Can betweenness centrality explain traffic flow. In: 12th AGILE international con-

ference on geographic information science; 2009. p. 1–9.

10. Holme P. Congestion and centrality in traffic flow on complex networks. Advances in Complex Systems.

2003; 6(02):163–176. https://doi.org/10.1142/S0219525903000803

11. Mallick T, Balaprakash P, Rask E, Macfarlane J. Graph-Partitioning-Based Diffusion Convolution

Recurrent Neural Network for Large-Scale Traffic Forecasting. arXiv preprint arXiv:190911197. 2019;.

12. Guo K, Hu Y, Qian Z, Liu H, Zhang K, Sun Y, et al. Optimized graph convolution recurrent neural net-

work for traffic prediction. IEEE Transactions on Intelligent Transportation Systems. 2020;.

13. Henry E, Bonnetain L, Furno A, El Faouzi NE, Zimeo E. Spatio-temporal Correlations of Betweenness

Centrality and Traffic Metrics. In: 2019 6th International Conference on Models and Technologies for

Intelligent Transportation Systems (MT-ITS). IEEE; 2019. p. 1–10.

PLOS ONE Graph-based ahead monitoring of vulnerabilities in large dynamic transportation networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0248764 March 24, 2021 32 / 35

https://doi.org/10.1080/01441647.2015.1125399
https://doi.org/10.1080/01441647.2015.1125399
https://doi.org/10.1155/2018/9876598
https://doi.org/10.1155/2018/9876598
https://doi.org/10.1038/ncomms6347
https://doi.org/10.1177/0361198118792115
https://doi.org/10.1177/0361198118792115
https://doi.org/10.1142/S0219525903000803
https://doi.org/10.1371/journal.pone.0248764

14. Liu W, Li X, Liu T, Liu B. Approximating betweenness centrality to identify key nodes in a weighted

urban complex transportation network. Journal of Advanced Transportation. 2019; 2019. https://doi.org/

10.1155/2019/9024745

15. Brandes U. A faster algorithm for betweenness centrality. Journal of mathematical sociology. 2001;

25(2):163–177. https://doi.org/10.1080/0022250X.2001.9990249

16. Bergamini E, Meyerhenke H. Approximating Betweenness Centrality in Fully Dynamic Networks. Inter-

net Mathematics. 2016; 12(5):281–314. https://doi.org/10.1080/15427951.2016.1177802

17. Chehreghani MH, Bifet A, Abdessalem T. DyBED: An efficient algorithm for updating betweenness cen-

trality in directed dynamic graphs. In: 2018 IEEE International Conference on Big Data (Big Data).

IEEE; 2018. p. 2114–2123.

18. Furno A, El Faouzi NE, Sharma R, Zimeo E. Fast approximated betweenness centrality of directed and

weighted graphs. In: International Conference on Complex Networks and their Applications. Springer;

2018. p. 52–65.

19. Furno A, El Faouzi NE, Sharma R, Zimeo E. Two-level clustering fast betweenness centrality computa-

tion for requirement-driven approximation. In: 2017 IEEE International Conference on Big Data (Big

Data). IEEE; 2017. p. 1289–1294.

20. Furno A, El Faouzi NE, Sharma R, Zimeo E. Reducing pivots of approximated betweenness computa-

tion by hierarchically clustering complex networks. In: International Conference on Complex Networks

and their Applications. Springer; 2017. p. 65–77.

21. Furno A, Faouzi E, Sharma R, Zimeo E, et al. Fast Computation of Betweenness Centrality to Locate

Vulnerabilities in Very Large Road Networks. In: Transportation Research Board 97th Annual Meeting;

2018.

22. Castiello A, Fucci G, Furno A, Zimeo E. Scalability Analysis of Cluster-based Betweenness Computa-

tion in Large Weighted Graphs. In: 2018 IEEE International Conference on Big Data (Big Data). IEEE;

2018. p. 4006–4015.

23. Freeman LC. Centrality in social networks conceptual clarification. Social Networks. 1978; 1(3):215–

239. https://doi.org/10.1016/0378-8733(78)90021-7

24. Holme P, Kim BJ, Yoon CN, Han SK. Attack vulnerability of complex networks. Physical review E. 2002;

65(5):056109. https://doi.org/10.1103/PhysRevE.65.056109

25. Barthélémy M. Betweenness centrality in large complex networks. The European physical journal B.

2004; 38(2):163–168. https://doi.org/10.1140/epjb/e2004-00111-4

26. Gao S, Wang Y, Gao Y, Liu Y. Understanding urban traffic-flow characteristics: a rethinking of between-

ness centrality. Environment and Planning B: Planning and Design. 2013; 40(1):135–153. https://doi.

org/10.1068/b38141

27. Jayasinghe A, Sano K, Nishiuchi H. EXPLAINING TRAFFIC FLOW PATTERNS USING CENTRALITY

MEASURES. International Journal for Traffic & Transport Engineering. 2015; 5(2):134–149. https://doi.

org/10.7708/ijtte.2015.5(2).05

28. Altshuler Y, Puzis R, Elovici Y, Bekhor S, Pentland A. Augmented Betweenness Centrality for Mobility

Prediction in Transportation Networks. Finding Patterns of Human Behaviors in Network and Mobility

Data (NEMO). 2011; p. 1—12.

29. Zhao S, Zhao P, Cui Y. A network centrality measure framework for analyzing urban traffic flow: A case

study of Wuhan, China. Physica A: Statistical Mechanics and its Applications. 2017; 478:143–157.

https://doi.org/10.1016/j.physa.2017.02.069

30. King D, Shalaby A. Performance Metrics and Analysis of Transit Network Resilience in Toronto. Trans-

portation Research Record. 2016; p. no. 16–2441.

31. Zhang Y, Wang X, Zeng P, Chen X. Centrality Characteristics of Road Network Patterns of Traffic Anal-

ysis Zones. Transportation Research Record: Journal of the Transportation Research Board. 2011;

2256:16–24. https://doi.org/10.3141/2256-03

32. Berche B, von Ferber C, Holovatch T, Holovatch Y. Resilience of public transport networks against

attacks. The European Physical Journal B. 2009; 71(1):125–137. https://doi.org/10.1140/epjb/e2009-

00291-3

33. Dall’Asta L, Barrat A, Barthélémy M, Vespignani A. Vulnerability of weighted networks. Journal of Statis-

tical Mechanics: Theory and Experiment. 2006; 2006(04):P04006.

34. Leung IX, Chan SY, Hui P, Lio P. Intra-city urban network and traffic flow analysis from GPS mobility

trace. arXiv preprint arXiv:11055839. 2011; p. 1–23.

35. Crucitti P, Latora V, Porta S. Centrality in networks of urban streets. Chaos: an interdisciplinary journal

of nonlinear science. 2006; 16(1):015113. https://doi.org/10.1063/1.2150162

PLOS ONE Graph-based ahead monitoring of vulnerabilities in large dynamic transportation networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0248764 March 24, 2021 33 / 35

https://doi.org/10.1155/2019/9024745
https://doi.org/10.1155/2019/9024745
https://doi.org/10.1080/0022250X.2001.9990249
https://doi.org/10.1080/15427951.2016.1177802
https://doi.org/10.1016/0378-8733(78)90021-7
https://doi.org/10.1103/PhysRevE.65.056109
https://doi.org/10.1140/epjb/e2004-00111-4
https://doi.org/10.1068/b38141
https://doi.org/10.1068/b38141
https://doi.org/10.7708/ijtte.2015.5(2).05
https://doi.org/10.7708/ijtte.2015.5(2).05
https://doi.org/10.1016/j.physa.2017.02.069
https://doi.org/10.3141/2256-03
https://doi.org/10.1140/epjb/e2009-00291-3
https://doi.org/10.1140/epjb/e2009-00291-3
https://doi.org/10.1063/1.2150162
https://doi.org/10.1371/journal.pone.0248764

36. Cheng YY, Lee RKW, Lim EP, Zhu F. Measuring Centralities for Transportation Networks Beyond

Structures. Applications of social media and social network analysis. 2015; p. 23–39. https://doi.org/10.

1007/978-3-319-19003-7_2

37. Wang H, Hernandez JM, Van Mieghem P. Betweenness centrality in a weighted network. Physical

Review E. 2008; 77(4):046105. https://doi.org/10.1103/PhysRevE.77.046105

38. Ganin AA, Kitsak M, Marchese D, Keisler JM, Seager T, Linkov I. Resilience and efficiency in transpor-

tation networks. Science advances. 2017; 3(12):e1701079. https://doi.org/10.1126/sciadv.1701079

39. De Montis A, Barthélémy M, Chessa A, Vespignani A. The structure of interurban traffic: a weighted net-

work analysis. Environment and Planning B: Planning and Design. 2007; 34(5):905–924. https://doi.

org/10.1068/b32128

40. Hayashi T, Akiba T, Yoshida Y. Fully Dynamic Betweenness Centrality Maintenance on Massive Net-

works. Proc VLDB Endow. 2015; 9(2):48–59. https://doi.org/10.14778/2850578.2850580

41. Kourtellis N, Morales GDF, Bonchi F. Scalable online betweenness centrality in evolving graphs. IEEE

Transactions on Knowledge and Data Engineering. 2015; 27(9):2494–2506. https://doi.org/10.1109/

TKDE.2015.2419666

42. Sariyüce AE, Saule E, Kaya K, Çatalyürek ÜV. Shattering and compressing networks for betweenness

centrality. In: Proceedings of the 2013 SIAM International Conference on Data Mining. SIAM; 2013.

p. 686–694.

43. Sariyüce AE, Kaya K, Saule E, Çatalyürek ÜV. Graph manipulations for fast centrality computation.

ACM Transactions on Knowledge Discovery from Data (TKDD). 2017; 11(3):1–25. https://doi.org/10.

1145/3022668

44. White S, Smyth P. Algorithms for estimating relative importance in networks. In: Proceedings of the

ninth ACM SIGKDD international conference on Knowledge discovery and data mining. ACM; 2003.

p. 266–275.

45. Brandes U, Pich C. Centrality estimation in large networks. International Journal of Bifurcation and

Chaos. 2007; 17(07):2303–2318. https://doi.org/10.1142/S0218127407018403

46. Geisberger R, Sanders P, Schultes D. Better approximation of betweenness centrality. In: Proceedings

of the Meeting on Algorithm Engineering & Experiments. Society for Industrial and Applied Mathemat-

ics; 2008. p. 90–100.

47. Bader DA, Kintali S, Madduri K, Mihail M. Approximating Betweenness Centrality. In: Proceedings of

the 5th International Conference on Algorithms and Models for the Web-graph. WAW’07. Berlin, Heidel-

berg: Springer-Verlag; 2007. p. 124–137.

48. Ohara K, Saito K, Kimura M, Motoda H. Accelerating computation of distance based centrality mea-

sures for spatial networks. In: International Conference on Discovery Science. Springer; 2016. p. 376–

391.

49. Newman MEJ. A measure of betweenness centrality based on random walks. Social Networks. 2005;

27(1):39–54. https://doi.org/10.1016/j.socnet.2004.11.009

50. Riondato M, Kornaropoulos EM. Fast approximation of betweenness centrality through sampling. Data

Mining and Knowledge Discovery. 2016; 30(2):438–475. https://doi.org/10.1007/s10618-015-0423-0

51. Borassi M, Natale E. KADABRA is an ADaptive Algorithm for Betweenness via Random Approximation.

In: ESA. vol. 57 of LIPIcs. Schloss Dagstuhl—Leibniz-Zentrum fuer Informatik; 2016. p. 20:1–20:18.

52. Chehreghani MH, Bifet A, Abdessalem T. Efficient exact and approximate algorithms for computing

betweenness centrality in directed graphs. In: Pacific-Asia Conference on Knowledge Discovery and

Data Mining. Springer; 2018. p. 752–764.

53. Suppa P, Zimeo E. A Clustered Approach for Fast Computation of Betweenness Centrality in Social

Networks. In: 2015 IEEE International Congress on Big Data; 2015. p. 47–54.

54. Freeman LC. A set of measures of centrality based on betweenness. Sociometry. 1997; 25:35–41.

55. Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E. Fast unfolding of communities in large networks.

Journal of Statistical Mechanics: Theory and Experiment. 2008; 2008(10):P10008. https://doi.org/10.

1088/1742-5468/2008/10/P10008

56. Dugué N, Perez A. Directed Louvain: maximizing modularity in directed networks. Université d’Orléans;

2015.

57. Newman ME. Analysis of weighted networks. Physical Review E. 2004; 70(5):056131. https://doi.org/

10.1103/PhysRevE.70.056131

58. Sotera. dga-graphx: GraphX Algorithms. online;.

59. Daniel C, Furno A, Zimeo E. Cluster-based Computation of Exact Betweenness Centrality in Large

Undirected Graphs. In: 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA,

USA, December 9-12, 2019. IEEE; 2019. p. 603–608.

PLOS ONE Graph-based ahead monitoring of vulnerabilities in large dynamic transportation networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0248764 March 24, 2021 34 / 35

https://doi.org/10.1007/978-3-319-19003-7_2
https://doi.org/10.1007/978-3-319-19003-7_2
https://doi.org/10.1103/PhysRevE.77.046105
https://doi.org/10.1126/sciadv.1701079
https://doi.org/10.1068/b32128
https://doi.org/10.1068/b32128
https://doi.org/10.14778/2850578.2850580
https://doi.org/10.1109/TKDE.2015.2419666
https://doi.org/10.1109/TKDE.2015.2419666
https://doi.org/10.1145/3022668
https://doi.org/10.1145/3022668
https://doi.org/10.1142/S0218127407018403
https://doi.org/10.1016/j.socnet.2004.11.009
https://doi.org/10.1007/s10618-015-0423-0
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1103/PhysRevE.70.056131
https://doi.org/10.1103/PhysRevE.70.056131
https://doi.org/10.1371/journal.pone.0248764

60. Altman NS. An introduction to kernel and nearest-neighbor nonparametric regression. The American

Statistician. 1992; 46(3):175–185. https://doi.org/10.1080/00031305.1992.10475879

61. Karypis G, Kumar V. Multilevelk-way partitioning scheme for irregular graphs. Journal of Parallel and

Distributed computing. 1998; 48(1):96–129. https://doi.org/10.1006/jpdc.1997.1404

62. LaSalle D, Karypis G. A parallel hill-climbing refinement algorithm for graph partitioning. In: 2016 45th

International Conference on Parallel Processing (ICPP). IEEE; 2016. p. 236–241.

63. Kao WW. Integration of GPS and dead-reckoning navigation systems. In: Vehicle Navigation and Infor-

mation Systems Conference, 1991. vol. 2. IEEE; 1991. p. 635–643.

PLOS ONE Graph-based ahead monitoring of vulnerabilities in large dynamic transportation networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0248764 March 24, 2021 35 / 35

https://doi.org/10.1080/00031305.1992.10475879
https://doi.org/10.1006/jpdc.1997.1404
https://doi.org/10.1371/journal.pone.0248764

