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ABSTRACT

Quantifier elimination over the reals is a central problem in computational real
algebraic geometry, polynomial system solving and symbolic computation. Given a
semi-algebraic formula (whose atoms are polynomial constraints) with quantifiers on
some variables, it consists in computing a logically equivalent formula involving only
unquantified variables. When there is no alternation of quantifiers, one has a one block
quantifier elimination problem.

This paper studies a variant of the one block quantifier elimination in which we
compute an almost equivalent formula of the input. We design a new probabilistic
efficient algorithm for solving this variant when the input is a system of polynomial
equations satisfying some regularity assumptions. When the input is generic, involves
𝑠 polynomials of degree bounded by 𝐷 with 𝑛 quantified variables and 𝑡 unquantified
ones, we prove that this algorithm outputs semi-algebraic formulas of degree bounded
by 𝒟 using 𝑂̃︀(︁(𝑛− 𝑠+ 1) 8𝑡 𝒟3𝑡+2

(︀
𝑡+𝒟
𝑡

)︀)︁
arithmetic operations in the ground field

where 𝒟 = 2(𝑛+ 𝑠) 𝐷𝑠(𝐷 − 1)𝑛−𝑠+1
(︀
𝑛
𝑠

)︀
. In practice, it allows us to solve quantifier

elimination problems which are out of reach of the state-of-the-art (up to 8 variables).
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1 Introduction

Problem statement. Let 𝑓 = (𝑓1, . . . , 𝑓𝑠) ⊂ Q[𝑦][𝑥] with 𝑥 = (𝑥1, . . . , 𝑥𝑛) and 𝑦 = (𝑦1, . . . , 𝑦𝑡). We aim at
solving the following quantifier elimination problem over the reals

∃(𝑥1, . . . , 𝑥𝑛) ∈ R𝑛 𝑓1(𝑥,𝑦) = · · · = 𝑓𝑠(𝑥,𝑦) = 0.



This consists in computing a logically equivalent quantifier-free semi-algebraic formula Φ(𝑦), i.e. Φ is a finite
disjunction of conjonctions of polynomial constraints in Q[𝑦] which is true if and only if the input quantified formula
is true. The 𝑥 variables are called quantified variables and the 𝑦 variables are called parameters.

Let 𝜋 be the projection (𝑥,𝑦) ↦→ 𝑦. Note that, geometrically, Φ describes the projection on the 𝑦-space of the
real algebraic set 𝒱R ⊂ R𝑡 × R𝑛 defined by simultaneous vanishing of the 𝑓𝑖’s. In this paper, we focus on solving a
variant of the classical one block quantifier elimination, which computes a semi-algebraic formula which defines a
dense subset of the interior of 𝜋(𝒱R).
Example 1. Consider the toy example 𝑥2 + 𝑦2 = 1. Its projection on the 𝑦 coordinate is described by the quantifier-
free formula (𝑦 ≥ −1) ∧ (𝑦 ≤ 1) while for our variant quantifier elimination problem, an admissible output is
(𝑦 > −1) ∧ (𝑦 < 1).

Except for proving theorems, this is sufficient for most of applications of quantifier elimination in engineering
sciences or computing sciences where either the output formula only needs to define a sufficiently large subset of the
𝜋(𝒱R) or is evaluated with parameters’s values which are subject to numerical noise.

Prior works. The real quantifier elimination is a fundamental problem in mathematical logic and computational
real algebraic geometry. It naturally arises in many problems in diverse application areas. The works of Tarski and
Seidenberg [39, 32] imply that the projection of any semi-algebraic set is also semi-algebraic and give an algorithm,
which is however not elementary recursive, to compute this projection. The Cylindrical Algebraic Decomposition
(CAD) [8] is the first effective algorithm for this problem whose complexity is doubly exponential in the number of
indeterminates [11]. Since then, there have been extensive researches on developing this domain. We can name the
CAD variants with improved projections [24, 19, 25, 6] or the partial CAD [9]. Following the idea of [17] that exploits
the block structure, [28, 3] introduced algorithms of only doubly exponential complexity in the order of quantifiers
(number of blocks). For one-block quantifier elimination, the arithmetic complexity and the degree of polynomials in
the output of these algorithms are of order 𝑠𝑛+1𝐷𝑂(𝑛𝑡) where 𝐷 is the bound on the degree of input polynomials (see
[4, Algo 14.6]). However, obtaining efficient implementations of these algorithms remains challenging. We also cite
here some other works in real quantifier elimination [41, 38, 40, 7, 36] and applications to other fields [23, 1, 37].

In spite of this tremendous progress, many important applications stay out of reach of the state-of-the-art of the
classic quantifier elimination. This motivates the researches on its variants. Generic quantifier elimination, in which
the input and output formulas are equivalent for only almost every parameter, is studied in [12, 33]. A practically
efficient algorithm is presented in [20, 21] for the same problem but under some assumptions on the input. The variant
studied in this paper is a particular instance of the one in [20, 21].

Main results. In this paper, we consider the input 𝑓 = (𝑓1, . . . , 𝑓𝑠) satisfying the assumptions below.
Assumption A.

• The ideal of Q[𝑥,𝑦] generated by 𝑓 is radical.

• The algebraic set 𝒱 ⊂ C𝑡+𝑛 of 𝑓 is equi-dimensional of dimension 𝑑+ 𝑡. Its singular locus has dimension
at most 𝑡− 1.

Assumption B. The Zariski closure 𝜋(𝒱) of 𝜋(𝒱) is the whole parameter space C𝑡 and 𝜋(𝒱R) is not of zero-measure
in R𝑡.

The first result of the paper is a new probabilistic algorithm for solving the aforementioned variant of the
quantifier elimination on such an input 𝑓 . Our algorithm applies the algorithm of [30] to the system 𝑓 considering
Q(𝑦) as the based field. This allows to reduce our problem to zero-dimensional polynomial systems in Q(𝑦)[𝑥]. Next,
we compute semi-algebraic formulas that describe approximate projections of these systems on the 𝑦-space through
the algorithm of [22]. This algorithm relies on a parametric variant of Hermite matrices for real root counting [27, 18].
A similar outline is also presented in [40, 13], in which the author computes an expensive comprehensive Gröbner
bases [42] to analyze all cases before applying the real root counting algorithm of [27]. The relaxation of the output
allows us to replace this exhaustive computation by the real root finding algorithm of [30].

Our second goal is to analyze the complexity of this new algorithm. For generic inputs, we bound the degree of
the outputs and establish an arithmetic complexity which depends on this bound. The precise notion of genericity is as
follows.

Let C[𝑥,𝑦]≤𝐷 = {𝑝 ∈ C[𝑥,𝑦] | deg(𝑝) ≤ 𝐷}. A property 𝑃 is said to be generic over C[𝑥,𝑦]𝑠𝐷 if and only
if there exists a non-empty Zariski open subset P ⊂ C[𝑥,𝑦]𝑠𝐷 such that the property 𝑃 holds for every 𝑓 ∈P .
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Our complexity result is then stated below. The notation 𝑂̃︀(𝑔) means 𝑂(𝑔 log𝜅(𝑔)) for some 𝜅 > 0.

Theorem 1. Let𝒟 = 2(𝑛+𝑠)𝐷𝑠(𝐷−1)𝑛−𝑠+1
(︀
𝑛
𝑠

)︀
. There exists a non-empty Zariski open subset F of C[𝑥,𝑦]𝑠≤𝐷

and a probabilistic algorithm such that, for every 𝑓 ∈ F , this algorithm, in case of success, computes a semi-algebraic
formula Φ defining a dense subset of the interior of 𝜋(𝑉 (𝑓) ∩ R𝑡+𝑛) within

𝑂̃︀(︀(𝑛− 𝑠+ 1) 8𝑡 𝒟3𝑡+2
(︀
𝑡+𝒟
𝑡

)︀)︀
arithmetic operations in Q and Φ involves only polynomials in Q[𝑦] of degree at most 𝒟.

Even though our complexity result has the same order as the one of [4, Algo 14.6], we obtain explicitly the
degree bounds on the output formulas and the constant in the 𝑂 notation in the exponent.

On the practical aspect, our implementation in MAPLE of this algorithm outperforms real quantifier elimination
functions in MAPLE and MATHEMATICA. It allows us to solve examples, both generic and non-generic, that are out of
reach of these softwares (up to 8 indeterminates). These timings are reported in Section 6.

Structure of the paper. In Section 2, we start by recalling some basic notions. In Section 3, we resume the
algorithm for real root finding of [30]. Also in the same section, we prove some auxiliary results in order to apply this
algorithm parametrically. Next, we dedicate Section 4 for the description of our algorithm for solving the targeted
problem and proving its correctness. The complexity of this algorithm is analyzed in Section 5. Finally, we report on
some experimental results in Section 6.

2 Preliminaries

Algebraic sets and critical points. Let F be a subfield of C and 𝐹 ⊂ F[𝑥1, . . . , 𝑥𝑛]. The algebraic subset
of C𝑛 at which the elements of 𝐹 vanish is denoted by 𝑉 (𝐹 ). For an algebraic set 𝒱 ⊂ C𝑛, we denote by
𝐼(𝒱) ⊂ C[𝑥1, . . . , 𝑥𝑛] the radical ideal associated to 𝒱 . The singular locus of 𝒱 is denoted by sing(𝒱). Given any
subset 𝒮 of C𝑛, we denote by 𝒮 the Zariski closure of 𝒮 , i.e., the smallest algebraic set containing 𝒮 . An algebraic set
𝒱 is equi-dimensional if its irreducible components share the same dimension.

A map 𝜙 between two algebraic sets 𝒱 ⊂ C𝑛 and𝒲 ⊂ C𝑖 is a polynomial map if there exist 𝜙1, . . . , 𝜙𝑖 ∈
C[𝑥1, . . . , 𝑥𝑛] such that 𝜙(𝜂) = (𝜙1(𝜂), . . . , 𝜙𝑖(𝜂)) for 𝜂 ∈ 𝒱 . Let 𝒱 ⊂ C𝑛 be an equi-dimensional algebraic
set. We denote by crit(𝜙,𝒱) the set of critical points of the restriction of 𝜙 to the non-singular locus of 𝒱 . If 𝑐
is the codimension of 𝒱 and (𝑓1, . . . , 𝑓𝑠) generates the ideal 𝐼(𝒱), the subset of 𝒱 at which the Jacobian matrix
jac(𝑓1, . . . , 𝑓𝑠, 𝜙1, . . . , 𝜙𝑖) of (𝑓1, . . . , 𝑓𝑠, 𝜙1, . . . , 𝜙𝑖) has rank less than or equal to 𝑐 is the union of crit(𝜙,𝒱) and
sing(𝒱) (see, e.g., [31, Subsection 3.1]).

Gröbner bases and zero-dimensional ideals. Let F be a field and F be its algebraic closure. We fix an
admissible monomial order ≻ (see [10, Sec. 2.2]) over F[𝑥] where 𝑥 = (𝑥1, . . . , 𝑥𝑛). For 𝑝 ∈ F[𝑥], the leading
monomial of 𝑝 with respect to ≻ is denoted by lm≻(𝑝).

A Gröbner basis 𝐺 of an ideal 𝐼 ⊂ F[𝑥] w.r.t. the order ≻ is a finite generating set of 𝐼 such that the set of
leading monomials {lm≻(𝑔) | 𝑔 ∈ 𝐺} generates ⟨lm≻(𝑝) | 𝑝 ∈ 𝐼⟩. For 𝑝 ∈ F[𝑥], the remainder of the division of 𝑝
by 𝐺 using the order ≻ is uniquely defined and is called the normal form of 𝑝 w.r.t. 𝐺. A polynomial 𝑝 is reduced by
𝐺 if 𝑝 equals to its normal form w.r.t. 𝐺.

An ideal 𝐼 is said to be zero-dimensional if the algebraic set 𝑉 (𝐼) ⊂ F𝑛
is finite and non-empty. When this

holds, by [10, Sec. 5.3, Theorem 6], the quotient ring F[𝑥]/𝐼 is a F-vector space of finite dimension. The dimension
of this vector space is also called the algebraic degree of 𝐼; it coincides with the number of points of 𝑉 (𝐼) counted
with multiplicities [4, Sec. 4.5]. For any Gröbner basis of 𝐼 , the set of monomials in 𝑥 which are irreducible by
𝐺 forms a monomial basis, denoted by 𝐵, of this vector space. For 𝑝 ∈ F[𝑥], the normal form of 𝑝 by 𝐺 can be
interpreted as its image in F[𝑥]/𝐼 and is a F-linear combination of elements of 𝐵.

Properness & Noether normalization. A map 𝜙 : 𝑉 ↦→ C𝑖 is proper at 𝛽 ∈ C𝑖 if there exists a neighborhood
𝒪 of 𝛽 such that 𝜙−1(𝒪) is compact, where 𝒪 denotes the closure of 𝒪 in the Euclidean topology. If 𝜙 is proper
everywhere on its image, we say that the map 𝜙 is proper. The properness is strongly related to the following notion of
Noether normalization.
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Let F be a field and 𝐼 be an ideal of F[𝑥1, . . . , 𝑥𝑛]. The variables (𝑥𝑖+1, . . . , 𝑥𝑛) are in Noether position w.r.t.
𝐼 if their canonical images in the quotient algebra F[𝑥1, . . . , 𝑥𝑛]/𝐼 are algebraic integers over F[𝑥1, . . . , 𝑥𝑖] and
F[𝑥1, . . . , 𝑥𝑖] ∩ 𝐼 = ⟨0⟩. Once F = C and the variables (𝑥𝑖+1, . . . , 𝑥𝑛) is in Noether position w.r.t. 𝐼 , the projection
of 𝑉 (𝐼) on (𝑥1, . . . , 𝑥𝑖) is proper.

Change of variables. Given a field F, we denote by GL(𝑛,F) the set of invertible matrices of size 𝑛× 𝑛 with
entries in F. Let 𝑝 ∈ F[𝑥] be a polynomial. For any 𝐴 ∈ GL(𝑛,F), we denote by 𝑝𝐴 the polynomial 𝑝(𝐴 ·𝑥) ∈ F[𝑥].
For any algebraic set 𝑉 ⊂ F𝑛

, 𝑉 𝐴 denotes the algebraic set {𝐴−1 · 𝑥 | 𝑥 ∈ 𝑉 }.

For two blocks of indeterminates 𝑥 and 𝑦, we consider frequently the matrices that act only on the variables 𝑥
and leave 𝑦 invariant. Those matrices form a subset denoted by GL(𝑛, 𝑡,F) of GL(𝑛+ 𝑡,F).

3 Algorithm for real root finding

3.1 The 𝑆2 algorithm

We recall the algorithm in [30], which we refer to as the 𝑆2 algorithm, that computes at least one point per connected
component of a smooth real algebraic set.

Let 𝑓 = (𝑓1, . . . , 𝑓𝑠) be a polynomial sequence in R[𝑥1, . . . , 𝑥𝑛]. For 1 ≤ 𝑖 ≤ 𝑑, let 𝜑𝑖 be the projection
(𝑥1, . . . , 𝑥𝑛) → (𝑥1, . . . , 𝑥𝑖). When 𝑓 defines a smooth equi-dimensional algebraic set 𝒱 ⊂ C𝑛 and generates a
radical ideal, one can build a polynomial system using appropriate minors of jac(𝑓) to define crit(𝜑𝑖,𝒱). Note that
the critical loci are nested

crit(𝜑1,𝒱) ⊂ crit(𝜑2,𝒱) ⊂ · · · crit(𝜑𝑑,𝒱) ⊂ crit(𝜑𝑑+1,𝒱) = 𝒱.

Note also that in generic coordinates crit(𝜑𝑖,𝒱) has expected dimension 𝑖− 1. The algorithm in [30] then exploits
stronger properties of these critical loci under some genericity assumption on the coordinate system (which are satisfied
through a generic linear change of coordinates).

Proposition 2. [30, Theorem 2] Assume that 𝑓 defines a smooth equi-dimensional algebraic set and generates a
radical ideal.

Then, there exists a non-empty Zariski open set A𝑓 ∈ GL(𝑛,C) such that for 𝐴 ∈ A𝑓 the following holds:

• the restriction of 𝜑𝑖−1 to crit(𝜑𝑖,𝒱𝐴) is proper;

• the set crit(𝜑𝑖,𝒱𝐴) is either empty or of dimension 𝑖− 1 for 1 ≤ 𝑖 ≤ 𝑑+ 1.

The first item in Proposition 2 implies the second one. The index in the notation A𝑓 indicates that the non-empty
Zariski open set depends on 𝑓 . Algorithm 𝑆2 considers fibers of the above critical loci with the convention 𝜋0 : 𝑥→ ∙.
Proposition 2 is the cornerstone of the 𝑆2 algorithm which can be derived from the following one.

Proposition 3. [30, Theorem 2] Assume that 𝑓 defines a smooth equi-dimensional algebraic set and generates a
radical ideal.

For 𝐴 ∈ A𝑓 ∩GL(𝑛,Q) as defined in Proposition 2 and 𝛼 = (𝛼1, . . . , 𝛼𝑑) ∈ R𝑑, the union of the sets

crit(𝜑𝑖,𝒱𝐴) ∩ 𝜑−1
𝑖−1((𝛼1, . . . , 𝛼𝑖−1)), 1 ≤ 𝑖 ≤ 𝑑+ 1

is finite and meets all connected components of 𝒱 ∩ R𝑛.

Example 4. Let 𝒱 be the smooth surface defined by 𝑥2
1 − 𝑥2

2 − 𝑥2
3 = 1. The Jacobian matrix jac(𝑓) writes simply

(2𝑥1,−2𝑥2,−2𝑥3). It turns out that the identity matrix lies in the set A defined in Proposition 2. Taking 𝛼 = (0, 0),
we obtain 3 zero-dimensional systems:

• crit(𝜑1,𝒱): {−2𝑥2,−2𝑥3, 𝑥
2
1 − 𝑥2

2 − 𝑥2
3 − 1},

• crit(𝜑2,𝒱) ∩ 𝜑−1
1 (0): {−2𝑥3, 𝑥

2
1 − 𝑥2

2 − 𝑥2
3 − 1, 𝑥1},

• 𝒱 ∩ 𝜑−1
2 (0): {𝑥2

1 − 𝑥2
2 − 𝑥2

3 − 1, 𝑥1, 𝑥2}.
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The first system admits two real solutions (1, 0, 0) and (−1, 0, 0). The other systems do not have any real solution.
The two points (1, 0, 0) and (−1, 0, 0) intersect the two connected components of 𝒱 .

Of course, on general examples, one would need to perform a randomly chosen linear change of variables but
this example illustrates already how 𝑆2 works.

3.2 Parametric variant of 𝑆2

We present now a parametric variant of 𝑆2. We let 𝑓 = (𝑓1, . . . , 𝑓𝑠) ⊂ Q[𝑦][𝑥] where 𝑦 = (𝑦1, . . . , 𝑦𝑡) are
considered as parameters and 𝑥 = (𝑥1, . . . , 𝑥𝑛) are variables. The algebraic set defined by 𝑓 is denoted by
𝒱 ⊂ C𝑡 × C𝑛. Let 𝜋 denote the projection (𝑥,𝑦) ↦→ 𝑦 and 𝜋𝑖 denote the projection (𝑦,𝑥) ↦→ (𝑦, 𝑥1, . . . , 𝑥𝑖).

Considering Q(𝑦) as the ground field, the parametric variant of 𝑆2 computes on the input 𝑓 a list of finite
subsets of Q[𝑦][𝑥], each of which generates a zero-dimensional ideal of Q(𝑦)[𝑥]. These subsets are basically
𝑓𝐴 ∪Δ𝐴

𝑖 ∪ {𝑥1 − 𝛼1, . . . , 𝑥𝑖−1 − 𝛼𝑖−1}, where (𝐴,𝛼) is randomly chosen in GL(𝑛, 𝑡,Q)×Q𝑛 and Δ𝐴
𝑖 is the set

of all (𝑛− 𝑑)-minors of the Jacobian matrix of 𝑓𝐴 w.r.t. 𝑥𝑖, . . . , 𝑥𝑛.

The rest of this subsection is devoted to the auxiliary results that allow us to use the 𝑆2 algorithm parametrically
as above.

Lemma 5. When Assumptions (A) and (B) hold, there exists a non-empty Zariski open subset B of C𝑡 such that for
every 𝜂 ∈ B, the specialization 𝑓(𝜂, ·) of 𝑓 at 𝜂 generates a radical equi-dimensional ideal whose algebraic set is
either empty or has dimension 𝑑.

Proof. Under Assumption (B), by the fiber dimension theorem [34, Theorem 1.25], there exists a non-empty Zariski
open subset B′ of C𝑡 such that 𝜋−1(𝜂) ∩ 𝒱 is an algebraic set of dimension 𝑑.

Let𝒲 denote the set of points of 𝒱 at which the Jacobian matrix jac𝑥(𝑓) of 𝑓 w.r.t. 𝑥 has rank at most 𝑛−𝑑−1.
We note that𝒲 = crit(𝜋,𝒱) ∪ sing(𝒱). The algebraic version of Sard’s theorem [31, Proposition B2] implies that
𝜋(crit(𝜋,𝒱)) is contained in a proper Zariski closed subset of C𝑡. On the other hand, as Assumptions (A) hold, the
dimension of 𝜋 (sing(𝒱)) is less than 𝑡. Thus, it is also contained in a proper Zariski closed subset of C𝑡.

Hence, the Zariski closure of 𝜋(𝒲) is a proper Zariski closed subset of C𝑡. Let B be the intersection of the
complement in C𝑡 of this Zariski closure with B′. For 𝜂 ∈ B, the set

{𝑥 ∈ C𝑛 | 𝑓(𝜂,𝑥) = 0, rank jac𝑥(𝑓)(𝜂) < 𝑛− 𝑑}

is empty. Since the dimension of 𝜋−1(𝜂)∩𝒱 is 𝑑 and the Jacobian matrix jac𝑥(𝑓)(𝜂, ·) of 𝑓(𝜂, ·) w.r.t. the variables 𝑥
is of rank 𝑛− 𝑑 for every (𝜂,𝑥) ∈ 𝒱 ∩𝜋−1(𝜂), the ideal 𝑓(𝜂, ·) is radical and defines a smooth and equi-dimensional
set of dimension 𝑑 by Jacobian criterion [14, Theorem 16.19].

Lemma 5 shows that when specializing 𝑦 = (𝑦1, . . . , 𝑦𝑡) to a generic point 𝜂 ∈ B ∩ R𝑡 in 𝑓 , one obtains
𝑓(𝜂, ·) satisfying the assumptions of Proposition 2. One could then apply Algorithm 𝑆2 to 𝑓(𝜂, ·) to grab sample
points in the real algebraic set it defines. However, proceeding this way would lead us to use a change of variables
encoded by a matrix 𝐴 depending on 𝜂. The result below shows that choosing one generic change of variables will be
valid for most of parameters’ values.

Proposition 6. Assume that Assumptions (A) and (B) hold. There exists a dense Zariski open subset O of GL(𝑛, 𝑡,C)
such that for every 𝐴 ∈ O ∩GL(𝑛, 𝑡,Q) the following holds.

There exists a dense Zariski open subset Y𝐴 of C𝑡 such that Y𝐴 is a subset of the Zariski open set B in Lemma 5
and 𝐴 lies in the Zariski open set A𝑓(𝜂,.) defined in Proposition 2 for every 𝜂 ∈ Y𝐴.

Proof. Let C(𝑦) denote the algebraic closure of C(𝑦). We consider C(𝑦) as the coefficient field. The proof of [30,
Theorem 1] is purely algebraic and then is valid over the based field C(𝑦). Hence, there exists a non-empty Zariski
open subset Õ of GL(𝑛, 𝑡,C(𝑦)) such that for 𝐴 ∈ Õ ∩ GL(𝑛, 𝑡,Q), the variables (𝑥1, . . . , 𝑥𝑖−1) is in Noether
position w.r.t. the ideal in Q(𝑦)[𝑥] generated by 𝑓𝐴 + Δ𝐴

𝑖 for 1 ≤ 𝑖 ≤ 𝑑 + 1 where Δ𝐴
𝑖 is the set of maximal

minors of the truncated Jacobian matrix of jac(𝑓𝐴) with all the partial derivatives w.r.t. 𝑦 and 𝑥𝑗 for 1 ≤ 𝑗 ≤ 𝑖 being
removed (hence these minors are the ones defining crit(𝜋𝑖,𝒱) ∪ sing(𝒱)).
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This is equivalent to the following. For 1 ≤ 𝑖 ≤ 𝑑 + 1, 𝑖 ≤ 𝑗 ≤ 𝑛, there exist the polynomials 𝑝𝑖,𝑗 ∈
Q(𝑦)[𝑥1, . . . , 𝑥𝑖−1, 𝑥𝑗 ] such that each 𝑝𝑖,𝑗 lies in the ideal of Q(𝑦)[𝑥] generated by 𝑓𝐴 ∪Δ𝐴

𝑖 and it is monic when
considering 𝑥𝑗 as the only variable (with the coefficients in Q(𝑦)[𝑥1, . . . , 𝑥𝑖−1]).

The denominators of 𝑝𝑖,𝑗 are then polynomials in Q[𝑦]. We choose Y𝐴 to be the intersection of the non-
empty Zariski open set B defined in Lemma 5 and the non-empty Zariski open set defined by the non-vanishing
of all the denominators appeared in the 𝑝𝑖,𝑗’s. Thus, for 𝜂 ̸∈ Y𝐴, 𝑝𝑖,𝑗(𝜂, ·) ∈ Q[𝑥1, . . . , 𝑥𝑖−1, 𝑥𝑗 ] is monic in 𝑥𝑗 .
Consequently, (𝑥𝑖, . . . , 𝑥𝑛) is in Noether position w.r.t. the ideal of C[𝑥] generated by 𝑓𝐴(𝜂, ·) ∪Δ𝐴

𝑖 (𝜂, ·). Finally,
taking O = Õ ∩GL(𝑛, 𝑡,C), the conclusion follows.

4 One-block QE algorithm

4.1 Description

In this subsection, we describe our algorithm for solving our variant of the quantifier elimination problem. The input
is a polynomial sequence 𝑓 = (𝑓1, . . . , 𝑓𝑠) ⊂ Q[𝑥,𝑦] satisfying Assumptions (A) and (B). Further, we denote by
𝑍(Ψ) the zero set of any semi-algebraic formula Ψ, i.e., 𝑍(Ψ) = {𝑦 ∈ R𝑡 | Ψ(𝑦) is true}.

By Assumptions (A) and (B), the fiber dimension theorem [34, Theorem 1.25] implies that there exists a non-
empty Zariski open subset of C𝑡 such that 𝜋−1(𝜂) has dimension 𝑑. The idea is to apply the parametric variant of 𝑆2

with Q(𝑦) as a ground field.

More precisely, we start by picking randomly (𝐴,𝛼) in GL(𝑛, 𝑡,Q)×Q𝑛 and apply the change of variables
𝑥 ↦→ 𝐴 ·𝑥 to the input 𝑓 to obtain a new sequence 𝑓𝐴. As 𝐴 acts only on 𝑥, 𝜋(𝑉 (𝑓𝐴)∩R𝑛+𝑡) = 𝜋(𝒱R). Hence, a
quantifier-free formula that solves our problem for 𝑓𝐴 is also a solution of the same problem for 𝑓 .

Let jac𝑥(𝑓
𝐴) be the Jacobian matrix of 𝑓𝐴 w.r.t. the variables 𝑥 = (𝑥1, . . . , 𝑥𝑛). We denote by 𝐽1, . . . , 𝐽𝑛

the columns of jac𝑥(𝑓
𝐴) respectively. For 1 ≤ 𝑖 ≤ 𝑑, let 𝑊𝐴,𝛼

𝑖 be the union of 𝑓𝐴, all the (𝑛 − 𝑑)-minors of
the matrix consisting of the columns 𝐽𝑖+1, . . . , 𝐽𝑛 and {𝑥1 − 𝛼1, . . . , 𝑥𝑖−1 − 𝛼𝑖−1}. In particular, 𝑊𝐴,𝛼

𝑑+1 denotes
𝑓𝐴 ∪ {𝑥1 − 𝛼1, . . . , 𝑥𝑑 − 𝛼𝑑}.

We prove later in Lemma 8 that, for generic (𝐴,𝛼), the ideals of Q(𝑦)[𝑥] generated by 𝑊𝐴,𝛼
𝑖 are radical and

zero-dimensional.

We now solve the quantifier elimination problem for each of the polynomial sets 𝑊𝐴,𝛼
𝑖 . For this step, we refer

to a subroutine called RealRootClassification that takes as input a polynomial sequence 𝐹 ⊂ Q[𝑦][𝑥] such that the
ideal of Q(𝑦)[𝑥] generated by 𝐹 is radical and zero-dimensional and computes a quantifier-free formula Φ𝐹 in 𝑦
such that 𝑍(Φ𝐹 ) is dense in the interior of 𝜋(𝑉 (𝐹 ) ∩ R𝑛+𝑡). For this task, we refer to the algorithm of [22]. We will
explain the essential details of this subroutine later in Subsection 4.2.

Calling the subroutine RealRootClassification on the inputs 𝑊𝐴,𝛼
𝑖 gives us the lists of semi-algebraic formulas

Φ𝑖. Finally, we return Φ = ∨𝑑+1
𝑖=1Φ𝑖 as the output of our algorithm.

The pseudo-code below summarizes our algorithm, we introduce two additional subroutines:

• GenericDimension which takes the sequence 𝑓 and computes the dimension of the ideal generated by 𝑓 in
Q(𝑦)[𝑥].

• (𝑛− 𝑑) Minors which takes as input a matrix 𝑀 whose coefficients are in Q[𝑥,𝑦] and computes all of its
(𝑛− 𝑑)-minors.

4.2 Real root classification

Now we explain the general ideas of the algorithm presented in [22] that is used in the RealRootClassification
subroutine.

Let 𝐹 ⊂ Q[𝑦][𝑥] be a polynomial sequence such that the ideal ⟨𝐹 ⟩ generated by 𝐹 in Q(𝑦)[𝑥] is radical and
zero-dimensional.

For such an input 𝐹 , RealRootClassification computes a semi-algebraic formula Φ𝐹 and a polynomial
𝑤∞ ∈ Q[𝑦] that satisfies:
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Algorithm 1: One-block quantifier elimination
Input: 𝑓 ∈ Q[𝑦][𝑥] satisfying Assumptions (A) and (B).
Output: A formula Φ s.t 𝑍(Φ) is dense in the interior of 𝜋(𝒱R).

1 Choose randomly (𝐴,𝛼) ∈ GL(𝑛,Q)×Q𝑛

2 𝑓𝐴 ← 𝑓(𝐴 · 𝑥)
3 [𝐽1, . . . , 𝐽𝑛]← jac𝑥(𝑓

𝐴)

4 𝑑← GenericDimension(𝑓𝐴)
5 for 1 ≤ 𝑖 ≤ 𝑑+ 1 do
6 𝑊𝐴,𝛼

𝑖 ← (𝑛− 𝑑)Minors([𝐽𝑖+1, . . . , 𝐽𝑛]) ∪ {𝑓𝐴, 𝑥1 − 𝛼1, . . . , 𝑥𝑖−1 − 𝛼𝑖−1}
7 Φ𝑖 ← RealRootClassification(𝑊𝐴,𝛼

𝑖 )

8 return Φ← ∨𝑑+1
𝑖=1Φ𝑖

• 𝑍(Φ𝐹 ) ⊂ 𝜋(𝑉 (𝐹 ) ∩ R𝑛+𝑡),

• 𝑍(Φ𝐹 ) ∖ 𝑉 (𝑤∞) = 𝜋(𝑉 (𝐹 ) ∩ R𝑛+𝑡) ∖ 𝑉 (𝑤∞).

The algorithm in [22] is based on constructing a symmetric matrix 𝐻𝐹 with entries in Q(𝑦) associated to 𝐹 . This
matrix is basically a parametric version of the classical Hermite matrix for the ideal ⟨𝐹 ⟩ (see, e.g., [4, Chap. 4]),
which provides the number of distinct real/complex solutions of the system 𝐹 (𝜂, ·) through the signature/rank of the
specialization of 𝐻𝐹 at 𝜂 [22, Corollary 17].

Let 𝐺𝐹 be the reduced Gröbner basis of the ideal in Q[𝑥,𝑦] generated by 𝐹 w.r.t. the grevlex(𝑥) ≻ grevlex(𝑦)
order. We consider the leading coefficients of the elements of 𝐺𝐹 in variables 𝑥 w.r.t. the grevlex(𝑥) order, which
are polynomials in Q[𝑦]. Then, 𝑤𝐹 is taken as the square-free part of the product of these leading coefficients.
The polynomial 𝑤𝐹 defines a proper algebraic subset of 𝑦-space over which the matrix 𝐻𝐹 does not have good
specialization property ([22, Proposition 16]).

Next, we choose randomly a matrix 𝑄 ∈ GL(𝛿,Q). As the entries of 𝐻𝐹 lie in Q(𝑦), so do the leading principal
minors 𝑀1, . . . ,𝑀𝛿 of 𝑄𝑇 · 𝐻𝐹 · 𝑄. Let 𝑚1, . . . ,𝑚𝛿 be the numerators of those minors, which are in Q[𝑦]. A
sufficiently generic matrix 𝑄 ensures that none of the 𝑚𝑖’s is identically zero, hence allowing us to determine the
signature of 𝐻𝐹 according to the signs of the 𝑚𝑖’s. We then compute a finite set of points 𝐿 of Q𝑡 that intersects
every connected component of the semi-algebraic set defined by ∧𝛿

𝑖=1(𝑚𝑖 ̸= 0) ∧ (𝑤𝐹 ̸= 0). Over those connected
components, the polynomials 𝑚𝑖 are sign-invariant. Since the signature of 𝐻𝐹 (𝜂) can be deduced from the signs of
the 𝑚𝑖(𝜂), the number of real solutions of 𝐹 (𝜂, ·) is also invariant when 𝜂 varies in each connected component.

Let 𝐿0 = {𝜂 ∈ 𝐿 | 𝐹 (𝜂, ·) admits at least one real solution} and

Φ𝐹 =
(︁
∨𝜂∈𝐿0

(︁
∧𝛿

𝑖=1sign𝑀𝑖 = sign 𝑀𝑖(𝜂)
)︁)︁
∧ (𝑤𝐹 ̸= 0).

Then, 𝑤∞ is taken as the product of the 𝑚𝑖’s and 𝑤𝐹 . We return Φ𝐹 , 𝑤∞ as the output of RealRootClassification
for 𝐹 . The correctness of this algorithm is given in [22, Proposition 28].

In the pseudo-code below, we introduce the subroutines

• HermiteMatrix which takes as input a polynomial sequence 𝐹 ⊂ Q[𝑦][𝑥] such that the ideal ⟨𝐹 ⟩ ⊂
Q(𝑦)[𝑥] is zero-dimensional and computes the parametric Hermite matrix associated to 𝐹 w.r.t. the
grevlex(𝑥) order.
The description of this subroutine is given in [22, Algo. 2].

• PrincipalMinors computes the leading principal minors of the matrix 𝑄𝑇 ·𝐻𝐹 ·𝑄.

• SamplePoints which takes as input a polynomial sequence 𝑚1, . . . ,𝑚𝛿, 𝑤𝐹 ∈ Q[𝑦] and computes
a finite set of points that intersects every connected component of the semi-algebraic set defined by
∧𝛿

𝑖=1𝑚𝑖 ̸= 0 ∧ 𝑤𝐹 ̸= 0.
We describe such a subroutine in [22, Sec. 3].

• Signature which evaluates the signature of a symmetric matrix of entries in Q.

We end this subsection by an example to illustrate our algorithm.
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Algorithm 2: RealRootClassification
Input: A polynomial sequence 𝐹 ⊂ Q[𝑦][𝑥] such that the ideal of Q(𝑦)[𝑥] generated by 𝐹 is radical and

zero-dimensional.
Output: A formula Φ𝐹 and a polynomial 𝑤∞ ∈ Q[𝑦].

1 𝐻𝐹 , 𝑤𝐹 ← HermiteMatrix(𝐹 )
2 Choose randomly 𝑄 ∈ GL(𝛿,Q) // 𝛿 is the size of 𝐻𝐹

3 (𝑀1, . . . ,𝑀𝛿)← PrincipalMinors(𝑄𝑇 ·𝐻𝐹 ·𝑄)
4 (𝑚1, . . . ,𝑚𝛿)← Numerators(𝑀1, . . . ,𝑀𝛿)

5 𝐿← SamplePoints
(︀(︀
∧𝛿

𝑖=1𝑚𝑖 ̸= 0
)︀
∧ 𝑤𝐹 ̸= 0

)︀
6 for 𝜂 ∈ 𝐿 do
7 if Signature (𝐻𝐹 (𝜂)) ̸= 0 then
8 Φ𝐹 ← Φ𝐹 ∨

(︀
∧𝛿

𝑖=1sign𝑀𝑖 = sign 𝑀𝑖(𝜂)
)︀

9 Φ𝐹 ← Φ𝐹 ∧ (𝑤𝐹 ̸= 0)

10 𝑤∞ ← 𝑤𝐹 ·
∏︀𝛿

𝑖=1 𝑚𝑖

11 return Φ𝐹 , 𝑤∞

Example 7. We consider the polynomial 𝑓 = 𝑥2
1 + 𝑦1𝑥

2
2 + 𝑦2𝑥2 + 𝑦3. Let Δ = 𝑦2

2 − 4𝑦1𝑦3. The projection of
𝑉 (𝑓) ∩ R5 on (𝑦1, 𝑦2, 𝑦3) is

(Δ ≥ 0 ∧ 𝑦1 > 0) ∨ (𝑦1 < 0) ∨ (𝑦1 = 0 ∧ ((𝑦2 ̸= 0) ∨ (𝑦2 = 0 ∧ 𝑦3 ≤ 0))) .

Applying the parametric variant of 𝑆2 for 𝐴 = 𝐼3 and 𝛼 = (0, 0), we obtain 2 systems 𝑊1 = {2𝑦1𝑥2 + 𝑦2, 𝑓} and
𝑊2 = {𝑓, 𝑥1}. Next, we call RealRootClassification on these systems, choosing 𝑄 = 𝐼2 to simplify the calculation.
We obtain then 𝑤1,∞ = 𝑤2,∞ = 𝑦1 and the Hermite matrices:

𝐻1 =

(︂
2 0
0 −2𝑦3 + 𝑦2

2/(2𝑦1)

)︂
, 𝐻2 =

(︂
2 −𝑦2/𝑦1

−𝑦2/𝑦1 (−2𝑦1𝑦3 + 𝑦2
2)/𝑦

2
1

)︂
.

The sequences of leading principal minors are respectively [2,Δ/𝑦1] and [2,Δ/𝑦2
1 ]. We compute then 4 points

representing 4 connected components of the semi-algebraic set defined by 𝑦1 ̸= 0 ∧ Δ ̸= 0:

(1, 1/8, 0), (−1, 1/8, 0), (1, 1/8, 1/128), (−1, 1/8,−1/128).

The matrix 𝐻2 has non-zero signature over the first and second points, which both lead to the sign condition
Δ > 0 ∧ 𝑦2

1 > 0. Thus, we have
Φ2 = (Δ > 0 ∧ 𝑦2

1 > 0) ∧ (𝑦1 ̸= 0).

For 𝐻1, non-zero signatures are satisfied at the first and fourth points. Evaluating the sign of Δ and 𝑦1 at those points
gives

Φ1 = ((Δ > 0 ∧ 𝑦1 > 0) ∨ (Δ < 0 ∧ 𝑦1 < 0)) ∧ (𝑦1 ̸= 0).

The final output is therefore Φ = Φ1 ∨ Φ2, which is equivalent to

Φ = (Δ > 0 ∧ 𝑦1 > 0) ∨ (Δ < 0 ∧ 𝑦1 < 0) ∨ (Δ > 0 ∧ 𝑦1 ̸= 0)

= (Δ > 0 ∧ 𝑦1 > 0) ∨ (Δ ̸= 0 ∧ 𝑦1 < 0).

It is straight-forward to see that 𝑍(Φ) is a dense subset of 𝜋
(︀
𝑉 (𝑓) ∩ R5

)︀
.

4.3 Correctness of Algorithm 1

We start by proving that the polynomial sequences 𝑊𝐴,𝛼
𝑖 satisfy the assumptions required by RealRootClassification.

Lemma 8. Assume that Assumptions (A) and (B) hold. Let O be the Zariski open subset of GL(𝑛, 𝑡,C) defined
in Proposition 6 and 𝐴 ∈ O ∩ GL(𝑛, 𝑡,Q). There exists a non-empty Zariski open subset X of C𝑑 such that for
𝛼 ∈ X ∩Q𝑑, the ideal of Q(𝑦)[𝑥] generated by 𝑊𝐴,𝛼

𝑖 is radical and either empty or zero-dimensional.
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Proof. By Proposition 6, the algebraic set defined by 𝑊𝐴,𝛼
𝑖 (𝜂, ·) is finite when 𝜂 varies over a non-empty Zariski

open subset Y𝐴 of C𝑡. Thus, the ideal of Q(𝑦)[𝑥] generated by 𝑊𝐴,𝛼
𝑖 is zero-dimensional. Now we prove that the

ideal generated by 𝑊𝐴,𝛼
𝑖 is radical.

Let 𝑀𝐴
1 , . . . ,𝑀𝐴

ℓ be the (𝑛 − 𝑑) minors of the Jacobian matrix 𝐽 associated to 𝑓𝐴 when considering only
the partial derivatives w.r.t. 𝑥𝑖+1, . . . , 𝑥𝑛. Recall that 𝑊𝐴,𝛼

𝑖 is the union of 𝑓𝐴 with the 𝑀𝐴
1 , . . . ,𝑀𝐴

ℓ with
𝑥1 − 𝛼1, . . . , 𝑥𝑖−1 − 𝛼𝑖−1. Further, we denote by 𝑊 ′𝐴

𝑖 ⊂ Q(𝑦)[𝑥] the ideal generated by 𝑓𝐴,𝑀𝐴
1 , . . . ,𝑀𝐴

ℓ .

The idea is to follow [31, Definitions 3.2 and 3.3] where charts and atlases are defined for algebraic sets defined
by the vanishing of 𝑓𝐴 and 𝑀𝐴

1 , . . . ,𝑀𝐴
ℓ .

Let 𝑚 be a (𝑛− 𝑑− 1) minor of 𝐽 . Without loss of generality we assume that it is the upper left such minor and
let 𝑀𝐴

1 , . . . ,𝑀𝐴
𝑑−(𝑖−1) be the (𝑛 − 𝑑) minors of 𝐽 obtained by completing 𝑚 with the 𝑛 − 𝑑-th line of 𝐽 and the

missing column. We denote by Q(𝑦)[𝑥]𝑚 the localized ring where divisions by powers of 𝑚 are allowed.

By [31, Lemma B.12] there exists a non-empty Zariski open set O ′
𝑚,𝑛−𝑑 such that for 𝐴 ∈ GL(𝑛, 𝑡,C),

the localization of the ideal generated by 𝑓𝐴
1 , . . . , 𝑓𝐴

𝑛−𝑑,𝑀
𝐴
1 , . . . ,𝑀𝐴

𝑑−(𝑖−1) in the ring Q(𝑦)[𝑥]𝑚 is radical and
coincides with the localization of 𝑊 ′𝐴

𝑖 in Q(𝑦)[𝑥]𝑚. By [31, Prop. 3.4], there exists a non-empty Zariski open set
O ′′ ⊂ GL(𝑛, 𝑡,C) such that for 𝐴 ∈ O ′′, any irreducible component of the algebraic set defined by 𝑊 ′𝐴

𝑖 contains
a point at which a (𝑛− 𝑑− 1) minor of 𝐽 does not vanish. This implies that any primary component 𝑊 ′𝐴

𝑖 whose
associated algebraic set contains such a point is radical and then prime.

Now define Ω as the intersection of O (defined in Proposition 6), all non-empty Zariski open sets O ′
𝑚,𝑘 and O ′′.

Hence, we then deduce that 𝑊 ′𝐴
𝑖 generates a radical ideal. It remains to prove that there exists a non-empty Zariski

open set X𝑖 ⊂ C𝑖−1 such that for 𝛼 = (𝛼1, . . . , 𝛼𝑖−1) ∈ X𝑖, ⟨𝑊 ′𝐴
𝑖 ⟩+ ⟨𝑥1 − 𝛼1, . . . , 𝑥𝑖−1 − 𝛼𝑖−1⟩ is radical in

Q(𝑦)[𝑥]. Choosing 𝛼 outside the set of critical values of 𝜋𝑖 restricted to the algebraic set defined by 𝑊 ′𝐴
𝑖 in Q(𝑦)

𝑛

is enough. By Sard’s theorem, this set of critical values is contained in the vanishing set of a non-zero polynomial
𝜈 ∈ Q[𝑦][𝑥]. Now note that it suffices to define X𝑖 as the complement of the vanishing set of the coefficients of 𝜈
when it is seen in Q[𝑥][𝑦] and X = ∩𝑑+1

𝑖=1 X𝑖.

We prove the correctness of Algorithm 1 in Proposition 9 below.

Proposition 9. Assume that Assumptions (A) and (B) hold. Let O ⊂ GL(𝑛, 𝑡,C) and X ⊂ C𝑑 be defined
respectively in Proposition 6 and Lemma 8. Then for 𝐴 ∈ O ∩ GL(𝑛, 𝑡,Q) and 𝛼 ∈ X ∩ Q𝑑, the formula Φ
computed by Algorithm 1 defines a dense subset of the interior of 𝜋(𝒱R).

Proof. By Lemma 8, 𝑊𝐴,𝛼
𝑖 satisfies the assumptions of RealRootClassification. Thus, the calls of RealRoot-

Classification on 𝑊𝐴,𝛼
𝑖 are valid and return the formulas Φ𝑖 and the polynomials 𝑤𝑖,∞. As 𝐴 acts only on 𝑥,

𝜋(𝒱𝐴
R ) = 𝜋(𝒱R). Thus,

𝑍(Φ𝑖) ⊂ 𝜋(𝑉 (𝑊𝐴,𝛼
𝑖 ) ∩ R𝑛+𝑡) ⊂ 𝜋(𝒱𝐴

R ) = 𝜋(𝒱R).

Therefore, 𝑍(Φ) = ∪𝑑+1
𝑖=1𝑍(Φ𝑖) ⊂ 𝜋(𝒱R).

By the description of Φ𝑖, for 1 ≤ 𝑖 ≤ 𝑑+ 1,

𝑍(Φ𝑖) ∖ 𝑉 (𝑤𝑖,∞) = 𝜋(𝑉 (𝑊𝐴,𝛼
𝑖 ) ∩ R𝑛+𝑡) ∖ 𝑉 (𝑤𝑖,∞).

Let Y𝐴 be the non-empty Zariski open subset of C𝑡 in Proposition 6 (Y𝐴 depends on the matrix 𝐴). We denote

𝒲 = ∪𝑑+1
𝑖=1 𝑉 (𝑤𝑖,∞) ∪ (C𝑡 ∖ Y𝐴).

We will show that, for 𝜂 ∈ 𝜋(𝒱𝐴
R ) ∖𝒲 , 𝜂 ∈ 𝑍(Φ).

Since 𝜂 ∈ 𝜋(𝒱𝐴
R ), 𝑉 (𝑓𝐴(𝜂, ·)) ∩ R𝑛 is not empty. On the other hand, as 𝜂 ∈ 𝒴𝐴, 𝑓𝐴(𝜂, ·) generates a

radical equi-dimensional ideal whose algebraic set is either empty or smooth of dimension 𝑑. By Proposition 3,
𝑉 (𝑓𝐴(𝜂, ·)) ∩ R𝑛 is not empty if and only if ∪𝑑+1

𝑖=1 𝑉 (𝑊𝐴,𝛼
𝑖 (𝜂) ∩ R𝑛) is not empty either. We deduce that 𝜂 ∈
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∪𝑑+1
𝑖=1 𝜋(𝑉 (𝑊𝐴,𝛼

𝑖 ) ∩ R𝑛+𝑡) ∖𝒲 . We have that

∪𝑑+1
𝑖=1 𝜋(𝑉 (𝑊𝐴,𝛼

𝑖 ) ∩ R𝑛+𝑡) ∖𝒲 = ∪𝑑+1
𝑖=1 (𝜋(𝑉 (𝑊𝐴,𝛼

𝑖 ) ∩ R𝑛+𝑡) ∖𝒲)

= ∪𝑑+1
𝑖=1 (𝑍(Φ𝑖) ∖𝒲) = (∪𝑑+1

𝑖=1𝑍(Φ𝑖)) ∖𝒲.

Therefore, 𝑍(Φ) ∖𝒲 = 𝜋(𝒱R) ∖𝒲 and 𝜋(𝒱R) ∖ 𝑍(Φ) is of measure zero in R𝑡. By Assumption (B), we conclude
that 𝑍(Φ) is a dense subset of the interior of 𝜋(𝒱R).

5 Complexity analysis

We now estimate the arithmetic complexity of Algorithm 1 once 𝐴 ∈ O ∩ GL(𝑛, 𝑡,Q) and 𝛼 ∈ X ∩ Q𝑛 as in
Proposition 6 are found from a random choice. In this section, the input 𝑓 forms a regular sequence of Q[𝑥,𝑦] (then,
𝑠 = 𝑛− 𝑑) satisfying Assumptions (A) and (B). As the calls to RealRootClassification on the systems 𝑊𝐴,𝛼

𝑖 are the
most costly parts of our algorithm, we focus on estimating their complexities. To this end, we introduce the following
assumption.

Assumption C. Let 𝐹 ⊂ Q[𝑥,𝑦] and 𝐺 be the reduced Gröbner basis of 𝐹 w.r.t. the grevlex(𝑥) ≻ grevlex(𝑦)
order. Then 𝐹 is said to satisfy Assumption (C) if and only if for any 𝑔 ∈ 𝐺, the total degree of 𝑔 in both 𝑥 and 𝑦
equals the degree of 𝑔 w.r.t. only 𝑥.

In [22, Lemma 13], it is proven that, on an input 𝐹 satisfying Assumption (C), the polynomial 𝑤∞ in Real-
RootClassification is simply 1 and the entries of the Hermite matrix 𝐻𝐹 are in Q[𝑦]. Therefore, the SamplePoints
subroutine is called on the sequence of leading principal minors of the parametric Hermite matrices. Again, with
Assumption (C), the degree of these leading principal minors can be bounded (see [22, Lemma 32]). Therefore, one
obtains the complexity bound for RealRootClassification for such 𝐹 .

Back to our problem, we will establish a degree bound for the polynomials given into SamplePoints. Some
notations that will be used further are introduced below.

Let 𝐷 be a bound of the total degree of elements of 𝑓 . The zero-dimensional ideal of Q(𝑦)[𝑥] generated by
𝑊𝐴,𝛼

𝑖 is denoted by ⟨𝑊𝐴,𝛼
𝑖 ⟩. The quotient ring Q(𝑦)[𝑥]/⟨𝑊𝐴,𝛼

𝑖 ⟩ is a finite dimensional Q(𝑦)-vector space. Let 𝐺𝑖

be the reduced Gröbner basis of the ideal of Q[𝑥,𝑦] generated by 𝑊𝐴,𝛼
𝑖 w.r.t. grevlex(𝑥) ≻ grevlex(𝑦) and 𝐵𝑖 be

the monomial basis of Q(𝑦)[𝑥]/⟨𝑊𝐴,𝛼
𝑖 ⟩ constructed using 𝐺𝑖 as in Section 2. We begin with the following lemma.

Lemma 10. When Assumption (C) holds for 𝑊𝐴,𝛼
𝑖 , any leading principal minor of the matrix 𝐻𝑖 has degree bounded

by 2
∑︀

𝑏∈𝐵𝑖
deg(𝑏).

Proof. The proof can be deduced from [22, Lemma 13, Proposition 31, Lemma 32]. It is mainly based on the control
of degrees appearing in the normal form computation in Q(𝑦)[𝑥]/⟨𝑊𝐴,𝛼

𝑖 ⟩.

It remains to estimate the sum
∑︀

𝑏∈𝐵𝑖
deg(𝑏). A bound is obtained by simply taking the product of the highest

degree appeared in 𝐵𝑖 and its cardinality. As the Hilbert series of Q(𝑦)[𝑥]/⟨𝑊𝐴,𝛼
𝑖 ⟩ when 𝑓 is a generic system are

known (see, e.g., [16, 35]), explicit bounds of these quantities are easily obtained.

Lemma 11. Let 𝐵𝑖 be defined as above. There exists a dense Zariski open subset Q of C[𝑥,𝑦]𝑠≤𝐷 such that, for
𝑓 ∈ Q, the following inequality holds for 1 ≤ 𝑖 ≤ 𝑑+ 1:∑︀

𝑏∈𝐵𝑖
deg𝑥(𝑏) ≤ (𝑛+ 𝑠− 𝑖) 𝐷𝑠(𝐷 − 1)𝑛−𝑖−𝑠+2

(︀
𝑛−𝑖+1

𝑠

)︀
.

Proof. By [26, Theorem 2.2], there exists a dense Zariski open subset Q1,1 ⊂ C[𝑥,𝑦]𝑠≤𝐷 such that for 𝑓 ∈ Q1,1,
the degree of ⟨𝑊𝐴,𝛼

1 ⟩, which equals to the cardinality of 𝐵1, is bounded by

𝐷𝑠 ∑︀𝑛−𝑠
𝑘=0

(︀
𝑘+𝑠−1
𝑠−1

)︀
(𝐷 − 1)𝑘 ≤ 𝐷𝑠(𝐷 − 1)𝑛−𝑠

(︀
𝑛
𝑠

)︀
.

On the other hand, by [35, Corollary 3.2], there exists a dense Zariski open subset Q1,2 ⊂ C[𝑥,𝑦]𝑠≤𝐷 such that
for 𝑓 ∈ Q1,2, the witness degree, i.e., the highest degree appeared in the reduced Gröbner basis of 𝑊𝐴,𝛼

1 w.r.t.
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grevlex(𝑥), is bounded by (𝑛+𝑠−1)𝐷−2𝑛+2. Thus, the highest degree in 𝐵1 is bounded by (𝑛+𝑠−1)𝐷−2𝑛+1.
Thus, let Q1 = Q1,1 ∩Q1,2 and, for 𝑓 ∈ Q1, we obtain∑︀

𝑏∈𝐵1
deg(𝑏) ≤ (𝑛+ 𝑠− 1)𝐷𝑠(𝐷 − 1)𝑛−𝑠+1

(︀
𝑛
𝑠

)︀
.

For 1 ≤ 𝑖 ≤ 𝑑, the system 𝑊𝐴,𝛼
𝑖 can also be interpreted as the system defining the critical locus of the projection

(𝑥𝑖, . . . , 𝑥𝑛) ↦→ 𝑥𝑖 restricted to 𝑉
(︀
𝑓𝐴(𝛼1, . . . , 𝛼𝑖−1, 𝑥𝑖, . . . , 𝑥𝑛)

)︀
. Therefore, by replacing 𝑛 by 𝑛− 𝑖+ 1 in the

above bound, we deduce that, for 1 ≤ 𝑖 ≤ 𝑑, there exists a dense Zariski open subset Q𝑖 ⊂ C[𝑥,𝑦]𝑠≤𝐷 such that

∑︀
𝑏∈𝐵𝑖

deg(𝑏) ≤ (𝑛+ 𝑠− 𝑖) 𝐷𝑠(𝐷 − 1)𝑛−𝑖−𝑠+2
(︀
𝑛−𝑖+1

𝑠

)︀
.

For 𝑖 = 𝑑+ 1, the cardinality of 𝐵𝑑+1 is bounded by 𝐷𝑠 and the highest degree in 𝐵𝑑+1 is bounded by 𝑠(𝐷 − 1).
Thus, the bound holds for 𝑖 = 𝑑+ 1. Taking Q = ∩𝑑+1

𝑖=1 Q𝑖, we conclude the proof.

Further, 𝒟 denotes 2(𝑛+ 𝑠− 1)𝐷𝑠(𝐷 − 1)𝑛−𝑠+1
(︀
𝑛
𝑠

)︀
. Now we show that Assumption (C) holds generically

then prove Theorem 1.

Proposition 12. There exists a dense Zariski open subset P ⊂ C[𝑥,𝑦]𝑠≤𝐷 such that, for every 𝑓 ∈P , there exists
a dense Zariski open subset K𝑓 ⊂ GL(𝑛, 𝑡,C) × C𝑛 such that for (𝐴,𝛼) ∈ K𝑓 , Assumption (C) holds for every
system 𝑊𝐴,𝛼

𝑖 .

Proof. Let 𝑦𝑡+1 be a new variable and ℎQ[𝑥,𝑦, 𝑦𝑡+1]𝐷 be the set of homogeneous polynomials in Q[𝑥,𝑦, 𝑦𝑡+1]
of degree 𝐷. For 𝐹 ⊂ Q[𝑥,𝑦], we denote by ℎ𝐹 ⊂ Q[𝑥,𝑦, 𝑦𝑡+1] the homogenization of 𝐹 w.r.t. all the variables

(𝑥,𝑦), that means ℎ𝐹 = 𝑦
deg(𝑝)
𝑡+1 · 𝐹

(︁
𝑥1

𝑦𝑡+1
, . . . , 𝑥𝑛

𝑦𝑡+1
, 𝑦1
𝑦𝑡+1

, . . . , 𝑦𝑡
𝑦𝑡+1

)︁
for each 𝑝 ∈ 𝐹 . Further, ⟨ℎ𝐹 ⟩ℎ denotes the

ideal of C[𝑥,𝑦, 𝑦𝑡+1] generated by ℎ𝐹 .

We consider the following property (C1): The leading terms appearing in the reduced Gröbner basis of ⟨ℎ𝐹 ⟩ℎ
w.r.t. grevlex(𝑥 ≻ 𝑦 ≻ 𝑦𝑡+1) do not involve any of the variables 𝑦1, . . . , 𝑦𝑡+1. By the proof of [22, Prop. 30], the
property (C1) implies Assumption (C).

Following the proof of [2, Prop. 7], if 𝑦𝑗+1 is not a zero-divisor of the quotient ring
C[𝑥,𝑦, 𝑦𝑡+1]/⟨ℎ𝐹, 𝑦1, . . . , 𝑦𝑗⟩ℎ for every 0 ≤ 𝑗 ≤ 𝑡, then 𝐹 satisfies the property (C1). This property means
that (𝑦1, . . . , 𝑦𝑡+1) forms a regular sequence in the quotient ring C[𝑥,𝑦, 𝑦𝑡+1]/⟨ℎ𝐹 ⟩ℎ. We name this property as
(C2).

From the proof of [35, Lemma 2.1, Lemma 2.2] and [14, Proposition 18.13], there exists a dense Zariski open
subset P1 ⊂ C[𝑥,𝑦]𝑠≤𝐷 such that for 𝑓 ∈P1, there exists a dense Zariski open subset K𝑓 ,1 ⊂ GL(𝑛, 𝑡,C)× C𝑛

such that for (𝐴,𝛼) ∈ K𝑓 ,1, the quotient ring C[𝑥,𝑦, 𝑦𝑡+1]/⟨ℎ𝑊𝐴,𝛼
1 ⟩ℎ is a Cohen-Macaulay ring of dimension

𝑡+ 1 and the ideal ⟨ℎ𝑊𝐴,𝛼
1 , 𝑦1, . . . , 𝑦𝑡+1⟩ℎ has dimension 0. By the unmixedness theorem [14, Corollary 18.14],

(𝑦1, . . . , 𝑦𝑡+1) is a regular sequence over C[𝑥,𝑦, 𝑦𝑡+1]/⟨ℎ𝑊𝐴,𝛼
1 ⟩ℎ. Thus, 𝑊𝐴,𝛼

1 satisfies the property (C2) and
Assumption (C) holds.

Similar for 2 ≤ 𝑖 ≤ 𝑑+ 1, we obtain dense Zariski subsets P𝑖 ⊂ C[𝑥,𝑦]𝑠≤𝐷 and K𝑓 ,𝑖 ⊂ GL(𝑛, 𝑡,C)× C𝑛

for each 𝑓 ∈P𝑖. Taking P = ∩𝑑+1
𝑖=1 P𝑖, and K𝑓 = ∩𝑑+1

𝑖=1 K𝑓 ,𝑖, we conclude the proof.

Proof of Theorem 1. It is well-known that Assumptions (A) and (B) are generic. Also, the set of regular sequences
is dense in C[𝑥,𝑦]𝑠≤𝐷 . Thus, there exists a dense Zariski open subset R ⊂ C[𝑥,𝑦]𝑠≤𝐷 such that for any 𝑓 ∈ R,
𝑓 forms a regular sequence satisfying Assumptions (A) and (B). As 𝑉 (𝑓) has dimension 𝑑 + 𝑡 and 𝑓 forms a
regular sequence in Q[𝑥,𝑦], 𝑑 = 𝑛− 𝑠. Algorithm 1 consists of (𝑑+ 1) calls to RealRootClassification on 𝑊𝐴,𝛼

𝑖 .
Let P be the dense Zariski open set in Proposition 12 and Q = P ∩ R. Then, for 𝑓 ∈ Q, SamplePoints is
called on a list of polynomials in Q[𝑦] of degree bounded by 𝒟. The number of principal minors is equal to the
dimension of the quotient ring Q(𝑦)[𝑥]/⟨𝑊𝐴,𝛼

𝑖 ⟩, which is also bounded by 𝒟. Applying [22, Theorem 2], each call
to RealRootClassification on 𝑊𝐴,𝛼

𝑖 costs at most 𝑂̃︀(︀8𝑡 𝒟3𝑡+2
(︀
𝑡+𝒟
𝑡

)︀)︀
arithmetic operations in Q. In total, the

arithmetic complexity of Algorithm 1 is bounded by 𝑂̃︀(︀(𝑛− 𝑠+ 1) 8𝑡 𝒟3𝑡+2
(︀
𝑡+𝒟
𝑡

)︀)︀
.
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6 Experiments

We compare the practical behavior of Algorithm 1 with QuantifierElimination (MAPLE’s RegularChains) and Resolve
(MATHEMATICA) on an Intel(R) Xeon(R) Gold 6244 3.60GHz machine of 754GB RAM. The timings are given in
seconds (s.), minutes (m.) and hours (h.). The symbol∞ means that the computation is stopped after 72 hours without
getting the result. We use our MAPLE implementation for Hermite matrices, in which FGB package [15] is used for
Gröbner bases computation. The computation of sample points is done by RAGLIB [29] which uses msolve [5] for
polynomial system solving.

For RealRootClassification, we use the following notations:

• HM: timings of computing Hermite matrices and their minors.

• SP: total timings of computing the sample points.

• SIZE: the largest size of the Hermite matrices.

• DEG: the highest degree appeared in the output formulas.

Start with random dense systems, we fix the total degree 𝐷 = 2 and run our algorithm for various (𝑡, 𝑛, 𝑠). In
Table 1, SamplePoints accounts for the major part of our timings. While our algorithm can tackle these examples,
neither MAPLE nor MATHEMATICA finish within 72h. The theoretical degree bound agrees with the practical
observations. This agrees with our complexity result. On smaller problems, we observe that formulas computed
by MAPLE and MATHEMATICA have larger degrees than our output. Hence, these implementations, based on CAD,
suffer from its doubly exponential complexity while our implementation takes advantage of the singly exponential
complexity of our algorithm.

𝑡 𝑛 𝑠 HM SP SIZE DEG MAPLE MATHEMATICA

2 3 2 .2 s. 3 s. 8 24 ∞ ∞
2 4 2 9 s. 1 m. 12 40 ∞ ∞
2 5 2 2 m. 15 m. 16 56 ∞ ∞
2 6 2 20 m. 2.5 h. 20 72 ∞ ∞
2 7 2 1.5 h. 6 h. 24 88 ∞ ∞
3 3 2 6 s. 1 m. 8 24 ∞ ∞
3 4 2 5 m. 15 m. 12 40 ∞ ∞
3 5 2 2 h. 5 h. 16 56 ∞ ∞
3 6 2 8 h. 16 h. 20 72 ∞ ∞
4 3 2 40 s. 30 m. 8 24 ∞ ∞
4 4 2 6 h. 40 h. 12 40 ∞ ∞
5 3 2 5 m. 14 h. 8 24 ∞ ∞

Table 1: Generic systems with 𝐷 = 2

Table 2 shows the timings for sparse systems. Each polynomial is generated with 𝐷 = 2 and has 2𝑛 terms. Even
Assumption (C) is not satisfied, our algorithm still applies. Thanks to the sparsity, the size and degree of the matrices
in our algorithm are smaller than in the dense cases. Thus, our algorithm runs faster here than in Table 1 while these
examples are out of reach of MAPLE and MATHEMATICA.

𝑡 𝑛 𝑠 HM SP SIZE DEG MAPLE MATHEMATICA

3 3 2 3 s. 37 s. 7 22 ∞ ∞
3 4 2 2 m. 10 m. 9 34 ∞ ∞
3 5 2 2 m. 10 m. 9 32 ∞ ∞
4 3 2 20 s. 20 m. 7 22 ∞ ∞
4 4 2 15 s. 18 m. 5 20 ∞ ∞

Table 2: Sparse systems with 𝐷 = 2
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Table 3 gives the timings for structured systems. We separate the variables 𝑥 into blocks of total degree 1;
[𝑖, 𝑛 − 𝑖] means that the degree in [𝑥1, . . . , 𝑥𝑖] and [𝑥𝑖+1, . . . , 𝑥𝑛] are respectively 1. Here, entries of the Hermite
matrices have non-trivial denominators with high degree. Computation those matrices takes the major part. However,
our algorithm still outperforms the two other software.

𝑡 𝑛 𝑠 Block HM SP SIZE DEG MAPLE MATHEMATICA

3 3 2 [1, 2] 5 s. 45 s. 4 20 ∞ ∞
3 4 2 [2, 2] 4 m. 1 m. 8 32 ∞ ∞
3 5 2 [2, 3] 2 h. 9 m. 8 40 ∞ ∞
3 6 2 [3, 3] 30 h. 45 m. 14 60 ∞ ∞

Table 3: Structured systems
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