Faster one block quantifier elimination for regular polynomial systems of equations

Huu Phuoc Le, Mohab Safey El Din

To cite this version:

Huu Phuoc Le, Mohab Safey El Din. Faster one block quantifier elimination for regular polynomial systems of equations. 2021. hal-03180730v1

HAL Id: hal-03180730
 https://hal.science/hal-03180730v1

Preprint submitted on 25 Mar 2021 (v1), last revised 26 May 2021 (v4)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

FASTER ONE BLOCK QUANTIFIER ELIMINATION FOR REGULAR POLYNOMIAL SYSTEMS OF EQUATIONS

Huu Phuoc Le
Sorbonne Université, CNRS,
Laboratoire d'Informatique de Paris 6, LIP6,
Équipe PolSys
F-75252, Paris Cedex 05, France
huu-phuoc.le@lip6.fr

Mohab Safey El Din
Sorbonne Université, CNRS,
Laboratoire d'Informatique de Paris 6, LIP6,
Équipe PolSys
F-75252, Paris Cedex 05, France
mohab.safey@lip6.fr

March 25, 2021

Abstract

Quantifier elimination over the reals is a central problem in computational real algebraic geometry, polynomial system solving and symbolic computation. Given a semi-algebraic formula (whose atoms are polynomial constraints) with quantifiers on some variables, it consists in computing a logically equivalent formula involving only unquantified variables. When there is no alternate of quantifier, one has a one block quantifier elimination problem.

We design a new practically efficient algorithm for solving one block quantifier elimination problems when the input semi-algebraic formula is a system of polynomial equations satisfying some mild assumptions such as transversality. When the input is generic, involves s polynomials of degree bounded by D with n quantified variables and t unquantified ones, we prove that this algorithm outputs semi-algebraic formulas of degree bounded by \mathcal{D} using $O^{\sim}\left(n 8^{t} \mathcal{D}^{3 t+2}\binom{t+\mathcal{D}}{t}\right)$ arithmetic operations in the ground field where $\mathcal{D}:=n D^{s}(D-1)^{n-s+1}\binom{n}{s}$.

In practice, it allows us to solve quantifier elimination problems which are out of reach of the state-of-the-art (up to 8 variables).

Keywords Quantifier elimination; Effective real algebraic geometry; Polynomial system solving

1 Introduction

Problem statement. Let $\boldsymbol{f}=\left(f_{1}, \ldots, f_{s}\right) \subset \mathbb{Q}[\boldsymbol{y}][\boldsymbol{x}]$ with $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\boldsymbol{y}=\left(y_{1}, \ldots, y_{t}\right)$. We aim at solving the following quantifier elimination problem over the reals

$$
\exists\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \quad f_{1}(\boldsymbol{x}, \boldsymbol{y})=\cdots=f_{s}(\boldsymbol{x}, \boldsymbol{y})=0 .
$$

This consists in computing a logically equivalent quantifier-free semi-algebraic formula $\Phi(\boldsymbol{y})$, i.e. Φ is a finite disjunction of conjonctions of polynomial constraints in $\mathbb{Q}[\boldsymbol{y}]$ which is true if and only if the input quantified formula is true. The \boldsymbol{x} variables are called quantified variables and the \boldsymbol{y} variables are called parameters.

Let π be the projection $(\boldsymbol{x}, \boldsymbol{y}) \mapsto \boldsymbol{y}$. Note that, geometrically, Φ describes the projection on the \boldsymbol{y}-space of the real algebraic set $\mathcal{V}_{\mathbb{R}} \subset \mathbb{R}^{t} \times \mathbb{R}^{n}$ defined by simultaneous vanishing of the f_{i} 's. Hence, a variant of the classical quantifier elimination algorithm consists in computing a quantifier-free formula which defines a dense semi-algebraic subset of the interior of $\pi\left(\mathcal{V}_{\mathbb{R}}\right)$. In this paper, we focus on solving this variant one block quantifier elimination problem.
Example 1. Consider the toy example $x^{2}+y^{2}=1$. Its projection on the y coordinate is described by the quantifier-free formula $(y \geq-1) \wedge(y \leq 1)$ while for our variant quantifier elimination problem, an admissible output is $(y>-1) \wedge(y<1)$.

Except for proving theorems, this is sufficient for most of applications of quantifier elimination in engineering sciences or computing sciences where either the output formula only needs to define a sufficiently large subset of the $\pi\left(\mathcal{V}_{\mathbb{R}}\right)$ or is evaluated with parameters's values which are subject to numerical noise.

Prior works. Tarski-Seidenberg theorem (Tarski, 1951) implies that the projection of any semi-algebraic set is also semi-algebraic. The real quantifier elimination, which aims to compute a semi-algebraic description of this projection, is a fundamental problem in mathematical logic and computational real algebraic geometry. It naturally arises in many problems in diverse application areas. The Cylindrical Algebraic Decomposition (CAD) (Collins, 1976) is the first known algorithm for this problem whose worst-case complexity is doubly exponential in the number of indeterminates (Davenport and Heintz, 1988). Since then, there have been extensive researches on developing this domain. We can name the CAD variants with improved projections (McCallum, 1988; Hong, 1990; McCallum, 1999; Brown, 2001) or the partial CAD (Collins and Hong, 1991). Following the idea of Grigor'ev (1988) that exploits the block structure of variables, Renegar (1992); Basu et al. (1996) introduced algorithms of only doubly exponential complexity in the order of quantifiers (number of blocks). In the case of one-block quantifier elimination, the arithmetic complexity and the degree of polynomials in the output of these algorithms are of order $s^{n+1} D^{O(n t)}$ where D is the bound on the degree of input polynomials (see (Basu et al., 2006, Algo 14.6)). However, obtaining efficient implementations of these algorithms remains challenging. We also cite here some other works in real quantifier elimination (Sturm and Weispfenning, 1996; Brown and Gross, 2006; Strzeboński, 2006) and applications to other fields (Liska and Steinberg, 1993; Anai and Weispfenning, 2001; Sturm and Tiwari, 2011).

In spite of this tremendous progress, many important applications stay out of reach of the state-of-the-art of the classic quantifier elimination. This motivates the researches by Hong and Safey El Din $(2009,2012)$ to consider a variant of quantifier elimination in which the input is required to satisfy specific conditions and the output is only "almost" equivalent to the input. The variant studied in this paper is a particular instance of the one considered in the works of (Hong and Safey El Din, 2009, 2012).

Main results. In this paper, we consider the input $\boldsymbol{f}=\left(f_{1}, \ldots, f_{s}\right)$ satisfying the assumptions below.
Assumption A. The Zariski closure $\overline{\pi(\mathcal{V})}$ of $\pi(\mathcal{V})$ is the whole parameter space \mathbb{C}^{t} and $\pi\left(\mathcal{V}_{\mathbb{R}}\right)$ is not of zero-measure in \mathbb{R}^{t}.

Assumption B.

- The ideal of $\mathbb{Q}[\boldsymbol{x}, \boldsymbol{y}]$ generated by \boldsymbol{f} is radical.
- The algebraic set $\mathcal{V} \subset \mathbb{C}^{t} \times \mathbb{C}^{n}$ defined by \boldsymbol{f} is equi-dimensional of dimension $d+t$ and the singular locus of \mathcal{V} has dimension at most $t-1$.

The first result of the paper is a new probabilistic algorithm for solving the aforementioned variant of the quantifier elimination on such an input f. Our algorithm applies the algorithm of Safey El Din and Schost (2003) to the system \boldsymbol{f} considering $\mathbb{Q}(\boldsymbol{y})$ as the based field. This allows to reduce our problem to zero-dimensional polynomial systems in $\mathbb{Q}(\boldsymbol{y})[\boldsymbol{x}]$. Next, we call to the algorithm given in the paper of Le and Safey El Din (2020) to compute semi-algebraic formulas that describe the projections of these systems
on the \boldsymbol{y}-space. Taking the union of these formulas, we obtain a semi-algebraic formula that describes a dense subset of the interior of $\pi\left(\mathcal{V}_{\mathbb{R}}\right)$.

The second goal is to analyze the complexity of this new algorithm. For generic inputs, we bound the degree of the outputs and establish an arithmetic complexity which depends on this bound. The precise notion of genericity is as follows.

Let $\mathbb{C}[\boldsymbol{x}, \boldsymbol{y}]_{\leq D}=\{p \in \mathbb{C}[\boldsymbol{x}, \boldsymbol{y}] \mid \operatorname{deg}(p) \leq D\}$. A property P is said to be generic over $\mathbb{C}[\boldsymbol{x}, \boldsymbol{y}]_{D}^{s}$ if and only if there exists a non-empty Zariski open subset $\mathscr{P} \subset \mathbb{C}[\boldsymbol{x}, \boldsymbol{y}]_{D}^{s}$ such that the property P holds for every $f \in \mathscr{P}$.

Our complexity result is then stated below. The notation $O^{\sim}(g)$ means $O\left(g \log ^{\kappa}(g)\right)$ for some $\kappa>0$.
Theorem 1. Let $\mathcal{D}=2(n+s) D^{s}(D-1)^{n-s+1}\binom{n}{s}$. There exists a non-empty Zariski open subset \mathscr{F} of $\mathbb{C}[\boldsymbol{x}, \boldsymbol{y}]_{\leq D}^{s}$ such that for every $\boldsymbol{f} \in \mathscr{F}$, there exists a probabilistic algorithm which, in case of success, computes a semi-algebraic formula Φ that defines a dense subset of the interior of $\pi\left(V(\boldsymbol{f}) \cap \mathbb{R}^{t+n}\right)$ within

$$
O^{\sim}\left((n-s+1) 8^{t} \mathcal{D}^{3 t+2}\binom{t+\mathcal{D}}{t}\right)
$$

arithmetic operations in \mathbb{Q} and Φ involves only polynomials in $\mathbb{Q}[\boldsymbol{y}]$ of degree at most \mathcal{D}.
Even though our complexity result has the same order as the one given in (Basu et al., 2006, Algo 14.6), we obtain explicit degree bounds on the output formulas and make explicit the hidden constant in the O notation in the exponent.

On the practical aspect, our implementation in MAPLE of this algorithm outperforms real quantifier elimination functions in Maple and Mathematica. It allows us to solve examples, both generic and non-generic, that are out of reach of these softwares (up to 9 indeterminates). These timings are reported in Section 6.

Structure of the paper. In Section 2, we start by recalling some basic notions. In Section 3, we resume the algorithm for real root finding of Safey El Din and Schost (2003). Also in the same section, we prove some auxiliary results in order to apply this algorithm parametrically. Next, we dedicate Section 4 for the description of our algorithm for solving the targeted problem and proving its correctness. The complexity of this algorithm is analyzed in Section 5. Finally, we report on some experimental results in Section 6.

2 Preliminaries

Algebraic sets and critical points Let \mathbb{F} be a subfield of \mathbb{C}. Let F be a subset of $\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$, the algebraic subset of \mathbb{C}^{n} at which the elements of F vanish is denoted by $V(F)$. For an algebraic set $\mathcal{V} \subset \mathbb{C}^{n}$, we denote by $I(\mathcal{V}) \subset \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ the radical ideal associated to \mathcal{V}. The singular locus of \mathcal{V} is denoted by $\operatorname{sing}(\mathcal{V})$. Given any subset \mathcal{S} of \mathbb{C}^{n}, we denote by $\overline{\mathcal{S}}$ the Zariski closure of \mathcal{S}, i.e., the smallest algebraic set containing \mathcal{S}. An algebraic set \mathcal{V} is said to be equi-dimensional if it irreducible components share the same dimension.

A map φ between two algebraic sets $\mathcal{V} \subset \mathbb{C}^{n}$ and $\mathcal{W} \subset \mathbb{C}^{i}$ is a polynomial map if there exist $\varphi_{1}, \ldots, \varphi_{i} \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ such that the $\varphi(\eta)=\left(\varphi_{1}(\eta), \ldots, \varphi_{i}(\eta)\right)$ for $\eta \in \mathcal{V}$. Let $\mathcal{V} \subset \mathbb{C}^{n}$ be an equi-dimensional algebraic set. We denote by $\operatorname{crit}(\varphi, \mathcal{V})$ the set of critical points of the restriction of φ to the non-singular locus of \mathcal{V}. If c is the codimension of \mathcal{V} and $\left(f_{1}, \ldots, f_{s}\right)$ generates the ideal $I(\mathcal{V})$, the subset of \mathcal{V} at which the Jacobian matrix associated to $\left(f_{1}, \ldots, f_{s}, \varphi_{1}, \ldots, \varphi_{i}\right)$ has rank less than or equal to c is the union of $\operatorname{crit}(\varphi, \mathcal{V})$ and $\operatorname{sing}(\mathcal{V})$ (see, e.g., (Safey El Din and Schost, 2017, Subsection 3.1)). Further we denote by $\operatorname{jac}\left(f_{1}, \ldots, f_{s}, \varphi_{1}, \ldots, \varphi_{i}\right)$ this Jacobian matrix.

Gröbner bases and zero-dimensional ideals Let \mathbb{F} be a field and $\overline{\mathbb{F}}$ be its algebraic closure. We fix an admissible monomial order \succ (see (Cox et al., 2007, Sec. 2.2)) over $\mathbb{F}[\boldsymbol{x}]$ where $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$. For $p \in \mathbb{F}[\boldsymbol{x}]$, the leading monomial of p with respect to \succ is denoted by $\operatorname{lm}_{\succ}(p)$.

A Gröbner basis G of an ideal $I \subset \mathbb{F}[\boldsymbol{x}]$ w.r.t the order \succ is a finite generating set of I such that the set of leading monomials $\left\{\operatorname{lm}_{\succ}(g) \mid g \in G\right\}$ generates the initial ideal $\left\langle\operatorname{lm}_{\succ}(p) \mid p \in I\right\rangle$.

For $p \in \mathbb{F}[\boldsymbol{x}]$, the remainder of the division of p by G using the order \succ is uniquely defined and is called the normal form of p w.r.t and G. A polynomial p is reduced by G if p coincides with its normal form w.r.t G.

An ideal I is said to be zero-dimensional if the algebraic set $V(I) \subset \overline{\mathbb{F}}^{n}$ is finite and non-empty. When this holds, by (Cox et al., 2007, Sec. 5.3, Theorem 6), the quotient ring $\mathbb{F}[\boldsymbol{x}] / I$ is a \mathbb{F}-vector space of finite dimension. The dimension of this vector space is also called the algebraic degree of I; it coincides with the number of points of $V(I)$ counted with multiplicities (Basu et al., 2006, Sec. 4.5). For any Gröbner basis of I, the set of monomials in \boldsymbol{x} which are irreducible by G forms a monomial basis, denoted by B, of this vector space. For any $p \in \mathbb{F}[\boldsymbol{x}]$, the normal form of p by G can be interpreted as the image of p in $\mathbb{F}[\boldsymbol{x}] / I$ and is a linear combination of elements of B with coefficients in \mathbb{F}.

Properness \& Noether normalization A map $\varphi: V \mapsto \mathbb{C}^{i}$ is proper at $\beta \in \mathbb{C}^{i}$ if there exists a neighborhood \mathcal{O} of β such that $\varphi^{-1}(\overline{\mathcal{O}})$ is compact, where $\overline{\mathcal{O}}$ denotes the closure of \mathcal{O} for the Euclidean topology. If φ is proper everywhere on its image, we say that the map φ is proper. The notion of properness is strongly related to the following notion of Noether normalization.

Let \mathbb{F} be a field and I be an ideal of $\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$. The variables $\left(x_{i+1}, \ldots, x_{n}\right)$ are in Noether position w.r.t I if their canonical images in the quotient algebra $\mathbb{F}\left[x_{1}, \ldots, x_{n}\right] / I$ are algebraic integers over $\mathbb{F}\left[x_{1}, \ldots, x_{i}\right]$ and $\mathbb{F}\left[x_{1}, \ldots, x_{i}\right] \cap I=\langle 0\rangle$. Once $\mathbb{F}=\mathbb{C}$ and the variables $\left(x_{i+1}, \ldots, x_{n}\right)$ is in Noether position w.r.t I, the projection of $V(I)$ on $\left(x_{1}, \ldots, x_{i}\right)$ is proper.

Change of variables Given a field \mathbb{F}, we denote by $\operatorname{GL}(n, \mathbb{F})$ the set of invertible matrices of size $n \times n$ with entries in \mathbb{F}. Let $p \in \mathbb{F}[\boldsymbol{x}]$ be a polynomial. For any $A \in \mathrm{GL}(n, \mathbb{F})$, we denote by p^{A} the polynomial $p(A \cdot \boldsymbol{x}) \in \mathbb{F}[\boldsymbol{x}]$. For any algebraic set $V \subset \overline{\mathbb{F}}^{n}, V^{A}$ denotes the algebraic set $\left\{A^{-1} \cdot \boldsymbol{x} \mid \boldsymbol{x} \in V\right\}$.

For two blocks of indeterminates \boldsymbol{x} and \boldsymbol{y}, we consider frequently the matrices that act only on the variables \boldsymbol{x} and leave \boldsymbol{y} invariant. Those matrices form a subset denoted by GL (n, t, \mathbb{F}) of $\mathrm{GL}(n+t, \mathbb{F})$.

3 Algorithm for real root finding

3.1 Safey EI Din - Schost algorithm

Now, we recall the algorithm in Safey El Din and Schost (2003), which we refer to as the S^{2} algorithm, for computing at least one point per connected component of a smooth real algebraic sets.

Let $\boldsymbol{f}=\left(f_{1}, \ldots, f_{s}\right)$ be a polynomial sequence in $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$. For $1 \leq i \leq d$, let ϕ_{i} be the projection $\left(x_{1}, \ldots, x_{n}\right) \rightarrow\left(x_{1}, \ldots, x_{i}\right)$.

When f defines a smooth equi-dimensional algebraic set $\mathcal{V} \subset \mathbb{C}^{n}$ and generates a radical ideal, one can build a polynomial system using appropriate minors of $\operatorname{jac}(\boldsymbol{f})$ to define $\operatorname{crit}\left(\phi_{i}, \mathcal{V}\right)$. Note that the critical loci are nested

$$
\operatorname{crit}\left(\phi_{1}, \mathcal{V}\right) \subset \operatorname{crit}\left(\phi_{d}, \mathcal{V}\right) \subset \cdots \operatorname{crit}\left(\phi_{d}, \mathcal{V}\right) \subset \operatorname{crit}\left(\phi_{d+1}, \mathcal{V}\right)=\mathcal{V}
$$

Note also that in generic coordinates $\operatorname{crit}\left(\phi_{i}, \mathcal{V}\right)$ has expected dimension $i-1$. The algorithm in Safey El Din and Schost (2003) then exploits stronger properties of these critical loci under some genericity assumption on the coordinate system (which are retrieved through a generic linear change of coordinates).
Proposition 2. (Safey El Din and Schost, 2003, Theorem 2) Assume that f defines a smooth equidimensional algebraic set and generates a radical ideal.

Then, there exists a non-empty Zariski open set $\mathscr{A}_{\boldsymbol{f}} \in \mathrm{GL}(n, \mathbb{C})$ such that for $A \in \mathscr{A}_{\boldsymbol{f}}$ the following holds:

- the restriction of ϕ_{i-1} to $\operatorname{crit}\left(\phi_{i}, \mathcal{V}^{A}\right)$ is proper;
- the set $\operatorname{crit}\left(\phi_{i}, \mathcal{V}^{A}\right)$ is either empty or of dimension $i-1$ for $1 \leq i \leq d+1$.

The first item in Proposition 2 implies the second one. The index in the notation $\mathscr{A}_{\boldsymbol{f}}$ indicates that the non-empty Zariski open set depends on f. Algorithm S^{2} considers fibers of the above critical loci with the convention $\pi_{0}: \boldsymbol{x} \rightarrow \bullet$. Proposition 2 is the cornerstone to the S^{2} algorithm which can be derived from the following one.
Proposition 3. (Safey El Din and Schost, 2003, Theorem 2) Assume that f defines a smooth equidimensional algebraic set and generates a radical ideal.

For $A \in \mathscr{A}_{\boldsymbol{f}} \cap \mathrm{GL}(n, \mathbb{Q})$ as defined in Proposition 2 and $\alpha=\left(\alpha_{1}, \ldots, \alpha_{d}\right) \in \mathbb{R}^{d}$, the union of the sets

$$
\operatorname{crit}\left(\phi_{i}, \mathcal{V}^{A}\right) \cap \phi_{i-1}^{-1}\left(\left(\alpha_{1}, \ldots, \alpha_{i-1}\right)\right), \quad 1 \leq i \leq d+1
$$

is finite and meets all connected components of $\mathcal{V} \cap \mathbb{R}^{n}$.
Example 4. Let \mathcal{V} be the smooth surface defined by $x_{1}^{2}-x_{2}^{2}-x_{3}^{2}=1$. The Jacobian matrix $\operatorname{jac}_{\boldsymbol{x}}(\boldsymbol{f})$ writes simply $\left(2 x_{1},-2 x_{2},-2 x_{3}\right)$. It turns out that the identity matrix lies in the set \mathscr{A} defined in Proposition 2. Taking $\alpha=(0,0)$, we obtain 3 zero-dimensional systems:

- $\operatorname{crit}\left(\phi_{1}, \mathcal{V}\right):\left\{x_{2}, x_{3}, x_{1}^{2}-x_{2}^{2}-x_{3}^{2}-1\right\}$,
- $\operatorname{crit}\left(\phi_{2}, \mathcal{V}\right) \cap \phi_{1}^{-1}(\mathbf{0}):\left\{x_{3}, x_{1}^{2}-x_{2}^{2}-x_{3}^{2}-1 x_{1}\right\}$,
- $\mathcal{V} \cap \phi_{2}^{-1}(\mathbf{0}):\left\{x_{1}^{2}-x_{2}^{2}-x_{3}^{2}-1 x_{1}, x_{2}\right\}$.

The first system admits two real solutions $(1,0,0)$ and $(-1,0,0)$. The other systems do not have any real solution. The two points $(1,0,0)$ and $(-1,0,0)$ intersect the two connected components of \mathcal{V}.

Of course, on general examples, one would need to perform a randomly chosen linear change of variables but this example illustrates already how S^{2} works.

3.2 Parametric variant of Safey El Din - Schost algorithm

We present now a parametric variant of S^{2}. We let $\boldsymbol{f}=\left(f_{1}, \ldots, f_{s}\right) \subset \mathbb{Q}[\boldsymbol{y}][\boldsymbol{x}]$ where $\boldsymbol{y}=\left(y_{1}, \ldots, y_{t}\right)$ are considered as parameters and $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ are variables. The algebraic set defined by \boldsymbol{f} is denoted by $\mathcal{V} \subset \mathbb{C}^{t} \times \mathbb{C}^{n}$. Let π denote the projection $(\boldsymbol{x}, \boldsymbol{y}) \mapsto \boldsymbol{y}$ and π_{i} denote the projection $(\boldsymbol{y}, \boldsymbol{x}) \mapsto\left(\boldsymbol{y}, x_{1}, \ldots, x_{i}\right)$.

Considering $\mathbb{Q}(\boldsymbol{y})$ as the ground field, the parametric variant of S^{2} computes on the input \boldsymbol{f} a list of finite subsets of $\mathbb{Q}[\boldsymbol{y}][\boldsymbol{x}]$, each of which generates a zero-dimensional ideal of $\mathbb{Q}(\boldsymbol{y})[\boldsymbol{x}]$. These subsets are basically $\boldsymbol{f}^{A} \cup \Delta_{i}^{A} \cup\left\{x_{1}-\alpha_{1}, \ldots, x_{i-1}-\alpha_{i-1}\right\}$, where (A, α) is randomly chosen in $\mathrm{GL}(n, t, \mathbb{Q}) \times \mathbb{Q}^{n}$ and Δ_{i}^{A} is the set of all $(n-d)$-minors of the Jacobian matrix of \boldsymbol{f}^{A} w.r.t x_{i}, \ldots, x_{n}.

The rest of this subsection is devoted to the auxiliary results that allow us to use the S^{2} algorithm parametrically as above.
Lemma 5. When Assumptions (A) and (B) hold, there exists a non-empty Zariski open subset \mathscr{B} of \mathbb{C}^{t} such that for every $\eta \in \mathscr{B}$, the specialization $\boldsymbol{f}(\eta, \cdot)$ of \boldsymbol{f} at η generates a radical equi-dimensional ideal whose algebraic set is either empty or has dimension d.

Proof. Under Assumption (A), by the fiber dimension theorem (Shafarevich, 2013, Theorem 1.25), there exists a non-empty Zariski open subset \mathscr{B}^{\prime} of \mathbb{C}^{t} such that $\pi^{-1}(\eta) \cap \mathcal{V}$ is an algebraic set of dimension d.

Let \mathcal{W} denote the set of points of \mathcal{V} at which the Jacobian matrix $\operatorname{jac}_{\boldsymbol{x}}(\boldsymbol{f})$ of \boldsymbol{f} w.r.t \boldsymbol{x} has rank at most $n-d-1$. We note that $\mathcal{W}=\operatorname{crit}(\pi, \mathcal{V}) \cup \operatorname{sing}(\mathcal{V})$.

The algebraic version of Sard's theorem (Safey El Din and Schost, 2017, Proposition B2) implies that $\pi(\operatorname{crit}(\pi, \mathcal{V}))$ is contained in a proper Zariski closed subset of \mathbb{C}^{t}. On the other hand, as Assumptions (B)
hold, the dimension of $\pi(\operatorname{sing}(\mathcal{V}))$ is less than t. Thus, it is also contained in a proper Zariski closed subset of \mathbb{C}^{t}.

Hence, the Zariski closure of $\pi(\mathcal{W})$ is a proper Zariski closed subset of \mathbb{C}^{t}. Let \mathscr{B} be the intersection of the complementary in \mathbb{C}^{t} of this Zariski closure with \mathscr{B}^{\prime}. For $\eta \in \mathscr{B}$, the set

$$
\left\{\boldsymbol{x} \in \mathbb{C}^{n} \mid \boldsymbol{f}(\eta, \boldsymbol{x})=0, \operatorname{rank} \operatorname{jac}_{\boldsymbol{x}}(\boldsymbol{f})(\eta)<n-d\right\}
$$

is empty. Since the dimension of $\pi^{-1}(\eta) \cap \mathcal{V}$ is d and the Jacobian matrix $\operatorname{jac}_{\boldsymbol{x}}(\boldsymbol{f})(\eta, \cdot)$ of $\boldsymbol{f}(\eta, \cdot)$ w.r.t the variables \boldsymbol{x} is of rank $n-d$ for every $(\eta, \boldsymbol{x}) \in \mathcal{V} \cap \pi^{-1}(\eta)$, the ideal $\boldsymbol{f}(\eta, \cdot)$ is radical and defines a smooth and equi-dimensional set of dimension d by Jacobian criterion (Eisenbud, 1995, Theorem 16.19).

Lemma 5 shows that when specializing $\boldsymbol{y}=\left(y_{1}, \ldots, y_{t}\right)$ to a generic point $\eta \in \mathscr{B} \cap \mathbb{R}^{t}$ in \boldsymbol{f}, one obtains a sequence of polynomials $\boldsymbol{f}(\eta, \cdot)$ which satisfies the assumptions of Proposition 2. One could then apply Algorithm S^{2} to $\boldsymbol{f}(\eta, \cdot)$ to grab sample points per connected components in the real algebraic set it defines. However, proceeding this way would lead us to use a linear change of variables encoded by a matrix A which depends on η. The result below shows that one can choose one generic change of variables, once for all, that will be valid for most of parameters' values.
Proposition 6. Assume that Assumptions (A) and (B) hold. There exists a non-empty Zariski open subset \mathscr{O} of $\mathrm{GL}(n, t, \mathbb{C})$ such that for every $A \in \mathscr{O} \cap \mathrm{GL}(n, t, \mathbb{Q})$ the following holds.

There exists a non-empty Zariski open subset \mathscr{Y}_{A} of \mathbb{C}^{t} such that \mathscr{Y}_{A} is a subset of the non-empty Zariski open set \mathscr{B} in Lemma 5 and A lies in the non-empty Zariski open set $\mathscr{A}_{\boldsymbol{f}(\eta, .)}$ defined in Proposition 2 for every $\eta \in \mathscr{Y}_{A}$.

Proof. Let $\overline{\mathbb{C}(\boldsymbol{y})}$ denote the algebraic closure of $\mathbb{C}(\boldsymbol{y})$. We consider $\overline{\mathbb{C}(\boldsymbol{y})}$ as the coefficient field. The proof of (Safey El Din and Schost, 2003, Theorem 1) is purely algebraic and then is valid over the based field $\overline{\mathbb{C}(\boldsymbol{y})}$. Hence, there exists a non-empty Zariski open subset $\tilde{\mathscr{O}}$ of $\mathrm{GL}(n, t, \overline{\mathbb{C}(\boldsymbol{y})})$ such that for $A \in \tilde{\mathscr{O}} \cap \mathrm{GL}(n, t, \mathbb{Q})$, the variables $\left(x_{1}, \ldots, x_{i-1}\right)$ is in Noether position w.r.t the ideal in $\mathbb{Q}(\boldsymbol{y})[\boldsymbol{x}]$ generated by $\boldsymbol{f}^{A}+\Delta_{i}^{A}$ for $1 \leq i \leq d+1$ where Δ_{i}^{A} is the set of maximal minors of the truncated Jacobian matrix of $\operatorname{jac}\left(\boldsymbol{f}^{A}\right)$ with all the partial derivatives w.r.t. \boldsymbol{y} and x_{j} for $1 \leq j \leq i$ being removed (hence these minors are the ones defining $\left.\operatorname{crit}\left(\pi_{i}, \mathcal{V}\right) \cup \operatorname{sing}(\mathcal{V})\right)$.

This is equivalent to the following. For $1 \leq i \leq d+1, i \leq j \leq n$, there exist the polynomials $p_{i, j} \in \mathbb{Q}(\boldsymbol{y})\left[x_{1}, \ldots, x_{i-1}, x_{j}\right]$ such that each $p_{i, j}$ lies in the ideal of $\mathbb{Q}(\overline{\boldsymbol{y}})[\boldsymbol{x}]$ generated by $\boldsymbol{f}^{A} \cup \Delta_{i}^{A}$ and it is monic when considering x_{j} as the only variable (with the coefficients in $\mathbb{Q}(\boldsymbol{y})\left[x_{1}, \ldots, x_{i-1}\right]$).

The denominators of $p_{i, j}$ are then polynomials in $\mathbb{Q}[\boldsymbol{y}]$. We choose \mathscr{Y}_{A} to be the intersection of the non-empty Zariski open set \mathscr{B} defined in Lemma 5 and the non-empty Zariski open set defined by the nonvanishing of all the denominators appeared in the $p_{i, j}$'s. Thus, for $\eta \notin \mathscr{Y}_{A}, p_{i, j}(\eta, \cdot) \in \mathbb{Q}\left[x_{1}, \ldots, x_{i-1}, x_{j}\right]$ is monic in x_{j}. Consequently, $\left(x_{i}, \ldots, x_{n}\right)$ is in Noether position w.r.t the ideal of $\mathbb{C}[\boldsymbol{x}]$ generated by $\boldsymbol{f}^{A}(\eta, \cdot) \cup \Delta_{i}^{A}(\eta, \cdot)$. Finally, taking $\mathscr{O}=\tilde{\mathscr{O}} \cap \operatorname{GL}(n, t, \mathbb{C})$, the conclusion follows.

4 One block quantifier elimination algorithm

4.1 Description of the algorithm

In this subsection, we describe our algorithm for solving our variant of quantifier elimination problem. The input is a polynomial sequence $\boldsymbol{f}=\left(f_{1}, \ldots, f_{s}\right) \subset \mathbb{Q}[\boldsymbol{x}, \boldsymbol{y}]$ satisfying Assumptions (A) and (B). Further, we denote by $Z(\Psi)$ the zero set of any semi-algebraic formula Ψ, i.e., $Z(\Psi)=\left\{\boldsymbol{y} \in \mathbb{R}^{t} \mid \Psi(\boldsymbol{y})\right.$ is true $\}$.

By Assumptions (A) and (B), the fiber dimension theorem (Shafarevich, 2013, Theorem 1.25) implies that there exists a non-empty Zariski open subset of \mathbb{C}^{t} such that $\pi^{-1}(\eta)$ has dimension d. The idea is to apply the parametric variant of S^{2} with $\mathbb{Q}(\boldsymbol{y})$ as a ground field.

More precisely, we start by picking randomly (A, α) in $\mathrm{GL}(n, t, \mathbb{Q}) \times \mathbb{Q}^{n}$ and apply the change of variables $\boldsymbol{x} \mapsto A \cdot \boldsymbol{x}$ to the input \boldsymbol{f} to obtain a new sequence \boldsymbol{f}^{A}. As A acts only on $\boldsymbol{x}, \pi\left(V\left(\boldsymbol{f}^{A}\right) \cap \mathbb{R}^{n+t}\right)=$ $\pi\left(\mathcal{V}_{\mathbb{R}}\right)$. Hence, a quantifier-free formula that solves our problem for \boldsymbol{f}^{A} is also a solution of the same problem for \boldsymbol{f}.

Let $\mathrm{jac}_{\boldsymbol{x}}\left(\boldsymbol{f}^{A}\right)$ be the Jacobian matrix of \boldsymbol{f}^{A} w.r.t the variables $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$. We denote by J_{1}, \ldots, J_{n} the columns of $\operatorname{jac}_{\boldsymbol{x}}\left(\boldsymbol{f}^{A}\right)$ respectively. For $1 \leq i \leq d$, let $W_{i}^{A, \alpha}$ be the union of \boldsymbol{f}^{A}, all the $(n-d)$-minors of the matrix consisting of the columns J_{i+1}, \ldots, J_{n} and $\left\{x_{1}-\alpha_{1}, \ldots, x_{i-1}-\alpha_{i-1}\right\}$. In particular, $W_{d+1}^{A, \alpha}$ denotes $\boldsymbol{f}^{A} \cup\left\{x_{1}-\alpha_{1}, \ldots, x_{d}-\alpha_{d}\right\}$.

We prove later in Lemma 8 that, for generic (A, α), the ideals of $\mathbb{Q}(\boldsymbol{y})[\boldsymbol{x}]$ generated by $W_{i}^{A, \alpha}$ are radical and zero-dimensional.

We now solve the quantifier elimination problem for each of the polynomial sets $W_{i}^{A, \alpha}$. For this step, we refer to a subroutine called RealRootClassification that takes as input a polynomial sequence $F \subset \mathbb{Q}[\boldsymbol{y}][\boldsymbol{x}]$ such that the ideal of $\mathbb{Q}(\boldsymbol{y})[\boldsymbol{x}]$ generated by F is radical and zero-dimensional and computes a quantifier-free formula Φ_{F} in \boldsymbol{y} such that $Z\left(\Phi_{F}\right)$ is dense in the interior of $\pi\left(V(F) \cap \mathbb{R}^{n+t}\right)$. For this task, we refer to the algorithm of Le and Safey El Din (2020). We will explain the essential details of this subroutine later in Subsection 4.2.

Calling the subroutine RealRootClassification on the inputs $W_{i}^{A, \alpha}$ gives us the lists of semialgebraic formulas Φ_{i}. Finally, we return $\Phi=\vee_{i=1}^{d+1} \Phi_{i}$ as the output of our algorithm.

We summarize the whole discussion above in the following pseudo-code, where we call to two additional subroutines below:

- GenericDimension which takes as input the sequence f and computes the dimension of the ideal generated by \boldsymbol{f} in $\mathbb{Q}(\boldsymbol{y})[\boldsymbol{x}]$.
- Minors which takes as input a matrix M whose coefficients are in $\mathbb{Q}[\boldsymbol{x}, \boldsymbol{y}]$ and computes all of its $(n-d)$-minors.

```
Algorithm 1: One-block quantifier elimination
    Input: A polynomial sequence \(\boldsymbol{f} \in \mathbb{Q}[\boldsymbol{y}][\boldsymbol{x}]\) satisfying Assumptions (A) and (B).
    Output: A formula \(\Phi\) s.t \(Z(\Phi)\) is dense in the interior of \(\pi\left(\mathcal{V}_{\mathbb{R}}\right)\).
    Choose randomly \((A, \alpha) \in \mathrm{GL}_{n}(\mathbb{Q}) \times \mathbb{Q}^{n}\)
    \(\boldsymbol{f}^{A} \leftarrow \boldsymbol{f}(A \cdot \boldsymbol{x})\)
    \(\left[J_{1}, \ldots, J_{n}\right] \leftarrow \operatorname{jac}_{\boldsymbol{x}}\left(\boldsymbol{f}^{A}\right)\)
    \(d \leftarrow\) GenericDimension \(\left(\boldsymbol{f}^{A}\right)\)
    for \(1 \leq i \leq d\) do
        \(W_{i}^{A, \alpha} \leftarrow \operatorname{Minors}\left(\left[J_{i+1}, \ldots, J_{n}\right]\right) \cup\left\{\boldsymbol{f}^{A}, x_{1}-\alpha_{1}, \ldots, x_{i-1}-\alpha_{i-1}\right\}\)
        \(\Phi_{i} \leftarrow\) RealRootClassification \(\left(W_{i}^{A, \alpha}\right)\)
    \(\Phi_{d+1} \leftarrow \operatorname{RealRootClassification}\left(\left\{\boldsymbol{f}^{A}, x_{1}-\alpha_{1}, \ldots, x_{d}-\alpha_{d}\right\}\right)\)
    \(\Phi \leftarrow \vee_{i=1}^{d+1} \Phi_{i}\)
    return \(\Phi\)
```


4.2 Real root classification

Now we explain the general ideas of the algorithm presented in Le and Safey El Din (2020) that is used in the RealRootClassification subroutine.

Let $F \subset \mathbb{Q}[\boldsymbol{y}][\boldsymbol{x}]$ be a polynomial sequence such that the ideal $\langle F\rangle$ generated by F in $\mathbb{Q}(\boldsymbol{y})[\boldsymbol{x}]$ is radical and zero-dimensional.

For such an input F, RealRootClassification returns a semi-algebraic formula Φ_{F} and a polynomial $w_{\infty} \in \mathbb{Q}[\boldsymbol{y}]$ that satisfies:

- $Z\left(\Phi_{F}\right) \subset \pi\left(V(F) \cap \mathbb{R}^{n+t}\right)$,
- $Z\left(\Phi_{F}\right) \backslash V\left(w_{\infty}\right)=\pi\left(V(F) \cap \mathbb{R}^{n+t}\right) \backslash V\left(w_{\infty}\right)$.

The algorithm in Le and Safey El Din (2020) is based on constructing a symmetric matrix H_{F} with entries in $\mathbb{Q}(\boldsymbol{y})$ associated to F. This matrix is basically a parametric version of the classical Hermite matrix for the ideal $\langle F\rangle$ (see, e.g., (Basu et al., 2006, Chap. 4)), which provides the number of distinct real/complex solutions of the system $F(\eta, \cdot)$ through the signature/rank of the specialization of H_{F} at η (Le and Safey El Din, 2020, Corollary 17).

Let G_{F} be the reduced Gröbner basis of the ideal in $\mathbb{Q}[\boldsymbol{x}, \boldsymbol{y}]$ generated by F w.r.t the order $\operatorname{grevlex}(\boldsymbol{x}) \succ \operatorname{grevlex}(\boldsymbol{y})$. We consider the leading coefficients of the elements of G_{F} in variables \boldsymbol{x} w.r.t the order $\operatorname{grevlex}(\boldsymbol{x})$, which are polynomials in $\mathbb{Q}[\boldsymbol{y}]$. Then, w_{∞} is taken as the square-free part of the product of these leading coefficients. The polynomial w_{∞} defines an algebraic set of \boldsymbol{y}-space over which the matrix H_{F} does not have good specialization property (see (Le and Safey El Din, 2020, Proposition 16)).

Next, we choose randomly a matrix $Q \in \mathrm{GL}(\delta, \mathbb{Q})$. As the entries of H_{F} lie in $\mathbb{Q}(\boldsymbol{y})$, so do the leading principal minors $M_{1}, \ldots, M_{\delta}$ of $Q^{T} \cdot H_{F} \cdot Q$. Let $m_{1}, \ldots, m_{\delta}$ be the numerators of those minors, which are in $\mathbb{Q}[\boldsymbol{y}]$. A sufficiently generic matrix Q ensures that none of the m_{i} 's is identically zero, hence allowing us to determine the signature of H_{F} according to the signs of the m_{i} 's. We then compute a finite set of points L of \mathbb{Q}^{t} that intersects every connected component of the semi-algebraic set defined by $\wedge_{i=1}^{\delta}\left(m_{i} \neq 0\right) \wedge\left(w_{\infty} \neq 0\right)$. Over those connected components, the polynomials m_{i} are sign-invariant. Since the signature of $H_{F}(\eta)$ can be deduced from the signs of the $m_{i}(\eta)$, the number of real solutions of $F(\eta, \cdot)$ is also invariant when η varies in each connected component.

Let $L_{0}=\{\eta \in L \mid F(\eta, \cdot)$ admits at least one real solution $\}$ and

$$
\Phi_{F}=\left(\vee_{\eta \in L_{0}}\left(\operatorname{sign}\left(M_{1}(\eta)\right) \wedge \ldots \wedge \operatorname{sign}\left(M_{\delta}(\eta)\right)\right)\right) \wedge w_{\infty} \neq 0
$$

Then Φ_{F} is an admissible output of RealRootClassification for F. The correctness of this algorithm is proven in (Le and Safey El Din, 2020, Proposition 28).

In the pseudo-code below, we introduce the subroutines

- HermiteMatrix which takes as input a polynomial sequence $F \subset \mathbb{Q}[\boldsymbol{y}][\boldsymbol{x}]$ such that the ideal $\langle F\rangle \subset \mathbb{Q}(\boldsymbol{y})[\boldsymbol{x}]$ is zero-dimensional and computes the parametric Hermite matrix associated to F w.r.t the order grevlex (\boldsymbol{x}).
The description of this subroutine is given in (Le and Safey El Din, 2020, Algo. 2).
- NumeratorsOfPrincipalMinors computes the numerators of the leading principal minors of the matrix $Q^{T} \cdot H_{F} \cdot Q$.
- SamplePoints which takes as input a polynomial sequence $m_{1}, \ldots, m_{\delta}, w_{\infty} \in \mathbb{Q}[\boldsymbol{y}]$ and computes a finite set of points that intersects every connected component of the semi-algebraic set defined by $\wedge_{i=1}^{\delta} m_{i} \neq 0 \wedge w_{\infty} \neq 0$.
We describe such a subroutine in (Le and Safey El Din, 2020, Sec. 3).
- Signature which evaluates the signature of a symmetric matrix of entries in \mathbb{Q}.

We end this subsection by an example to illustrate our algorithm.
Example 7. We consider the polynomial $f=x_{1}^{2}+y_{1} x_{2}^{2}+y_{2} x_{2}+y_{3}$. Let $\Delta=y_{2}^{2}-4 y_{1} y_{3}$. The projection of $V(f) \cap \mathbb{R}^{5}$ on the \boldsymbol{y}-space can be described by

$$
\left(\Delta \geq 0 \wedge y_{1}>0\right) \vee\left(y_{1}<0\right) \vee\left(y_{1}=0 \wedge\left(\left(y_{2} \neq 0\right) \vee\left(y_{2}=0 \wedge y_{3} \leq 0\right)\right)\right)
$$

```
Algorithm 2: RealRootClassification
    Input: A polynomial sequence \(F \subset \mathbb{Q}[\boldsymbol{y}][\boldsymbol{x}]\) such that the ideal of \(\mathbb{Q}(\boldsymbol{y})[\boldsymbol{x}]\) generated by \(F\) is
        radical and zero-dimensional.
    Output: A formula \(\Phi_{F}\) and a polynomial \(w_{\infty}\).
    \(H_{F}, w_{\infty} \leftarrow\) HermiteMatrix \((F)\)
    Choose randomly \(Q \in \operatorname{GL}(\delta, \mathbb{Q}) / / \delta\) is the size of \(H_{F}\)
    \(\left(m_{1}, \ldots, m_{\delta}\right) \leftarrow\) NumeratorsOfPrincipalMinors \(\left(Q^{T} \cdot H_{F} \cdot Q\right)\)
    \(L \leftarrow\) SamplePoints \(\left(\left(\wedge_{i=1}^{\delta} m_{i} \neq 0\right) \wedge w_{\infty} \neq 0\right)\)
    for \(\eta \in L\) do
        if Signature \(\left(H_{F}(\eta)\right) \neq 0\) then
            \(\Phi_{F} \leftarrow \Phi_{F} \vee\left(\operatorname{sign}\left(m_{1}(\eta)\right), \ldots, \operatorname{sign}\left(m_{\delta}(\eta)\right)\right)\)
    \(\Phi_{F} \leftarrow \Phi_{F} \wedge\left(w_{\infty} \neq 0\right)\)
    return \(\Phi_{F}, w_{\infty}\)
```

Applying the parametric variant of S^{2}, we obtain 2 systems $W_{1}=\left\{2 y_{1} x_{2}+y_{2}, f\right\}$ and $W_{2}=\left\{f, x_{1}\right\}$. Calling RealRootClassification on them returns $w_{1, \infty}=w_{2, \infty}=y_{1}$ and the matrices:

$$
H_{1}=\left(\begin{array}{cc}
2 & 0 \\
0 & -2 y_{3}+y_{2}^{2} /\left(2 y_{1}\right)
\end{array}\right) \quad \text { and } \quad H_{2}=\left(\begin{array}{cc}
2 & -y_{2} \\
-y_{2} & -2 y_{1} y_{3}+y_{2}^{2}
\end{array}\right) .
$$

Then, the sequences of leading principal minors are respectively $\left[2, \Delta / y_{1}\right]$ and $[2, \Delta]$. It leads us to compute at least one point per connected component of the semi-algebraic set defined by $y_{1} \neq 0 \wedge \Delta \neq 0$. When $y_{1} \neq 0$ and $\Delta \neq 0$, each Hermite matrix H_{i} has positive signature if and only if its determinant is positive. Hence, for W_{2}, requiring $\Delta>0$ leads to the semi-algebraic formula below:

$$
\Phi_{2}=\Delta>0 \wedge y_{1} \neq 0
$$

For W_{1}, we obtain the semi-algebraic formula

$$
\Phi_{1}=\left(\left(\Delta>0 \wedge y_{1}>0\right) \vee\left(\Delta<0 \wedge y_{1}<0\right)\right) \wedge\left(y_{1} \neq 0\right)
$$

The final output is therefore

$$
\Phi=\left(\Delta>0 \wedge y_{1}>0\right) \vee\left(\Delta<0 \wedge y_{1}<0\right) \vee\left(\Delta>0 \wedge y_{1} \neq 0\right),
$$

which is equivalent to $\left(\Delta>0 \wedge y_{1}>0\right) \vee\left(\Delta \neq 0 \wedge y_{1}<0\right)$. It is straight-forward to see that $Z(\Phi)$ is a dense subset of $\pi\left(V(f) \cap \mathbb{R}^{5}\right)$.

4.3 Correctness of Algorithm 1

We start by proving that the polynomial sequences $W_{i}^{A, \alpha}$ satisfy the assumptions required by RealRootClassification.

Lemma 8. Assume that Assumptions (A) and (B) hold. Let \mathfrak{O} be the Zariski open subset of $\mathrm{GL}(n, t, \mathbb{C})$ defined in Proposition 6 and $A \in \mathscr{O} \cap \mathrm{GL}(n, t, \mathbb{Q})$. There exists a non-empty Zariski open subset \mathscr{X} of \mathbb{C}^{d} such that for $\alpha \in \mathscr{X} \cap \mathbb{Q}^{d}$, the ideal of $\mathbb{Q}(\boldsymbol{y})[\boldsymbol{x}]$ generated by $W_{i}^{A, \alpha}$ is radical and either empty or zero-dimensional.

Proof. By Proposition 6, the algebraic set defined by $W_{i}^{A, \alpha}(\eta, \cdot)$ is finite when η varies over a non-empty Zariski open subset \mathscr{Y}_{A} of \mathbb{C}^{t}. Thus, the ideal of $\mathbb{Q}(\boldsymbol{y})[\boldsymbol{x}]$ generated by $W_{i}^{A, \alpha}$ is zero-dimensional. Now we prove that the ideal generated by $W_{i}^{A, \alpha}$ is radical.

Let M_{1}, \ldots, M_{ℓ} be the $n-d$ minors of the Jacobian matrix J associated to \boldsymbol{f}^{A} when considering only the partial derivatives w.r.t. x_{i+1}, \ldots, x_{n}. Recall that $W_{i}^{A, \alpha}$ is the union of \boldsymbol{f}^{A} with the $M_{1}^{A}, \ldots, M_{\ell}^{A}$ with x_{1}, \ldots, x_{i-1}. Further, we denote by $W_{i}^{\prime}{ }_{i}^{A} \subset \mathbb{Q}(\boldsymbol{y})[\boldsymbol{x}]$ the ideal generated by $\boldsymbol{f}^{A}, M_{1}^{A}, \ldots, M_{\ell}^{A}$.

The idea is to follow (Safey El Din and Schost, 2017, Definitions 3.2 and 3.3) where charts and atlases are defined for algebraic sets defined by the vanishing of \boldsymbol{f}^{A} and $M_{1}^{A}, \ldots, M_{\ell}^{A}$.

Let m be a $(n-d-1)$ minor of J. Without loss of generality we assume that it is the upper left such minor and let $M_{1}, \ldots, M_{d-(i-1)}$ be the $(n-d)$ minors of J obtained by completing m with the $n-d$-th line of J and the missing column. We denote by $\mathbb{Q}(\boldsymbol{y})[\boldsymbol{x}]_{m}$ the localized ring where divisions by powers of m are allowed.

By (Safey El Din and Schost, 2017, Lemma B.12) there exists a non-empty Zariski open set $\mathscr{O}_{m, n-d}^{\prime}$ such that for $A \in \operatorname{GL}(n, t, \mathbb{C})$, the localization of the ideal generated by $f_{1}^{A}, \ldots, f_{n-d}^{A}, M_{1}^{A}, \ldots, M_{d-(i-1)}^{A}$ in the ring $\mathbb{Q}(\boldsymbol{y})[\boldsymbol{x}]_{m}$ is radical and coincides with the localization of $W_{i}^{\prime A}$ in $\mathbb{Q}(\boldsymbol{y})[\boldsymbol{x}]_{m}$. By (Safey El Din and Schost, 2017, Prop. 3.4), there exists a non-empty Zariski open set $\mathscr{O}^{\prime \prime} \subset \mathrm{GL}(n, t, \mathbb{C})$ such that for $A \in \mathscr{O}^{\prime \prime}$, any irreducible component of the algebraic set defined by $W_{i}^{\prime A}$ contains a point at which a $(n-d-1)$ minor of J does not vanish. This implies that any primary component $W_{i}^{\prime A}$ whose associated algebraic set contains such a point is radical and then prime.

Now define Ω as the intersection of \mathscr{O} (defined in Proposition 6), all non-empty Zariski open sets $\mathscr{O}_{m, k}^{\prime}$ and $\mathscr{O}^{\prime \prime}$. Hence, we then deduce that $W_{i}^{\prime A}$ generates a radical ideal.

It remains to prove that there exists a non-empty Zariski open set $\mathscr{X}_{i} \subset \mathbb{C}^{i-1}$ such that for $\alpha=$ $\left(\alpha_{1}, \ldots, \alpha_{i-1}\right) \in \mathscr{X}_{i},\left\langle W_{i}^{\prime A}\right\rangle+\left\langle x_{1}-\alpha_{1}, \ldots, x_{i-1}-\alpha_{i-1}\right\rangle$ is radical in $\mathbb{Q}(\boldsymbol{y})[\boldsymbol{x}]$. Note that choosing α outside the set of critical values of π_{i} restricted to the algebraic set defined by ${W_{i}^{\prime}}_{i}^{A}$ in $\overline{\mathbb{Q}}(\boldsymbol{y})^{n}$ is enough. By Sard's theorem, this set of critical values is contained in the vanishing set of a non-zero polynomial $\nu \in \mathbb{Q}[\boldsymbol{y}][\boldsymbol{x}]$. Now note that it suffices to define \mathscr{X}_{i} as the complementary of the vanishing set of the coefficients of ν when it is seen in $\mathbb{Q}[\boldsymbol{x}][\boldsymbol{y}]$ and $\mathscr{X}=\cap_{i=1}^{d+1} \mathscr{X}_{i}$.

We prove the correctness of Algorithm 1 in Proposition 9 below.
Proposition 9. Assume that Assumptions (A) and (B) hold. Let $\mathscr{O} \subset \mathrm{GL}(n, t, \mathbb{C})$ and $\mathscr{X} \subset \mathbb{C}^{d}$ be defined respectively in Proposition 6 and Lemma 8. Then for $A \in \mathscr{O} \cap \mathrm{GL}(n, t, \mathbb{Q})$ and $\alpha \in \mathscr{X} \cap \mathbb{Q}^{d}$, the formula Φ computed by Algorithm 1 defines a dense subset of the interior of $\pi\left(\mathcal{V}_{\mathbb{R}}\right)$.

Proof. By Lemma 8, $W_{i}^{A, \alpha}$ satisfies the assumptions of RealRootClassification. Thus, the calls of RealRootClassification on $W_{i}^{A, \alpha}$ are valid and return the formulas Φ_{i} and the polynomials $w_{i, \infty}$. As A acts only on $\boldsymbol{x}, \pi\left(\mathcal{V}_{\mathbb{R}}^{A}\right)=\pi\left(\mathcal{V}_{\mathbb{R}}\right)$. Thus,

$$
Z\left(\Phi_{i}\right) \subset \pi\left(V\left(W_{i}^{A, \alpha}\right) \cap \mathbb{R}^{n+t}\right) \subset \pi\left(\mathcal{V}_{\mathbb{R}}^{A}\right)=\pi\left(\mathcal{V}_{\mathbb{R}}\right)
$$

Therefore, $Z(\Phi)=\cup_{i=1}^{d+1} Z\left(\Phi_{i}\right) \subset \pi\left(\mathcal{V}_{\mathbb{R}}\right)$.
By the description of Φ_{i}, for $1 \leq i \leq d+1$,

$$
Z\left(\Phi_{i}\right) \backslash V\left(w_{i, \infty}\right)=\pi\left(V\left(W_{i}^{A, \alpha}\right) \cap \mathbb{R}^{n+t}\right) \backslash V\left(w_{i, \infty}\right)
$$

Let \mathscr{Y}_{A} be the non-empty Zariski open subset of \mathbb{C}^{t} in Proposition $6\left(\mathscr{Y}_{A}\right.$ depends on the matrix A). We denote

$$
\mathcal{W}=\cup_{i=1}^{d+1} V\left(w_{i, \infty}\right) \cup\left(\mathbb{C}^{t} \backslash \mathscr{Y}_{A}\right)
$$

We will show that, for $\eta \in \pi\left(\mathcal{V}_{\mathbb{R}}^{A}\right) \backslash \mathcal{W}, \eta \in Z(\Phi)$.

Since $\eta \in \pi\left(\mathcal{V}_{\mathbb{R}}^{A}\right), V\left(\boldsymbol{f}^{A}(\eta, \cdot)\right) \cap \mathbb{R}^{n}$ is not empty. On the other hand, as $\eta \in \mathcal{Y}_{A}, \boldsymbol{f}^{A}(\eta, \cdot)$ generates a radical equi-dimensional ideal whose algebraic set is either empty or smooth of dimension d. By Proposition $3, V\left(f^{A}(\eta, \cdot)\right) \cap \mathbb{R}^{n}$ is not empty if and only if $\cup_{i=1}^{d+1} V\left(W_{i}^{A, \alpha}(\eta) \cap \mathbb{R}^{n}\right)$ is not empty either. We deduce that $\eta \in \cup_{i=1}^{d+1} \pi\left(V\left(W_{i}^{A, \alpha}\right) \cap \mathbb{R}^{n+t}\right) \backslash \mathcal{W}$. We have that

$$
\begin{aligned}
\cup_{i=1}^{d+1} \pi\left(V\left(W_{i}^{A, \alpha}\right) \cap \mathbb{R}^{n+t}\right) \backslash \mathcal{W} & =\cup_{i=1}^{d+1}\left(\pi\left(V\left(W_{i}^{A, \alpha}\right) \cap \mathbb{R}^{n+t}\right) \backslash \mathcal{W}\right) \\
& =\cup_{i=1}^{d+1}\left(Z\left(\Phi_{i}\right) \backslash \mathcal{W}\right) \\
& =\left(\cup_{i=1}^{d+1} Z\left(\Phi_{i}\right)\right) \backslash \mathcal{W} .
\end{aligned}
$$

Therefore, $Z(\Phi) \backslash \mathcal{W}=\pi\left(\mathcal{V}_{\mathbb{R}}\right) \backslash \mathcal{W}$ and $\pi\left(\mathcal{V}_{\mathbb{R}}\right) \backslash Z(\Phi)$ is of measure zero in \mathbb{R}^{t}. By Assumption (A), we conclude that $Z(\Phi)$ is a dense subset of the interior of $\pi\left(\mathcal{V}_{\mathbb{R}}\right)$.

5 Complexity analysis

We now estimate the arithmetic complexity of Algorithm 1 once $A \in \mathscr{O} \cap \mathrm{GL}(n, t, \mathbb{Q})$ and $\alpha \in \mathscr{X} \cap \mathbb{Q}^{n}$ as in Proposition 6 are found from a random choice. In this section, the input system f forms a regular sequence of $\mathbb{Q}[\boldsymbol{x}, \boldsymbol{y}]$ (then, $s=n-d$) and satisfies Assumptions (A) and (B). As the most costly parts of our algorithm are the calls to the subroutine RealRootClassification on the sequences $W_{i}^{A, \alpha}$, we focus on estimating the complexity of these calls. To this end, we need to introduce the following assumption, which we will prove to be generic below.
Assumption C. Let $F \subset \mathbb{Q}[\boldsymbol{x}, \boldsymbol{y}]$ and G be the reduced Gröbner basis of F w.r.t the order grevlex $(\boldsymbol{x}) \succ$ grevlex (\boldsymbol{y}). Then F is said to satisfy Assumption (C) if and only if for any $g \in G$, the total degree of g in both \boldsymbol{x} and \boldsymbol{y} equals to the degree of g w.r.t only \boldsymbol{x}.

In (Le and Safey El Din, 2020, Lemma 13), it is proven that, on an input F satisfying Assumption (C), the polynomial w_{∞} in RealRootClassification is simply 1 and the entries of the Hermite matrix H_{F} are in $\mathbb{Q}[\boldsymbol{y}]$. Therefore, the SamplePoints subroutine is called on the sequence of leading principal minors of the parametric Hermite matrices. Again, with Assumption (C), the degree of these leading principal minors can be bounded (see (Le and Safey El Din, 2020, Lemma 32)). Therefore, one obtains the complexity bound for RealRootClassification for such F.

Back to our problem, we will establish a degree bound for the polynomials given into SamplePoints. Some notations that will be used further are introduced below.

Let D be a bound of the total degree of elements of \boldsymbol{f}. The zero-dimensional ideal of $\mathbb{Q}(\boldsymbol{y})[\boldsymbol{x}]$ generated by $W_{i}^{A, \alpha}$ is denoted by $\left\langle W_{i}^{A, \alpha}\right\rangle$. The quotient ring $\mathbb{Q}(\boldsymbol{y})[\boldsymbol{x}] /\left\langle W_{i}^{A, \alpha}\right\rangle$ is a finite dimensional $\mathbb{Q}(\boldsymbol{y})$-vector space. Let G_{i} be the reduced Gröbner basis of the ideal of $\mathbb{Q}[\boldsymbol{x}, \boldsymbol{y}]$ generated by $W_{i}^{A, \alpha}$ w.r.t the order grevlex $(\boldsymbol{x}) \succ \operatorname{grevlex}(\boldsymbol{y})$ and B_{i} be the monomial basis of $\mathbb{Q}(\boldsymbol{y})[\boldsymbol{x}] /\left\langle W_{i}^{A, \alpha}\right\rangle$ constructed using G_{i} as described in Section 2.

We begin with the following lemma.
Lemma 10. When Assumption (C) holds for $W_{i}^{A, \alpha}$, any leading principal minor of the matrix H_{i} has degree bounded by $2 \sum_{b \in B_{i}} \operatorname{deg}(b)$.

Proof. The proof can be deduced from (Le and Safey El Din, 2020, Lemma 13, Proposition 31, Lemma 32). It is mainly based on the control of degrees appearing in the normal form computation in $\mathbb{Q}(\boldsymbol{y})[\boldsymbol{x}] /\left\langle W_{i}^{A, \alpha}\right\rangle$.

It remains to estimate the sum $\sum_{b \in B_{i}} \operatorname{deg}(b)$. A bound is obtained by simply taking the product of the highest degree appeared in B_{i} and its cardinality. As the Hilbert series of $\mathbb{Q}(\boldsymbol{y})[\boldsymbol{x}] /\left\langle W_{i}^{A, \alpha}\right\rangle$ when \boldsymbol{f} is a generic system are known (see, e.g., Faugère et al. (2013); Spaenlehauer (2014)), explicit bounds of these quantities are easily obtained.

Lemma 11. Let B_{i} be defined as above. There exists a non-empty Zariski open subset \mathscr{Q} of $\mathbb{C}[\boldsymbol{x}, \boldsymbol{y}]_{\leq D}^{s}$ such that, for $\boldsymbol{f} \in \mathscr{Q}$, the following inequality holds for $1 \leq i \leq d+1$:

$$
\sum_{b \in B_{i}} \operatorname{deg}_{\boldsymbol{x}}(b) \leq(n+s-i) D^{s}(D-1)^{n-i-s+2}\binom{n-i+1}{s}
$$

Proof. By (Nie and Ranestad, 2009, Theorem 2.2), there exists a non-empty Zariski open subset $\mathscr{Q}_{1,1} \subset$ $\mathbb{C}[\boldsymbol{x}, \boldsymbol{y}]_{<D}^{s}$ such that when $\boldsymbol{f} \in \mathscr{Q}_{1,1}$, the algebraic degree of $\left\langle W_{1}^{A, \alpha}\right\rangle$, which is also the cardinality of B_{1}, is bounded by

$$
D^{s} \sum_{k=0}^{n-s}\binom{k+s-1}{s-1}(D-1)^{k} \leq D^{s}(D-1)^{n-s}\binom{n}{s}
$$

On the other hand, by (Spaenlehauer, 2014, Corollary 3.2), there exists a non-empty Zariski subset $\mathscr{Q}_{1,2} \subset \mathbb{C}[\boldsymbol{x}, \boldsymbol{y}]_{\leq D}^{s}$ such that for $\boldsymbol{f} \in \mathscr{Q}_{1,2}$, the witness degree, i.e., the highest degree appeared in the reduced Gröbner basis of $W_{1}^{A, \alpha}$ w.r.t $\operatorname{grevlex}(\boldsymbol{x})$, is bounded by $(n+s-1) D-2 n+2$. Thus, the highest degree in B_{1} is bounded by $(n+s-1) D-2 n+1$. Thus, let $\mathscr{Q}_{1}=\mathscr{Q}_{1,1} \cap \mathscr{Q}_{1,2}$ and, for $\boldsymbol{f} \in \mathscr{Q}_{1}$, we obtain

$$
\sum_{b \in B_{1}} \operatorname{deg}(b) \leq(n+s-1) D^{s}(D-1)^{n-s+1}\binom{n}{s}
$$

We note that, for $1 \leq i \leq d$, the system $W_{i}^{A, \alpha}$ can also be interpreted as the system defining the critical locus of the projection $\left(x_{i}, \ldots, x_{n}\right) \mapsto x_{i}$ restricted to $V\left(f^{A}\left(\alpha_{1}, \ldots, \alpha_{i-1}, x_{i}, \ldots, x_{n}\right)\right)$. Therefore, by replacing n by $n-i+1$ in the above bound, we deduce that, for $1 \leq i \leq d$, there exists a non-empty Zariski open subset $\mathscr{Q}_{i} \subset \mathbb{C}[\boldsymbol{x}, \boldsymbol{y}]_{\leq D}^{s}$ such that

$$
\sum_{b \in B_{i}} \operatorname{deg}(b) \leq(n+s-i) D^{s}(D-1)^{n-i-s+2}\binom{n-i+1}{s}
$$

For the particular case $i=d+1$, the cardinality of B_{d+1} is bounded by D^{s} and the highest degree in B_{d+1} is bounded by $s(D-1)$. Therefore, the bound also holds for $i=d+1$.

By taking $\mathscr{Q}=\cap_{i=1}^{d+1} \mathscr{Q}_{i}$, we conclude the proof.
Further, we denote $\mathcal{D}=2(n+s-1) D^{s}(D-1)^{n-s+1}\binom{n}{s}$. We prove now that Assumption (C) holds generically.
Proposition 12. For fixed $(A, \alpha) \in \mathrm{GL}(n, t, \mathbb{Q}) \times \mathbb{Q}^{n}$. There exists a non-empty Zariski open subset $\mathscr{P} \subset \mathbb{C}[\boldsymbol{x}, \boldsymbol{y}]_{\leq D}^{s}$ such that for every $\boldsymbol{f} \in \mathscr{P}$, Assumption (C) holds for every system $W_{i}^{A, \alpha}$.

Proof. As A is invertible, we can take A as the identity matrix of size $n+t$ without any loss of generality. Let y_{t+1} be a new variable and ${ }^{h} \mathbb{Q}\left[\boldsymbol{x}, \boldsymbol{y}, y_{t+1}\right]_{D}$ denote the set of homogeneous polynomials in $\mathbb{Q}\left[\boldsymbol{x}, \boldsymbol{y}, y_{t+1}\right]$ of degree D. For $F \subset \mathbb{Q}[\boldsymbol{x}, \boldsymbol{y}]$, we denote by ${ }^{h} F \subset \mathbb{Q}\left[\boldsymbol{x}, \boldsymbol{y}, y_{t+1}\right]$ the homogenization of F with respect to both \boldsymbol{x} and \boldsymbol{y}, i.e.,

$$
{ }^{h} p=y_{t+1}^{\operatorname{deg}(p)} \cdot p\left(\frac{x_{1}}{y_{t+1}}, \ldots, \frac{x_{n}}{y_{t+1}}, \frac{y_{1}}{y_{t+1}}, \ldots, \frac{y_{t}}{y_{t+1}}\right)
$$

for each $p \in F$. Further, $\left\langle{ }^{h} F\right\rangle_{h}$ denotes the ideal of $\mathbb{Q}\left[\boldsymbol{x}, \boldsymbol{y}, y_{t+1}\right]$ generated by ${ }^{h} F$.
We consider the following property (C1): The leading terms appearing in the reduced Gröbner basis of $\left\langle{ }^{h} F\right\rangle_{h}$ w.r.t the order grevlex $\left(\boldsymbol{x} \succ \boldsymbol{y} \succ y_{t+1}\right)$ do not involve any of the variables y_{1}, \ldots, y_{t+1}. In the proof of (Le and Safey El Din, 2020, Prop. 30), it is proven that the property (C1) implies Assumption (C).

Following the proof of (Bardet et al., 2015, Prop. 7), if y_{j+1} is not a zero-divisor of the quotient ring $\left.\mathbb{Q}\left[\boldsymbol{x}, \boldsymbol{y}, y_{t+1}\right] /{ }^{h} F, y_{1}, \ldots, y_{j}\right\rangle_{h}$ for every $0 \leq j \leq t$, then F satisfies the property (C1). This property means that $\left(y_{1}, \ldots, y_{t+1}\right)$ forms a regular sequence in the quotient ring $\mathbb{Q}\left[\boldsymbol{x}, \boldsymbol{y}, y_{t+1}\right] /\left\langle{ }^{h} F\right\rangle_{h}$. We name this property as (C2).

We now prove that for a generic polynomial sequence $\boldsymbol{f} \in \mathbb{C}[\boldsymbol{x}, \boldsymbol{y}]_{\leq D}^{s}, W_{1}^{A, \alpha}$ satisfies the property (C2). We follow (Bruns and Vetter, 1988, Corollary 2.8), the proof of (Spaenlehauer, 2014, Lemma 2.2) and (Eisenbud, 1995, Proposition 18.13) to deduce that there exists a non-empty Zariski open subset $\mathscr{P}_{1} \subset \mathbb{Q}[\boldsymbol{x}, \boldsymbol{y}]^{s}$ such that for $\boldsymbol{f} \in \mathscr{P}_{1}, \mathbb{Q}\left[\boldsymbol{x}, \boldsymbol{y}, y_{t+1}\right] /\left\langle^{h} W_{1}^{A, \alpha}\right\rangle_{h}$ is a Cohen-Macaulay ring of dimension $t+1$. Using (Spaenlehauer, 2014, Lemma 2.1), the ideal $\left\langle{ }^{h} W_{1}^{A, \alpha}, y_{1}, \ldots, y_{t+1}\right\rangle_{h}$ is zero-dimensional. Then, by the Unmixedness Theorem (Eisenbud, 1995, Corollary 18.14), $\left(y_{1}, \ldots, y_{t+1}\right)$ is a regular sequence over $\mathbb{Q}\left[\boldsymbol{x}, \boldsymbol{y}, y_{t+1}\right] /\left\langle{ }^{h} W_{1}^{A, \alpha}\right\rangle_{h}$.

Similarly, considering $W_{i}^{A, \alpha}$ as a system in $\mathbb{Q}\left[x_{i}, \ldots, x_{n}, \boldsymbol{y}\right]$ by setting $\left(x_{1}, \ldots, x_{i-1}\right)$ to $\left(\alpha_{1}, \ldots, \alpha_{i-1}\right)$, we deduce the existence of a non-empty Zariski subset \mathscr{P}_{i} of $\mathbb{C}[\boldsymbol{x}, \boldsymbol{y}]_{\leq D}^{s}$ such that $W_{i}^{A, \alpha}$ satisfies Assumption (C). Taking $\mathscr{P}=\cap_{i=1}^{d+1} \mathscr{P}_{i}$, we conclude the proof.

Finally, we finish the proof of Theorem 1 stated in Section 1.
Proof of Theorem 1. It is well-known that Assumptions (A) and (B) are generic. Also, the set of regular sequences is also dense in $\mathbb{C}[\boldsymbol{x}, \boldsymbol{y}]_{\leq D}^{s}$. Thus, there exists a non-empty Zariski open subset $\mathscr{R} \subset \mathbb{C}[\boldsymbol{x}, \boldsymbol{y}]_{\leq D}^{s}$ such that for any $f \in \mathscr{R}, f$ forms a regular sequence satisfying Assumptions (A) and (B). Recall that $d+t$ is the dimension of $V(\boldsymbol{f})$. As \boldsymbol{f} forms a regular sequence in $\mathbb{Q}[\boldsymbol{x}, \boldsymbol{y}], d=n-s$.

Algorithm 1 consists of $(d+1)$ calls to RealRootClassification with inputs $W_{i}^{A, \alpha}$ respectively. Let \mathscr{P} be the non-empty Zariski open set in Proposition 12 and $\mathscr{Q}=\mathscr{P} \cap \mathscr{R}$. Then, for $\boldsymbol{f} \in \mathscr{Q}$, SamplePoints is called on the list of leading principal minors, which lie in $\mathbb{Q}[\boldsymbol{y}]$ of degree bounded by \mathcal{D}. The number of principal minors is equal to the dimension of the quotient ring $\mathbb{Q}(\boldsymbol{y})[\boldsymbol{x}] /\left\langle W_{i}^{A, \alpha}\right\rangle$, which is also bounded by \mathcal{D}.

Thus, by applying (Le and Safey El Din, 2020, Theorem 2), each call to RealRootClassification on the systems $W_{i}^{A, \alpha}$ costs at most

$$
O^{\sim}\left(8^{t} \mathcal{D}^{3 t+2}\binom{t+\mathcal{D}}{t}\right)
$$

arithmetic operations in \mathbb{Q}. In total, the arithmetic complexity of Algorithm 1 is bounded by

$$
O^{\sim}\left((n-s+1) 8^{t} \mathcal{D}^{3 t+2}\binom{t+\mathcal{D}}{t}\right) .
$$

6 Experiments

We now report on the practical behavior of Algorithm 1 comparing with QuantifierElimination (MAPLE's RegularChains) and Resolve (Mathematica). The experiments are launched on an $\operatorname{Intel}(\mathrm{R}) \mathrm{Xeon}(\mathrm{R})$ Gold 6244 3.60GHz machine of 754GB RAM. The timings are given in seconds (s.), minutes (m.) and hours (h.). The symbol ∞ means that the computation is stopped after 72 hours without getting the result.

We use our Maple implementation for Hermite matrices, in which FGb package Faugère (2010) is used for Gröbner bases computation. The computation of points per connected components of semialgebraic sets is done using RAGLIB library Safey El Din (2017) which employs msolve library Berthomieu et al. (2021) for zero-dimensional system solving.

For RealRootClassification, we use the following notations:

- HM: the total timings of computing the Hermite matrices and their determinants.
- SP: the total timings of computing the sample points.
- SIZE: the largest size of the Hermite matrices.
- DEG: the highest degree appeared in the output formulas.

We start with randomly generated dense systems. Fixing the total degree $D=2$, we run our algorithm for various t, n and s. In Fig. 1, the computation of SamplePoints accounts for the major part of the total timings of RealRootClassification. The computation of maple and mathematica do not finish after 72 (h.) while our algorithm returns the semi-algebraic formulas under 24 (h.). The theoretical degree bound also agrees with the practical observation.

t	n	s	HM	RRC	SIZE	DEG	MAPLE	MATHEMATICA
2	3	2	.2 s.	3 s.	8	24	∞	∞
2	4	2	9 s.	1 m.	12	40	∞	∞
2	5	2	2 m.	15 m.	16	56	∞	∞
2	6	2	20 m.	2.5 h.	20	72	∞	∞
2	7	2	1.5 h.	6 h.	24	88	∞	∞
3	3	2	6 s.	1 m.	8	24	∞	∞
3	4	2	5 m.	15 m.	12	40	∞	∞
3	5	2	2 h.	5 h.	16	56	∞	∞
3	6	2	8 h.	16 h.	20	72	∞	∞
4	3	2	40 s.	30 m.	8	24	∞	∞
4	4	2	6 h.	40 h.	12	40	∞	∞
5	3	2	5 m.	14 h.	8	24	∞	∞

Figure 1: Generic systems with $D=2$
Fig. 2 shows the timings for the sparse systems. Each polynomial is generated with total degree 2 in both \boldsymbol{x} and \boldsymbol{y} and contains $2 n$ terms. Assumption (C) is not satisfied by these systems. Thus, the entries of Hermite matrices involve denominators. These examples are still out of reach of MAPLE and MATHEMATICA. For our algorithm, thanks to the sparsity, the computation of the matrices and their minors is easier than the dense case. The size and degree of polynomials appeared in the output formulas are also smaller.

t	n	s	HM	RRC	SIZE	DEG	MAPLE	MATHEMATICA
3	3	2	3 s.	37 s.	7	22	∞	∞
3	4	2	2 m.	10 m.	9	34	∞	∞
3	5	2	2 m.	10 m.	9	32	∞	∞
4	3	2	20 s.	20 m.	7	22	∞	∞
4	4	2	15 s.	18 m.	5	20	∞	∞

Figure 2: Sparse systems with $D=2$
Finally, we report the timings for structured systems in Fig. 3. We separate the variables \boldsymbol{x} into blocks of total degree $1 ;[i, n-i]$ means that the total degree in $\left[x_{1}, \ldots, x_{i}\right]$ and $\left[x_{i+1}, \ldots, x_{n}\right]$ are respectively 1. We successfully solve these examples and obtain formulas of degree smaller than the ones of dense systems. However, Assumption (C) is not satisfied and we observe the denominators appear in the Hermite matrices but now with especially high degree. Hence, the computation on the matrices becomes the major
part. Still, it appears that our algorithm outperforms the state-of-the-art for solving the one-block quantifier problems we consider here.

t	n	s	Block	HM	RRC	SIZE	DEG	MAPLE	MATHEMATICA
3	3	2	$[1,2]$	5 s.	45 s.	4	20	∞	∞
3	4	2	$[2,2]$	4 m.	1 m.	8	32	∞	∞
3	5	2	$[2,3]$	2 h.	9 m.	8	40	∞	∞
3	6	2	$[3,3]$	30 h.	45 m.	14	60	∞	∞

Figure 3: Structured systems

References

Anai, H., Weispfenning, V., 2001. Reach set computations using real quantifier elimination, in: Hybrid Systems: Computation and Control, Springer Berlin Heidelberg. pp. 63-76.
Bardet, M., Faugère, J.C., Salvy, B., 2015. On the complexity of the F5 Gröbner basis algorithm. Journal of Symbolic Computation 70, 49-70.
Basu, S., Pollack, R., Roy, M.F., 1996. On the combinatorial and algebraic complexity of quantifier elimination. J. ACM 43, 1002-1045. doi:10.1145/235809. 235813.
Basu, S., Pollack, R., Roy, M.F., 2006. Algorithms in Real Algebraic Geometry. Springer-Verlag, Berlin, Heidelberg.
Berthomieu, J., Eder, C., Safey El Din, M., 2021. msolve: A Library for Solving Polynomial Systems. Preprint.
Brown, C.W., 2001. Improved projection for Cylindrical Algebraic Decomposition. Journal of Symbolic Computation 32, 447 - 465. doi:https://doi.org/10.1006/jsco.2001. 0463.
Brown, C.W., Gross, C., 2006. Efficient preprocessing methods for quantifier elimination, in: Computer Algebra in Scientific Computing, Springer Berlin Heidelberg, Berlin, Heidelberg. pp. 89-100.
Bruns, W., Vetter, U., 1988. Determinantal Rings. Lecture Notes in Mathematics, Springer-Verlag, Berlin, Heidelberg.
Collins, G.E., 1976. Quantifier elimination for real closed fields by cylindrical algebraic decomposition: a synopsis. ACM SIGSAM Bulletin 10, 10-12. URL: https://doi.org/10.1145/1093390. 1093393, doi:10.1145/1093390.1093393.
Collins, G.E., Hong, H., 1991. Partial Cylindrical Algebraic Decomposition for quantifier elimination. Journal of Symbolic Computation 12, 299-328. doi:https://doi.org/10.1016/S0747-7171 (08) 80152-6.
Cox, D.A., Little, J., O'Shea, D., 2007. Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, 3/e (Undergraduate Texts in Mathematics). SpringerVerlag, Berlin, Heidelberg.
Davenport, J.H., Heintz, J., 1988. Real quantifier elimination is doubly exponential. J. Symb. Comput. 5, 29-35. doi:https://doi.org/10.1016/S0747-7171 (88)80004-X.
Eisenbud, D., 1995. Commutative Algebra: With a View Toward Algebraic Geometry. Graduate Texts in Mathematics, Springer.
Faugère, J.C., 2010. FGb: A Library for Computing Gröbner Bases, in: Fukuda, K., Hoeven, J., Joswig, M., Takayama, N. (Eds.), Mathematical Software - ICMS 2010, Springer Berlin / Heidelberg, Berlin, Heidelberg. pp. 84-87. doi:10.1007/978-3-642-15582-6_17.
Faugère, J.C., Safey El Din, M., Spaenlehauer, P.J., 2013. On the complexity of the generalized minrank problem. J. Symb. Comput. 55, 30 - 58. doi:https://doi.org/10.1016/j.jsc.2013.03.004.
Grigor'ev, D.Y., 1988. Complexity of deciding Tarski algebra. J. Symb. Comput. 5, 65-108. doi:10. 1016/S0747-7171(88)80006-3.

Hong, H., 1990. An improvement of the projection operator in Cylindrical Algebraic Decomposition, in: Proceedings of the International Symposium on Symbolic and Algebraic Computation, Association for Computing Machinery, New York, NY, USA. p. 261-264. doi:10.1145/96877.96943.
Hong, H., Safey El Din, M., 2009. Variant real quantifier elimination: Algorithm and application, in: Proceedings of the 2009 International Symposium on Symbolic and Algebraic Computation, Association for Computing Machinery, New York, NY, USA. p. 183-190. doi:10.1145/1576702.1576729.
Hong, H., Safey El Din, M., 2012. Variant quantifier elimination. J. Symb. Comput. 47, 883 - 901. doi:https://doi.org/10.1016/j.jsc.2011.05.014. international Symposium on Symbolic and Algebraic Computation (ISSAC 2009).
Le, H.P., Safey El Din, M., 2020. Solving parametric systems of polynomial equations over the reals through Hermite matrices. URL: https://hal.archives-ouvertes.fr/hal-03029441. preprint.
Liska, R., Steinberg, S.L., 1993. Applying Quantifier Elimination to Stability Analysis of Difference Schemes. The Computer Journal 36, 497-503. doi:10.1093/comjnl/36.5.497.
McCallum, S., 1988. An improved projection operation for Cylindrical Algebraic Decomposition of three-dimensional space. Journal of Symbolic Computation 5, 141-161. doi:https://doi.org/10. 1016/S0747-7171 (88) 80010-5.
McCallum, S., 1999. On projection in CAD-based quantifier elimination with equational constraint, in: Proceedings of the 1999 International Symposium on Symbolic and Algebraic Computation, Association for Computing Machinery, New York, NY, USA. p. 145-149. doi:10.1145/309831. 309892.
Nie, J., Ranestad, K., 2009. Algebraic degree of polynomial optimization. SIAM J. on Optimization 20, 485-502. URL: https://doi.org/10.1137/080716670, doi:10.1137/080716670.
Renegar, J., 1992. On the computational complexity and geometry of the first-order theory of the reals. Part III: Quantifier elimination. J. Symb. Comput. 13, 329-352. doi:10.1016/S0747-7171 (10)80005-7.
Safey El Din, M., 2017. Real alebraic geometry library, RAGlib (version 3.4). URL: https: //www-polsys.lip6.fr/~safey/RAGLib/.
Safey El Din, M., Schost, E., 2003. Polar varieties and computation of one point in each connected component of a smooth real algebraic set, in: Proc. of the 2003 Int. Symp. on Symb. and Alg. Comp., ACM, NY, USA. p. 224-231. URL: https://doi.org/10.1145/860854.860901, doi:10.1145/ 860854.860901.

Safey El Din, M., Schost, É., 2017. A nearly optimal algorithm for deciding connectivity queries in smooth and bounded real algebraic sets. J. ACM 63, 48:1-48:37.
Shafarevich, I.R., 2013. Basic Algebraic Geometry 1: Varieties in Projective Space. Springer Berlin Heidelberg, Berlin, Heidelberg.
Spaenlehauer, P.J., 2014. On the complexity of computing critical points with Gröbner bases. SIAM Journal on Optimization 24, 1382-1401. doi:10.1137/130936294.
Strzeboński, A.W., 2006. Cylindrical Algebraic Decomposition using validated numerics. J. Symb. Comput 41, 1021-1038. doi:https://doi.org/10.1016/j.jsc.2006.06.004.
Sturm, T., Tiwari, A., 2011. Verification and synthesis using real quantifier elimination, in: Proceedings of the 36th International Symposium on Symbolic and Algebraic Computation, Association for Computing Machinery, New York, NY, USA. p. 329-336. doi:10.1145/1993886.1993935.
Sturm, T., Weispfenning, V., 1996. Computational geometry problems in REDLOG, in: Selected Papers from the International Workshop on Automated Deduction in Geometry, Springer-Verlag, Berlin, Heidelberg. p. 58-86.
Tarski, A., 1951. A Decision Method for Elementary Algebra and Geometry. University of California Press.

