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Fast Monte Carlo-based Inverse Planning for
Prostate Brachytherapy by Using Deep Learning.

Mateo Villa, Julien Bert, Antoine Valeri, Ulrike Schick and Dimitris Visvikis.

Abstract—Inverse planning is an essential tool for optimizing
the delivered radiation dose on low-dose-rate (LDR) prostate
brachytherapy. Clinical inverse planning systems use the TG-43
dose computation formalism in order to perform a fast opti-
mization. However, this method is an approximation that often
leads to a dose overestimation, resulting on sub-optimal plans.
Alternatively, Monte Carlo simulation (MCS) can be used to
obtain an accurate dose distribution, but considerably increasing
the estimation time. We propose a fast inverse planning method
for LDR prostate brachytherapy that uses a deep convolutional
neural network (DCNN) trained on a GPU-based MCS generated
database to estimate the dose distribution on the prostate and
organs at risk. Segmentations of the organs and seeds’ positions
are given as the DCNN input. The mean percent error on the
test set was -1.19±0.94% within the prostate. The DCNN was
used to estimate the dosimetric parameters in each organ for
every configuration of the optimization loop. The dosimetric
parameters of the final DCNN-based brachytherapy plans were
in good agreement compared to the same plans recalculated with
a full MCS. The proposed inverse planning based on DCNN was
capable to reach an equivalent level of accuracy with Monte
Carlo with a runtime in less than 1 min using conventional GPU
card.

Index Terms—Brachytherapy, Dosimetry, Deep Learning, In-
verse Planning

I. INTRODUCTION

BRACHYTHERAPY is an internal radiotherapy technique
widely used on the treatment of the prostate cancer. It

involves the application of radioactive sources through the
prostate on the tumor proximity, with the aim of destroying the
tumor while preserving healthy distant organs and tissues from
the radiation exposure. Low-dose-rate (LDR) brachytherapy is
one of the most popular for the case of low-stage prostate
cancer. In this method, multiple small seeds of radioactive
material such as iodine 125 (125I) or paladium 103 (103Pd)
are implanted and remain permanently into the affected organ
region. The seeds implantation is done by using hollow needles
which are inserted through the perineum, with the guide of
trans-rectal ultrasound (TRUS) imaging. The intervention is
thus less invasive than in other kind of procedures such as
external radiotherapy or high-dose-rate (HDR) brachytherapy.

Nevertheless, the spatial distribution of the inserted seeds
during LDR brachytherapy is highly determinant on the re-
sulting radiation dose. Therefore, an improper configuration
plan may result on harmful side effects caused by high and
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heterogeneous zones of radiation. For avoiding such issues,
inverse planning is an essential tool for guiding LDR prostate
brachytherapy routine. In this technique, an optimization algo-
rithm searches the most suitable seeds locations by minimizing
a cost function, which is composed by pre-defined dose
objectives. The final evaluation of the procedure is made by
using dose-volume histograms (DVHs), which give informa-
tion about the dose homogeneity and intensity on the prostate
and organs at risk (OARs), specifically the urethra and rectum.
The DVHs must fill different criteria specified by the American
Association of Physicist in Medicine (AAPM) on their Task
Group (TG) TG-137 report [1]. Fast simulated Annealing
(FSA) [2] is one of the most popular optimization algorithms
used in practice. Other kind of approaches such as genetic
algorithms [3], [4] and compressed sensing inspired solvers
[5] have also been proposed. All of these methods allow to
achieve plans in less than one minute. However, in the current
clinical applications, the dose objectives are not optimized on
the entire organs’ volume, but only on points of the surface.
As a result, clinical planning systems tend to obtain plans
that does not fulfil the DVHs criteria entirely, and a manually
correction by an expert radiologist should often be made,
consequently increasing the time and risk of the intervention.
DVH-based optimization has been successfully implemented
on inverse planning systems for external radiotherapy, but they
are not yet used in real practice on prostate LDR brachytherapy
due to its elevate time computation.

Moreover, clinical inverse planning systems compute the
dose distribution based on the TG-43 formalism, an analytical
model established by the AAPM [6], [7]. This method, regard-
less of allowing a fast computation, it does not consider the or-
gans densities and the interaction between the sources, causing
an overestimation of the dose [8]–[10], that could reach up to
12 % for the D90 parameter (the dose absorbed by at least the
90 % of the prostate volume) [9]. Monte Carlo (MC) dosimetry
can be used to obtain a more precise estimation. Nevertheless,
computation time is not suitable for a clinical application.
Different Monte Carlo simulation (MCS) frameworks based on
Graphics Processing Units (GPU) have been proposed [11]–
[14], and they proved a reduction on computation time from
multiple hours to seconds for a single dose map. Even though,
the inverse planning algorithms usually perform a thousand of
iterations before obtaining a satisfactory solution, leading to
a very long-time calculation to get the final optimized plan.
A DVH-based optimization algorithm using MCS dosimetry
for LDR prostate brachytherapy has previously proposed [15].
In this work, MCS is used to compute dose kernels for
each single seed position, followed by the use of FSA. At
each optimization step, the current dose kernel is obtained by
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adding the dose distribution of the selected seeds. This method
achieved treatment plans within less than one minute, with
most of the DVH critical values matching the criteria. Still,
this method does not include the effect of seeds’ interaction,
and the need of storing a large data set of dose kernels may
rise issues on memory management and input/output time
access. Additionally, the number of simulated particles used
to estimate each dose kernel had to be reduced in order to
achieve a fast planning, which was reflected in an increase of
uncertainty.

On the other hand, deep convolutional neural networks
have been broadly used in the last years in many medical
imaging applications due to their ability to accurately learn a
mapping between an input image and corresponding output.
Recent works in the field of radiotherapy and medical imaging
dosimetry have been released, with the aim to predict the
resulting dose in to the patient’s body. The general approach
consist to train a deep convolutional neural network (DCNN)
with a medical image (CT, PET, MRI) or a segmentation
map of the organs as the input and the desired dose map
as an output. In a recent work [16], a DCNN was trained
to learn the dosimetry prediction in HDR brachytherapy for a
given treatment plan, based on the patient’s image and organs’
segmentation. However, due to time computation to build a
large training data set from MCS, they pre-train a network
using water-based dose. The dose prediction time was 1.7
seconds. In HDR there is only one source at the time within
the patient and the source only interacts with human tissues.
Such method cannot be used in LDR, since the interactions
between the seeds have to be considered. The water-based
pre-training method may introduce bias because the dose in
water and seed are very different. In addition, the optimization
in LDR needs a large number of iterations to explore every
possible seed configuration. A much faster dose prediction is
required in LDR.

We propose in this paper a fast inverse planning method
for LDR prostate brachytherapy that uses a deep convolu-
tional neural network (DCNN) trained on a GPU-based MCS
generated database to estimate the dose distribution on the
prostate and organs at risk (OARs). Segmentation maps of the
concerned organs and seeds’ positions are given as the input
of the DCNN, and the dose distribution obtained by Monte
Carlo simulation is the output to be learned. The DCNN was
used to estimate the dosimetric parameters in each organ for
every configurations test by the optimization loop.

II. METHODS AND MATERIALS

We propose the use of a DCNN which learns to compute the
dose into the prostate and OARs for a given patient anatomy
and set of seeds’ positions. Figure 1 show a slice example
of the input and output. A fast GPU-based MCS is used to
generate the dose maps database. The trained model is then
used to obtain the dose at each step of the inverse planning.
The following sections explains the approach in detail.

A. Patient’s Database
Prostate and OARs contours from 273 ultrasound (US)

image patients who were undergone with LDR brachytherapy

Fig. 1. Example slice of input (left) and output (right) of the DCNN-based
method. The light blue label represents the prostate, the light green the urethra,
the yellow the rectum, and the red points the seeds of the current configuration.
The output used for training is the dose map obtained from MCS.

at University of Brest Hospital were extracted. The whole data
set contains prostate volumes with sizes varying between 17
cm3 and 67 cm3.

The original ultrasound data had a size of 550 x 550 x 88
voxels with a pixel spacing of 0.15 mm x 0.15 mm and a slice
thickness of 1 mm .

For each US image patient, 50 layout of seed positions were
generated randomly, with a number of seeds varying randomly
between 48 and 70. This lower and upper values were obtained
according the number of seeds usually implanted to the patient,
which depends on the prostate volume size. The space of
possible positions follows the standard grid of 5 mm spacing
used during the needles’ insertion. The resulting number of
configurations was 13650 for the entire data set.

B. MC Dose Computation

Since MCS usually involves long time computation, a
generation of a large dose map data set would be difficult with
conventional MCS software. Therefore, dose distributions on
the prostate and OARs were generated by using GGEMS, a
validated GPU-based MC simulation platform for dosimetry
applications including LDR brachytherapy [13], [14]. The
simulation was performed by using 125I sources at the desired
positions on a voxelized phantom generated from the patient
contours. The complete geometry of the seeds (STM1251,
Bard Medical Division, Covington, GA, USA) was taken into
account, similarly to [14]. For each organ label (prostate,
urethra, rectum) the corresponding material composition was
assigned, based on the recommendations of the International
Commission on Radiation Units and Measurements Report No.
46 [17]. The surrounding area of the aforementioned organs is
considered as a soft-tissue and its material is also included in
order to fully take into account tissue heterogeneities. GGEMS
software was based on Geant4 physics effects. The GPU-
based MC simulation was setup to use only photon physics
effects without considering electrons. Electron ranges for the
125I sources are very small compared to the size of a voxel
[18]. Therefore, their doses were deposited locally within
each voxel they were emitted from. The dose calculation
was performed using the track-length estimator [19] which
is a variance reduction technique allowing to reduce time
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computation without introducing any approximations. A total
of 5 × 107 particles were simulated, allowing to achieve
approximately 0.5 % mean statistical uncertainty per dose
map on the prostate volume, 0.6 % on the urethra and 1
% on the rectum. Simulations took on average 20 seconds
approximately per configuration on a NVIDIA GTX 1080
GPU.

C. Deep Convolutional Neural Network (DCNN)

We propose a DCNN model that uses as input the patient’s
3D segmentation map, composed by the prostate, urethra, and
the rectum. Additionally, the different seeds positions were
directly encoded on the image by defining a 1-pixel label for
each seed and included on the organs’ segmentation map, as
shown in the figure 1. In order that the network considers organ
structures and seed positions, all information was numerically
encoded by using a label value inside the input image. For
example, all voxels containing prostate tissue provided by the
segmentation were set to the label value 1. The same for the
urethra and the rectum with label value 2 and 3 respectively.
Voxels containing soft tissue were filled with the value zero.
The voxel that corresponds to a seed position was filled with a
label value 4. An example of final labelled image is illustrated
on figure 1 (see the input image). Contour of each organ was
achieved by the urologist using the transrectal US image while
the patient is under general anesthesia in operating room. Then
an inverse planning is run to determine an optimal plan, this is
the standard clinical workflow on prostate brachytherapy. The
seeds label will be changed during the optimization process,
when a new seed position is explored, the current seed position
is cleared by filling the corresponding voxel this prostate label,
and the voxel that will receive the new seed position is filled
with the label 4.. The output of the network will be the
prediction of 3D dose distribution according organ contours
and a given seed layouts.

1) DCNN Architecture: We designed a DCNN based on the
3D-Unet [20], which was originally intended for volumetric
semantic segmentation. The architecture, which is shown in
Figure 2 consist of two main stages: the contracting path
(encoder), which extracts different features of the images by
applying 3D convolutional filters and reduces their dimension-
ality using 3D max-pooling layers; and the expanding path
(decoder), which gradually up-samples the images by using 3D
deconvolutions (transposed convolutions) while concatenating
them with the different features of the contracting path, until
arriving to an output of the same dimension of the input.
The main difference with the original architecture lies in the
number of filters per convolution layer, which in our case
were reduced by a factor of 8, in order to avoid over-fitting
and being able to have a fast prediction. Additionally, the use
of a Rectified-Linear-Unit (ReLU) activation layer instead of
the softmax layer (which is more suitable for classification)
at output layer enabled the network to be trained for this
regression task.

The original images were re-sampled to a resolution of 1
mm x 1 mm x 1 mm (the slice thickness did not change) in
order to allow the network to perform a fast inference, leading

to image with input dimensions of 88 x 88 x 88 voxels. These
images were centered at the prostate isocenter and a zero-
padding was performed in order to match the input size of the
neural network.

2) Training and Validation: The data set was divided
patient-wise in a stratified fashion according to 6 ranges of
prostate sizes. Training, validation, and test sets were created
by randomly taking 60 %, 20 % and 20 % of the patients
of each interval, as shown in Figure 3. This strategy allows
to have a representative sample of the data set on each of
the splits, thus reducing the risk of over-fitting. The data split
results on 163, 55 and 55 patients for each set. With the 50
generated plans per patient (and corresponding dose maps), the
final split consists of 8150 data for train, 2750 for validation
and 2750 for test.

The training phase was made using adaptive momentum al-
gorithm (ADAM) [21] for minimizing the mean squared error
(MSE) between the predicted dose and the MCS dose. During
the network training, both training and validation loss were
monitored. Consequently, the train process was stopped at the
epoch when the validation loss ceased showing improvement
with respect to training loss (i.e., the 17 th epoch), as shown
in figure 4. The architecture was developed and trained on
Keras, using Tensorflow back-end, using a Nvidia GeForce
RTX 2080Ti GPU.

D. DVH-based FSA for Inverse Planning

Inspired by the work of [15], we performed an inverse
planning based on dose-volume-histograms (DVHs) by using
the Fast Simulated Annealing (FSA) algorithm [2]. The cost
function to minimize, given by the equation 1, includes the
different DVH dosimetric criteria given by the AAPM TG-
137 recommendations [1]:

C = wv100 ∗ Θ(V100L − V100)+∑
i

wviΘ(Vi − ViH ) +
∑
j

wdjΘ(Dj −DjH )+∑
k

wdkΘ(Dk −DkH
) + wNneedles

∗Nneedles (1)

where Vi represents the percent of the prostate volume
that receives at i% of the prescribed dose, Dj represents the
percent of the prescribed dose absorbed by j % of the urethra’s
volume, and Dk the amount of dose received in kcm3 of the
rectum’s volume. The subscripts H and L represent the critical
values (L for lowest, H for highest) of the aforementioned
metrics. N is the number of needles used to insert the seeds. In
the same way wvi, wdj , wdk and wN are weight factors given
to each metric. Here, in order to give the same importance to
all parameters, each weight was equally distributed i.e. with a
value of 1/Nw, where Nw is the number of weights uses in
the cost function. Θ(X) represents the heavyside step function
that overrides the cost contribution when its value is negative.
The indices values are i = [150, 200] and j = [10, 30] and
k = [2cc, 0.1cc].

Before optimization, a fixed number of seeds is selected for
the current patient, using the equation introduced by [22]:
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Fig. 2. Architecture of the proposed DCNN model.

Fig. 3. Patients’ prostate volume distribution along the training, validation
and test sets

Fig. 4. Plot of train vs. validation loss as a function of epochs. The red dot
indicates the epoch with the lowest error, which model weights were kept for
the test set evaluation.

Nseeds = 4 +
4.674 × V 0.562

A
(2)

where V is the volume of the prostate, and A represents the
strength of the source. The FSA outline starts with a random
configuration of seeds. The resulting dose map is estimated
using our trained DCNN and then the corresponding DVHs
from the prostate, urethra and rectum are extracted. The cost
function is calculated with the derived DVH dosimetric values.
For the following steps, each configuration is obtained by

randomly changing a single seed position. If the cost of the
new configuration is lower than the previous one, then the
new one is maintained. Differently, the new configuration is
accepted with the following probability:

P (∆C) = exp(−∆C/T (k)) (3)

Where k is the current optimization iteration, ∆C is the
difference between the current and previous cost function,
and T is the annealing temperature at the kth iteration. The
temperature is changed at each step by applying a pre-defined
cooling-rate factor between 0 and 1. The optimization takes
end after a pre-defined number of iterations. This schedule
makes that at the first iterations, non-conform configurations
could be chosen, allowing to explore a wide range of solutions
and avoiding the algorithm to get stuck on a local minima. In
our study, we empirically set T = 105 and C= 1% and max
2000 iterations. We set a fixed source strength of 0.645 U for
all the optimizations, which corresponds to the average of the
sources used in the real plans. The DVHs were calculated with
the same prescribed dose of the real treatments, which is equal
to 160 Gy.

E. DCNN Dose Prediction Evaluation

The trained model was used to estimate dose maps on the
2750 images of the test set, which for recall, correspond to
50 random configurations of 55 patients. The quality of the
predicted dose maps was assessed in terms of the mean percent
error (MPE) between the prediction and the ground-truth for
each organ, which is defined as follows:

MPEorgan =
100%

Norgan

∑
i

Dpred
i −DMC

i

DMC
i

(4)

Where Dpred
i and DMC

i represents the absorbed dose on the
i voxel of the organ for the prediction and the MC dose map,
and Norgan is the total number of voxels of the organ. We
report the mean and the standard deviation of the MPE across
the entire test set for each organ, as well as the graphical
distribution in terms of the median, first and third quartiles,
and first and ninth deciles.

F. Inverse Planning Quality Evaluation

The quality of the inverse planning has been evaluated on
the 55 patients of the test set. For each patient, using the
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segmented organs, an inverse planning was performed using
the FSA algorithm with our trained DCNN model as the dose
calculation model. For each final optimized plan, the seed
configuration was exported and used to recalculate a dose
map using Monte Carlo simulation with the same parameters
presented in II-B. DVH parameters were estimated on both
dose map, the one directly obtained by the DCNN-based in-
verse planing after optimization and on the one recalculated by
Monte Carlo simulation. The aim is to assess if after a DCNN-
based optimization the equivalent MCS DVH parameters in
terms of the TG-137 criteria are fulfilled. The DVH parameters
are always calculated with respect to a prescribed dose of 160
Gy, which is the standard dose applied on the real treatments
of the database.

III. RESULTS

A. DCNN Evaluation

Training of the DCNN was run on approximately 12 hours
and dose prediction was achieved in approximately 38 ms per
dose map on a Geforce RTX 2080 Ti GPU, which is highly
faster than the 20 seconds of the MCS.

The distributions of the MPE of the DCNN dose prediction
for the prostate and OARs along the test set are shown on
figure 6. The mean ± STD MPE for the entire test set are
-1.19% ±0.94 %, 0.52 % ± 1.42 %, and -1.47 % ± 1.90 %
on the prostate, urethra and rectum respectively. According to
this results, the DCNN shows a general tendency to under-
estimate the dose in the prostate and the rectum, while in the
urethra the dose is generally over-estimated. Nevertheless, the
mean error magnitude does not exceed the limit of 2 % for
the prostate and urethra, and 4% for the rectum.

In general it was found that the dose predictions were
visually in good agreement with the ground-truth. The figure 5
shows a representative middle-slice example of dose distribu-
tion of one of the test set configurations, in comparison to the
MCS dose map. We can observe again the general tendency
to over-estimation of dose in the urethra, which appears to
be predicted with similar values of the prostate neighboring
region. In the case of the prostate, we confirm the general
trend of under-estimation of the dose, especially in zones of
low and middle dose. For the rectum, most of the doses are
under-estimated. Despite the fact that some pixels of the image
may have errors reaching the 8 %, the absolute difference is
still relatively low, and the accuracy the overall image and
different organs is not significantly affected.

B. Inverse Planning Quality

The FSA algorithm achieved acceptable configurations in
2000 iterations on average. Adding to the DCNN prediction
time (38 ms per dose map) to the time taken by the DVHs
extraction and cost function calculation, the total optimization
time was on average 1 minute. Which was very fast consid-
ering that dose maps accuracy were close to a fully Monte
Carlo simulation.

The table I summarizes the different DVH parameters
obtained with our DCNN inverse planning approach and their
equivalent by running MCS on the resulting plans, as well

as the TG-137 criteria for each parameter, with respect to
reference prescribed dose of 160 Gy. We can observe an under-
estimation of the dose for the V100 and the V150 which does
not exceed the 1% and a very reduced over-estimation of the
V200 of 0.2%. For the urethra, the D10 and D30 does not
exceed 2 % of difference with the resultant MCS. For the
case of the rectum, we can observe an under estimation of
the D0.1cc of 3%, whereas the D2cc is predicted above 0.4 %
of the MCS value, which is still non-significant. In spite of
those differences, it can be seen that all the DVH parameters
recalculated by MCS on the final configuration complied the
TG-137 criteria.

The figure 7 shows a representative example of the DVHs
of an optimized plan by using the DCNN dose calculation,
compared with the DVHs obtained after doing MCS on the
final optimized configuration. The DCNN DVHs fit almost
the entire MCS DVHs despite of having the over and under-
estimation behaviors highlighted previously. Finally, figure 8
shows a comparison of the iso-doses of (contours of the dose
map containing the same value of dose) of both DCNN and
the resultant MCS, for another typical case. The levels of the
iso-doses were chosen based on the usual values analyzed
by the radiologists. The DCNN iso-doses match accurately
with the MCS, which confirms again that the DCNN has the
capability to match the MCS dose distribution in terms of dose
homogeneity.

IV. DISCUSSION

The generalization capability of a DCNN model depends
primarily on the network model parameters, training hyper-
parameters, the quality of the data set, and the way it is
split for training, validation and test. Therefore, we set the
number of convolutional filters per layer as small as possible
without losing accuracy with the aim to prevent over-fitting
and perform fast predictions. On the other hand, we needed
to split the patients in a way that the three ensembles had
a good representation of the entire data set. Despite the fact
that the geometry of the prostate is relatively consistent, we
found that the volume size was substantially variable from one
patient to another, and we thus decided to use it as the criteria
for splitting. This stratified approach contributed significantly
to avoid to over-fitting, and moreover made easy the hyper-
parameter tuning.

According to the dose prediction results, both errors on the
prostate and the urethra were below 2%, and rectum error
was below 5%, which is a good indicator of the performance
of our method. The lower accuracy on the rectum’s dose
prediction may be caused by different reasons. First of all,
the rectum is generally more distant to the sources than the
prostate (which contains all of them) and the urethra (which is
located within the prostate region), which is reflected in less
radiation dose. Since the DCNN optimizer tends to minimize
the mean square error, then differences in low doses would
be less relevant on the weights updating than the high doses
errors. Another phenomenon frequently observed is that the
DCNN has a smoothing effect in regions where the dose
level changes in a considerable proportion, as observed in
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Fig. 5. Dose distribution comparison on an intermediate slice for a test set patient. From left to right: The input of the network (segmented organs and
seeds), the ground-truth dose map obtained through MCS, the dose map predicted by our DCNN model, the absolute and the relative difference between the
predicted and the groun-truth dose.

TABLE I
EVALUATION OF THE DVH PARAMETERS RESULTING FROM INVERSE PLANNING USING THE DCNN DOSE CALCULATION METHOD WITH A REFERENCE

PRESCRIBED DOSE OF 160 GY.

Organ DVH Metric Criteria DCNN MCS (Ground-Truth) Dif (%)

Prostate
V100 (%) ≥ 95 95.1 ± 0.3 95.8 ± 1.0 -0.8 ± 1.0
V150 (%) ≤ 50 47.4 ± 2.2 48.1 ± 4.4 -0.6 ± 3.1
V200 (%) ≤ 20 19.9 ± 1.5 19.7 ± 2.4 0.2 ± 1.3

Urethra D10 (%) < 150 135.2 ± 7.8 133.5 ± 8.0 1.7 ± 3.5
D30 (%) < 130 123.2 ± 5.3 122.3 ± 5.5 0.9 ± 2.7

Rectum D2cc (%) < 100 71.2± 7.8 70.8 ± 7.6 0.4 ± 2.6
D0.1cc (%) < 150 112.1 ± 15.8 114.9 ± 21.1 -2.8 ± 9.2

Fig. 6. Distribution of the mean relative error between DCNN predicted dose
and MCS over the entire test set. The middle line represents the median, the
central rectangle spans from the first quartile to the third quartile, and the
vertical line extends from the first decile to the ninth decile

the figure 5 for the dose within the urethra, which appears
to be clearly distinguishable in the MCS dose map but in
the DCNN prediction the dose it is homogenized to the
dose level of the neighboring region on the prostate. This is
probably caused by the convolution operations that works on
a filtering principle, and thus tend to smooth the changes of
intensity. Despite the results on the error distribution and the
qualitative observations, the dose prediction of the DCNN and
the ground-truth are highly similar. Moreover, the final results
on the inverse planning are not significantly affected by this
prediction error, as could be stated in the DVH results.

Fig. 7. DVH obtained after inverse planning on a test set patient by using
our DCNN dose map calculation method.

Concerning the inverse planning quality results on the DVH
parameters, our method tends to find optimal configurations
with an under-estimated dose with respect to MCS on the
prostate and rectum, whereas the DVH parameters on the
urethra are slightly above the MCS values. However, these
errors are below 1%, 2% and 3% for the prostate, urethra and
rectum respectively. Yet, these errors are acceptable and still
much lower than the TG-43 formalism which could reach the
12 %. Moreover, these errors do not affect the final outcome
of the dose and all the DVH criteria are fulfilled on the
recalculated MCS, which was the main purpose of our study.

Prediction time was highly reduced with respect to the MCS.
For the same low level of uncertainty, we reached a dose
map computation around 710 times faster than the GPU-based
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Fig. 8. Iso-dose distribution comparison on a mid-slice between the DCNN
and the computed MCS after optimization. The values are represented as %
of the prescribed dose, which is equal to 160 Gy.

Monte Carlo simulation.
One of the advantages of our DCNN approach compared

to others of the state-of-the-art is that it is not dependent of
the imaging system, due to the fact that it directly uses the
annotated organ contours. However, a good segmentation must
be guaranteed in order to avoid inaccuracies on the delivered
dose, which is not the focus of our study. Finally, the most
important innovation of our approach is that all the seeds’
positions are encoded directly into the patient’s image, which
compared to previous approaches, prevents from estimating
each seed effect separately and thus improving computation
time and accuracy.

As a future work, we will study the applicability of our
approach on focal brachytherapy. Additionally, we will study
the feasibility of a DL technique for decrease the number of
iterations needed by the FSA optimization.

V. CONCLUSION

We proposed a new DCNN-based method for performing
DVH-based inverse planning dosimetry for LDR prostate
brachytherapy. The DCNN model is capable to learn ac-
curately from a MCS generated dose map database. Our
approach is a potential solution for being adapted on the com-
mercial inverse planning systems as an alternative calculation
of the existing TG-43 formalism.
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