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Quantifier elimination over the reals is a central problem in computational real algebraic geometry, polynomial system solving and symbolic computation. Given a semi-algebraic formula (whose atoms are polynomial constraints) with quantifiers on some variables, it consists in computing a logically equivalent formula involving only unquantified variables. When there is no alternation of quantifiers, one has a one block quantifier elimination problem.

This paper studies a variant of the one block quantifier elimination in which we compute an almost equivalent formula of the input. We design a new probabilistic efficient algorithm for solving this variant when the input is a system of polynomial equations satisfying some regularity assumptions. When the input is generic, involves 𝑠 polynomials of degree bounded by 𝐷 with 𝑛 quantified variables and 𝑡 unquantified ones, we prove that this algorithm outputs semi-algebraic formulas of degree bounded by 𝒟 using 𝑂 ̃︀ (︁ (𝑛 -𝑠 + 1) 8 𝑡 𝒟 3𝑡+2 (︀ 𝑡+𝒟 𝑡 )︀ )︁ arithmetic operations in the ground field where 𝒟 = 2(𝑛 + 𝑠) 𝐷 𝑠 (𝐷 -1) 𝑛-𝑠+1 (︀ 𝑛 𝑠 )︀ . In practice, it allows us to solve quantifier elimination problems which are out of reach of the state-of-the-art (up to 8 variables).

This consists in computing a logically equivalent quantifier-free semi-algebraic formula Φ(𝑦), i.e. Φ is a finite disjunction of conjonctions of polynomial constraints in Q[𝑦] which is true if and only if the input quantified formula is true. The 𝑥 variables are called quantified variables and the 𝑦 variables are called parameters.

Let 𝜋 be the projection (𝑥, 𝑦) ↦ → 𝑦. Note that, geometrically, Φ describes the projection on the 𝑦-space of the real algebraic set 𝒱 R ⊂ R 𝑡 × R 𝑛 defined by simultaneous vanishing of the 𝑓𝑖's. In this paper, we focus on solving a variant of the classical one block quantifier elimination, which computes a semi-algebraic formula which defines a dense subset of the interior of 𝜋(𝒱 R ). Example 1. Consider the toy example 𝑥 2 + 𝑦 2 = 1. Its projection on the 𝑦 coordinate is described by the quantifierfree formula (𝑦 ≥ -1) ∧ (𝑦 ≤ 1) while for our variant quantifier elimination problem, an admissible output is (𝑦 > -1) ∧ (𝑦 < 1).

Except for proving theorems, this is sufficient for most of applications of quantifier elimination in engineering sciences or computing sciences where either the output formula only needs to define a sufficiently large subset of the 𝜋(𝒱 R ) or is evaluated with parameters's values which are subject to numerical noise.

Prior works. The real quantifier elimination is a fundamental problem in mathematical logic and computational real algebraic geometry. It naturally arises in many problems in diverse application areas. The works of Tarski and Seidenberg [START_REF] Tarski | A Decision Method for Elementary Algebra and Geometry[END_REF][START_REF] Seidenberg | A new decision method for elementary algebra[END_REF] imply that the projection of any semi-algebraic set is also semi-algebraic and give an algorithm, which is however not elementary recursive, to compute this projection. The Cylindrical Algebraic Decomposition (CAD) [START_REF] Collins | Quantifier elimination for real closed fields by cylindrical algebraic decomposition: a synopsis[END_REF] is the first effective algorithm for this problem whose complexity is doubly exponential in the number of indeterminates [START_REF] Davenport | Real quantifier elimination is doubly exponential[END_REF]. Since then, there have been extensive researches on developing this domain. We can name the CAD variants with improved projections [START_REF] Mccallum | An improved projection operation for Cylindrical Algebraic Decomposition of threedimensional space[END_REF][START_REF] Hong | An improvement of the projection operator in Cylindrical Algebraic Decomposition[END_REF][START_REF] Mccallum | On projection in CAD-based quantifier elimination with equational constraint[END_REF][START_REF] Brown | Improved projection for Cylindrical Algebraic Decomposition[END_REF] or the partial CAD [START_REF] Collins | Partial Cylindrical Algebraic Decomposition for quantifier elimination[END_REF]. Following the idea of [START_REF] Grigor'ev | Complexity of deciding Tarski algebra[END_REF] that exploits the block structure, [START_REF] Renegar | On the computational complexity and geometry of the first-order theory of the reals. Part III: Quantifier elimination[END_REF][START_REF] Basu | On the combinatorial and algebraic complexity of quantifier elimination[END_REF] introduced algorithms of only doubly exponential complexity in the order of quantifiers (number of blocks). For one-block quantifier elimination, the arithmetic complexity and the degree of polynomials in the output of these algorithms are of order 𝑠 𝑛+1 𝐷 𝑂 (𝑛𝑡) where 𝐷 is the bound on the degree of input polynomials (see [START_REF] Basu | Algorithms in Real Algebraic Geometry[END_REF]Algo 14.6]). However, obtaining efficient implementations of these algorithms remains challenging. We also cite here some other works in real quantifier elimination [START_REF] Volker | The complexity of linear problems in fields[END_REF][START_REF] Sturm | Computational geometry problems in REDLOG[END_REF][START_REF] Weispfenning | A new approach to quantifier elimination for real algebra[END_REF][START_REF] Brown | Efficient preprocessing methods for quantifier elimination[END_REF][START_REF] Strzeboński | Cylindrical Algebraic Decomposition using validated numerics[END_REF] and applications to other fields [START_REF] Liska | Applying Quantifier Elimination to Stability Analysis of Difference Schemes[END_REF][START_REF] Anai | Reach set computations using real quantifier elimination[END_REF][START_REF] Sturm | Verification and synthesis using real quantifier elimination[END_REF].

In spite of this tremendous progress, many important applications stay out of reach of the state-of-the-art of the classic quantifier elimination. This motivates the researches on its variants. Generic quantifier elimination, in which the input and output formulas are equivalent for only almost every parameter, is studied in [START_REF] Dolzmann | A new approach for automatic theorem proving in real geometry[END_REF][START_REF] Seidl | A generic projection operator for partial cylindrical algebraic decomposition[END_REF]. A practically efficient algorithm is presented in [START_REF] Hong | Variant real quantifier elimination: Algorithm and application[END_REF][START_REF] Hong | Variant quantifier elimination[END_REF] for the same problem but under some assumptions on the input. The variant studied in this paper is a particular instance of the one in [START_REF] Hong | Variant real quantifier elimination: Algorithm and application[END_REF][START_REF] Hong | Variant quantifier elimination[END_REF].

Main results. In this paper, we consider the input 𝑓 = (𝑓1, . . . , 𝑓𝑠) satisfying the assumptions below.

Assumption A.

• The ideal of Q[𝑥, 𝑦] generated by 𝑓 is radical.

• The algebraic set 𝒱 ⊂ C 𝑡+𝑛 of 𝑓 is equi-dimensional of dimension 𝑑 + 𝑡. Its singular locus has dimension at most 𝑡 -1. Assumption B. The Zariski closure 𝜋(𝒱) of 𝜋(𝒱) is the whole parameter space C 𝑡 and 𝜋(𝒱 R ) is not of zero-measure in R 𝑡 .

The first result of the paper is a new probabilistic algorithm for solving the aforementioned variant of the quantifier elimination on such an input 𝑓 . Our algorithm applies the algorithm of [START_REF] Safey | Polar varieties and computation of one point in each connected component of a smooth real algebraic set[END_REF] to the system 𝑓 considering Q(𝑦) as the based field. This allows to reduce our problem to zero-dimensional polynomial systems in Q(𝑦) [𝑥]. Next, we compute semi-algebraic formulas that describe approximate projections of these systems on the 𝑦-space through the algorithm of [START_REF] Phuoc | Solving parametric systems of polynomial equations over the reals through Hermite matrices[END_REF]. This algorithm relies on a parametric variant of Hermite matrices for real root counting [START_REF] Pedersen | Counting real zeros in the multivariate case[END_REF][START_REF] Hermite | Sur le nombre des racines d'une équation algébrique comprises entre des limites données. extrait d'une lettre á m. borchardt[END_REF]. A similar outline is also presented in [START_REF] Weispfenning | A new approach to quantifier elimination for real algebra[END_REF][START_REF] Dolzomann | Generic hermitian quantifier elimination[END_REF], in which the author computes an expensive comprehensive Gröbner bases [START_REF] Volker | Comprehensive gröbner bases[END_REF] to analyze all cases before applying the real root counting algorithm of [START_REF] Pedersen | Counting real zeros in the multivariate case[END_REF]. The relaxation of the output allows us to replace this exhaustive computation by the real root finding algorithm of [START_REF] Safey | Polar varieties and computation of one point in each connected component of a smooth real algebraic set[END_REF].

Our second goal is to analyze the complexity of this new algorithm. For generic inputs, we bound the degree of the outputs and establish an arithmetic complexity which depends on this bound. The precise notion of genericity is as follows.

Let Even though our complexity result has the same order as the one of [4, Algo 14.6], we obtain explicitly the degree bounds on the output formulas and the constant in the 𝑂 notation in the exponent.

C[𝑥, 𝑦] ≤𝐷 = {𝑝 ∈ C[𝑥, 𝑦] | deg(𝑝) ≤ 𝐷}. A
On the practical aspect, our implementation in MAPLE of this algorithm outperforms real quantifier elimination functions in MAPLE and MATHEMATICA. It allows us to solve examples, both generic and non-generic, that are out of reach of these softwares (up to 8 indeterminates). These timings are reported in Section 6.

Structure of the paper. In Section 2, we start by recalling some basic notions. In Section 3, we resume the algorithm for real root finding of [START_REF] Safey | Polar varieties and computation of one point in each connected component of a smooth real algebraic set[END_REF]. Also in the same section, we prove some auxiliary results in order to apply this algorithm parametrically. Next, we dedicate Section 4 for the description of our algorithm for solving the targeted problem and proving its correctness. The complexity of this algorithm is analyzed in Section 5. Finally, we report on some experimental results in Section 6.

Preliminaries

Algebraic sets and critical points. Let F be a subfield of C and 𝐹 ⊂ F[𝑥1, . . . , 𝑥𝑛]. The algebraic subset of C 𝑛 at which the elements of 𝐹 vanish is denoted by 𝑉 (𝐹 ). For an algebraic set 𝒱 ⊂ C 𝑛 , we denote by 𝐼(𝒱) ⊂ C[𝑥1, . . . , 𝑥𝑛] the radical ideal associated to 𝒱. The singular locus of 𝒱 is denoted by sing(𝒱). Given any subset 𝒮 of C 𝑛 , we denote by 𝒮 the Zariski closure of 𝒮, i.e., the smallest algebraic set containing 𝒮. An algebraic set 𝒱 is equi-dimensional if its irreducible components share the same dimension.

A map 𝜙 between two algebraic sets 𝒱 ⊂ C 𝑛 and 𝒲 ⊂ C 𝑖 is a polynomial map if there exist 𝜙1, . . . , 𝜙𝑖 ∈ C[𝑥1, . . . , 𝑥𝑛] such that 𝜙(𝜂) = (𝜙1(𝜂), . . . , 𝜙𝑖(𝜂)) for 𝜂 ∈ 𝒱. Let 𝒱 ⊂ C 𝑛 be an equi-dimensional algebraic set. We denote by crit(𝜙, 𝒱) the set of critical points of the restriction of 𝜙 to the non-singular locus of 𝒱. If 𝑐 is the codimension of 𝒱 and (𝑓1, . . . , 𝑓𝑠) generates the ideal 𝐼(𝒱), the subset of 𝒱 at which the Jacobian matrix jac(𝑓1, . . . , 𝑓𝑠, 𝜙1, . . . , 𝜙𝑖) of (𝑓1, . . . , 𝑓𝑠, 𝜙1, . . . , 𝜙𝑖) has rank less than or equal to 𝑐 is the union of crit(𝜙, 𝒱) and sing(𝒱) (see, e.g., [START_REF] Safey | A nearly optimal algorithm for deciding connectivity queries in smooth and bounded real algebraic sets[END_REF]Subsection 3.1]).

Gröbner bases and zero-dimensional ideals. Let F be a field and F be its algebraic closure. We fix an admissible monomial order ≻ (see [START_REF] Cox | Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra[END_REF]Sec. 2.2]) over F [𝑥] where 𝑥 = (𝑥1, . . . , 𝑥𝑛). For 𝑝 ∈ F[𝑥], the leading monomial of 𝑝 with respect to ≻ is denoted by lm≻(𝑝).

A Gröbner basis 𝐺 of an ideal 𝐼 ⊂ F[𝑥] w.r.t. the order ≻ is a finite generating set of 𝐼 such that the set of leading monomials {lm≻(𝑔) | 𝑔 ∈ 𝐺} generates ⟨lm≻(𝑝) | 𝑝 ∈ 𝐼⟩. For 𝑝 ∈ F[𝑥], the remainder of the division of 𝑝 by 𝐺 using the order ≻ is uniquely defined and is called the normal form of 𝑝 w.r. Change of variables. Given a field F, we denote by GL(𝑛, F) the set of invertible matrices of size 𝑛 × 𝑛 with entries in F. Let 𝑝 ∈ F[𝑥] be a polynomial. For any 𝐴 ∈ GL(𝑛, F), we denote by 𝑝 𝐴 the polynomial 𝑝(𝐴

• 𝑥) ∈ F[𝑥]. For any algebraic set 𝑉 ⊂ F 𝑛 , 𝑉 𝐴 denotes the algebraic set {𝐴 -1 • 𝑥 | 𝑥 ∈ 𝑉 }.
For two blocks of indeterminates 𝑥 and 𝑦, we consider frequently the matrices that act only on the variables 𝑥 and leave 𝑦 invariant. Those matrices form a subset denoted by GL(𝑛, 𝑡, F) of GL(𝑛 + 𝑡, F).

3 Algorithm for real root finding

The 𝑆 2 algorithm

We recall the algorithm in [START_REF] Safey | Polar varieties and computation of one point in each connected component of a smooth real algebraic set[END_REF], which we refer to as the 𝑆 2 algorithm, that computes at least one point per connected component of a smooth real algebraic set.

Let 𝑓 = (𝑓1, . . . , 𝑓𝑠) be a polynomial sequence in R[𝑥1, . . . , 𝑥𝑛]. For 1 ≤ 𝑖 ≤ 𝑑, let 𝜑𝑖 be the projection (𝑥1, . . . , 𝑥𝑛) → (𝑥1, . . . , 𝑥𝑖). When 𝑓 defines a smooth equi-dimensional algebraic set 𝒱 ⊂ C 𝑛 and generates a radical ideal, one can build a polynomial system using appropriate minors of jac(𝑓 ) to define crit(𝜑𝑖, 𝒱). Note that the critical loci are nested

crit(𝜑1, 𝒱) ⊂ crit(𝜑2, 𝒱) ⊂ • • • crit(𝜑 𝑑 , 𝒱) ⊂ crit(𝜑 𝑑+1 , 𝒱) = 𝒱.
Note also that in generic coordinates crit(𝜑𝑖, 𝒱) has expected dimension 𝑖 -1. The algorithm in [START_REF] Safey | Polar varieties and computation of one point in each connected component of a smooth real algebraic set[END_REF] then exploits stronger properties of these critical loci under some genericity assumption on the coordinate system (which are satisfied through a generic linear change of coordinates).

Proposition 2. [30, Theorem 2] Assume that 𝑓 defines a smooth equi-dimensional algebraic set and generates a radical ideal.

Then, there exists a non-empty Zariski open set A 𝑓 ∈ GL(𝑛, C) such that for 𝐴 ∈ A 𝑓 the following holds:

• the restriction of 𝜑𝑖-1 to crit(𝜑𝑖, 𝒱 𝐴 ) is proper;

• the set crit(𝜑𝑖, 𝒱 𝐴 ) is either empty or of dimension 𝑖 -1 for 1 ≤ 𝑖 ≤ 𝑑 + 1.
The first item in Proposition 2 implies the second one. The index in the notation A 𝑓 indicates that the non-empty Zariski open set depends on 𝑓 . Algorithm 𝑆 2 considers fibers of the above critical loci with the convention 𝜋0 : 𝑥 → •. Proposition 2 is the cornerstone of the 𝑆 2 algorithm which can be derived from the following one. Proposition 3. [30, Theorem 2] Assume that 𝑓 defines a smooth equi-dimensional algebraic set and generates a radical ideal.

For 𝐴 ∈ A 𝑓 ∩ GL(𝑛, Q) as defined in Proposition 2 and 𝛼 = (𝛼1, . . . , 𝛼 𝑑 ) ∈ R 𝑑 , the union of the sets

crit(𝜑𝑖, 𝒱 𝐴 ) ∩ 𝜑 -1 𝑖-1 ((𝛼1, . . . , 𝛼𝑖-1)), 1 ≤ 𝑖 ≤ 𝑑 + 1
is finite and meets all connected components of 𝒱 ∩ R 𝑛 .

Example 4. Let 𝒱 be the smooth surface defined by 𝑥 2 1 -𝑥 2 2 -𝑥 2 3 = 1. The Jacobian matrix jac(𝑓 ) writes simply (2𝑥1, -2𝑥2, -2𝑥3). It turns out that the identity matrix lies in the set A defined in Proposition 2. Taking 𝛼 = (0, 0), we obtain 3 zero-dimensional systems:

• crit(𝜑1, 𝒱): {-2𝑥2, -2𝑥3, 𝑥 2 1 -𝑥 2 2 -𝑥 2 3 -1}, • crit(𝜑2, 𝒱) ∩ 𝜑 -1 1 (0): {-2𝑥3, 𝑥 2 1 -𝑥 2 2 -𝑥 2 3 -1, 𝑥1}, • 𝒱 ∩ 𝜑 -1 2 (0): {𝑥 2 1 -𝑥 2 2 -𝑥 2 3 -1, 𝑥1, 𝑥2}.
The first system admits two real solutions (1, 0, 0) and (-1, 0, 0). The other systems do not have any real solution.

The two points (1, 0, 0) and (-1, 0, 0) intersect the two connected components of 𝒱.

Of course, on general examples, one would need to perform a randomly chosen linear change of variables but this example illustrates already how 𝑆 2 works.

Parametric variant of 𝑆 2

We present now a parametric variant of 𝑆 2 . We let 𝑓 = (𝑓1, . . . , 𝑓𝑠) ⊂ Q[𝑦][𝑥] where 𝑦 = (𝑦1, . . . , 𝑦𝑡) are considered as parameters and 𝑥 = (𝑥1, . . . , 𝑥𝑛) are variables. The algebraic set defined by 𝑓 is denoted by 𝒱 ⊂ C 𝑡 × C 𝑛 . Let 𝜋 denote the projection (𝑥, 𝑦) ↦ → 𝑦 and 𝜋𝑖 denote the projection (𝑦, 𝑥) ↦ → (𝑦, 𝑥1, . . . , 𝑥𝑖).

Considering Q(𝑦) as the ground field, the parametric variant of 𝑆 2 computes on the input 𝑓 a list of finite subsets of Q[𝑦][𝑥], each of which generates a zero-dimensional ideal of Q(𝑦) [𝑥]. These subsets are basically

𝑓 𝐴 ∪ Δ 𝐴 𝑖 ∪ {𝑥1 -𝛼1, . . . , 𝑥𝑖-1 -𝛼𝑖-1}
, where (𝐴, 𝛼) is randomly chosen in GL(𝑛, 𝑡, Q) × Q 𝑛 and Δ 𝐴 𝑖 is the set of all (𝑛 -𝑑)-minors of the Jacobian matrix of 𝑓 𝐴 w.r.t. 𝑥𝑖, . . . , 𝑥𝑛.

The rest of this subsection is devoted to the auxiliary results that allow us to use the 𝑆 2 algorithm parametrically as above. 4 One-block QE algorithm

Description

In this subsection, we describe our algorithm for solving our variant of the quantifier elimination problem. The input is a polynomial sequence 𝑓 = (𝑓1, . . . , 𝑓𝑠) ⊂ Q[𝑥, 𝑦] satisfying Assumptions (A) and (B). Further, we denote by 𝑍(Ψ) the zero set of any semi-algebraic formula Ψ, i.e., 𝑍(Ψ) = {𝑦 ∈ R 𝑡 | Ψ(𝑦) is true}.

By Assumptions (A) and (B), the fiber dimension theorem [START_REF] Shafarevich | Basic Algebraic Geometry 1: Varieties in Projective Space[END_REF]Theorem 1.25] implies that there exists a nonempty Zariski open subset of C 𝑡 such that 𝜋 -1 (𝜂) has dimension 𝑑. The idea is to apply the parametric variant of 𝑆 2 with Q(𝑦) as a ground field.

More precisely, we start by picking randomly (𝐴, 𝛼) in GL(𝑛, 𝑡, Q) × Q 𝑛 and apply the change of variables 𝑥 ↦ → 𝐴 • 𝑥 to the input 𝑓 to obtain a new sequence 𝑓 𝐴 . As 𝐴 acts only on 𝑥, 𝜋(𝑉 (𝑓 𝐴 ) ∩ R 𝑛+𝑡 ) = 𝜋(𝒱 R ). Hence, a quantifier-free formula that solves our problem for 𝑓 𝐴 is also a solution of the same problem for 𝑓 .

Let jac 𝑥 (𝑓 𝐴 ) be the Jacobian matrix of 𝑓 𝐴 w.r.t. the variables 𝑥 = (𝑥1, . . . , 𝑥𝑛). We denote by 𝐽1, . . . , 𝐽𝑛 the columns of jac 𝑥 (𝑓 𝐴 ) respectively. For 1 ≤ 𝑖 ≤ 𝑑, let 𝑊 𝐴,𝛼 𝑖 be the union of 𝑓 𝐴 , all the (𝑛 -𝑑)-minors of the matrix consisting of the columns 𝐽𝑖+1, . . . , 𝐽𝑛 and {𝑥1 -𝛼1, . . . , 𝑥𝑖-1 -𝛼𝑖-1}. In particular, 𝑊 𝐴,𝛼 𝑑+1 denotes 𝑓 𝐴 ∪ {𝑥1 -𝛼1, . . . , 𝑥 𝑑 -𝛼 𝑑 }.

We prove later in Lemma 8 that, for generic (𝐴, 𝛼), the ideals of Q(𝑦)[𝑥] generated by 𝑊 𝐴,𝛼 𝑖 are radical and zero-dimensional.

We now solve the quantifier elimination problem for each of the polynomial sets 𝑊 𝐴,𝛼 𝑖 . For this step, we refer to a subroutine called RealRootClassification that takes as input a polynomial sequence 𝐹 ⊂ Q[𝑦][𝑥] such that the ideal of Q(𝑦)[𝑥] generated by 𝐹 is radical and zero-dimensional and computes a quantifier-free formula Φ𝐹 in 𝑦 such that 𝑍(Φ𝐹 ) is dense in the interior of 𝜋(𝑉 (𝐹 ) ∩ R 𝑛+𝑡 ). For this task, we refer to the algorithm of [START_REF] Phuoc | Solving parametric systems of polynomial equations over the reals through Hermite matrices[END_REF]. We will explain the essential details of this subroutine later in Subsection 4.2.

Calling the subroutine RealRootClassification on the inputs 𝑊 𝐴,𝛼 𝑖 gives us the lists of semi-algebraic formulas Φ𝑖. Finally, we return Φ = ∨ 𝑑+1 𝑖=1 Φ𝑖 as the output of our algorithm. The pseudo-code below summarizes our algorithm, we introduce two additional subroutines:

• GenericDimension which takes the sequence 𝑓 and computes the dimension of the ideal generated by 𝑓 in Q(𝑦)[𝑥]. • (𝑛 -𝑑) Minors which takes as input a matrix 𝑀 whose coefficients are in Q[𝑥, 𝑦] and computes all of its (𝑛 -𝑑)-minors.

Real root classification

Now we explain the general ideas of the algorithm presented in [START_REF] Phuoc | Solving parametric systems of polynomial equations over the reals through Hermite matrices[END_REF] that is used in the RealRootClassification subroutine.

Let 𝐹 ⊂ Q[𝑦][𝑥] be a polynomial sequence such that the ideal ⟨𝐹 ⟩ generated by 𝐹 in Q(𝑦)[𝑥] is radical and zero-dimensional.

For such an input 𝐹 , RealRootClassification computes a semi-algebraic formula Φ𝐹 and a polynomial 𝑤∞ ∈ Q[𝑦] that satisfies:

Algorithm 1: One-block quantifier elimination

Input: 𝑓 ∈ Q[𝑦][𝑥] satisfying Assumptions (A) and (B). Output: A formula Φ s.t 𝑍(Φ) is dense in the interior of 𝜋(𝒱 R ). 1 Choose randomly (𝐴, 𝛼) ∈ GL(𝑛, Q) × Q 𝑛 2 𝑓 𝐴 ← 𝑓 (𝐴 • 𝑥) 3 [𝐽1, . . . , 𝐽𝑛] ← jac 𝑥 (𝑓 𝐴 ) 4 𝑑 ← GenericDimension(𝑓 𝐴 ) 5 for 1 ≤ 𝑖 ≤ 𝑑 + 1 do 6 𝑊 𝐴,𝛼 𝑖 ← (𝑛 -𝑑) Minors([𝐽𝑖+1, . . . , 𝐽𝑛]) ∪ {𝑓 𝐴 , 𝑥1 -𝛼1, . . . , 𝑥𝑖-1 -𝛼𝑖-1} 7 Φ𝑖 ← RealRootClassification(𝑊 𝐴,𝛼 𝑖 ) 8 return Φ ← ∨ 𝑑+1 𝑖=1 Φ𝑖 • 𝑍(Φ𝐹 ) ⊂ 𝜋(𝑉 (𝐹 ) ∩ R 𝑛+𝑡 ), • 𝑍(Φ𝐹 ) ∖ 𝑉 (𝑤∞) = 𝜋(𝑉 (𝐹 ) ∩ R 𝑛+𝑡 ) ∖ 𝑉 (𝑤∞).
The algorithm in [START_REF] Phuoc | Solving parametric systems of polynomial equations over the reals through Hermite matrices[END_REF] is based on constructing a symmetric matrix 𝐻𝐹 with entries in Q(𝑦) associated to 𝐹 . This matrix is basically a parametric version of the classical Hermite matrix for the ideal ⟨𝐹 ⟩ (see, e.g., [START_REF] Basu | Algorithms in Real Algebraic Geometry[END_REF]Chap. 4]), which provides the number of distinct real/complex solutions of the system 𝐹 (𝜂, •) through the signature/rank of the specialization of 𝐻𝐹 at 𝜂 [22, Corollary 17].

Let 𝐺𝐹 be the reduced Gröbner basis of the ideal in Q[𝑥, 𝑦] generated by 𝐹 w.r.t. the grevlex(𝑥) ≻ grevlex(𝑦) order. We consider the leading coefficients of the elements of 𝐺𝐹 in variables 𝑥 w.r.t. the grevlex(𝑥) order, which are polynomials in Q[𝑦]. Then, 𝑤𝐹 is taken as the square-free part of the product of these leading coefficients. The polynomial 𝑤𝐹 defines a proper algebraic subset of 𝑦-space over which the matrix 𝐻𝐹 does not have good specialization property [START_REF] Phuoc | Solving parametric systems of polynomial equations over the reals through Hermite matrices[END_REF]Proposition 16]).

Next, we choose randomly a matrix 𝑄 ∈ GL(𝛿, Q). As the entries of 𝐻𝐹 lie in Q(𝑦), so do the leading principal minors 𝑀1, . . . , 𝑀 𝛿 of 𝑄 𝑇 • 𝐻𝐹 • 𝑄. Let 𝑚1, . . . , 𝑚 𝛿 be the numerators of those minors, which are in Q[𝑦]. A sufficiently generic matrix 𝑄 ensures that none of the 𝑚𝑖's is identically zero, hence allowing us to determine the signature of 𝐻𝐹 according to the signs of the 𝑚𝑖's. We then compute a finite set of points 𝐿 of Q 𝑡 that intersects every connected component of the semi-algebraic set defined by ∧ 𝛿 𝑖=1 (𝑚𝑖 ̸ = 0) ∧ (𝑤𝐹 ̸ = 0). Over those connected components, the polynomials 𝑚𝑖 are sign-invariant. Since the signature of 𝐻𝐹 (𝜂) can be deduced from the signs of the 𝑚𝑖(𝜂), the number of real solutions of 𝐹 (𝜂, •) is also invariant when 𝜂 varies in each connected component.

Let 𝐿0 = {𝜂 ∈ 𝐿 | 𝐹 (𝜂, •) admits at least one real solution} and

Φ𝐹 = (︁ ∨𝜂∈𝐿 0 (︁ ∧ 𝛿 𝑖=1 sign 𝑀𝑖 = sign 𝑀𝑖(𝜂) )︁)︁ ∧ (𝑤𝐹 ̸ = 0).
Then, 𝑤∞ is taken as the product of the 𝑚𝑖's and 𝑤𝐹 . We return Φ𝐹 , 𝑤∞ as the output of RealRootClassification for 𝐹 . The correctness of this algorithm is given in [START_REF] Phuoc | Solving parametric systems of polynomial equations over the reals through Hermite matrices[END_REF]Proposition 28].

In the pseudo-code below, we introduce the subroutines

• HermiteMatrix which takes as input a polynomial sequence • PrincipalMinors computes the leading principal minors of the matrix 𝑄 𝑇 • 𝐻𝐹 • 𝑄.

𝐹 ⊂ Q[𝑦][𝑥] such that the ideal ⟨𝐹 ⟩ ⊂ Q(𝑦)[𝑥] is zero-dimensional
• SamplePoints which takes as input a polynomial sequence 𝑚1, . . . , 𝑚 𝛿 , 𝑤𝐹 ∈ Q[𝑦] and computes a finite set of points that intersects every connected component of the semi-algebraic set defined by ∧ 𝛿 𝑖=1 𝑚𝑖 ̸ = 0 ∧ 𝑤𝐹 ̸ = 0. We describe such a subroutine in [START_REF] Phuoc | Solving parametric systems of polynomial equations over the reals through Hermite matrices[END_REF]Sec. 3].

• Signature which evaluates the signature of a symmetric matrix of entries in Q.

We end this subsection by an example to illustrate our algorithm.

∪ 𝑑+1 𝑖=1 𝜋(𝑉 (𝑊 𝐴,𝛼 𝑖 ) ∩ R 𝑛+𝑡 ) ∖ 𝒲. We have that ∪ 𝑑+1 𝑖=1 𝜋(𝑉 (𝑊 𝐴,𝛼 𝑖 ) ∩ R 𝑛+𝑡 ) ∖ 𝒲 = ∪ 𝑑+1 𝑖=1 (𝜋(𝑉 (𝑊 𝐴,𝛼 𝑖 ) ∩ R 𝑛+𝑡 ) ∖ 𝒲) = ∪ 𝑑+1 𝑖=1 (𝑍(Φ𝑖) ∖ 𝒲) = (∪ 𝑑+1 𝑖=1 𝑍(Φ𝑖)) ∖ 𝒲.
Therefore, 𝑍(Φ) ∖ 𝒲 = 𝜋(𝒱 R ) ∖ 𝒲 and 𝜋(𝒱 R ) ∖ 𝑍(Φ) is of measure zero in R 𝑡 . By Assumption (B), we conclude that 𝑍(Φ) is a dense subset of the interior of 𝜋(𝒱 R ).

Complexity analysis

We now estimate the arithmetic complexity of Algorithm 1 once 𝐴 ∈ O ∩ GL(𝑛, 𝑡, Q) and 𝛼 ∈ X ∩ Q 𝑛 as in Proposition 6 are found from a random choice. In this section, the input 𝑓 forms a regular sequence of Q[𝑥, 𝑦] (then, 𝑠 = 𝑛 -𝑑) satisfying Assumptions (A) and (B). As the calls to RealRootClassification on the systems 𝑊 𝐴,𝛼 𝑖 are the most costly parts of our algorithm, we focus on estimating their complexities. To this end, we introduce the following assumption.

Assumption C. Let 𝐹 ⊂ Q[𝑥, 𝑦] and 𝐺 be the reduced Gröbner basis of 𝐹 w.r.t. the grevlex(𝑥) ≻ grevlex(𝑦) order. Then 𝐹 is said to satisfy Assumption (C) if and only if for any 𝑔 ∈ 𝐺, the total degree of 𝑔 in both 𝑥 and 𝑦 equals the degree of 𝑔 w.r.t. only 𝑥.

In [START_REF] Phuoc | Solving parametric systems of polynomial equations over the reals through Hermite matrices[END_REF]Lemma 13], it is proven that, on an input 𝐹 satisfying Assumption (C), the polynomial 𝑤∞ in Real-RootClassification is simply 1 and the entries of the Hermite matrix 𝐻𝐹 are in Q[𝑦]. Therefore, the SamplePoints subroutine is called on the sequence of leading principal minors of the parametric Hermite matrices. Again, with Assumption (C), the degree of these leading principal minors can be bounded (see [START_REF] Phuoc | Solving parametric systems of polynomial equations over the reals through Hermite matrices[END_REF]Lemma 32]). Therefore, one obtains the complexity bound for RealRootClassification for such 𝐹 .

Back to our problem, we will establish a degree bound for the polynomials given into SamplePoints. Some notations that will be used further are introduced below.

Let 𝐷 be a bound of the total degree of elements of 𝑓 . The zero-dimensional ideal of Q(𝑦) It remains to estimate the sum ∑︀ 𝑏∈𝐵 𝑖 deg(𝑏). A bound is obtained by simply taking the product of the highest degree appeared in 𝐵𝑖 and its cardinality. As the Hilbert series of Q(𝑦)[𝑥]/⟨𝑊 𝐴,𝛼 𝑖 ⟩ when 𝑓 is a generic system are known (see, e.g., [START_REF] Faugère | On the complexity of the generalized minrank problem[END_REF][START_REF] Spaenlehauer | On the complexity of computing critical points with Gröbner bases[END_REF]), explicit bounds of these quantities are easily obtained. Lemma 11. Let 𝐵𝑖 be defined as above. There exists a dense Zariski open subset Q of C[𝑥, 𝑦] 𝑠 ≤𝐷 such that, for 𝑓 ∈ Q, the following inequality holds for 1 ≤ 𝑖 ≤ 𝑑 + 1:

∑︀ 𝑏∈𝐵 𝑖 deg 𝑥 (𝑏) ≤ (𝑛 + 𝑠 -𝑖) 𝐷 𝑠 (𝐷 -1) 𝑛-𝑖-𝑠+2 (︀ 𝑛-𝑖+1 𝑠 )︀ .
Proof. By [26, Theorem 2.2], there exists a dense Zariski open subset Q1,1 ⊂ C[𝑥, 𝑦] 𝑠 ≤𝐷 such that for 𝑓 ∈ Q1,1, the degree of ⟨𝑊 𝐴,𝛼 1 ⟩, which equals to the cardinality of 𝐵1, is bounded by

𝐷 𝑠 ∑︀ 𝑛-𝑠 𝑘=0 (︀ 𝑘+𝑠-1 𝑠-1 )︀ (𝐷 -1) 𝑘 ≤ 𝐷 𝑠 (𝐷 -1) 𝑛-𝑠 (︀ 𝑛 𝑠 )︀ .
On the other hand, by [START_REF] Spaenlehauer | On the complexity of computing critical points with Gröbner bases[END_REF]Corollary 3.2], there exists a dense Zariski open subset Q1,2 ⊂ C[𝑥, 𝑦] 𝑠 ≤𝐷 such that for 𝑓 ∈ Q1,2, the witness degree, i.e., the highest degree appeared in the reduced Gröbner basis of 𝑊 𝐴,𝛼 1 w.r.t. grevlex(𝑥), is bounded by (𝑛+𝑠-1)𝐷-2𝑛+2. Thus, the highest degree in 𝐵1 is bounded by (𝑛+𝑠-1)𝐷-2𝑛+1. Thus, let Q1 = Q1,1 ∩ Q1,2 and, for 𝑓 ∈ Q1, we obtain

∑︀ 𝑏∈𝐵 1 deg(𝑏) ≤ (𝑛 + 𝑠 -1) 𝐷 𝑠 (𝐷 -1) 𝑛-𝑠+1 (︀ 𝑛 𝑠 )︀ .
For 1 ≤ 𝑖 ≤ 𝑑, the system 𝑊 𝐴,𝛼 𝑖 can also be interpreted as the system defining the critical locus of the projection (𝑥𝑖, . . . , 𝑥𝑛) ↦ → 𝑥𝑖 restricted to 𝑉 (︀ 𝑓 𝐴 (𝛼1, . . )︁ for each 𝑝 ∈ 𝐹 . Further, ⟨ ℎ 𝐹 ⟩ ℎ denotes the ideal of C[𝑥, 𝑦, 𝑦𝑡+1] generated by ℎ 𝐹 .

We consider the following property (C1): The leading terms appearing in the reduced Gröbner basis of ⟨ ℎ 𝐹 ⟩ ℎ w.r.t. grevlex(𝑥 ≻ 𝑦 ≻ 𝑦𝑡+1) do not involve any of the variables 𝑦1, . . . , 𝑦𝑡+1. By the proof of [START_REF] Phuoc | Solving parametric systems of polynomial equations over the reals through Hermite matrices[END_REF]Prop. 30], the property (C1) implies Assumption (C).

Following the proof of [2, Prop. 7], if 𝑦𝑗+1 is not a zero-divisor of the quotient ring C[𝑥, 𝑦, 𝑦𝑡+1]/⟨ ℎ 𝐹, 𝑦1, . . . , 𝑦𝑗⟩ ℎ for every 0 ≤ 𝑗 ≤ 𝑡, then 𝐹 satisfies the property (C1). This property means that (𝑦1, . . . , 𝑦𝑡+1) forms a regular sequence in the quotient ring C[𝑥, 𝑦, 𝑦𝑡+1]/⟨ ℎ 𝐹 ⟩ ℎ . We name this property as (C2). 

Experiments

We compare the practical behavior of Algorithm 1 with QuantifierElimination (MAPLE's RegularChains) and Resolve (MATHEMATICA) on an Intel(R) Xeon(R) Gold 6244 3.60GHz machine of 754GB RAM. The timings are given in seconds (s.), minutes (m.) and hours (h.). The symbol ∞ means that the computation is stopped after 72 hours without getting the result. We use our MAPLE implementation for Hermite matrices, in which FGB package [START_REF] Faugère | FGb: A Library for Computing Gröbner Bases[END_REF] is used for Gröbner bases computation. The computation of sample points is done by RAGLIB [START_REF] Safey | Real alebraic geometry library[END_REF] which uses msolve [START_REF] Berthomieu | msolve: A Library for Solving Polynomial Systems[END_REF] for polynomial system solving.

For RealRootClassification, we use the following notations:

• HM: timings of computing Hermite matrices and their minors.

• SP: total timings of computing the sample points.

• SIZE: the largest size of the Hermite matrices.

• DEG: the highest degree appeared in the output formulas.

Start with random dense systems, we fix the total degree 𝐷 = 2 and run our algorithm for various (𝑡, 𝑛, 𝑠). In Table 1, SamplePoints accounts for the major part of our timings. While our algorithm can tackle these examples, neither MAPLE nor MATHEMATICA finish within 72h. The theoretical degree bound agrees with the practical observations. This agrees with our complexity result. On smaller problems, we observe that formulas computed by MAPLE and MATHEMATICA have larger degrees than our output. Hence, these implementations, based on CAD, suffer from its doubly exponential complexity while our implementation takes advantage of the singly exponential complexity of our algorithm. Table 2 shows the timings for sparse systems. Each polynomial is generated with 𝐷 = 2 and has 2𝑛 terms. Even Assumption (C) is not satisfied, our algorithm still applies. Thanks to the sparsity, the size and degree of the matrices in our algorithm are smaller than in the dense cases. Thus, our algorithm runs faster here than in Table 1 

𝑡 𝑛 𝑠
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 1 Introduction Problem statement. Let 𝑓 = (𝑓1, . . . , 𝑓𝑠) ⊂ Q[𝑦][𝑥] with 𝑥 = (𝑥1, . . . , 𝑥𝑛) and 𝑦 = (𝑦1, . . . , 𝑦𝑡). We aim at solving the following quantifier elimination problem over the reals ∃(𝑥1, . . . , 𝑥𝑛) ∈ R 𝑛 𝑓1(𝑥, 𝑦) = • • • = 𝑓𝑠(𝑥, 𝑦) = 0.

Lemma 5 .Proposition 6 .

 56 When Assumptions (A) and (B) hold, there exists a non-empty Zariski open subset B of C 𝑡 such that for every 𝜂 ∈ B, the specialization 𝑓 (𝜂, •) of 𝑓 at 𝜂 generates a radical equi-dimensional ideal whose algebraic set is either empty or has dimension 𝑑.Proof. Under Assumption (B), by the fiber dimension theorem[START_REF] Shafarevich | Basic Algebraic Geometry 1: Varieties in Projective Space[END_REF] Theorem 1.25], there exists a non-empty Zariski open subset B ′ of C 𝑡 such that 𝜋 -1 (𝜂) ∩ 𝒱 is an algebraic set of dimension 𝑑.Let 𝒲 denote the set of points of 𝒱 at which the Jacobian matrix jac 𝑥 (𝑓 ) of 𝑓 w.r.t. 𝑥 has rank at most 𝑛-𝑑-1. We note that 𝒲 = crit(𝜋, 𝒱) ∪ sing(𝒱). The algebraic version of Sard's theorem[START_REF] Safey | A nearly optimal algorithm for deciding connectivity queries in smooth and bounded real algebraic sets[END_REF] Proposition B2] implies that 𝜋(crit(𝜋, 𝒱)) is contained in a proper Zariski closed subset of C 𝑡 . On the other hand, as Assumptions (A) hold, the dimension of 𝜋 (sing(𝒱)) is less than 𝑡. Thus, it is also contained in a proper Zariski closed subset of C 𝑡 . Hence, the Zariski closure of 𝜋(𝒲) is a proper Zariski closed subset of C 𝑡 . Let B be the intersection of the complement in C 𝑡 of this Zariski closure with B ′ . For 𝜂 ∈ B, the set {𝑥 ∈ C 𝑛 | 𝑓 (𝜂, 𝑥) = 0, rank jac 𝑥 (𝑓 )(𝜂) < 𝑛 -𝑑} is empty. Since the dimension of 𝜋 -1 (𝜂)∩𝒱 is 𝑑 and the Jacobian matrix jac 𝑥 (𝑓 )(𝜂, •) of 𝑓 (𝜂, •) w.r.t. the variables 𝑥 is of rank 𝑛 -𝑑 for every (𝜂, 𝑥) ∈ 𝒱 ∩ 𝜋 -1 (𝜂), the ideal 𝑓 (𝜂, •) is radical and defines a smooth and equi-dimensional set of dimension 𝑑 by Jacobian criterion [14, Theorem 16.19]. Lemma 5 shows that when specializing 𝑦 = (𝑦1, . . . , 𝑦𝑡) to a generic point 𝜂 ∈ B ∩ R 𝑡 in 𝑓 , one obtains 𝑓 (𝜂, •) satisfying the assumptions of Proposition 2. One could then apply Algorithm 𝑆 2 to 𝑓 (𝜂, •) to grab sample points in the real algebraic set it defines. However, proceeding this way would lead us to use a change of variables encoded by a matrix 𝐴 depending on 𝜂. The result below shows that choosing one generic change of variables will be valid for most of parameters' values. Assume that Assumptions (A) and (B) hold. There exists a dense Zariski open subset O of GL(𝑛, 𝑡, C) such that for every 𝐴 ∈ O ∩ GL(𝑛, 𝑡, Q) the following holds. There exists a dense Zariski open subset Y𝐴 of C 𝑡 such that Y𝐴 is a subset of the Zariski open set B in Lemma 5 and 𝐴 lies in the Zariski open set A 𝑓 (𝜂,.) defined in Proposition 2 for every 𝜂 ∈ Y𝐴.Proof. Let C(𝑦) denote the algebraic closure of C(𝑦). We consider C(𝑦) as the coefficient field. The proof of [30, Theorem 1] is purely algebraic and then is valid over the based field C(𝑦). Hence, there exists a non-empty Zariski open subset Õ of GL(𝑛, 𝑡, C(𝑦)) such that for 𝐴 ∈ Õ ∩ GL(𝑛, 𝑡, Q), the variables (𝑥1, . . . , 𝑥𝑖-1) is in Noether position w.r.t. the ideal in Q(𝑦)[𝑥] generated by 𝑓 𝐴 + Δ 𝐴 𝑖 for 1 ≤ 𝑖 ≤ 𝑑 + 1 where Δ 𝐴 𝑖 is the set of maximal minors of the truncated Jacobian matrix of jac(𝑓 𝐴 ) with all the partial derivatives w.r.t. 𝑦 and 𝑥𝑗 for 1 ≤ 𝑗 ≤ 𝑖 being removed (hence these minors are the ones defining crit(𝜋𝑖, 𝒱) ∪ sing(𝒱)). This is equivalent to the following. For 1 ≤ 𝑖 ≤ 𝑑 + 1, 𝑖 ≤ 𝑗 ≤ 𝑛, there exist the polynomials 𝑝𝑖,𝑗 ∈ Q(𝑦)[𝑥1, . . . , 𝑥𝑖-1, 𝑥𝑗] such that each 𝑝𝑖,𝑗 lies in the ideal of Q(𝑦)[𝑥] generated by 𝑓 𝐴 ∪ Δ 𝐴 𝑖 and it is monic when considering 𝑥𝑗 as the only variable (with the coefficients in Q(𝑦)[𝑥1, . . . , 𝑥𝑖-1]). The denominators of 𝑝𝑖,𝑗 are then polynomials in Q[𝑦]. We choose Y𝐴 to be the intersection of the nonempty Zariski open set B defined in Lemma 5 and the non-empty Zariski open set defined by the non-vanishing of all the denominators appeared in the 𝑝𝑖,𝑗's. Thus, for 𝜂 ̸ ∈ Y𝐴, 𝑝𝑖,𝑗(𝜂, •) ∈ Q[𝑥1, . . . , 𝑥𝑖-1, 𝑥𝑗] is monic in 𝑥𝑗. Consequently, (𝑥𝑖, . . . , 𝑥𝑛) is in Noether position w.r.t. the ideal of C[𝑥] generated by 𝑓 𝐴 (𝜂, •) ∪ Δ 𝐴 𝑖 (𝜂, •). Finally, taking O = Õ ∩ GL(𝑛, 𝑡, C), the conclusion follows.

  and computes the parametric Hermite matrix associated to 𝐹 w.r.t. the grevlex(𝑥) order. The description of this subroutine is given in [22, Algo. 2].

  [𝑥] generated by 𝑊 𝐴,𝛼 𝑖 is denoted by ⟨𝑊 𝐴,𝛼 𝑖 ⟩. The quotient ring Q(𝑦)[𝑥]/⟨𝑊 𝐴,𝛼 𝑖 ⟩ is a finite dimensional Q(𝑦)-vector space. Let 𝐺𝑖 be the reduced Gröbner basis of the ideal of Q[𝑥, 𝑦] generated by 𝑊 𝐴,𝛼 𝑖 w.r.t. grevlex(𝑥) ≻ grevlex(𝑦) and 𝐵𝑖 be the monomial basis of Q(𝑦)[𝑥]/⟨𝑊 𝐴,𝛼 𝑖 ⟩ constructed using 𝐺𝑖 as in Section 2. We begin with the following lemma. Lemma 10. When Assumption (C) holds for 𝑊 𝐴,𝛼 𝑖 , any leading principal minor of the matrix 𝐻𝑖 has degree bounded by 2 ∑︀ 𝑏∈𝐵 𝑖 deg(𝑏). Proof. The proof can be deduced from [22, Lemma 13, Proposition 31, Lemma 32]. It is mainly based on the control of degrees appearing in the normal form computation in Q(𝑦)[𝑥]/⟨𝑊 𝐴,𝛼 𝑖 ⟩.

From the proof of [ 35 , 1 ⟩ 1 ,

 3511 Lemma 2.1, Lemma 2.2] and [14, Proposition 18.13], there exists a dense Zariski open subset P1 ⊂ C[𝑥, 𝑦] 𝑠 ≤𝐷 such that for 𝑓 ∈ P1, there exists a dense Zariski open subset K 𝑓 ,1 ⊂ GL(𝑛, 𝑡, C) × C 𝑛 such that for (𝐴, 𝛼) ∈ K 𝑓 ,1 , the quotient ring C[𝑥, 𝑦, 𝑦𝑡+1]/⟨ ℎ 𝑊 𝐴,𝛼 ℎ is a Cohen-Macaulay ring of dimension 𝑡 + 1 and the ideal ⟨ ℎ 𝑊 𝐴,𝛼 𝑦1, . . . , 𝑦𝑡+1⟩ ℎ has dimension 0. By the unmixedness theorem [14, Corollary 18.14], (𝑦1, . . . , 𝑦𝑡+1) is a regular sequence over C[𝑥, 𝑦, 𝑦𝑡+1]/⟨ ℎ 𝑊 𝐴,𝛼 1 ⟩ ℎ . Thus, 𝑊 𝐴,𝛼 1 satisfies the property (C2) and Assumption (C) holds. Similar for 2 ≤ 𝑖 ≤ 𝑑 + 1, we obtain dense Zariski subsets P𝑖 ⊂ C[𝑥, 𝑦] 𝑠 ≤𝐷 and K 𝑓 ,𝑖 ⊂ GL(𝑛, 𝑡, C) × C 𝑛 for each 𝑓 ∈ P𝑖. Taking P = ∩ 𝑑+1 𝑖=1 P𝑖, and K 𝑓 = ∩ 𝑑+1 𝑖=1 K 𝑓 ,𝑖 , we conclude the proof. Proof of Theorem 1. It is well-known that Assumptions (A) and (B) are generic. Also, the set of regular sequences is dense in C[𝑥, 𝑦] 𝑠 ≤𝐷 . Thus, there exists a dense Zariski open subset R ⊂ C[𝑥, 𝑦] 𝑠 ≤𝐷 such that for any 𝑓 ∈ R, 𝑓 forms a regular sequence satisfying Assumptions (A) and (B). As 𝑉 (𝑓 ) has dimension 𝑑 + 𝑡 and 𝑓 forms a regular sequence in Q[𝑥, 𝑦], 𝑑 = 𝑛 -𝑠. Algorithm 1 consists of (𝑑 + 1) calls to RealRootClassification on 𝑊 𝐴,𝛼 𝑖 . Let P be the dense Zariski open set in Proposition 12 and Q = P ∩ R. Then, for 𝑓 ∈ Q, SamplePoints is called on a list of polynomials in Q[𝑦] of degree bounded by 𝒟. The number of principal minors is equal to the dimension of the quotient ring Q(𝑦)[𝑥]/⟨𝑊 𝐴,𝛼 𝑖 ⟩, which is also bounded by 𝒟. Applying [22, Theorem 2], each call to RealRootClassification on 𝑊 𝐴,𝛼 𝑖 costs at most 𝑂 ̃︀ (︀ 8 𝑡 𝒟 3𝑡+2 (︀ 𝑡+𝒟 𝑡 )︀)︀ arithmetic operations in Q. In total, the arithmetic complexity of Algorithm 1 is bounded by 𝑂 ̃︀ (︀ (𝑛 -𝑠 + 1) 8 𝑡 𝒟 3𝑡+2 (︀ 𝑡+𝒟 𝑡 )︀)︀ .

  property 𝑃 is said to be generic over C[𝑥, 𝑦] 𝑠 𝐷 if and only if there exists a non-empty Zariski open subset P ⊂ C[𝑥, 𝑦] 𝑠𝐷 such that the property 𝑃 holds for every 𝑓 ∈ P.Our complexity result is then stated below. The notation 𝑂 ̃︀(𝑔) means 𝑂(𝑔 log 𝜅 (𝑔)) for some 𝜅 > 0.

	𝑂 ̃︀	(︀ (𝑛 -𝑠 + 1) 8 𝑡 𝒟 3𝑡+2 (︀ 𝑡+𝒟

Theorem 1. Let 𝒟 = 2(𝑛 + 𝑠) 𝐷 𝑠 (𝐷 -1) 𝑛-𝑠+1 (︀ 𝑛 𝑠 )︀ . There exists a non-empty Zariski open subset F of C[𝑥, 𝑦] 𝑠 ≤𝐷 and a probabilistic algorithm such that, for every 𝑓 ∈ F , this algorithm, in case of success, computes a semi-algebraic formula Φ defining a dense subset of the interior of 𝜋(𝑉 (𝑓 ) ∩ R 𝑡+𝑛 ) within 𝑡 )︀)︀ arithmetic operations in Q and Φ involves only polynomials in Q[𝑦] of degree at most 𝒟.

  t. 𝐺. A polynomial 𝑝 is reduced by 𝐺 if 𝑝 equals to its normal form w.r.t. 𝐺. 𝑖 is proper at 𝛽 ∈ C 𝑖 if there exists a neighborhood 𝒪 of 𝛽 such that 𝜙 -1 (𝒪) is compact, where 𝒪 denotes the closure of 𝒪 in the Euclidean topology. If 𝜙 is proper everywhere on its image, we say that the map 𝜙 is proper. The properness is strongly related to the following notion of Noether normalization.Let F be a field and 𝐼 be an ideal of F[𝑥1, . . . , 𝑥𝑛]. The variables (𝑥𝑖+1, . . . , 𝑥𝑛) are in Noether position w.r.t. 𝐼 if their canonical images in the quotient algebra F[𝑥1, . . . , 𝑥𝑛]/𝐼 are algebraic integers over F[𝑥1, . . . , 𝑥𝑖] and F[𝑥1, . . . , 𝑥𝑖] ∩ 𝐼 = ⟨0⟩. Once F = C and the variables (𝑥𝑖+1, . . . , 𝑥𝑛) is in Noether position w.r.t. 𝐼, the projection of 𝑉 (𝐼) on (𝑥1, . . . , 𝑥𝑖) is proper.

	An ideal 𝐼 is said to be zero-dimensional if the algebraic set 𝑉 (𝐼) ⊂ F	𝑛 is finite and non-empty. When this
	holds, by [10, Sec. 5.3, Theorem 6], the quotient ring F[𝑥]/𝐼 is a F-vector space of finite dimension. The dimension
	of this vector space is also called the algebraic degree of 𝐼; it coincides with the number of points of 𝑉 (𝐼) counted
	with multiplicities [4, Sec. 4.5].	

For any Gröbner basis of 𝐼, the set of monomials in 𝑥 which are irreducible by 𝐺 forms a monomial basis, denoted by 𝐵, of this vector space. For 𝑝 ∈ F[𝑥], the normal form of 𝑝 by 𝐺 can be interpreted as its image in F[𝑥]/𝐼 and is a F-linear combination of elements of 𝐵.

Properness & Noether normalization. A map 𝜙 : 𝑉 ↦ → C

  . , 𝛼𝑖-1, 𝑥𝑖, . . . , 𝑥𝑛) )︀ . Therefore, by replacing 𝑛 by 𝑛 -𝑖 + 1 in the above bound, we deduce that, for 1 ≤ 𝑖 ≤ 𝑑, there exists a dense Zariski open subset Q𝑖 ⊂ C[𝑥, 𝑦] 𝑠 ≤𝐷 such that ∑︀ 𝑏∈𝐵 𝑖 deg(𝑏) ≤ (𝑛 + 𝑠 -𝑖) 𝐷 𝑠 (𝐷 -1) 𝑛-𝑖-𝑠+2 (︀ 𝑛-𝑖+1 For 𝑖 = 𝑑 + 1, the cardinality of 𝐵 𝑑+1 is bounded by 𝐷 𝑠 and the highest degree in 𝐵 𝑑+1 is bounded by 𝑠(𝐷 -1). Thus, the bound holds for 𝑖 = 𝑑 + 1. Taking Q = ∩ 𝑑+1 𝑖=1 Q𝑖, we conclude the proof. Further, 𝒟 denotes 2(𝑛 + 𝑠 -1)𝐷 𝑠 (𝐷 -1) 𝑛-𝑠+1 (︀ 𝑛 Proposition 12. exists a dense Zariski open subset P ⊂ C[𝑥, 𝑦] 𝑠 ≤𝐷 such that, for every 𝑓 ∈ P, there exists a dense Zariski open subset K 𝑓 ⊂ GL(𝑛, 𝑡, C) × C 𝑛 such that for (𝐴, 𝛼) ∈ K 𝑓 , Assumption (C) holds for every system 𝑊 𝐴,𝛼 𝑖 . Proof. Let 𝑦𝑡+1 be a new variable and ℎ Q[𝑥, 𝑦, 𝑦𝑡+1]𝐷 be the set of homogeneous polynomials in Q[𝑥, 𝑦, 𝑦𝑡+1] of degree 𝐷. For 𝐹 ⊂ Q[𝑥, 𝑦], we denote by ℎ 𝐹 ⊂ Q[𝑥, 𝑦, 𝑦𝑡+1] the homogenization of 𝐹 w.r.t. all the variables (𝑥, 𝑦), that means ℎ 𝐹 = 𝑦 𝑦 𝑡+1 , . . . , 𝑥𝑛 𝑦 𝑡+1 , 𝑦 1 𝑦 𝑡+1 , . . . , 𝑦 𝑡

					𝑠	)︀ .
	then prove Theorem 1.			𝑠	)︀ . Now we show that Assumption (C) holds generically
	deg(𝑝) 𝑡+1	• 𝐹	(︁	𝑥 1	𝑦 𝑡+1

Table 1 :

 1 Generic systems with 𝐷 = 2

		HM	SP	SIZE	DEG	MAPLE	MATHEMATICA
	2 3 2	.2 s.	3 s.	8	24	∞	∞
	2 4 2	9 s.	1 m.	12	40	∞	∞
	2 5 2	2 m.	15 m.	16	56	∞	∞
	2 6 2 20 m. 2.5 h.	20	72	∞	∞
	2 7 2 1.5 h.	6 h.	24	88	∞	∞
	3 3 2	6 s.	1 m.	8	24	∞	∞
	3 4 2	5 m.	15 m.	12	40	∞	∞
	3 5 2	2 h.	5 h.	16	56	∞	∞
	3 6 2	8 h.	16 h.	20	72	∞	∞
	4 3 2	40 s.	30 m.	8	24	∞	∞
	4 4 2	6 h.	40 h.	12	40	∞	∞
	5 3 2	5 m.	14 h.	8	24	∞	∞

Table 2 :

 2 while these examples are out of reach of MAPLE and MATHEMATICA. Sparse systems with 𝐷 = 2

	𝑡 𝑛 𝑠	HM	SP	SIZE	DEG	MAPLE	MATHEMATICA
	3 3 2	3 s.	37 s.	7	22	∞	∞
	3 4 2 2 m. 10 m.	9	34	∞	∞
	3 5 2 2 m. 10 m.	9	32	∞	∞
	4 3 2 20 s. 20 m.	7	22	∞	∞
	4 4 2 15 s. 18 m.	5	20	∞	∞

Table 3

 3 gives the timings for structured systems. We separate the variables 𝑥 into blocks of total degree 1; [𝑖, 𝑛 -𝑖] means that the degree in [𝑥1, . . . , 𝑥𝑖] and [𝑥𝑖+1, . . . , 𝑥𝑛] are respectively 1. Here, entries of the Hermite matrices have non-trivial denominators with high degree. Computation those matrices takes the major part. However, our algorithm still outperforms the two other software.

	𝑡 𝑛 𝑠 Block	HM	SP	SIZE	DEG	MAPLE	MATHEMATICA
	3 3 2 [1, 2]	5 s.	45 s.	4	20	∞	∞
	3 4 2 [2, 2]	4 m.	1 m.	8	32	∞	∞
	3 5 2 [2, 3]	2 h.	9 m.	8	40	∞	∞
	3 6 2 [3, 3]	30 h. 45 m.	14	60	∞	∞

Table 3 :

 3 Structured systems

Huu Phuoc Le and Mohab Safey El Din are supported by the ANR grants ANR-18-CE33-0011 SESAME, and ANR-19-CE40-0018 DE RERUM NATURA, the joint ANR-FWF ANR-19-CE48-0015 ECARP project and the European Union's Horizon 2020 research and innovative training network program under the Marie Skłodowska-Curie grant agreement N°813211 (POEMA).

Applying the parametric variant of 𝑆 2 for 𝐴 = 𝐼3 and 𝛼 = (0, 0), we obtain 2 systems 𝑊1 = {2𝑦1𝑥2 + 𝑦2, 𝑓 } and 𝑊2 = {𝑓, 𝑥1}. Next, we call RealRootClassification on these systems, choosing 𝑄 = 𝐼2 to simplify the calculation. We obtain then 𝑤1,∞ = 𝑤2,∞ = 𝑦1 and the Hermite matrices:

)︂ .

The sequences of leading principal minors are respectively [2, Δ/𝑦1] and [2, Δ/𝑦 2 1 ]. We compute then 4 points representing 4 connected components of the semi-algebraic set defined by 𝑦1 ̸ = 0 ∧ Δ ̸ = 0:

(1, 1/8, 0), (-1, 1/8, 0), (1, 1/8, 1/128), (-1, 1/8, -1/128).

The matrix 𝐻2 has non-zero signature over the first and second points, which both lead to the sign condition Δ > 0 ∧ 𝑦 2 1 > 0. Thus, we have Φ2 = (Δ > 0 ∧ 𝑦 2 1 > 0) ∧ (𝑦1 ̸ = 0). For 𝐻1, non-zero signatures are satisfied at the first and fourth points. Evaluating the sign of Δ and 𝑦1 at those points gives

The final output is therefore Φ = Φ1 ∨ Φ2, which is equivalent to

Correctness of Algorithm 1

We start by proving that the polynomial sequences 𝑊 

Let Y𝐴 be the non-empty Zariski open subset of C 𝑡 in Proposition 6 (Y𝐴 depends on the matrix 𝐴). We denote 𝒲 = ∪ 𝑑+1 𝑖=1 𝑉 (𝑤𝑖,∞) ∪ (C 𝑡 ∖ Y𝐴).

We will show that, for 𝜂 ∈ 𝜋(𝒱 𝐴 R ) ∖ 𝒲, 𝜂 ∈ 𝑍(Φ). Since 𝜂 ∈ 𝜋(𝒱 𝐴 R ), 𝑉 (𝑓 𝐴 (𝜂, •)) ∩ R 𝑛 is not empty. On the other hand, as 𝜂 ∈ 𝒴𝐴, 𝑓 𝐴 (𝜂, •) generates a radical equi-dimensional ideal whose algebraic set is either empty or smooth of dimension 𝑑. By Proposition 3, 𝑉 (𝑓 𝐴 (𝜂, •)) ∩ R 𝑛 is not empty if and only if ∪ 𝑑+1 𝑖=1 𝑉 (𝑊 𝐴,𝛼 𝑖 (𝜂) ∩ R 𝑛 ) is not empty either. We deduce that 𝜂 ∈