
HAL Id: hal-03180788
https://hal.science/hal-03180788

Submitted on 25 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Complexity of Model-Checking the Tail-Recursive
Fragment of Higher-Order Modal Fixpoint Logic

Florian Bruse, Martin Lange, Etienne Lozes

To cite this version:
Florian Bruse, Martin Lange, Etienne Lozes. The Complexity of Model-Checking the Tail-Recursive
Fragment of Higher-Order Modal Fixpoint Logic. Fundamenta Informaticae, 2021, �10.3233/FI-2016-
0000�. �hal-03180788�

https://hal.science/hal-03180788
https://hal.archives-ouvertes.fr

Fundamenta Informaticae XX (2021) 1–29 1

DOI 10.3233/FI-2016-0000

IOS Press

The Complexity of Model-Checking the Tail-Recursive Fragment
of Higher-Order Modal Fixpoint Logic

Florian Bruse
University of Kassel, Germany

Martin Lange
University of Kassel, Germany

Etienne Lozes
University of Nice Sophia Antipolis, I3S, UMR 7271, CNRS, Nice, France

Abstract. Higher-Order Fixpoint Logic (HFL) is a modal specification language whose expres-
sive power reaches far beyond that of Monadic Second-Order Logic, achieved through an incor-
poration of a typed λ-calculus into the modal µ-calculus. Its model checking problem on finite
transition systems is decidable, albeit of high complexity, namely k-EXPTIME-complete for for-
mulas that use functions of type order at most k > 0. In this paper we present a fragment with
a presumably easier model checking problem. We show that so-called tail-recursive formulas of
type order k can be model checked in (k−1)-EXPSPACE, and also give matching lower bounds.
This yields generic results for the complexity of bisimulation-invariant non-regular properties, as
these can typically be defined in HFL.

1. Introduction

Higher-Order Modal Fixpoint Logic (HFL) [1] is an extension of the modal µ-calculus [2] by a simply
typed λ-calculus. Formulas do not only denote sets of states in labelled transition systems but also
functions from such sets to sets, functions from sets to functions on sets, etc. The syntax becomes
more complicated because the presence of fixpoint quantifiers requires formulas to be strongly typed
in order to guarantee monotonicity of the function transformers (rather than just set transformers)
whose fixpoints are quantified over.

HFL is an interesting specification language for reactive systems: the ability to construct functions
at arbitrary type levels gives it an enormous expressive power compared to the µ-calculus, the stan-

2 author / short title

dard yardstick for the expressive power of bisimulation-invariant specification languages [3]. HFL is
still bisimulation-invariant [1] but it has the power to express non-MSO-definable properties like cer-
tain assume-guarantee properties [1]; all context-free [4] and even some context-sensitive reachability
properties [5]; structural properties like being a balanced tree, being bisimilar to a word, [5] etc. As
a bisimulation-invariant fixpoint logic, HFL is essentially an extremely powerful logic for specifying
complex reachability properties.

There is a natural hierarchy of fragments HFLk formed by the maximal function order k of types
used in a formula where HFL0 equals the modal µ-calculus. The aforementioned examples are all
expressible in fragments of low order, namely in HFL1 or in exceptional cases only HFL2. Later on,
we give an example of a reachability property expressible in HFL3 which is unlikely to be expressible
in HFL2.

Type order is a major factor for model-theoretic and computational properties of HFL. It is known
that HFLk+1 is strictly more expressive than HFLk [6]. The case of k = 0 is reasonably simple
since the expressive power of the modal µ-calculus, i.e. HFL0 is quite well understood, including
examples of properties that are known not to be expressible in it. The aforementioned tree property of
being balanced is such an example [7]. For k = 1, the strict increase in expressive power was shown
using a diagonalisation argument [1]. For arbitrary k > 0, strictness follows from considerations
in computational complexity: model checking HFLk is k-EXPTIME-complete [6] and this already
holds for the data complexity. I.e. each HFLk, k ≥ 1, contains formulas which express some decision
problem that is hard for deterministic k-fold exponential time. Expressive strictness of the type order
hierarchy is then a direct consequence of the time hierarchy theorem [8] which particularly shows that
k-EXPTIME ((k + 1)-EXPTIME.

Here we study the complexity of HFL model checking w.r.t. space usage. We identify a syntactical
criterion on formulas, called tail-recursion, which causes space-efficiency in a relative sense.

Said criterion has been developed for PHFL, a polyadic extension of HFL, in the context of de-
scriptive complexity. Extending Otto’s result showing that a polyadic version of the modal µ-calculus
[9] captures the bisimulation-invariant fragment of polynomial time [10], PHFL0 ≡ P/∼ in short, it
was shown that PHFL1 ≡ EXPTIME/∼ [11], i.e. polyadic HFL formulas of function order at most
1 express exactly the bisimulation-invariant graph properties that can be evaluated in deterministic
exponential time.

Tail-recursion restricts the allowed combinations of fixpoint types (least or greatest), modality
types (existential or universal), Boolean operators (disjunctions and conjunctions) and nestings of
function applications. Its name is derived from the fact that a standard top-down evaluation algo-
rithm working on states of a transition system and formulas can be implemented tail-recursively
and, hence, intuitively in a rather space-efficient way. In the context of descriptive complexity, it
was shown that the tail-recursive fragment of PHFL1 captures polynomial space modulo bisimilarity,
PHFL1

tail ≡ PSPACE/∼ [11]. The same holds for the tail-recursive fragment of the modal µ-calculus
and NLOGSPACE over graphs equipped with an additional particular partial order, but it is unlikely
to hold for the class of all graphs [11].

These results can indeed be seen as an indication that tail-recursion is a synonym for space-
efficiency. In this paper we show that this is not restricted to order 1. We prove that the model
checking problem for the tail-recursive fragment of HFLk+1 is k-EXPSPACE-complete. This already

author / short title 3

holds for the data complexity which yields a strict hierarchy of expressive power within HFLtail, as a
consequence of the space hierarchy theorem [12].

The computational complexity of the tail-recursive fragments of each HFLk has been identified to
be (k − 1)-EXPSPACE in a preliminary version of this paper [13]. Here we give a weaker definition
which results in larger tail-recursive fragments, i.e. it gives better space-efficient complexity bounds
for more properties than the previous version. While this previous version allowed properties to either
result in a nondeterministic or a co-nondeterministic evaluation procedure, the extended definition here
makes use of the fact that bounded alternation between existential and universal nondeterminism can
be eliminated to result in a deterministic procedure without exceeding the space complexity bounds
[14].

The paper is organised as follows. In Sect. 2 we recall HFL and apply the concept of tail-recursion,
originally developed for a polyadic extension, to this monadic logic. In Sect. 3 we present upper
bounds; matching lower bounds are presented in Sect. 4. Sect. 5 concludes the paper with remarks on
further work in this area.

2. Higher-Order Fixpoint Logic

Labeled Transition Systems. Fix a set P = {p, q, . . . } of atomic propositions and a set A =
{a, b, . . . } of actions. A labeled transition system (LTS) is a tuple T = (S, { a−→}a∈A, `), where S is
a set of states, a−→ is a binary relation for each a ∈ A and ` : S → P(P) is a function assigning, to
each state, the set of propositions that are satisfied in it. We write s a−→ t to denote that (s, t) ∈ a−→.

Types. The semantics of HFL is defined via complete function lattices over a transition system.
In order to guarantee monotonicity (and other well-formedness conditions), formulas representing
functions need to be strongly typed according to a simple type system. It defines types inductively
from a ground type via function forming: the set of HFL-types is given by the grammar

τ ::= • | τv → τ

where v ∈ {+,−, 0} is called a variance. It indicates whether a function uses its argument in a
monotone, antitone or arbitrary way.

The order ord(τ) of a type τ is defined inductively as ord(•) = 0, and ord(σ → τ) = max(1 +
ord(σ), ord(τ)).

The function type constructor → is right-associative. Thus, every type is of the form τv11 →
. . . τvmm → •.

Formulas. Let P and A be as above. Additionally, let Vλ = {x, y, . . . } and Vfp = {X,Y, . . . } be
two sets of variables. We only distinguish them in order to increase readability of formulas, referring to
Vλ as λ-variables and Vfp as fixpoint variables. The set of (possibly non-well-formed) HFL formulas
is then given by the grammar

ϕ ::= p | ϕ ∨ ϕ | ϕ ∧ ϕ | ¬ϕ | 〈a〉ϕ | [a]ϕ | x | λ(xv : τ). ϕ | ϕϕ

4 author / short title

| X | µ(X : τ). ϕ | ν(X : τ). ϕ

where p ∈ P, a ∈ A, x ∈ Vλ, X ∈ Vfp, τ is an HFL-type and v is a variance. Derived connectives
such as⇒,⇔,>,⊥ can be added in the usual way, but we consider ∧, [a] and ν to be built-in operators
instead of derived connectives. The set of subformulas sub(ϕ) of a formula ϕ is defined in the usual
way. Note that fixpoint variables need no decoration by a variance since they can only occur in a
monotonic fashion.

The intuition for the operators not present in the modal µ-calculus is as follows: λ(x : τ). ϕ defines
a function that consumes an argument x of type τ and returns what ϕ evaluates to, x returns the value
of λ-variable x, and ϕ ψ applies ψ as an argument to the function ϕ. If a formula consists of several
consecutive λ abstractions, we compress the argument display in favor of readability. For example,
λ(x : τ). λ(y : σ). ψ becomes λ(x : τ, y : σ). ψ or even λ(x, y : τ). ψ if τ = σ.

A sequence of the form Xv1
1 : τ1, . . . , X

vn
n : τn, x

v′1
1 : τ ′1, . . . , x

v′j
j : τ ′j where the Xi are fixpoint

variables, the xj are λ-variables, the τi, τ ′j are types and the vi, v′j are variances, is called a context.
We assume that each fixpoint variable and each λ-variable occurs only once per context. The context
Γ is obtained from Γ by replacing all typing hypotheses of the form X+ : τ by X− : τ and vice versa,
and doing the same for λ-variables. An HFL-formula ϕ has type τ in context Γ if Γ ` ϕ : τ can be
derived via the typing rules in Fig. 1. A formula ϕ is well-formed if Γ ` ϕ : τ can be derived for some
Γ and τ . Note that, while fixpoint variables may only be used in a monotonic fashion, contexts with
fixpoint variables of negative variance are still necessary to type formulas of the form µ(X : •). ¬¬X .
In some examples, we may sometimes omit type and/or variance anotations.

Moreover, we also assume that in a well-formed formula ϕ, each fixpoint variable X ∈ Vfp is
bound at most once, i.e., there is at most one subformula of the form µ(X : τ). ψ or ν(X : τ). ψ. Then
there is a function fp : Vfp → sub(ϕ) such that fp(X) is the unique subformula σ(X : τ). ϕ′ with
σ ∈ {µ, ν}. Note that this also introduces a partial order � on the fixpoint variables via X � Y iff
σY.ψ is a subformula of fp(X).

Note that it is possible to order the fixpoints in such a formula as X1, . . . , Xn such that fp(Xi) /∈
sub(fp(Xj)) for j > i.

Let ϕ be a formula, and let Γ ` ψ:τ be a judgement for a subformula of ϕ derived in the proof
that ϕ is well-formed. Then the type type(ψ) of ψ is τ . The order of ϕ is the maximal type order k of
any subformula of ϕ and, hence of any type used in a proof of ∅ ` ϕ : •. With HFLk we denote the set
of all well-formed HFL formulas of ground type whose order is at most k. In particular, HFL0 is the
modal µ-calculus Lµ. The notion of order of a formula can straightforwardly be applied to formulas
which are not of ground type •. We will therefore also speak of the order of some arbitrary subformula
of an HFL formula.

Semantics. Given an LTS T , each HFL type τ induces a complete lattice JτKT starting with the usual
powerset lattice of its state space, and then lifting this to lattices of functions of higher order. When
the underlying LTS is clear from the context we only write JτK rather than JτKT . We also identify
a lattice with its underlying set and write f ∈ JτK for instance. These lattices are then inductively
defined as follows:

• J•KT is the lattice P(S) ordered by the inclusion relation ⊆,

author / short title 5

Γ ` p : •
Γ ` ϕ : •

Γ ` 〈a〉ϕ : •
Γ ` ϕ : •

Γ ` [a]ϕ : •
Γ ` ϕ : •

Γ ` ¬ϕ : •
Γ ` ϕ : • Γ ` ψ : •

Γ ` ϕ ∨ ψ : •
Γ ` ϕ : • Γ ` ψ : •

Γ ` ϕ ∧ ψ : •
v ∈ {+, 0}

Γ , xv : τ ` x : τ Γ , X+ : τ ` X : τ

Γ, xv : σ ` ϕ : τ

Γ ` λ(xv : σ). ϕ : σv → τ

Γ, X+ : τ ` ϕ : τ

Γ ` µ(X : τ). ϕ : τ

Γ, X+ : τ ` ϕ : τ

Γ ` ν(X : τ). ϕ : τ

Γ ` ϕ : σ+ → τ Γ ` ψ : σ

Γ ` ϕ ψ : τ

Γ ` ϕ : σ− → τ Γ ` ψ : σ

Γ ` ϕ ψ : τ

Γ ` ϕ : σ0 → τ Γ ` ψ : σ Γ ` ψ : σ

Γ ` ϕ ψ : τ

Figure 1. The HFL typing system

• Jσv → τKT is the lattice whose domain is the set of all (if v = 0), resp. monotone (if v = +),
resp. antitone (if v = −) functions of type JσKT → JτKT ordered pointwise, i.e. f vσv→τ g iff
f(x) vτ g(x) for all x ∈ JσKT .

Given a context Γ, an environment η that respects Γ is a partial map from Vλ ∪ Vfp such that
η(x) ∈ JτK if Γ ` x : τ and η(X) ∈ Jτ ′K if Γ ` x : τ ′. From now on, all environments respect the
context in question. The update η[X 7→ f] is defined in the usual way as η[X 7→ f](x) = η(x),
η[X 7→ f](Y) = η(Y) if Y 6= X and η(Y) = f if X = Y . Updates for λ-variables are defined
analogously.

The semantics of an HFL formula is defined inductively as per Fig. 2. We write T , s |=η ϕ : τ if
s ∈ JΓ ` ϕ : τKη for suitable Γ and abbreviate the special case with a closed formula of ground type
writing T , s |= ϕ instead of T , s |=∅ ϕ : •.

The Tail-Recursive Fragment. In general, a tail-recursive function is one that is never called re-
cursively in an intermediate step of the evaluation of its body, either for evaluating a condition on
branching, or for evaluating an argument of a function call. Tail-recursive functions are known to be
more space-efficient in general as they do not require a call stack for their evaluation.

The notion of tail-recursion has been transposed to the framework of higher-order fixpoint logics,
originally for a polyadic extension of HFL [11], but restricted to orders 0 and 1, and later for the
monadic case of full HFL [13]. The following definition is an expanded version of the latter definition.

For this paper, we define tail recursion with respect to some type theoretic order k, which usually
is the order of the formula. Intuitively, order k tail-recursion restricts the occurrence of free fixpoint
variables in the syntax of formulas such that

• free fixpoint variables do not occur in an operand position,

• subformulas with free fixpoint variables can have fully unrestricted nondetermistic operators,
i.e. ∨, 〈a〉 but limited universal branching, i.e. ∧, [a], or vice versa,

6 author / short title

JΓ ` p : •Kη = {s ∈ S | P ∈ `(s)}
JΓ ` ϕ ∨ ψ : •Kη = JΓ ` ϕ : •Kη ∪ JΓ ` ψ : •Kη
JΓ ` ϕ ∧ ψ : •Kη = JΓ ` ϕ : •Kη ∩ JΓ ` ψ : •Kη
JΓ ` 〈a〉ϕ : •Kη = {s ∈ S | ex. t ∈ JΓ ` ϕ : •Kη s.t. s a−→ t}
JΓ ` [a]ϕ : •Kη = {s ∈ S | f.a. t ∈ S with s a−→ t holds t ∈ JΓ ` ϕ : •Kη}

JΓ ` x : τKη = η(x)

JΓ ` X : τKη = η(X)

JΓ ` λ(xv : σ) : σv → τKη = f ∈ Jσv → τK s.t. f.a. y ∈ JσK. f(y)

= JΓ, xv : σ ` ϕ : τKη[x 7→y]

JΓ ` ϕψ : τKη = JΓ ` ϕ : σv → σKη (JΓ ` ψ : σKη)

JΓ ` µ(X : τ).ϕ : τKη =
l
{d ∈ JτK | JΓ, X : τ+ ` ϕ : τKη[X 7→d] vτ d}

JΓ ` ν(X : τ).ϕ : τKη =
⊔
{d ∈ JτK | d vτ JΓ, X : τ+ ` ϕ : τKη[X 7→d]}

Figure 2. Semantics of HFL

• negation is only allowed for fixpoint closed formulas

• subformulas that are fixpoint closed and do not contain fixpoint binders of order k are not
restricted in the position of free fixpoint variables

Let S1, S2 be sets. We write S1 ←∅→ S2 to denote that at least one of S1 and S2 is empty. Note
that, in particular, ∅ ←∅→ ∅ holds.

Definition 2.1. An HFL formula ϕ of order at most k is order k tail-recursive if the statement
tailk(ϕ, ∅,) can be derived via the rules in Fig. 3. HFLktail consists of all order k tail-recursive for-
mulas in HFLk.

Note that if tailk(ϕ,X , A) can be derived, then X is exactly the set of free fixpoint variables of ϕ.
The three modes N,U and F indicate whether nondeterministic operators (N) or universal operators
(U) can be used without restriction. For example, rules (∨) and (∨U) govern the behavior of tail
recursion around disjunctions: If the subformula in question is in mode N , then both subformulas of
a disjunction may contain free fixpoint variables, assuming a judgement for them in mode N can be
derived. On the other hand, if a disjunction is in mode U , then at most one subformula can have free
fixpoint variables. Note that, via rule (alter), subformulas without free fixpoint variables can always
add modes N and U if their is a derivation for them for at least one mode.

Finally, a derivation for a subformula in mode F means that it does not contain fixpoint binders of
order k. Intuitively this means that the formula is equivalent to one in HFLk−1 and, hence, harmless.
For this reason, occurrences of free fixpoint variables are completely unrestricted in a subformula that

author / short title 7

(alter)
A ∈ {N,U, F} A′ ∈ {N,U} tailk(ϕ, ∅, A)

tailk(ϕ, ∅, A′)
(prop)

A ∈ {N,U, F}
tailk(p, ∅, A)

(var)
A ∈ {N,U, F}
tailk(x, ∅, A)

(fvar)
A ∈ {N,U, F}
tailk(X, {X}, A)

(¬)
A,∈ {N,U} tailk(ϕ, ∅, A)

tailk(¬ϕ, ∅, A)

(¬F)
tailk(ϕ,X , F)

tailk(¬ϕ,X , F)
(∨)

A ∈ {N,F} tailk(ϕ1,X1, A) tailk(ϕ2,X2, A)

tailk(ϕ1 ∨ ϕ2,X1 ∪ X2, A)

(∨U)
tailk(ϕ1,X1, U) tailk(ϕ2,X2, U) X1 ←∅→ X2

tailk(ϕ1 ∨ ϕ2,X1 ∪ X2, U)

(∧)
A ∈ {U,F} tailk(ϕ1,X1, A) tailk(ϕ2,X2, A)

tailk(ϕ1 ∧ ϕ2,X1 ∪ X2, A)

(∧N)
tailk(ϕ1,X1, N) tailk(ϕ2,X2, N) X1 ←∅→ X2

tailk(ϕ1 ∧ ϕ2,X1 ∪ X2, N)

(〈a〉)
A ∈ {N,F} tailk(ϕ,X , A)

tailk(〈a〉ϕ,X , A)
(〈a〉U)

tailk(ϕ, ∅, U)

tailk(〈a〉ϕ, ∅, U)

([a])
A ∈ {U,F} tailk(ϕ,X , A)

tailk([a]ϕ,X , A)
([a]N)

tailk(ϕ, ∅, N)

tailk([a]ϕ, ∅, N)

(app)
A ∈ {N,U} A′ ∈ {N,U F} tailk(ϕ1,X , A) tailk(ϕ2, ∅, A′)

tailk(ϕ1 ϕ2,X , A)

(appF)
tailk(ϕ1,X1, F) tailk(ϕ2,X2, F)

tailk(ϕ1 ϕ2,X1 ∪ X2, F)
(λ)

A ∈ {N,U, F} tailk(ϕ,X , A)

tailk(λ(xv:τ). ϕ,X , A)

(fp)
σ ∈ {µ, ν} A ∈ {N,U} tailk(ϕ,X , A)

tailk(µ(X:τ). ϕ,X \ {X}, A)

(fpF)
σ ∈ {µ, ν} ord(τ) < k tailk(ϕ,X , F)

tailk(µ(X:τ). ϕ,X \ {X}, F)

Figure 3. Derivation rules for establishing order k tail-recursiveness.

has a derivation for mode F . This includes fixpoint variables in operand position. However, note that
a derivation for mode F is only useful if it ends in some subformula that is fixpoint variable closed.

Example 2.2. The HFL1 formula(
νF.λx.λy.(x⇒ y) ∧ (F 〈a〉x 〈b〉y)

)
> 〈b〉>

has been introduced for expressing a form of assume-guarantee property [1]. This formula is tail-
recursive, as one can easily check.

8 author / short title

The property of being a balanced tree can also be formalised by a tail-recursive HFL1 formula:(
µF.λx.[−]⊥ ∨ (F [−]x)

)
⊥.

In the next section, we will see that these properties and any other expressible in HFL1
tail can be

checked in polynomial space, thus improving a known exponential time upper bound [6, 15].

Example 2.3. Consider reachability properties of the form “there is a maximal path labelled with a
word from L” where L ⊆ Σ∗ is some formal language. For context-free languages the logic formalis-
ing such properties is Propositional Dynamic Logic of Context-Free Programs [16]. It can be model
checked in polynomial time [17]. However, formal-language constrained reachability is not restricted
to context-free languages only. Consider the reachability problem above for L = {anbncn | n ≥ 1}.
It can be formalised by the HFL2 formula(

µF.λf.λg.λh.λx.f(g(h(x))) ∨ (F (λx.f 〈a〉x) (λx.g 〈b〉x) (λx.h 〈c〉x)
)

id id id [−]⊥

with type x : •; f, g, h : τ1 := •+ → • and F : τ+
1 → τ+

1 → τ+
1 → •+ → •. Again, one can

check that this formula is tail-recursive. Since it is of order 2, Thm. 3.7 yields that the corresponding
reachability problem can be checked using exponential space.

At last, we give an example of a property that can be specified in the third-order fragment of HFL.

Example 2.4. Let A = {a, b} and L = {(abn)n) | n ≥ 0}. Consider the property “there is a path
with labels in L that ends in a state satisfying p”. This can be specified in HFL3 as follows. For
better readability we omit type annotations for the moment. We also use the abbreviations 〈α〉 :=
λ(X : •+).〈α〉X for α ∈ A, id := λ(X : •+).X , ϕ ◦ ψ := λ(X : •+).ϕ (ψ X) and ϕ t ψ :=
λ(X+ : •).(ϕ X) ∨ (ψ X).

Φ :=
(
µZ.λf.λg.(g 〈a〉 f) t

(
Z (〈b〉 ◦ f) (λx, y.x ◦ y ◦ (g x y))

))
id (λx, y.id) p

The omitted types are the following.

f, x, y : •+ → •︸ ︷︷ ︸
τ1

, g : τ+
1 → τ+

1 → τ1︸ ︷︷ ︸
τ2

, Z : τ+
1 → τ+

2 → τ1︸ ︷︷ ︸
τ3

Note that the order of each type τi is i which means that Φ is indeed of order 3. It is not hard to check
it is tail-recursive. Thus, Φ ∈ HFL3

tail.
In order to see that Φ indeed formalises the property described above, note that its fixpoint formula

is of the simple form µZ.λ .χ ∨ (Z ϕ ψ), and consider the shape that the arguments to Z take on in
each iteration of a fixpoint unfolding. This is shown in the following table, using the equivalence
◦id ≡ ψ and the abbreviation ζi := ζ ◦ . . . ◦ ζ (i times).

author / short title 9

iteration i first argument ϕi second argument ψi

0 id λx, y.id

1 〈b〉 λx, y.x ◦ y
2 〈b〉 ◦ 〈b〉 λx, y.x ◦ y ◦ x ◦ y
...

...
...

i 〈b〉i λx, y.(x ◦ y)i

Noting that the fixpoint unfolds to a large disjunction in which each disjunct is formed by the subfor-
mula g 〈a〉 f such that the formal parameters f and g of the i-th unfolding are given by the formulas
ϕ1 and ψ1 in the table above, we get that

Φ ≡ (
⊔
i≥0

ψi 〈a〉 ϕi) p ≡ (
⊔
i≥0

(λx, y.(x ◦ y)i) 〈a〉 〈b〉i) p ≡
∨
i≥0

〈a〉〈b〉i . . . 〈a〉〈b〉i︸ ︷︷ ︸
i times

p .

3. Upper Bounds in the Exponential Space Hierarchy

In order to reduce notational clutter, given some tuple where only some values are relevant in the
given context, we suppress displaying the other values. For example, in the tuple (a, b,) the third
component of the tuple holds some value that is not relevant in the given context.

3.1. Verifying Tail Recursion

In preparation for the result, we first show that it can be verified in time linear in the size of the
syntax tree of a formula whether it is order-k tail recursive. For this we use a bottom-up procedure
CHECKTR that collects all those modes such that a derivation in the respective mode is possible for
the given subformula. This does not mean that the derivation can be extended to one for the full
formula. Intuitively, this is the same principle as the powerset construction used to determinise finite
automata, although it only operates on the set modes = {N,U, F}. The procedure MODETC that is
used in the definition of CHECKTR emulates the derivation rule (alter), i.e. it adds modes N and U to
subformulas that are fixpoint closed and have at least one successful derivation.

Lemma 3.1. Let ϕ be an HFL formula. Then tailk(ϕ,X , A) for A ∈ {N,U, F} if and only if
MODETC(CHECKTR(ϕ, k)) = (X ,modes) and A ∈ modes . Hence, it is decidable in time O(|ϕ|)
whether ϕ is order-k tail recursive.

Proof:
Procedure CHECKTR in Algorithm 1 checks whether an HFL-formula ϕ is order-k tail recursive. We
prove by induction on the syntax of ϕ that tailk(ϕ,X , A) for A ∈ {N,U, F} is derivable if and only
if MODETC(CHECKTR(ϕ, k)) returns (X ,modes) and A ∈ modes . Let ψ be a subformula of ϕ and
assume that the statement has been proved for all proper subformulas of ψ. Depending on the form
of ψ, the argument proceeds as follows. The cases of ψ being of the form p, X , x or λx. ψ′ are
straight-forward to see.

10 author / short title

Algorithm 1 Checking for order-k tail recursion
1: procedure CHECKTR(ϕ, k) . Returns (X ,modes)
2: switch ϕ do
3: case ϕ = p return (∅, {N,U, F})
4: case ϕ = X return ({X}, {N,U, F})
5: case ϕ = x return (∅, {N,U, F})
6: case ϕ = ϕ1 ∨ ϕ2

7: (Xi,modes i)← MODETC(CHECKTR(ϕi, k)), i ∈ {1, 2}
8: if X1 ←∅→ X2 then return (X1 ∪ X2,modes1 ∩modes2)
9: else return (X1 ∪ X2, (modes1 ∩modes2) \ {U})

10: case ϕ = ϕ1 ∧ ϕ2

11: (Xi,modes i)← MODETC(CHECKTR(ϕi, k)), i ∈ {1, 2}
12: if X1 ←∅→ X2 then return (X1 ∪ X2,modes1 ∩modes2)
13: else return (X1 ∪ X2, (modes1 ∩modes2) \ {N})
14: case ϕ = 〈a〉ϕ′
15: (X ,modes)← MODETC(CHECKTR(ϕ′, k))
16: if X = ∅ then return (X ,modes)
17: else return (X , (modes \ {U})
18: case ϕ = [a]ϕ′

19: (X ,modes)← MODETC(CHECKTR(ϕ′, k))
20: if X = ∅ then return (X ,modes)
21: else return (X , (modes \ {N})
22: case ϕ = ¬ϕ′
23: (X ,modes)← MODETC(CHECKTR(ϕ′, k))
24: if X = ∅ then return (X ,modes)
25: else return (X , (modes ∩ {F})
26: case ϕ = λx. ϕ′ return CHECKTR(ϕ′, k)
27: case ϕ = ϕ1 ϕ2

28: (Xi,modes i)← MODETC(CHECKTR(ϕi, k)), i ∈ {1, 2}
29: if X2 = ∅ and modes2 6= ∅ then return (X1,modes1)
30: else return (X1 ∪ X2,modes1 ∩modes2 ∩ {F})
31: case ϕ = σ(X:τ). ϕ′

32: (X ,modes)← MODETC(CHECKTR(ϕ, k))
33: if ord(τ) < k then return (X1 \ {X},modes1)
34: else return (X1 \ {X},modes1 \ {F})
35: procedure MODETC((X ,modes))
36: if X = ∅ and modes 6= ∅ then return (X ,modes ∪ {N,U})
37: else return (X ,modes)

author / short title 11

Case ψ = ψ1 ∨ ψ2. Let (Xi,modes i) be the return value of MODETC(CHECKTR(ϕi, k)) for
i ∈ {1, 2}. By the induction hypothesis, we have that ifA ∈ modes i, then tailk(ϕi,Xi, A) is derivable.
Note that the only two applicable rules are (∨) and (∨U). If N ∈ modes1 and N ∈ modes2, then
tailk(ϕ,X1 ∪ X2, N) is derivable, and the same holds for F . In both cases, both return statements of
CHECKTR(ψ, k) return (X1∪X2,modes) withN ∈ modes , respectively F ∈ modes since modes1∩
modes2 contains N , respectively F .

Moreover, if at least one of the Xi is ∅, then rule (∨U) is potentially applicable. If Xi is ∅ for both
i = 1 and i = 2, then modes1 ∩modes2 contains U and rule (∨U) allows to derive tailk(ψ, ∅, U), and
also CHECKTR(ψ, k) returns (∅,modes) with U ∈ modes . If there is j ∈ {1, 2} such that Xj = ∅ but
X1−j 6= ∅, then rule (∨U) is applicable if and only if modes1−j contains U and modesj 6= ∅. In this
case rule (alter) implies U ∈ modesj and rule (∨U) allows to derive tailk(ψ,X1 ∪ X2, U), whence
CHECKTR(ψ, k) returns (X1 ∪ X2,modes) with U ∈ modes .

Cases ψ = ψ1 ∧ ψ2, ψ = 〈a〉ψ′, ψ = [a]ψ′ and ψ = ¬ψ′. These follow a similar pattern as the
case ψ = ψ1 ∨ ψ2.

Case ψ = ψ1 ψ2. Let (Xi,modes i) be the return value of MODETC(CHECKTR(ϕi, k)) for i ∈
{1, 2}. By the induction hypothesis, we have that if A ∈ modes i, then tailk(ϕi,Xi, A) is derivable.
Note that the only applicable rules are (app) and (appF). Rule (app) is only applicable if X2 = ∅, in
which case tailk(ψ,X1, A) is derivable if A ∈ modes1 and modes2 6= ∅. In this case, the return value
of CHECKTR(ψ, k) is obtained via the first return call and is (X1,modes) with A ∈ modes if and
only if A ∈ modes1. Note that, in particular, this contains the case that modes1 ∩modes2 contains F ,
in which case also rule (appF) would be applicable to derive tailk(ψ,X1, F).

If X2 6= ∅, then only rule (appF) is applicable and only tailk(ψ,X1 ∪ X2, F) is derivable if
F ∈ modes1 and F ∈ modes2. In this case, the return value of CHECKTR(ψ, k) is obtained via the
second return call and is (X1 ∪ X2, {F}) if and only if F ∈ modes1 ∩modes2.

Case ψ = σ(X:τ). ψ′. Let (X ,modes ′) be the return value of MODETC(CHECKTR(ψ′, k)). By
the induction hypothesis, we have that if A ∈ modes ′ then tailk(ψ′,X , A) is derivable. Note that only
rules (fp) and (fpF) are applicable. If ord(τ) < k then tailk(ψ,X \{X}, A) is derivable via rule (fpF)
if and only if tailk(ψ′,X , A) is derivable. Procedure CHECKTR(ψ, k) mirrors this in its first return
call by returning (X \ {X},modes ′).

However, if ord(τ) = k then only rule (fp) is applicable, and tailk(ψ,X \{X}, A) is derivable via
rule (fp) if and only if tailk(ψ′,X , A) is derivable and A 6= F . Procedure CHECKTR(ψ, k) mirrors
this in its first return call by returning (X \ {X},modes ′ \ {F}).

By applying the result of the induction to (ϕ, k), we obtain that tailk(ϕ, ∅, A) is derivable for
A ∈ {N,U, F} if and only if MODETC(CHECKTR(ϕ, k)) = (∅,modes) with A ∈ modes . For the
complexity results, note that procedure CHECKTR does exactly one recursive call per subformula of ϕ
and calls MODETC at most once per subformula. The latter procedure runs in constant time, while the
former procedure has a constant inner loop. Hence, the overall procedure runs in time in O(|ϕ|). ut

In order to extend the verification of tail recursion to a full proof, for each formula in the syntax tree
of ψ we generate a triple info(ψ) = (X , A,A′) where MODETC(CHECKTR(ψ, k)) = (X ,modes)
and A,A′ ∈ modes or A′ = ε, which means A′ is as of yet undetermined. The intended semantics of
such a triple is that the derivation rule that connects ψ with its predecessor in the syntax tree of ϕ, if

12 author / short title

it exists, uses the fact that tailk(ψ,X , A) is derivable and the rule that connects ψ with its successors
uses the fact that tailk(ψ,X , A′) is derivable. As a stipulation, A 6= A′ only if X = ∅. This is a valid
constraint since rule (alter) is only applicable if X = ∅.

Begin the procedure with the tuple info(ψ) = (X , A, ε) such thatA ∈ modes , where (X ,modes) =
MODETC(CHECKTR(ϕ, k)). Given a tuple of the form info(ψ) = (X , A, ε), by assumption tailk(ψ,X , A)
is derivable. Update info(ψ) to (X , A,A′) depending on the form of ψ as follows:

Case ψ is p or X or x. Then ψ is a leaf formula. Update info(ψ) to (X , A,A). Note that the
axiom rules (prop), (var) and (fvar) are applicable with premise A.

Case ψ is of the form ¬ψ′, 〈a〉ψ′, [a]ψ′ or λx. ψ′. Let (X ,modes) = MODETC(CHECKTR(ψ, k))
and let (X ′,modes ′) = MODETC(CHECKTR(ψ′, k)). Note that necessarily X = X ′ since both
formulas have the same free fixpoint variables, and that modes = modes ′: If A′ ∈ modes ′, then by
rules (¬), (¬F), (〈a〉), (〈a〉U), ([a]), ([a]N) and (λ), the premise tailk(ψ′,X ′, A′) allows to derive
tailk(ψ,X , A′). On the other hand, if A′ ∈ modes then tailk(ψ,X , A′) is derivable, either because
tailk(ψ′,X ′, A′) is derivable and one of the above rules applies, or because tailk(ψ,X , A′′) is derivable
via such a rule from tailk(ψ′,X ′, A′′) for A ∈ {N,U} ∩modes ′ and X = ∅ and rule (alter) allows to
derive tailk(ψ, ∅, A′) from tailk(ψ, ∅, A′′). Since alsoX ′ = ∅, we have that tailk(ψ′, ∅, A′) is derivable
from tailk(ψ′, ∅, A′′). Update info(ψ) to (X , A,A) and continue with info(ψ′) = (X ′, A, ε).

Case ψ is of the form σ(X:τ). ψ′. Let (X ,modes) = MODETC(CHECKTR(ψ, k)) and let
(X ′,modes ′) = MODETC(CHECKTR(ψ′, k)). Note that X ′ = X ∪ {X}. There are two cases:
If ord(τ) < k, then modes ′ ⊆ modes ′ since, if A′ ∈ modes ′, rules (fp) and (fpF) allow to derive
tailk(ψ,X , A′) from tailk(ψ′,X ′, A′). If A ∈ modes ′, update info(ψ) to (X , A,A) and continue with
info(ψ′) = (X ′, A, ε). If A /∈ modes ′, there must be A′ ∈ modes ′ with A′ 6= A for if modes ′ = ∅,
also modes = ∅ since the only applicable rules with conclusion tailk(ψ,X , A′) are (fp), (fpF) and
(alter). The first two are not applicable if modes ′ = ∅, and rule (alter) requires a premise of the
form tailk(ψ,X , A′′) with A′′ 6= A′ and that premise must necessarily be derived via a rule differ-
ent from (alter), which does not exist. Hence, there is A′ ∈ modes ′ with A′ 6= A. By the same
reasoning, X = ∅. Since also A′ ∈ modes , the premise tailk(ψ′,X ′, A′), which is derivable by the
definition of MODETC(CHECKTR), allows to derive tailk(ψ,X , A′) via rule (fp) or (fpF). Since
X = ∅, rule (alter) allows to derive tailk(ψ, ∅, A). Update info(ψ) to (X , A,A′) and continue with
info(ψ′) = (X ′, A′, ε).

The second case is that ord(τ) = k. Note that if A′ ∈ {N,U} ∩modes ′, then A′ ∈ modes since
if A′ ∈ modes ′ then rules (fp) allows to derive tailk(ψ,X , A′) from tailk(ψ′,X ′, A′). If A ∈ modes ′,
update info(ψ) to (X , A,A) and continue with info(ψ′) = (X ′, A, ε). If A /∈ modes ′, via reasoning
similar to the case of ord(τ) < k we obtain that modes = ∅ and there is A′ ∈ modes ′ \ {F} with
A′ 6= A. Then also A′ ∈ modes and the premise tailk(ψ′,X ′, A′), which is derivable by the definition
of MODETC(CHECKTR), allows to derive tailk(ψ,X , A′) via rule (fp). Since X = ∅, rule (alter)
allows to derive tailk(ψ, ∅, A). Update info(ψ) to (X , A,A′) and continue with info(ψ′) = (X ′, A′, ε).

Caseψ is of the formψ1 ψ2. Let (X ,modes) = MODETC(CHECKTR(ψ, k)) and let (Xi,modes i) =
MODETC(CHECKTR(ψi)) for i ∈ {1, 2}. If A = F , then tailk(ψi,Xi, F) is derivable for i = 1, 2
since the only rule with conclusion tailk(ψ,X , F) is rule (appF) which has premises tailk(ψi,Xi, F)
for i = 1, 2. Update info(ψ) to (X , F, F) and continue with both info(ψ1) = (X1, F, ε) and info(ψ2) =
(X2, F, ε).

author / short title 13

IfA 6= F , then there are two cases: IfX = ∅, then alsoXi = ∅ for i = 1, 2. By the same reasoning
as in the case for negation, modal operators, etc., we have that A also in modes i for i = 1, 2, whence
rule (app) is applicable with premises tailk(ψ1, ∅, A) and tailk(ψ2, ∅, A). Update info(ψ) to (X , A,A)
and continue with both info(ψi) = (X1, A, ε) and info(ψ2) = (X , A, ε). If X 6= ∅, note that there is
no premise such that the conclusion of (alter) yields tailk(ψ,X , A), whence tailk(ψ,X , A) is derived
from (app). Hence, X1 = X since X2 = ∅ for otherwise rule (app) would not be applicable. It
follows that A ∈ modes1 and that modes2 6= ∅, whence rule (app) is applicable with premises
tailk(ψ1,X1, A) and tailk(ψ2, ∅, A′) with A′ ∈ modes . Update info(ψ) to (X , A,A) and continue
with info(ψ1) = (X1, A, ε) and info(ψ2) = (X2, A

′, ε).
Case ψ is of the form ψ1∨ψ2 or ψ1∧ψ2. Let (X ,modes) = MODETC(CHECKTR(ψ, k)) and let

(Xi,modes i) = MODETC(CHECKTR(ψi)) for i ∈ {1, 2}. Without loss of generality, ψ = ψ1 ∨ ψ2,
the case for ∧ is completely symmetric. If A = F , then F ∈ modes i for i = 1, 2 since the only rule
with conclusion tailk(ψ,X , F) is rule (∨) with premises tailk(ψi,Xi, F) for i = 1, 2. Update info(ψ)
to (X , F, F) and continue with info(ψi) = (Xi, F, ε) for i = 1, 2.

If A = N , then N ∈ modes i for i = 1, 2. For the sake of contradiction, assume that N /∈ modes i
for some i ∈ {1, 2}. Then Xi 6= ∅, for otherwise modes i = ∅, which is a contradiction, or (alter)
would be applicable to derive tailk(ψi, ∅, N) from tailk(ψi, ∅, A′,) for someA′ ∈ modes i. But if Xi 6=
∅, then also X 6= ∅, whence there is no possible premise such that rule (alter) derives tailk(ψ,X , N).
But since N /∈ modes i, rule (∨) is also not available, contradicting that tailk(ψ,X , N) is derivable.
Hence, N ∈ modes i for i = 1, 2 and rule (∨) is applicable with premises tailk(ψi,Xi, N) for i = 1, 2
and derives tailk(ψ,X , N). Update info(ψ) to (X , N,N) and continue with info(ψi) = (Xi, N, ε) for
i = 1, 2.

IfA = U , there are two cases. IfX = ∅, thenN ∈ modes . Use rule (alter) to derive tailk(ψ, ∅, U)
from tailk(ψ, ∅, N) and refer to the previous case. Update info(ψ) to (X , U,N) and and continue with
info(ψi) = (Xi, N, ε) for i = 1, 2. If X 6= ∅, then rule tailk(ψ,X , N) can not be the conclusion of
rule (alter), whence the only rule with this conclusion must be rule (∨U). It follows that there is i
such that Xi = ∅, and, moreover, N ∈ modes1 and N ∈ modes2, for otherwise tailk(ψ,X , U) would
not be derivable. Update info(ψ) to (X , U, U) and continue with info(ψi) = (Xi, U, ε) for i = 1, 2.

Proceeding like this yields, for each subformula ψ in the formula tree of ϕ, a triple info(ψ) =
(X , A,A′) such that A is the relevant mode when connecting ψ with its predecessor, if it exists, and
A′ is the relevant mode when connective ψ with its successors, if they exist. In particular, at least one
rule is applicable with the selected modes in either direction.

Remark 3.2. The double pass algorithm to determine the exact derivation for an order-k tail recursive
formula ϕmight seem over-engineered at first, but it is necessary to obtain an algorithm that generates
the derivation in time linear in the size of the syntax tree of ϕ. A single-pass linear time algorithm
would have to cope with the following problems: a bottom-up algorithm will not know which mode
to assign to a fixpoint variable node, and a top-down algorithm cannot distinguish which mode to use
given a boolean connective.

Consider the formula µ(X:•). (X ∨X) ∧ p. A bottom-up approach would not know which mode
to assign to the subformulas X , and a top down approach would not know whether the conjunction
should be assigned mode U , or whether advantage should be taken of the fact that the right conjunct is

14 author / short title

fixpoint free whence modeN is also possible. Our approach solves this by first running Algorithm 1. It
generates all possible partial derivations bottom-up, even those that cannot be continued to a derivation
for the full formula. Then it uses a top-down local approach to extract the exact derivation steps at
each subformula, aided by information already collected by Algorithm 1 on which rules modes for the
involved subformulas can actually be completed to a successful derivation.

3.2. Model-Checking Tail-Recursive Formulas

We construct a bounded-alternation k-EXPSPACE algorithm in order to model-check order k+1 HFL
formulas that are order k+ 1 tail recursive. The recursion of least and greatest fixpoints is handled by
a counter: Upon reaching a fixpoint definition, a counter is added to the fixpoint variable in question,
indicating how many times it can be unfolded. Every time the variable is reached, the algorithm will
continue with the defining formula of the fixpoint, but decrease the counter by one. Once the counter
reaches 0, the algorithm termines with the default value of true or false, depending on the polarity
of the fixpoint. In order to connect this procedure to the semantics of HFL, consider the following
definition:

Definition 3.3. Let T be an LTS, let ϕ be an order-k tail recursive formula with fixpoint variables in
X . For X ∈ X , let σX . fp(X) be the defining formula for X .

Define approximations for all X ∈ X via

X0 := fp(X)[⊥τX/X] if σX = µ , X0 := fp(X)[>τX/X] if σX = ν , Xi+1 := fp(X)[Xi/X]

where⊥τ1→···→τn→• = λ(x1:τ1)., . . . , λ(xn:τn).⊥ and>τ1→···→τn→• = λ(x1:τ1)., . . . , λ(xn:τn).>
Given an environment η and a mapping X → N where X ′ ⊆ X , define ηcnt as

ηcnt(x) := η(x) , ηcnt(X) := JXcnt(X)KTηcnt if X ∈ X ′ .

Note that, even though the definition looks circular, ηcnt is well-defined since JXcntKT does not contain
X anymore.

For cnt : X → N and cnt′ : X ′ → N such that X ⊆ X ′, we define cnt′ < cnt as follows:
cnt′ < cnt if there is a variable X such that cnt′(X) < cnt(X) and cnt′(Y) = cnt(Y) for all Y with
Y � X . Moreover, if cnt(X) 6= 0, we define cnt[X--] as

cnt[X--](Y) =

{
cnt(Y) if Y 6= X

cnt(X)− 1 if Y = X.

Lemma 3.4. Let T be a finite LTS. Let ϕ be an HFL formula of order k that is order-k tail recursive,
and let ψ = σ(X:τ). ψ′ be a subformula of ϕ such that info(ψ) = (X , ,). Let cnt : X ′ → N be
such that X ⊆ X ′. Then Jσ(X:τ. ψ′KTηcnt = Jψ′KT

ηcnt[X 7→ht(τ)] ,

It is known that over a finite LTS T = (S, { a−→}, `), ψ is equivalent to Xm, where m is the height
ht(τ) of the lattice of τ . Generally, ht(τ) is k-fold exponential in the size of |S| for k = ord(τ) [6].

author / short title 15

Algorithm 2 Efficient model-checking for order k + 1 tail recursive HFL formulas.
1: procedure MCTR(A, s, ψ, (f1, . . . , fk), η, cnt) . Inputs T and k not explicitely given
2: (X , A′′, A′)← info(ψ)
3: if A 6= A′ then return MCtr(A′, s, ψ, (f1, . . . , fk), η, ∅)
4: if A = F then
5: f ← JψKTη . use a conventional model checker
6: if s ∈ ((f f1) · · · fk) then return true
7: else return false
8: switch ψ do
9: case ψ = p

10: if T , s |= p then return true
11: else return false
12: case ψ = x
13: f ← η(x)
14: if s ∈ ((f f1), · · · fk) then return true
15: else return false
16: case ψ = ψ1 ∨ ψ2

17: if A = N then
18: guess i ∈ {1, 2}
19: return MCtr(A, s, ψi, (f1, . . . , fk), η, cnt)
20: else if A = U then
21: (Xi, , Ai)← info(ψi), i ∈ {1, 2}
22: choose i ∈ {1, 2} s.t. Xi = ∅
23: b←MCtr(Ai, s, ψi, (f1, . . . , fk), η, ∅)
24: if b = true then return true
25: else return MCtr(A, s, ψ1−i, (f1, . . . , fk), η, cnt)

26: case ψ = ψ1 ∧ ψ2

27: if A = U then
28: choose i ∈ {1, 2}
29: return MCtr(A, s, ψi, (f1, . . . , fk), η, cnt)
30: else if A = N then
31: (Xi, , Ai)← info(ψi), i ∈ {1, 2}
32: guess i ∈ {1, 2} s.t. Xi = ∅
33: b←MCtr(Ai, s, ψi, (f1, . . . , fk), η, ∅)
34: if b = false then return false
35: else return MCtr(A, s, ψ1−i, (f1, . . . , fk), η, cnt)

36: case ψ = ¬ψ′
37: b← checkTR(A, s, ψ′, (f1, . . . , fk), η, ∅)
38: if b = true then return false
39: else return true

16 author / short title

Algorithm 3 Efficient model-checking for order k tail recursive HFL formulas (cont.).
40: case ψ = 〈a〉ψ′
41: if A = N then
42: guess t with s a−→ t
43: return MCtr(A, t, ψ′, (f1, . . . , fk), η, cnt)
44: else if A = U then
45: for t with s a−→ t do
46: b←MCtr(A, t, ψ′, (f1, . . . , fk), η, ∅)
47: if b = true then return true
48: return false
49: case ψ = [a]ψ′

50: if A = U then
51: choose t with s a−→ t
52: return MCtr(A, t, ψ′, (f1, . . . , fk), η, cnt)
53: else if A = N then
54: for t with s a−→ t do
55: b←MCtr(A, t, ψ′, (f1, . . . , fk), η, ∅)
56: if b = false then return false
57: return true
58: case ψ = ψ1 ψ2

59: (, A′′)← info(ψ2)
60: if A′2 = F then
61: f ← Jψ2KTη . use a conventional model checker
62: return checkTR(A, s, ψ1, (f, f1, . . . , fk), η, cnt)
63: else
64: (∅, , A2)← info(ψ2)
65: (τ1 → · · · → τn → •)← type(ψ2)
66: f ← ∅
67: for g1, . . . , gn ∈ Jτ1KT × · · · × JτnKT do
68: S ′ ← ∅
69: for t ∈ S do
70: b← checkTR(A2, t, ψ2, (g1, . . . , gn), η, ∅)
71: if b = true then S ′ ← S ′ ∪ {t}
72: f ← f [g1, . . . , gn 7→ S ′]
73: return checkTR(A, s, ψ1, (f, f1, . . . , fk), η, cnt)

74: case ψ = λx. ψ′ return checkTR(A, s, (ψ1,X1, A
′
1), (f2, . . . , fk), η[x 7→ f1], cnt)

75: case ψ = σ(X:τ). ψ′ return checkTR(A, s, ψ′, (f1, . . . , fk), η, cnt[X 7→ ht(τ)])

76: case ψ = X
77: if cnt(X) 6= 0 then
78: return checkTR(A, s, (fpϕX, (f1, . . . , fk), η, cnt[X--])
79: else if σX = µ then return ⊥
80: else return >

author / short title 17

Note that a k-fold exponentially large number can be represented by (k− 1)-fold exponentially many
bits.

We claim that procedure checkTR in Algorithm 2 encodes a valid model-checking procedure for
order k rail recursive formulas. In order to give the correctness proof, we need a measure of the
degree to which a formula diverges from a recursion in the relevant mode, e.g. by having mode N
conjunctions and vice versa, negations, applications etc. This measures how many non tail-recursive
calls are necessary during the algorithm.

Definition 3.5. Let ϕ ∈ HFLtailk. The recursion depth rd(ψ) of a subformula ψ of ϕ is defined as
rd(ψ) = 0 if info(ψ) = (∅, , F) and otherwise as

• rd(ψ) = 0 if ψ = p or ψ = x or ψ = X

• rd(ψ) = rd(ψ′) if ψ = 〈a〉ψ′ and info(ψ) = (, , N) or if ψ = [a]ψ′ and info(ψ) = (, , U)
or if ψ = σX.ψ′ or if ψ = λx.ψ′

• rd(ψ) = 1 + rd(ψ′) if ψ = 〈a〉ψ′ and info(ψ) = (, , U) or if ψ = [a]ψ′ and info(ψ) =
(, , N) or if ψ = ¬ψ′

• rd(ψ) = max{r1, r2} if ψ = ψ1 ∨ ψ2 or if ψ = ψ1 ∧ ψ2

ri =

{
rd(ψi) if info(ψi) = (X , ,) and X 6= ∅

1 + rd(ψi) if info(ψi) = (∅, ,)

for i ∈ {1, 2}.

• rd(ψ) = max{rd(ψ1), 1 + rd(ψ2)} if ψ = ψ1 ψ2.

We are now ready to give the correctness proof.

Lemma 3.6. Let T , sI be be an LTS and let ϕ be a closed HFL formula of ground type that is order-k
tail recursive. Let info(ϕ) = (∅, A,). Then checkTR(A, sI , ϕ, ε, ∅, ∅) terminates and returns > if
and only if T , sI |= ϕ.

Proof:
We are now going to prove by induction the following statement: If ψ is a subformula of ϕ of type
τ1 → · · · → τn → • and info(ψ) = (X , ,) and cnt : X ′ → N with X ⊆ X ′ and f1, . . . , fn with
fi ∈ JτiKT for 1 ≤ i ≤ n and A ∈ {N,U, F} then

s ∈ (· · · (JψKTηcnt f1) · · · fn) iff checkTR(A, s, ψ, (f1, . . . , fn), η, cnt) returns true

and terminates.
The statement of the lemma then follows with ψ = ϕ, s = sI , n = 0, η = ∅ and cnt = ∅.
The induction has four induction parameters: rd , ψ, cnt and A. If checkTR(A′, , ψ′, , , cnt′)

is called tail-recursively during evaluation of checkTR(A, , ψ, , , cnt), i.e., in the form return checkTR(. . .),
then either

18 author / short title

• cnt = cnt′, ψ = ψ′ and info(ψ) = (, A,A′) or

• cnt = cnt′ and ψ′ is a proper subformula of ψ or

• cnt′ < cnt.

Moreover, no such call during the algorithm will increase recursion depth, and if such a call of
checkTR(A′, , ψ′, , , cnt′) is not tail recursive in an algorithmic sense, i.e., if it is of the form
b← checkTR(. . .) then rd(ψ′) < rd(ψ).

Let checkTR(A, s, ψ, (f1, . . . , fk), η, cnt) be a call of checkTR and let (X , A′, A′′) = info(ψ).
If A 6= A′′ then the algorithm returns the value of checkTR(A′′, s, ψ, (f1, . . . , fn), η, cnt) which,
by the induction hypothesis is true if and only if s ∈ JψKTηcnt , which is also the claim of the lemma
for checkTR(A, s, ψ, (f1, . . . , fk), η, cnt). Now assume that A = A′′. If A = F then X = ∅ and
checkTR calls a conventional model checker to compute JψKTη , which works correctly by assumption.
The claim of the lemma then follows.

If A 6= F , the argument depends on the form of ψ. If ψ is of the forms p, x or λx.ψ′ then the
claim of the lemma is immediate.

Case ψ = ψ1 ∨ ψ2. There are two cases: If A = N , then checkTR guesses i ∈ {1, 2} and
returns the value of checkTR(A, s, ψi, ε, η, cnt). Hence, checkTR returns true if and only if there is
i such that checkTR(A, s, ψi, ε, η, cnt) returns true, which, by the induction hypothesis is the case if
and only if s ∈ JψiKTηcnt . By the definition of HFL semantics, s ∈ JψKTηcnt if and only if s ∈ JψiKTηcnt
for at least one i ∈ {1, 2} whence checkTR(N, s, ψ, ε, η, cnt) returns true if and only if s ∈ JψKTηcnt .
If A = U , then checkTR universally chooses i ∈ {1, 2} such that info(ψi) = (Xi, , Ai) and
Xi = ∅ and calculates b = checkTR(Ai, s, ψi, ε, η, ∅). By the induction hypothesis, b = true if
and only if s ∈ JψiKTη∅ which also entails s ∈ JψKTηcnt . So in case b = true, the algorithm works
as claimed in the lemma. Note that also, because Xi = ∅, we have that rd(ψi) < rd(ψ) so the
condition on non-tail recursive calls is satisfied. In case b = false, the algorithm returns the value of
checkTR(A, s, ψ1−i, ε, η, cnt). By the induction hypothesis, this return value is true if and only if
s ∈ Jψi−1KTηcnt and, by the definition of HFL semantics, this is the case if and only if s ∈ JψKTηcnt ,
which settles the claim of the lemma.

Case ψ = ψ1 ∧ ψ2. Again, this is analogous to the previous case.
Case ψ = 〈a〉ψ′. There are two cases. IfA = N , then checkTR guesses t with s a−→ t and returns

the value of checkTR(A, t, ψ′, ε, η, cnt). By the induction hypothesis, that value is true if and only
if t ∈ Jψ′KTηcnt which, by the definition of HFL semantics, entails that checkTR(N, s, ψ, ε, η, cnt)

returns true if and only if s ∈ JψKTηcnt .
IfA = U , the algorithm iterates through all twith s a−→ t and returns true if and only if checkTR(A, t, ψ′, ε, η, ∅)

returns true. If this is the case for some such t, then by the induction hypothesis, t ∈ Jψ′KT
η∅

and, by

the definition of HFL semantics, also s ∈ JψKTηcnt . Hence, checkTR(U, s, ψ, ε, η, cnt) returns true if
and only if s ∈ JψKTηcnt . Note that necessarily info(ψ′) = (∅, ,) and, hence, that rd(ψ′) < rd(ψ),
so the condition on non-tail recursive calls is satisfied.

Case ψ = [a]ψ′. Again, this is analogous to the previous case.
Case ψ = ¬ψ′. Correctness of the algorithm in this case is straight-forward. Note that necessarily

info(ψ′) = (∅, ,) and, hence rd(ψ′) < rd(ψ) whence the condition on non-tail recursive calls is

author / short title 19

satisfied.
Case ψ = ψ1 ψ2. Let (∅, , A2) = info(ψ2). If A2 = F , then the algorithm calls a conventional

model-checker to determine f = Jψ2KTη∅ .
If A2 6= F , let τ1 → · · · → τn → • be the type of ψ2. Let (∅, , A2) = info(ψ2). The

algorithm then computes, for each g1, . . . , gn in Jτ1KT × · · · × JτnKT , and each state t, whether
checkTR(A2, t, ψ2, (g1, . . . , gn), η, ∅) returns true. Since necessarily rd(ψ2) < rd(ψ), the crite-
rion on non-tail recursive calls is satisfied and, by the induction hypothesis this call returns true if
and only if t ∈ Jψ2KTη∅ . Hence, T = {t | checkTR(A2, t, ψ2, (g1, . . . , gk), η, ∅) = true} is equal

to (· · · (Jψ2KTη∅ g1) · · · gn), and updating f to map g1, . . . , gn to T yields that (· · · (f g1) · · · gn) =

(· · · (Jψ2KTη∅ g1) · · · gn). By repeating this process for all g1, . . . , gn ∈ Jτ1KT ×· · ·× JτnKT , we obtain

that f = Jψ2KTη∅ .
In either case, the algorithm returns the value of checkTR(A, s, ψ1, (f, f1, . . . , fk), η, cnt), which

by the induction hypothesis is true if and s ∈ (· · · ((Jψ2KTηcnt f) f1) · · · fk), and the latter holds if and
only if s ∈ (· · · (JψKTηcnt f1) · · ·) fk). The claim of the lemma follows.

Caseψ = σ(X:τ). ψ′. The algorithm returns the value of checkTR(A, s, ψ′, (f1, . . . , fk), η, cnt[X 7→
ht(τ)]). By the induction hypothesis, this value is true if and only if s ∈ (· · · (Jψ′KT

ηcnt[X 7→ht(τ)] f1) · · · fk),

which, by Lemma3.4 is equivalent to s ∈ (· · · (Jσ(X:τ). ψ′KTcnt.
Case ψ = X . If cnt(X) = 0 then note that JXKTηcnt = Xcnt(X) = X0. If σX = µ then X0 = ⊥τ

where τ is the type of X . Hence, s /∈ (· · · (J⊥τ KTηcnt f1) · · · fk), and the algorithm correctly returns
false. The case for σX = ν is analogous.

On the other hand, if cnt(X) 6= 0, then the algorithm returns the value of checkTR(A, s, fpXϕ, η, cnt[X--]).
Note that JXKTηcnt = ηcnt(X) = JXcnt(X)KTηcnt = JfpXϕ[Xcnt(X)−1/X]KTηcnt . However, since X
does not appear free in fpXϕ[Xcnt(X)−1/X], we can replace cnt by cnt[X--] without altering se-
mantics, i.e., JT Kηcnt= JfpXϕ[Xcnt(X)−1/X]KTηcnt . Finally, since Xcnt(X)−1 = cnt[X--], the latter
is equivalent to JfpXϕKT

ηcnt[X--] . It follows that s ∈ (· · · (JXKTηcnt f1) · · · fk) if and only if s ∈
(· · · (JfpXϕKT

ηcnt[X--] f1) · · · fk). Since cnt[X--] < cnt, by the induction hypothesis this is true if and
only if checkTR(A, s, fpXψ, (f1, · · · , fk), η, cnt[X--]) returns true. It follows that if cnt(X) 6= 0,
then checkTR(A, s, ψ, (f1, . . . , fk), η, cnt) returns true if and only if checkTR(A, s, fpXϕ, (f1, . . . , fk), η, cnt[X--])
returns true. ut

Theorem 3.7. The model checking problem for HFLk+1
tail is in k-EXPSPACE.

Proof:
Calls to a conventional model-checker are made for formulas that do not contain order-(k+1) fixpoint
definitions. While such formulas are not necessarily of order k or lower, their only order-(k + 1)
elements are lambda abstractions. Using an argument first model-checking strategy, the subformula
in question is essentially of order k. Hence, we can safely assume that any calls to a conventional
model-checker conclude in k-EXPTIME, well within the desired complexity bounds.

The information required to evaluate checkTR(A, s, ϕ, (f1, . . . , fn), η, cnt) takes k-fold expo-
nential space: references to a mode, a state and a subformula take linear space, each of the function
tables f1, . . . , fn appears in operand position and, hence, is a function of order at most k, which takes

20 author / short title

k-fold exponential space. An environment is just a partial map from Vλ to more function tables, also
of order at most k. Finally, cnt stores at most |Vfp| many numbers whose values are bounded by an
(k + 1)-fold exponential. Hence, they can be represented as k-fold exponentially long bit strings.

During evaluation, check operates in a tail-recursive fashion for most operators, which means that
no stack has to be maintained and the space needed is restricted to what is described in the previous
paragraph. A calling context (which is just an instance of check as described above, with an added
logarithmically sized counter in case of [a]ϕ and 〈a〉ϕ) has to be preserved only at steps of the form
b← checkTR(. . .), in which case the call goes to a subformula with strictly smaller recursion depth.
Since the recursion depth of an HFLktail-formula is linear in the size of the formula, only linearly many
such calling contexts have to be stored at any given point during the evaluation, which does not exceed
nondeterministic k-fold exponential space. It follows that checkTR runs in k-fold exponential space.

Regarding alternation, note that alternation occurs on two places: If checkTR(A, s, ϕ, (f1, . . . , fk), η, cnt)
is called such that info(ϕ) = (∅, A,A′) with A′ 6= A, and potentially for tail-recursive calls. Since
the first kind of alternation necessarily occurs in subformulas that are fixpoint variable closed, and the
latter occurs only for fixpoint closed subformulas with strictly decreasing recursion depth, the maxi-
mum nesting depth of alternation is bounded by the size of the input formula. Hence, Theorem 4.2
from [18] (a generalisation of Savitch’s Theorem attributed to Borodin) allows us to conclude that
checkTR can be simulated in deterministic k-EXPSPACE. ut

4. Lower Bounds in the Exponential Space Hierarchy

A typical k-EXPSPACE-complete problem (for k ≥ 1) is the order-k corridor tiling problem [19]: A
tiling system is of the formK = (T,H, V, tI , t�, tF) where T is a finite set of tile types,H,V ⊆ T×T
are the so-called horizontal and vertical matching relations, and tI , t�, tF ∈ T are three designated
tiles called initial, blank and final.

Let 2n0 = n and 2nk+1 = 22nk . The order-k corridor tiling problem is the following: given a tiling
systemK as above and a natural number n encoded unarily, decide whether or not there is somem and
a sequence ρ0, . . . , ρm−1 of words over the alphabet T , with |ρi| = 2nk for all i ∈ {0, . . . ,m− 1}, and
such that the following four conditions hold. We write ρ(j) for the j-th letter of the word ρ, beginning
with j = 0.

• ρ0 = tIt� . . . t�

• For each i = 0, . . . ,m− 1 and j = 0, . . . , 2nk − 2 we have (ρi(j), ρi(j + 1)) ∈ H .

• For each i = 0, . . . ,m− 2 and j = 0, . . . , 2nk − 1 we have (ρi(j), ρi+1(j)) ∈ V .

• ρm−1(0) = tF

Such a sequence of words is also called a solution to the order-k corridor tiling problem on input K
and n. The i-th word in this sequence is also called the i-th row.

Proposition 4.1. ([19])
For each k ≥ 0, the order-k corridor tiling problem is k-EXPSPACE-hard.

author / short title 21

In the following, we show that the model-checking problem for HFLk+1
tail is k-EXPSPACE-hard in

data complexity for k ≥ 0. More precisely, we devise a formula ϕk ∈ HFLk+1
tail and, for any given

instance (K, n) of the order-k tiling problem, an LTS TK,n of size O(|K|+ n) such that

TK,n |= ϕk iff the order-k tiling problem on input K, n has a solution.

Fix a tiling system K = (T,H, V, tI , tF) and an n ≥ 1. W.l.o.g. we assume |T | ≤ n, and we fix
an enumeration T = {t0, . . . , t|T |−1} of the tiles such that t0 = tI , t|T |−2 = t�, and t|T |−1 = tF .

We define the transition system TK,n = (S, { a−→}a∈A, `) as follows:

• S = {0, . . . , n− 1},

• A = {h, v, e, u, d} with h−→ = {(i, j) | (ti, tj) ∈ H} (for “horizontal”), v−→ = {(i, j) |
(ti, tj) ∈ V } (for “vertical”), e−→ = {0, . . . , n − 1} × {0, . . . , n − 1} (for “everywhere”),
u−→ = {(i, j) | 0 ≤ i < j ≤ n − 1} (for “up”) and d−→ = {(i, j) | 0 ≤ j < i ≤ n − 1} (for

“down”).

• `(0) = {pI}, `(|T | − 2) = {p�}, and `(|T | − 1) = {pF }

The states of this transition system play two roles. On the one hand, they encode the different tiles of
the tiling problemK, with the special tiles tI , t�, tF identified by propositional labeling, while the rest
remain anonymous. The horizontal and vertical matching relations are encoded by the accessibility
relations h and v, respectively. On the other hand, the states of this transition systems are used as
the digits in a represention of large numbers. The relation u connects a digit to all digits of higher
significance, d connects to all digits of lower significance, and e is the global accessibility relation.

In order to define ϕk, we need to encode the rows of a tiling as functions of order k. Such a row
can be seen as a function associating to each column number a given tile, therefore a given state. In
order to achieve an order k for this function, we therefore seek a representation of any column number
in {0, . . . , 2nk − 1} as a function of order k − 1; we achieve this by means of a functional encoding of
large numbers popularized by Jones [20].

4.1. Functional Encoding of Large Numbers

Let >S = J>KTK,n = {0, . . . , n− 1} and ⊥S = J⊥KTK,n = ∅. Let τ0 = • and τk+1 = τk → • for all
k ≥ 0. For all k ≥ 0 and i ∈ {0, . . . , 2nk+1 − 1}, let

jonesk : JτkKTK,n → {0, . . . , 2nk+1 − 1}

be the map defined as follows

• for S ⊆ S = {0, . . . , n− 1}, jones0(S) is the number m =
∑

i∈S 2i

• let k ≥ 0 and X ∈ Jτk+1KTK,n ; the i-th bit of jonesk+1(X), where i ∈ {0, . . . , 2nk+1 − 1}, is set
(respectively unset) if for all Y ∈ JτkKTK,n such that jonesk(Y) = i, X (Y) = >S (respectively,
for all Y ∈ Jτk−1KTK,n such that jonesk(Y) = i, X (Y) = ⊥S); jonesk(X) is defined if for all i,
its i-th bit is either set or unset; in that case, jonesk(X) =

∑
i∈S 2i, where S ⊆ {0, . . . , 2nk+1 −

1} is the set of bits that are set in X .

22 author / short title

Note that jonesk : JτkKTK,n → {0, . . . , 2nk+1 − 1} is a surjective, partial map.

Lemma 4.2. Consider the following formulas:

ite = λ(b : •), (x : •), (y : •). (b ∧ x) ∨ (¬b ∧ y)

zero0 = ⊥
zerok+1 = λ(i : τk). ⊥
gt0 = λ(m1,m2 : τ0). 〈e〉

(
m2 ∧ ¬m1 ∧ [u](m1 ⇒ m2)

)
next0 = λ(m : •). item (〈d〉¬m) ([d]m)

The following holds.

1. Assume η(b) ∈ {>S ,⊥S}. If η(b) = >S , then Jite b x yKη is η(x), else it is η(y).

2. jonesk(JzerokK) = 0

3. Assume jones0(η(x1)) = m1 and jones0(η(x2)) = m2. If m1 < m2, then Jgt0 x1 x2Kη = >S ,
otherwise Jgt0 x1 x2Kη = ⊥S .

4. Assume jonesk(η(x)) = m. Then jones0(Jnext0 xKη) = m+ 1 modulo 2n.

Proof:
1 and 2 are straightforward. For 3: level 0 Jones encodings of numbers m1 and m2 are in relation gt0
if there is a bit that is set in jones0(m2) but not in jones0(m1), and all more significant bits that are
set in jones0(m1) are also set in jones0(m2). For 4, the claim follows from the following observation:
if m is any given number in {0, . . . , 2nk − 1} and m′ = m + 1 modulo 2nk , if i is any bit position in
the binary representation of m and m′, and if b and b′ are the bits at position i in m and m′, then the
following holds:

• when b is set, b′ is set if and only if if there is a bit of lesser significance that is not set in m,

• when b is not set, b′ is set if and only if all lower bits are set in m.
ut

In other words, we just devised a function next0 that defines a successor function over the (en-
condings of) numbers in {0, . . . , 2n − 1}. We are now going to define by induction a formula nextk
that defines such a successor function over the (encodings of) numbers in {0, . . . , 2nk+1− 1}. For this,
we will need to introduce a quantification over (encodings of) numbers, which would only make sense
for some predicates.

Definition 4.3. (arithmetic predicate)
Let k ≥ 0 be fixed. A function p : τk → • is an arithmetic predicate if for all m ∈ {0, . . . , 2nk+1 − 1},
one of the two holds:

• either for all X ∈ JτkKTK,n such that jonesk(X) = m, Jp xKη[x 7→X] = >S ;

author / short title 23

• or for all X ∈ JτkKTK,n such that jonesk(X) = m, Jp xKη[x 7→X] = ⊥S

For instance, λ(m : •).gt0 zero0 m is an arithmetic predicate. When p is an arithmetic predicate,
we write p(m) if Jp xKη[x 7→X] = >S for all X such that jonesk(X) = m.

In the following lemma, we devise a quantifier over (encodings of) numbers for arithmetic predi-
cates, assuming that we have at hand a successor function for these numbers.

Lemma 4.4. Let k ≥ 0 be fixed, and assume some fixed formula nextk : τk → τk such that
jonesk(Jnextk xKη) = jonesk(η(x)) + 1 modulo 2nk+1. Consider the formulas

existsk = λ(p : τk+1).
((
µ(F : τk → •) . λ(m : τk) . (p m) ∨ F (nextk m)

)
zerok

)
forallk = λ(p : τk+1). ¬ existsk (¬p)

Let p be an arithmetic predicate. The following holds:

• Jexistsk pKη = >S if there existsm ∈ {0, . . . , 2nk+1−1} such that p(m); otherwise Jexistsk pKη =
⊥S .

• Jforallk pKη = >S if for all m ∈ {0, . . . , 2nk+1 − 1}, p(m); otherwise Jforallk pKη = ⊥S .

Proof:
By fixpoint unfolding, existsk p is equivalent to the infinitary formula∨

m≥0

(
p (nextmk zerok)

)
.

By hypothesis on nextk, Jnextmk zerokK is some X such that jonesk(X) = m modulo 2nk+1. Since p is
arithmetic, Jp (nextmk zerok)K is either >S or ⊥S , and the former holds only if p(m), which ends the
proof. ut

We are now ready to define by induction the successor function nextk.

Lemma 4.5. Let gtk and nextk be defined by the mutual recursive definition

gtk+1 = λ(m1,m2 : τk+1). existsk

(
λ(i : τk). (m2 i) ∧ ¬(m1 i)∧

forallk
(
λ(j : τk). (gtk i j)⇒ (m1 j)⇒ (m2 j)

))
nextk+1 = λ(m : τk+1, i : τk). ite (m i)(

existsk
(
λ(j1 : τk). (gtk i j1) ∧ ¬(m j1)

))(
forallk

(
λ(j2 : τk). (gtk i j2)⇒ (m j2)

))
starting from gt0 and next0 as in Lemma 4.2.

Then the following holds.

24 author / short title

1. Assume jonesk(η(x1)) = m1 and jonesk(η(x2)) = m2. If m1 < m2, then Jgtk x1 x2Kη = >S ,
otherwise Jgtk x1 x2Kη = ⊥S .

2. Assume jonesk(η(x)) = m. Then jonesk(Jnextk xKη) = m+ 1 modulo 2nk+1.

Proof:
The proof is based on the same observations that were made for Lemma 4.2, except that the bit posi-
tions are now level k encodings of numbers, and the bit at position j is set in jonesk+1(mi) iff (mi j)
returns >S . Moreover, the quantification over all bit positions uses the functions forallk and existsk
instead of the relation e. ut

4.2. Encoding the tiling problem

We are now ready to define the encoding of rows of width 2nk as functions in the space JτkKTK,n .
Remember that S contains a state j for each tile tj in T . In the sequel, we identify tj with the state
j. Let ρ = ρ0 . . . ρ2nk

∈ T ∗ be a row of width 2nk for some k ≥ 1. We represent ρ by the function
rowk(ρ) that maps any order k− 1 encoding of a column number i ∈ {0, . . . , 2nk − 1} to the singleton
predicate {ρi}.

Consider then the following formulas.

isTile = λ(x : •), . [e]
(
x⇒

(
([u]¬x) ∧ ([d]¬x) ∧ (pF ∨ 〈u〉pF))

))
isRowk = λ(r : τk). forallk−1

(
λ(m : τk−1). isTile (r m)

)
isZero0 = λ(m : τ0). [e]¬m
isZerok+1 = λ(m : τk+1). forallk

(
λ(i : τk). isZero0(m i)

)
initk = λ(m : τk−1). ite (isZerok m) pI p�

isFinalk = λ(r : τk). [e]
(
(r zerok−1)⇒ pF

)
horizk = λ(r : τk). forallk−1

(
λ(m : τk−1).

[e]
(
(r m)⇒

(
(isZerok−1 (nextk−1 m)) ∨ 〈h〉(r (nextk−1 m))

)))
vertk = λ(r1, r2 : τk). forallk−1

(
λ(m : τk−1). [e]

(
(r1 m)⇒ 〈v〉(r2 m)

))
The function isTile checks whether its argument uniquely identifies a tile by verifying that it is a
singleton set, and that it is not a state of index greater than |T | − 1. The function isRow checks
whether its argument r is a proper encoding of a row by verifying that rm returns the encoding
of a tile for each m ∈ {jonesk−1(0), . . . , jonesk−1(2nk − 1)}. The function initk returns the ini-
tial row encoded as described in the previous paragraph, while isFinalk verifies that its argument
is a final row, i.e., a row where the tile in position 0 is tF . Moreover, the function horizk veri-
fies that the row r satisfies the horizontal matching condition. This is achieved by checking that,
for each m ∈ {jonesk−1(0), . . . , jonesk−1(2nk − 1)}, either m is jonesk−1(2nk) (whence the value
isZerok−1(nextk−1 m) is >S) or that there is a h-transition from the singleton set (r m) into the sin-
gleton set r (nextk−1 m). Finally, vertk verifies that two rows satisfy the vertical matching condition
in a similar way.

author / short title 25

Lemma 4.6. The following hold:

1. JisTile xKη evaluates to >S if η(x) = {i} for some i ∈ {0, . . . , |T | − 1}, otherwise it evaluates
to ⊥S .

2. JisRowk xKη evaluates to >S iff η(x) = rowk(ρ) for some row ρ of width 2nk , otherwise it
evaluates to ⊥S .

3. JinitkK evaluates to rowk(tI · t� · · · t�).

4. Assume η(r) = rowk(ρ) and η(r′) = rowk(ρ
′) for some rows ρ = ρ0 . . . ρ2nk

and ρ′ =
ρ′0 . . . ρ

′
2nk

. Then

(a) JisFinalk rKη evaluates to >S if ρ0 = tF , otherwise it evaluates to ⊥S .

(b) Jhorizk rKη evaluates to >S if (ρi, ρi+1) ∈ H for all i ∈ {0, . . . , 2nk − 1}, otherwise it
evaluates to ⊥S .

(c) Jvertk r r′Kη evaluates to >S if (ρi, ρ
′
i) ∈ V for all i ∈ {0, . . . , 2nk − 1}, otherwise it

evaluates to ⊥S .

We now have introduced all the pieces we need for defining ϕk. Intuitively, ϕk should check for
the existence of a solution to the order-k corridor tiling problem by performing an iteration that starts
with a representation of the initial row in a solution and then guesses the next rows, each time checking
that they match the previous one vertically. The iteration stops when a row is found that begins with
the final tile. Let ϕk =(

µ(P : τk+1). λ(r1 : τk).(isFinalk r1) ∨ (exists succk r1 P)
)
initk

where exists succk =

λ(r1 : τk, p : τk+1). existsk
(
λ(r2 : τk). (horizk r2) ∧ (vertk r1 r2) ∧ (p r2).

Here, exists succ consumes a row r1 of type τk, and a function p of type τk+1. It guesses a row r2

using existsk, verifies that it matches r1 vertically from above, and then applies p to r2. Of course,
p in this settting is the fixpoint P which generates new rows using exists succ until one of them is a
final row, or ad infinitum, if the tiling problem is unsolvable.

Theorem 4.7. The model-checking problem of HFLk+1
tail is k-EXPSPACE-hard in data complexity for

k ≥ 0.

Proof:
We treat the case k = 0 separately (remember that the order k corridor problem is k-EXPSPACE
complete for k ≥ 1). For k = 0, we consider the HFL1 formula

(ν(F : • → •).λ(X : •).X ∧
∧
a∈Σ

F 〈a〉X) pacc.

26 author / short title

This formula is to be interpreted on a given NFA over alphabet Σ, seen as a LTS as follows: pacc is
true on all accepting states of the automaton, and 〈a〉 is the successor relation associated to the letter
a. This formula evaluates to true on the initial state if and only if the NFA is universal (see also [15]).
Moreover, It is easy to check that this formula tail-recursive. Since the universality problem for NFA
is PSPACE-hard, i.e. 0-EXPSPACE-hard, it shows the claim for k = 0.

Let k ≥ 1. The problem of deciding whether Tn,K |= ϕk is equivalent to the problem of deciding
whether (K, n) has a solution to the order-k corridor tiling problem. Therefore, we only need to give
a formula ψk that is tail-recursive and equivalent to ϕk. Note indeed that ϕk is not tail recursive,
because the recursive variable P of type τk+1 appears as an argument of exists succk. However, after
β-reduction of exists succk r1 P and then existsk(λr2 . . .), we get a formula ψk equivalent to ϕk and
of the form(

µ(P : τk+1). λ(r1 : τk).

(. . .) ∨
(
µ(F : τk+1).λ(r2 : τk) ((. . .) ∧ (P r2)) ∨ (F (nextk r2))

)
r1

)
initk

where the (. . .) parts do not contain the recursive variables P and F , hence this formula is tail-
recursive. ut

The uppper bound and the fact that the lower one holds for the data complexity already yield a
hierarchy of expressive power within HFLtail.

Corollary 4.8. For all k ≥ 0, HFLktail � HFLk+1
tail .

Proof:
Suppose this was not the case. Then there would be a k ≥ 0 such that HFLktail ≡ HFLk+1

tail . We need to
distinguish the cases k = 0 and k > 0.

Let k = 0. Note that HFL0
tail is a fragment of the modal µ-calculus which can only express

regular properties. On the other hand, HFL1
tail contains formulas that express non-regular properties,

for instance uniform inevitability [15].
Now let k > 0 and suppose that for every ϕ ∈ HFLk+1

tail there would exist a ϕ̂ ∈ HFLktail such that
ϕ̂ ≡ ϕ. Take the formula ϕk+1 as constructed above and used in the proof of Thm. 4.7. Fix some
function enc which represents a transition system and a state as a string over some suitable alphabet.
According to Thm. 4.7, L := {enc(T , s) | T , s |= ϕk+1} is a k-EXPSPACE-hard language.

On the other hand, consider ϕ̂k+1 which, by assumption, belongs to HFLktail and is equivalent
to ϕk+1. Hence, L = {enc(T , s) | T , s |= ϕ̂k+1}. According to Thm. 3.7, we have L ∈ (k−1)-
EXPSPACE and therefore k-EXPSPACE = (k−1)-EXPSPACE which contradicts the space hierarchy
theorem [12]. ut

5. Conclusion

We have presented a fragment of HFL that, given equal type order, is more efficient to model-check
than regular HFL: Instead of (k+1)-fold exponential time, model-checking an order k+1 tail-recursive

author / short title 27

formula requires only k-fold exponential space. We have shown that this is optimal. Moreover, since
the result already holds for data complexity, the space hierarchy theorem yields a strict hierarchy of
expressive power within HFLtail.

Tail recursion was originally proposed in the context of polyadic HFL [11]. While we have re-
stricted ourselves to the monadic case in this paper, the results can be extended to PHFL: The defini-
tions generalise accordingly and the lower bounds presented in Section 4 carry over straight-forwardly
by virtue of 1-ary HFL being just ordinary HFL. The transfer of the upper bound can be achieved by
reducing the model-checking problem of polyadic HFL to the one for ordinary HFL via a product
construction (cf. [21]).

Proposition 5.1. The model checking problem for PHFLk+1 is in k-EXPSPACE-complete for k ≥ 0.

Recall Example 2.4 showing how to specify the reachability property “there is a path of the form
(abn)n for some n ∈ N”. From previous results [6] one can conclude that this property can be checked
in triply exponential time. Since the HFL3 formula given in this example is tail-recursive, one can
conclude with Thm. 3.7 that it can even be checked in doubly exponential space. However, this is not
optimal. With some combinatorial reasoning one can see that whenever a state satisfies this property
then it must also satisfy it for some “small” n, namely one that is at most exponential in the number of
states of the transition system.. One can then devise a simple nondeterministic procedure that uses at
most polynomial space and checks this property. With Savitch’s Theorem [14] we therefore get that it
is already in PSPACE which is obviously considerably better than the bound derived from Thm. 3.7.
Note, however, that the logical approach via Thm. 3.7 makes a stronger statement about the combined
complexity of model checking HFLktail, whereas the argument about the PSPACE bound obtained via
combinatorial and simple algorithmic reasoning is concerned with the complexity of checking one
particular such property only.

Still, similar considerations can be made for various other reachability properties of the form 〈L〉p
where L is some, preferably non-regular, formal language. In many cases it is possible to obtain better
bounds by devising algorithms directly compared to those that are obtained by the logical, declara-
tive approach using their specification in HFL. The fact that combined complexity cannot be better
than complexity for each fixed formula does not quite explain this discrepancy in the obtained upper
bounds. We suspect that, instead, the formulas specifiying these reachability problems fall into some
fragments which have yet to be discovered formally and which have at least exponentially better model
checking complexity. It is, for instance noteworthy that the formalisations of such reachability prob-
lems rarely make use of negative variances or combinations of [−]-operators with disjunctions. This
observation could be the starting point for the identification of fragments within each HFLk with even
better model checking complexity than k-EXPTIME as the general case, resp. (k−1)-EXPSPACE as
the tail-recursive fragment.

References
[1] Viswanathan M, Viswanathan R. A Higher Order Modal Fixed Point Logic. In: CONCUR’04, volume

3170 of LNCS. Springer, 2004 pp. 512–528.

[2] Kozen D. Results on the Propositional µ-calculus. TCS, 1983. 27:333–354. doi:10.1007/BFb0012782.

28 author / short title

[3] Janin D, Walukiewicz I. On the Expressive Completeness of the Propositional µ-Calculus with Respect to
Monadic Second Order Logic. In: CONCUR. 1996 pp. 263–277. doi:10.1007/3-540-61604-7 60.

[4] Lange M, Somla R. Propositional Dynamic Logic of Context-Free Programs and Fixpoint Logic with
Chop. Information Processing Letters, 2006. 100(2):72–75.

[5] Lange M. Temporal Logics Beyond Regularity, 2007. Habilitation thesis, University of Munich, BRICS
research report RS-07-13.

[6] Axelsson R, Lange M, Somla R. The Complexity of Model Checking Higher-Order Fixpoint Logic.
Logical Methods in Computer Science, 2007. 3:1–33.

[7] Emerson EA. Uniform inevitability is tree automaton ineffable. Information Processing Letters, 1987.
24(2):77–79.

[8] Hartmanis J, Stearns RE. On the Computational Complexity of Algorithms. Trans. AMS, 1965. 117:285–
306.

[9] Andersen HR. A Polyadic Modal µ-Calculus. Technical Report ID-TR: 1994-195, Dept. of Computer
Science, Technical University of Denmark, Copenhagen, 1994. doi:10.1.1.42.1859.

[10] Otto M. Bisimulation-invariant PTIME and higher-dimensional µ-calculus. Theor. Comput. Sci., 1999.
224(1-2):237–265. doi:10.1016/S0304-3975(98)00314-4.

[11] Lange M, Lozes É. Capturing Bisimulation-Invariant Complexity Classes with Higher-Order Modal Fix-
point Logic. In: Proc. 8th Int. IFIP Conf. on Theoretical Computer Science, TCS’14, volume 8705 of
LNCS. Springer, 2014 pp. 90–103. doi:10.1007/978-3-662-44602-7.

[12] Stearns RE, Hartmanis J, Lewis II PM. Hierarchies of memory limited computations. In: Proc. 6th Ann.
Symp. on Switching Circuit Theory and Logical Design. IEEE, 1965 pp. 179–190.

[13] Bruse F, Lange M, Lozes E. Space-Efficient Fragments of Higher-Order Fixpoint Logic. In: Proc. 11th
Workshop on Reachability Problems, RP’17, volume 10506 of LNCS. Springer, 2017 pp. 26–41. doi:
10.1007/978-3-319-67089-8 3.

[14] Savitch WJ. Relationships between nondeterministic and deterministic tape complexities. Journal of
Computer and System Sciences, 1970. 4:177–192.

[15] Axelsson R, Lange M. Model Checking the First-Order Fragment of Higher-Order Fixpoint Logic. In:
Proc. 14th Int. Conf. on Logic for Programming, Artificial Intelligence, and Reasoning, LPAR’07, volume
4790 of LNCS. Springer, 2007 pp. 62–76. doi:10.1007/978-3-540-75560-9 7.

[16] Harel D, Pnueli A, Stavi J. Propositional Dynamic Logic of Nonregular Programs. Journal of Computer
and System Sciences, 1983. 26(2):222–243.

[17] Lange M. Model Checking Propositional Dynamic Logic with All Extras. Journal of Applied Logic, 2005.
4(1):39–49.

[18] Chandra AK, Kozen D, Stockmeyer LJ. Alternation. J. ACM, 1981. 28(1):114–133. doi:
10.1145/322234.322243. URL http://doi.acm.org/10.1145/322234.322243.

[19] van Emde Boas P. The Convenience of Tilings. In: Sorbi A (ed.), Complexity, Logic, and Recursion
Theory, volume 187 of Lecture notes in pure and applied mathematics, pp. 331–363. Marcel Dekker, Inc.,
1997.

[20] Jones ND. The expressive power of higher-order types or, life without CONS. Journal of Func. Prog.,
2001. 11(1):5–94.

author / short title 29

[21] Lange M, Lozes E. Model Checking the Higher-Dimensional Modal µ-Calculus. In: Proc. 8th Workshop
on Fixpoints in Computer Science, FICS’12, volume 77 of Electr. Proc. in Theor. Comp. Sc. 2012 pp.
39–46. doi:10.4204/EPTCS.77.

