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ON THE SIMULATED ANNEALING IN R¢

NICOLAS FOURNIER AND CAMILLE TARDIF

ABSTRACT. Using a localization procedure and the result of Holley-Kusuoka-Stroock [8] in the
torus, we widely weaken the usual growth assumptions concerning the success of the continuous-
time simulated annealing in R%. Our only assumption is the existence of an invariant probability
measure for a sufficiently low temperature. We also prove, in an appendix, a non-explosion
criterion for a class of time-inhomogeneous diffusions.

1. INTRODUCTION AND RESULTS

1.1. Main results. We work with the following setting.

Assumption (A). Fiz a dimension d > 1 and a function U : R — R, of class C>® such that
lim ;00 U(z) = 00 and min,cga U(x) = 0. For z,y € R?, we set

E(z,y) = inf{tren[gﬁ] Ulv) = Ulx) = U(y) + v€C(0,1],RY), 50 =z, = y}

and we suppose that c, = sup{E(z,y) : z,y € R4} < oco.

Actually, ¢, = sup{F(z,y) : = local minimum of U, y global minimum of U} represents the
maximum potential energy required to reach a global minimum y of U when starting from anywhere
else.

We fix 2o € R%, ¢ > 0 and By > 0 and consider the time-inhomogeneous S.D.E.

_ log(e“o 4 1)

1t
(1) Xy =x9+ By — 5/ BsVU(Xs)ds where [ p
0

and where (Bt)¢>0 is a d-dimensional Brownian motion. By Theorem 15 proved in the appendix,
since U > 0 under (A), (1) has a pathwise unique non-exploding solution (X;);>o. Here is our
main result.

Theorem 1. Assume (A) and that fRd e~ U@ dy < 0o for some ag > 0. Fizc> ¢y, vo € R and
Bo > 0 and consider the unique solution (X;)i>0 to (1). Then limy_,o U(Xy) = 0 in probability.

One of the ingredients of the proof is the following proposition, which asserts that, in full
generality, the simulated annealing is successful on the event where the process (X;):>o does not
escape to infinity in large time.

Proposition 2. Assume (A), fir ¢ > c., xo € R? and By > 0. For (X;)i>0 the solution to (1),

Ve>0, tli}m P(liminf|Xs| < oo and U(X¢) > 5) =0.

§— 00
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1.2. Comments and references. The simulated annealing has been introduced by Kirkpatrick-
Gelatt-Vecchi [11] as a numerical procedure to find a (possibly non unique) global minimum of a
function U on a given state space. We refer to Azencott [1] for an early review of the method and
its links with the theory of Freidlin-Wentzell [4].

With our notation and in our context where the state space is R?, the main idea of the simulated
annealing is the following. The solution to (1), with 5 constant, has ug(dz) = Zgle’ﬁU(w)dx as
invariant probability distribution, if Z3 = fRd e U@ g < 0.

Using that min U = 0 and that VU is locally bounded, we deduce that there is x > 0 such that

Zg > e ! f{Ugl/ﬁ} dz > kB~% for all B > 1. Hence under the condition that 24, < 00 for some
g > 0, it holds that for all € > 0,
d
(2) ua(U >¢) < Zgl/ e U@ dg < B—Zaoe_(ﬁ_ao)a — 0 as f— 0.
{U>e} K
Hence one hopes that the solution to (1), with lim; ,. 8; = oo, satisfies lim;_ o, U(X;) = 0

in probability. However, it is necessary that [; increases sufficiently slowly to infinity, so that
Law(X;) remains close, for all times, to pg,. If B; increases too fast to infinity, one may remain
stuck near a local minimum of U, as in the classical deterministic gradient method.

A major contribution is due to Holley-Kusuoka-Stroock [8], see also Holley-Stroock [9]. Re-
placing R? by a compact manifold M, they showed that when £; ~ ¢~!log(1 + t), the simulated
annealing procedure is successful, i.e. lim;_,, U(X};) = 0 in probability, if and only if ¢ > ¢,. Their
proof is almost purely analytic and very elegant. It relies on precise spectral gap estimates pro-
viding an asymptotically optimal Poincaré inequality. They use at many places the compactness
of the state space.

This kind of proof involving functional inequalities has been extended to the non-compact case
of R% by Royer [15] and Miclo [12], at the price of many growth conditions on U, like
(3) | l‘im U(z) = ‘ l‘im |[VU(z)| =00 and VzeRY AU(z)<C+|VU()

T|—00 T |—00

Zitt [16], taking advantage of some weak Poincaré inequalities, worked under another set of rather
stringent conditions, still implying that all the local minima of U are lying in a compact set. He
in particular assumes that |[VU] is bounded and that there is € > 0 such that, for all = outside a
compact, U(z) > log'™ |z| and AU (z) < 0.

Here we only assume that fRd e~ U@y < 0o for some ag > 0, which seems very natural in

view of (2). This covers and consequently extends the previously cited works in R%. In particular,
nothing forbids U to oscillate, as strongly as it wants, and as far as it wants from compact sets,
and thus in particular to have an unbounded set of local minima.

We believe that all the results of the paper hold true when U € C?(R9) (instead of U € C°°(R%)).
We assume that U € C*°(R?) for simplicity, in particular because we want to apply serenely the
results of Holley-Kusuoka-Stroock [8], where the potential is assumed to be smooth, although it is
likely they do not really use it.

1.3. Short heuristics. Let us emphasis that our proof relies on the following two main points. An
entropy computation, see Heuristic Computation 5, shows that the condition fRd e~ U@y < 0o
implies that liminf; ,. | X¢| < 0o a.s. Now, recall that in the compact case, see Holley-Kusuoka-
Stroock [8] or Miclo [13], it a.s. holds that limsup, . U(X;) = ¢, where ¢ > 0 is the constant
appearing in the definition of (8;)¢>0, see (1). Combining these two points, it seems rather clear
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from the Borel-Cantelli Lemma that, in the non compact setting, the process should also satisfy
limsup,_, . U(X:) = ¢ a.s., see points (d)-(e) in the next subsection for more details concerning a
weaker, but sufficient, statement. Hence it will eventually remain in a compact set and Theorem
1 will follow from the compact case.

Apart from Heuristic Computation 5, which seems new and efficient, there are a number of
technical issues, that are detailed in the next subsection.

1.4. Plan of the proof. We denote by (X;);>o the solution to (1). We assume (A) and the
conditions that fRd e~ U@ dx < 0o for some ap > 0 and ¢ > ¢,.

(a) In Section 2, we prove some auxiliary weak regularization property for the law of the solution
to (1). This allows us, when applying P.D.E. techniques, to do as if the law of Xy had a bounded
density concentrated around xg, with a precise bound as a function of 3g.

(b) In Section 3, we show that liminf; . |X¢| < co: the process cannot escape to infinity in
large time. This does not use the condition ¢ > c¢,. The key argument is the following: under
the additional assumptions that Law(X() is smooth and Sy > «p, we prove the important a
priori estimate sup,so E[U(X;)] < oo, see Heuristic Computation 5, which a priori implies that
liminf, o |X¢| < oo by the Fatou lemma and since lim,|_, U(z) = co. We then make all this
rigorous and get rid of the additional assumptions using point (a) and that our process does not
explode in finite time.

This central a priori estimate is derived from a rather original entropy computation. Let us
mention that deducing that sup,~q E[U(X¢)] < oo directly from the It6 formula would necessarily
require some stringent conditions on VU and AU.

(¢) In Section 4, we verify in Lemma 7 that, with an abuse of language, U(X;) — 0 in probability
as t — oo on the event where sup,~ | X;| < oc.

This is easy, by localization, in view of the results of Holley-Kusuoka-Stroock [8] applied to a
large flat torus: the condition sup,sq|X¢| < oo almost tells us that we are in a compact setting.

(d) Still in Section 4, we check, although stated in slightly different words, see Proposition 8,
that for any B > 1, there are Cg > B and tp > 0 such that

1
inf Py, 20 (sup | Xe| < CB> > —.
>0 2

|zo|<B,to>tp
This is rather natural: in the compact setting, it is well-known, see [8] or Miclo [13], that
limsup,_, . U(X:) = c a.s. It would not be too difficult to deduce that in the non-compact case,
there exists Cy, 5, > 0 such that Py, 4, (sup;so | Xt| < Ctyue) > 1/2. The main issue is to show
that Cy, 5, does not depend too much on ¢y “and z. This is tedious, and we have to revisit the
proof of [8].

(e) In Section 5, we prove Proposition 2: by (d), on the event lim inf,_, | Xs| < 0o, our process
will eventually be absorbed in a compact set, so that sup,sq|Xs| < oo, whence the success of the
simulated annealing by point (c).

(f) Still in Section 5, we conclude the proof of Theorem 1: liminf; ,. |X:| < oo a.s. by (b),
whence the success of the simulated annealing by (e).

1.5. More comments. It is well-known that, even in the compact case, the condition ¢ > ¢, is
necessary, see Holley-Kusuoka-Stroock [8, Corollary 3.11].
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Our proof completely breaks down for slower freezing schemes, i.e. if 5; < logt as t — oo: in
such a case, point (d) above cannot hold true, even non uniformly in ¢y and xg.

Observe that we do not assume any Lyapunov condition, which would involve AU and VU and
would forbid U to oscillate too strongly.

As already mentioned and in view of (2), our only assumption, i.e. the existence of an invariant
probability measure for some (low) temperature, is very natural and allows for potentials with a
very general shape.

1.6. On the main assumption. However, we have shown in a previous paper with Monmarché
[3] that things may work even when [y, e=*Y®dz = oo for all a > 0.

In [3, Theorem 1], we show that under (A) and when x - VU(z) > a/log |z| outside a compact,
the simulated annealing works if ¢ > ¢, and a > ¢(d — 2)/2. This applies e.g. when U(z) =
aloglog(1 + |z|?) outside a compact.

We also show in [3, Proposition 2|, if U(z) = aloglog(1 + |z|?) with a < ¢(d — 2)/2, then X;
escapes to infinity as t — oo with positive probability, so that the simulated annealing fails, even
when ¢ > ¢, (since here ¢, = 0).

Observe that the condition x - VU (x) > a/log |x| outside a compact is much stronger than its
integrated version U(z) > aloglog(1+]z|?) (outside a compact), in particular, all the local minima
of U have to belong to a compact.

One might think that the above results could be reinforced as follows: the simulated annealing
is successful if U(z) > aloglog(l + |z|?) with @ > ¢(d — 2)/2 (and ¢ > ¢,), and fails if U(z) <
aloglog(1 + |z|?) with a < ¢(d — 2)/2. This is not case.

Indeed, we found some intricate conditions [3, Assumption (Hz(«)) or Assumption (Hs(«, 3))],
allowing for some very oscillating potentials, under which the simulated annealing is successful. In
particular, it is stated in [3, Proposition 3] that if d > 2, for all p > 1, we can find a potential
U such that log®”(1 + |z|?) < U(z) < 3log®”(1 + |z|?) outside a compact, for which ¢, = 1 and
for which the simulated annealing works for all ¢ € (1,2). Note here that if d > 3, the condition
U(z) < aloglog(1 + |z|?) is fulfilled (outside a compact) with any a > 0, e.g. a = (d —2)/2, but if
¢ = 3/2, the simulated annealing is successful although a < ¢(d — 2)/2.

Thus, without the condition that [, exp(—agU(z))dz < oo for some ag > 0, the situation may
be very intricate and really depend on the shape of U. In particular, the above results show that
for two potentials U and V satisfying (A), such that U(x) < V() for all z € R? (which suggests
that U is less confining than V'), it is possible that the simulated annealing process related to V'
escapes to infinity with positive probability, while the simulated annealing procedure works for U.

1.7. Non-explosion. The non-explosion of the solution to (1), using only that U > 0, is checked
in the appendix. Actually, we treat, without major complication, the more general case where
B : Ry — (0,00) is any smooth function and where U : R? — R is smooth and satisfies U(z) >
—L(1 + |z|?) for some constant L > 0. This is not so easy, since we do not want to assume any
local condition on VU. We use purely deterministic techniques inspired by the seminal work of
Grigor’yan [6], also exposed in [7, Section 9] and by the paper of Ichihara [10], both dealing with
more general but time-homogeneous processes.

Let us mention that in the homogeneous case, Ichihara uses the P.D.E. satisfied by v(z) =
E.le~“], where o1 = inf{t > 0 : |X;| < 1}, while Grigor’yan rather studies the P.D.E. satisfied
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by w(t,x) = P,[¢ < t], where ( is the life-time of the solution. In the inhomogeneous setting, we
study, roughly, the P.D.E. satisfied by u(t,z) = E;.[e¢], where ( is the life-time of the solution.
The situation is slightly more complicated, but we manage to take advantage of some computations
found in [6] and [10] to show that u = 0.

2. WEAK REGULARIZATION

We prove some weak regularization that will allow us, when using P.D.E. techniques, to replace
the Dirac initial condition §,, by some bounded functions concentrated around xp. One might
invoke the Hérmander theorem, but since we need a precise bound as a function of 5y (see Lemma
14 below), we will rather use the following weaker lemma based on stopping times.

Lemma 3. Assume (A) and fix ¢ > 0. For any A > 1, there is a constant 01(41) such that for any
xzo € {U < A}, any Bo > 0, denoting by (X;)i>0 the corresponding solution to (1), there exists a
stopping time T € [0,1] such that sup,cjo ;) | Xt — xo| < 1 and such that the law of (7, X;) has a

density bounded by exp(CS)(ﬁo + 1))1{[071]XB(3,071)},

Proof. We fix 9 € {U < A} and Sy > 0. We introduce some random variable R, uniformly
distributed in [1/2,1] and independent of (X;);>o. We claim that

T=inf{t >0:|X;, —zo|=R} AR
satisfies the requirements of the statement.
First, 7 < R <1 and sup,¢o .1 [ Xt — 20l < R < 1.

Next, we consider a d-dimensional Brownian motion (W;);>o independent of R and we set
7 =1inf{t > 0: |[W;| = R} A R. We introduce the martingale
1 tAT

L= -3 BsVU (zo + W) - AW,
0
as well as its exponential & = exp(L; — £(L);), which is uniformly integrable by the Novikov

criterion, see Revuz-Yor [14, Proposition 1.15 p 332], because (L), < i(supB(mJ) |VU|?) fol B2ds
is bounded. The Girsanov theorem tells us that under £ - P, the process

| AT
Bipz = Winz + 5/ BsVU(zo + Wi)ds, 20
0

is a (stopped) Brownian motion, so that xo + Wiaz is a (stopped) solution to (1). Hence for all
measurable ¢ : R, x R? = R, E[¢(1, X,)] = E[¢(F, 20 + W;)Ex]-
By the It6 formula,
AT AT

1
BinzU(xo + Winz) = BoU (o) + BLU (xg + Wy)ds — 2L, + 3 Bs AU (zo + Ws)ds,
0 0

whence, since U > 0 and 8 > 0,

Lo < %(50(](%) + /0 BLU (xo + W)ds + %/0 BsAU (zo + Ws)d3>-

Recalling that 7 < 1, that supjy 7 [Ws| < R < 1 that z9 € {U < A}, that g, < 1/c and that
supjo 1] Bs < Bo + 1/¢, we deduce that

Ly < %(50 + %) (A + zefEEA} y:BIEE,U [U(y) + %IAU(y)ID < Ca(l+ Bo),
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for some finite constant C'4 > 0 depending on A and c¢. We used that U,c(y<ayB(7,1) is bounded
because lim|,| o U(x) = 00.

Hence €+, = exp(Loo—3(L)so) < exp(Log) < 941150 and for all measurable ¢: R xR? — R,
(4) E[g(r, Xr)] < e“UTPIRIG(F, 29 + W2)).

We now verify that (7, W5) has a bounded density, necessarily supported in [0, 1] x B(0,1). For
r > 0, we introduce 7. = inf{t > 0: |W;| = r}. We have 7 = 7gr A R, so that the density of (7, W3)
is bounded by the sum of the densities of (7g, W;,) and (R, Wg). Recall that R ~ U ([1/2,1]).

The density of (R, Wg) is 26"“2/(2”/(2777")‘1/21{Te[1/2711@6Rd}, which is bounded.

Next, denoting by pu,(s) the density of 7., we have by scaling that p.(s) = r~2u;(r—2s),
because 7, has the same law as r?r;. One may then check that the density of (7, W.,) is
2|~ 1 (|2]72r) 150, 101€[1/2,1]} UP to some normalization constant. Since py is bounded, so
is the density of (g, Wr,).

Denoting by C the bound of the density of (7, W;), we conclude from (4) that (7, X,) has a
density bounded by C’ecA(HﬁO)1{56[0711@63(%71)}. The conclusion follows. O

3. NO ESCAPE IN LARGE TIME

In this section, we prove that liminf;_, . | X¢| < 0.

Proposition 4. Assume (A) and fix ¢ > 0, 29 € R? and By > 0. Suppose that there is g > 0
such that f]R" e~ U@ dy < 0. For (Xt)e>0 the solution to (1), liminf,_, o | X:| < 00 a.s.

The crucial point is the following uniform in time a priori estimate.

Heuristic Computation 5. Assume (A), fix ¢ > 0, Bo > 0 and assume that there is ag € (0, 5p)
such that [, e~ U@ dz < co. Let fy be a probability density on R?. Let (Xt)i>0 be the solution
to (1) starting from Xo with law fo. If

() = [ | o) oB(1+ fola)e™? e < o,

setting ag = [fRd e‘aoU(z)dx]_l, we have, if f; = Law(X;) has a smooth enough density,

sup E[U(X,)] < “Jo) ~log(ao)

>0 Bo — o
This relies on a rather indirect entropy computation. As already mentioned, obtaining a uniform
in time moment bound, using the It6 formula, would require much more stringent conditions involv-
ing VU and AU. Observe that the computation below is rather original, in that we do not differ-
entiate the true relative entropy [pa fi(2)log(fi(2)Zs,e%Y(®)dz, where Z5 = [p, e V@ dz, but
rather the relative entropy without normalization constant [, fi(x)log( fe(z)ePtV(@))dz. Strangely,
using the true relative entropy functional does not seem to provide interesting results.

Informal proof. The law f; of X; weakly solves

(5) 0ufu(w) = ZANIVA(@) + Bufu()VU @) = Sdivle U@V (f(a)eH @)



ON THE SIMULATED ANNEALING IN R¢ 7
We do as if f; was a smooth strong solution to (5) and proceed to integrations by parts without
justification. For any smooth ¢ : Ry — R, we have, setting ¥(u) = ud’(u) — ¢(u) for all u > 0,

(6)
d

dt
:/ [atft< )0/ (fe(2)e® V@) 4 BiU () fu(@)¢ (fi(w)e™ 7)) — BU (@) (f(a)eT)e P da

=3 | W@ R (i)t e a1 5 [ Uil fila)e Ve O

Rd

| o)V )em 200 da

For the last equality (first term), we used (5) and an integration by parts.

We now apply (6) with the convex function ¢(u) = ulog(1 + ), for which 9 (u) = 1%~ < u, to
find, throwing away the nonpositive term, h; < Sju;, where we have set
h = / fi(@)log(1 + fi(x)eP Y@z and w, = [ U(z)fi(z)de = E[U(X,)].
Rd' Rd

But
hy > / fe(@) log(fi(x)eP VN dz = [ f(x)log(fi(x))dz + Bius > (B — ao)uy + log(ag).
d Rd

We used that f]Rd x)log(f(x)/g(z))dx > 0 for any pair of probability densities f and g on RY,
whence [pq fi( )log(ft( Ndx > [eu fi(z)log(ag exp(—aoU(x))dz = log(ag) — couy.
We conclude, since hg = k(fo), that

t t /
(Be—ao)ur < hy—log(ao) < k(fo)—log(ao)+ [ Biusds = k(fo)—log(ao)+ 5 6_ (5s—ao)usd57
0 0 Ps
whence, by the Gronwall lemma,
(B — ap)ur < [k(fo) — log(ag)] exp / 3 :1240 = [k(fo) — log(ap)] g(t) : zz.
Consequently, E[U(X})] = w < [k(fo) — log(ag)]/[Bo — ao] for all ¢ > 0. O

We now try to deduce from this informal computation the rigorous results we need.

Lemma 6. If VU is bounded together with all its derivatives and if the initial density fo belongs
to C.(R%), the a priori estimate of Heuristic Computation 5 rigorously holds true for the solution
to (1) starting from Xo ~ fo.

Proof. We first justify rigorously (6), for all t € (0, c0), with ¢(u) = ulog(1+u). Recall that f; is the
law of X;. Since U has at most linear growth and VU is bounded, it is (widely) enough to check that

(ft(x))¢>0,0ere is a strong solution to (5), i.e. 20, fi(x) = Afi(x)+5: VU (x)-V fr(x)+B: fi (x) AU (x)
on (0,00) x R¢ and satisfies, for all 0 < to < t;, for some constants Ciot; > 0and Ay, >0,

vt € fto, ], w €RY, fila) +10:fi(@)| + [V fe(@)] + |D? fo(2)] < Cryty exp(= Aty 1y [2])

To prove those bounds, we use classical results found in Friedman [5], that apply to uniformly
parabolic equations with bounded and Lipschitz coefficients (actually, Holder is enough): by [5,
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Chapter 1, Theorem 12], we have f;(x fle x,t;€,0) fo(£)dE, with, for some Cr > 0 and A > 0,
for all t € [0,77], all x € RY,

(7) T (2, £:€,0)| + 112V, D (2, 1;€,0)| + | DT (2, £ €,0)| < Cpt~¥/2e M€/t

The above estimates for I' and VI' are nothing but [5, Chapter 1, Equations (6.12) and (6.13)],
and the estimate on DI is proved similarly, using [5, Chapter 1, Equation (4.11)]. The Gaussian
upper-bounds of f;(z), |V fi(x)| and |D? f,(x)| follow, because fy € C.(R?). Finally, the bound on

O¢ f+(x) follows from the fact that 2|0; fi ()| < |Afe(2)] + Be||VU] ool V fi(2)| + Be||AU |00 ft ().
Hence, all the arguments in Heuristic Computation 5 are correct for ¢ € (0, 00), and we conclude
that for all to > 0, sup,s, E[U(X¢)] < (B, — 0) ™ (k(fr,) —log(ao)). To complete the proof, the
only issue is to show that lim 04 £(ft,) = £(fo). This can be deduced from the continuity of
f(x) on [0,00) x R?, see [5, Chapter 1, Section 7], and the fact that there are Cr > 0 and Ay > 0
such that ft( ) < Cre=>lal for all ¢ € [0,T] and € RZ. This follows from (7), the fact that
= [pa T(z,£€,0) fo(£)d¢ and that fy € C.(R?). O

We can now prove the main result of this section.

Proof of Proposition 4. We assume (A) and that fRd e~ U@z < oo for some ag > 0. We fix ¢ >
0, zo € R? and By > 0 and aim to check that for (X;)¢>o the solution to (1), liminf; . | X;| < 00
a.s. We divide the proof in four steps.

Step 1. We of course may assume additionally that Sy > «q: fix {5 > 0 large enough so that
Bty > o and observe that (X 4¢)i>0 solves (1), with zg replaced by X, and Sy replaced by B,
(and with the Brownian motion (B, — By, )i>0). Since liminfy_, o [ X;| = liminf; o | Xy, 1¢|, the
conclusion follows.

Step 2. From now on, we assume that Sy > ag. We introduce the stopping time 7 € [0, 1] as in
Lemma 3. We recall that supy, ;|X; — zo| < 1 and that for h € L'([0,1] x B(xo, 1)) the density
of (1, X~), there is C' > 0 (depending on x¢ and fy) such that h(u,z) < Clyue(0,1],2€B(x0,1)}-

Step 3. For n > ||+ 1, we introduce U,, € C*(R?) such that U, (x) = U(z) for all z € B(0,n)
and U, (z) = |z| as soon as |x| > n + 1, with furthermore U, (x) > min(U(z),|z|) — 1 for all
x € R?. Then VU, is bounded together all its derivatives. We denote by (X/');>o the solution to
(1), with U, instead of U. By a classical uniqueness argument (using that VU is locally Lipschitz
continuous), X and X" coincide until they reach B(0,7n)¢. In particular, X; = X for all ¢t € [0, 7]
and, setting

Gu=nf{t >0:|X; 4| >n} =inf{t >0:|X" | >n},
it a.s. holds that X7 , = X, for all t € [0,(,]. Since lim,, ¢, = 0o a.s., we conclude that for all
t >0, lim, U, (X2 ;) = U(X;4) as

As we will check in Step 4,

(8) sup supE[U, (X],)] < oc.

n>|zo|+1 t>0
By the Fatou lemma, we will conclude that sup;~q E[U(X,4¢)] < co. By the Fatou Lemma again,
this will imply that E[liminf; . U(X;)] < co. Since lim|,|_, U(x) = co by (A), this will show
that lim inf; o | X¢| < 0o a.s. and thus complete the proof.

Step 4. Here we verify (8). Denote, for € R and 8 > 0, by f™” the law at time ¢ of the
solution to (1) with xg = x, with Sy replaced by S and with U, instead of U. We then have, since
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h is the density of (7, X;) = (1, X7),

E[U, (X7,)] = E[E[U, (X7, ] = /

h(u, ) {/ Un(y)ft"’x’ﬁ“ (dy)|dudz.
[0,1]x B(z0,1) Rd

Consider any probability density fo € C.(R?) such that fy > ¢1p(4,,1), for some constant ¢ > 0.
We thus have h(u,z) < Cliue(0,1],2€B(z0,1)} < (C/c)fo(x), and write

C n,r C n,u
B < sw [ o) [ Ui @) de = sup B0, (07))
C wuel0,1] JRA Rd C wuel0,1]
where (V;"");>0 is the solution to (1) starting from X ~ fo, with 5y replaced by 3, and U by U,.

To conclude the step, it only remains to verify that sup,, |, 141 5UPye(0,1) SUP;>0 E[Un (Y;"")] < oo,

But Lemma 6 tell us that, setting fin,(fo) = [ga fo(z)log(l + fo(z)e?»U»@)dz and a, =
[fga €™ @U@ dz] =1, it holds that

n,u "{n,u(f()) - log (275
B(U, (¥ < Zralfl = B,

This last quantity is uniformly bounded, because
o 3y > Bo > ap for all uw € [0,1] (by Step 1);

® SUD,,> (5 |+1,ue0,1] knu(fo) < oo, since fy € C.(RY), B, < By for all u € [0,1] and U, (x) = U(x)
for all x € Supp fo if n is large enough;

. supn2|m0|+1(— logan) < o0, since f]Rd efoonn(:c)d'r < 6ocoU’Rd e*‘loU(m)dJ? + fRd e*ao\ﬂdz] < o0,
recall that Uy, (r) > min{U(z), |z|} — 1. =

4. LOCALIZATION AND ABSORPTION

Here we prove that on the event where sup,-q|X¢| < 0o, the simulated annealing procedure is
successful. We also check that each time the process (X;);>o comes back in a given compact, it
has a large probability to be absorbed forever in a (larger) compact.

Lemma 7. Assume (A), fix ¢ > c., z0 € R and By > 0 and consider the solution (X;)i>o to (1).
For any ¢ > 0,

lim IP(sup|Xs| < oo and U(Xy) > 6) = 0.

t—o00 >0
Proposition 8. Assume (A) and fiz ¢ > c.. For any A > 1, there isbs > 1 and K4 > A such
that if zg € {U < A} and By > ba, for (X;)i>0 the solution to (1), we have

1

P(supU(X) < Ka) > .

+>0 2

The rest of the section is dedicated to the proof of these two results. Lemma 7 will easily follow
from a result of Holley-Kusuoka-Stroock [8] concerning the compact case.

Concerning Proposition 8, let us recall from Holley-Kusuoka-Stroock [8], see also Miclo [13],
that in the compact setting, lim sup,_,. U(X;) = ¢ a.s. and moreover for any ¢ > 0, if 2o belongs
to a connected component of {U < ¢+ ¢} containing a global minimum of U, it holds that
P(sup;~o U(X:) < ¢ +¢) > 0. This immediately extends to the non-compact setting, since the set
{U < c+ e} is compact. Unfortunately, such a result is not uniform in 8y > 0, and we really need
a uniform bound, see Step 2 of the proof of Proposition 2 in Section 5. We believe it is not possible
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to deduce Proposition 8 from [8, 13]. At this end, we have to work hard, following the ideas of [8],
taking much less care about many constants and obtaining much less precise results (e.g. it might
be possible to control K 4 in Proposition 8) but carefuly tracking the dependence in 8y and z.

In the whole section, we assume (A) and work with some fixed ¢ > c¢,. We introduce some
notation.

Notation 9. Let K > 1.

(a) We consider L > 0 such that {U < K} C [~(Lx — 1),(Lx — 1)]*. We denote by Mg
the torus [—Ly, L)%, that is RY quotiented by the equivalence relation x ~ y if and only if for all

(b) We also consider U € C®°(My) such that minys, Ux = 0, such that Uk (z) = U(x) for all
x € {U < K}, and such that

e =sup{Ex(z,y) 1 z,y € Mg} < cy,
where Er (z,y) = inf{max;ejo1) Uk (1) — Uk (2) — Uk (y) = v € C([0,1], Mk),v0 = z,71 =y}
(¢) For xg € {U < K} C Mg and By > 0, we introduce the inhomogeneous M -valued diffusion

1 st
(9) XtK =x0+ B; — 5/ ﬁSVUK(XSK)ds modulo 2L g,
0

where (By);>o is a d-dimensional Brownian motion, where B; = ¢! log(e“® +t) as in (1) and

2; + Lk d
_— €|-Lg,Lk)"
2Lk J)i:l,...,d [ K K)

For point (b), it suffices to choose a smooth version of Ux = min{U, K}, see [3, Step 1 of the
proof of Lemma 6].

forx = (x1,...,24) €RY, 2 modulo 2Ly = (mi — 2LK{

Observe that the same constant c& appears in [2], where Fang-Qian-Gong study a modified
simulated annealing process in which, roughly, 5; does not go to infinity when the process lies in
the region {U > K}. This is a natural modification, since there is no reason to spend a lot of time
in this region.

Since Ux = U on {U < K} and since U is locally Lipschitz continuous, a simple uniqueness
argument shows the following.

Remark 10. For any K > 1, any xo € {U < K}, any Bo > 0, for (Xi)i>0 the solution to (1) and
(X)) i>0 the solution to (9), both driven by the same Brownian motion, it holds that
{suw Uk (XF) < K} = {sup U (XF) < K, sup |XF = X, =0} = {supU(X)) < K .
>0 >0 >0 >0

We can now give the

t — oo, for each K > 1. We fix n > 0. Since lim|;o U(x) = oo, there is K, > 0 such that
P(sup,sq [Xs| < 00,sup,5o U(Xs) > Ky) < n. We then write, using Remark 10,

Proof of Lemma 7. By [8, Theorem 2.7] and since ¢ > ¢, > c&X, Ux(XE) — 0 in probability, as

]P’(sup I1X,| < 0o and U(X;) > e) < +1P>(sup U(X,) < K, and U(X;) > s)
s>0 s>0

—n+ P(sglg Uk, (X£7) < K, and Uk, (X[ > ¢)

<n +]P)(UKW(XtKn) > 5)~
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We conclude that limsup,_, ., P(sup,>q|Xs| < oo and U(X;) > ¢) < n, whence the result since
n > 0 is arbitrarily small. O

We next introduce the invariant probability measure of the time-homogeneous version of (9).
Remark 11. There is a constant ko > 0 such that, for all K > 1, all 8 > 0, it holds that
Zi = / exp(—BUk (x))dz > k(B + 1)<
Mg
We also have Zé( < (2Lg)%. We introduce the probability density
pf (x) = (25) ' exp(—BUKk(z)), =€ M.
Proof. Since minga U = 0, there is x, € R? such that U(z,) = 0. Fix r, > 0 such that B(z,,r.) C

{U <1} C Mk. Denote by C = supp(,, ,,) |[VU|. For all K > 1, all z € B(x.,7.), we have that
x €{U <1} C Mg and Uk (z) = U(z) < C|z — z|. Hence for all § > 0,

Zé( > / exp(—BC|z — z.|)dz > e ' Vol(B(z., 7« A (1/(CB))),
B(xy,T)

from which the lower-bound follows. The upper-bound is trivial. O

As a final preliminary, we recall the crucial spectral gap estimate of Holley-Kusuoka-Stroock
[8, Theorem 1.14 and Remark 1.16], in the special case of the torus. We use that ¢& < c,, see
Notation 9-(b) (in the notation of [8], m = k).

Lemma 12 (Holley-Kusuoka-Stroock). Fiz K > 1. There is a constant vk > 0 such that for all
¢ € CY(My), for all 8> 0,

/ V() Pl ()de > Ak (5) /
Mg

Sl )y uf (2)d,
My

COE

Mg
with
Ak (B) = vk (B +1)> @ exp(—fe.).

The constant yx drastically depends on K but, as we will see, this is not an issue.

Lemma 13. Fix K > 1. There is a constant bg) > 0 such that if By > bg), then for any density
& € C(Mk), for fE the density of X[, the solution to (9) starting from X ~ fi,

K (2))2 K (1))2
YVt>0, /MK (fljg((x)))dxgmax (2,/MK (J:?go((i))dx).

Proof. The function (f&(z))i>0.zem, is a weak solution to the uniformly parabolic equation
O fE (x) = 3div(V I (@) + B f£ (#)VUk (x)). It can be seen as a periodic solution of the same equa-
tion in RY, with U and f& replaced by their periodic continuation. We thus can apply some clas-
sical results, see Friedman [5, Chapter 1, Theorems 10 and 12] and conclude that (£ (x))i>0,zeMmx
belongs to C([0,00) x M) N CH2((0,00) x Mg ). The periodic continuation of fI has an infinite
mass, but this is allowed by [5]. Since furthermore My is bounded, all the computations below
are easily justified.

We introduce

- M r = zZK K (1))2e8: Uk () 4,
o= [ Sielyar=2h [ U@t ar
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Since (Z5) = =B} [y, Uk (x)e”PUx@)dz <0, we have, for all t > 0,

¢ty < 2K / 200, 5 ()] 5 ()P V@ dz + g 28 / Uk () (£ (2))?e? Vs da.

Mg Mgk
Recalling that 9, fX (z) = 1div(V f5 (2) + B f£ (#)VUk (2)), proceeding to an integration by parts
in the first term and to a rough upper-bound in the second one, we find

o'(t) <— 25 /M IV (@) + B f 5 (2) VUK () e” V<D da + B1|| Uk || sotp (t)

- /MK (L) (@) + B Uit

s, ()
By Lemma 12 with ¢(z) = ftK(x)/ué(t (z), for which fMK qﬁ(y)ug (y)dy =1, we conclude that
/ _ ffK(x) _ 2 K / _ _ /
¢ (1)< Ac(B) | [ 1] @) a8 UKo (t) = —Aae (B)[o()~ 11+ B Uk oo (1)
Mg “Hg, ()

But we know from Lemma 12 that for all 5 > 0,
Mg (B) = i (B4 1)2%e™Per > 4 e Blete)/2

for some other constant 7% > 0, since ¢ > c,.. Setting o = (¢ — ¢,)/(2¢) € (0,1), so that
(c+cx)/2 = ¢(1 — @), recalling that 3; = log(e®® + t)/c, we conclude that

; Ukl
") < —— K B 1] 4 Wrllee gy
¢'(t) < (o + )ia [p(t) —1] + (e o +t)<P( )
Let 0% = L log(2||Ux||eo/(Vic€)), s0 that if By > b, for all ¢ > 0,
Wkllee _ ok
c(ePo +t) = 2(ePo 4 t)l—a’
whence ,
()< = K [5) — 2]
¢'(t) < 3(eo + 7)ia [p(t) — 2]
We classically conclude that indeed, if 8y > b(é), then for all ¢ > 0, ¢(t) < max(2, ¢(0)). O

From the previous lemma and the Cauchy-Schwarz inequality, we deduce the following.

Lemma 14. For A > 1, let Dy = QCS)+C’I(L‘2)+1+4C and Ky = Da+1, where 0541) was introduced
in Lemma 3 and where 01(42) = SUPc{U<A} SUPyeB(2,2) U(y). There is a constant CS) > 0 such
that, if By > b(él (see Lemma 13) and xo € {U < A}, it holds that supyg ;1 Uk , (XE4) < Dy as.
and
5%

(eCBQ + t)z ?

where (X*) >0 is the solution to (9) starting from xo and where T is the stopping time introduced
in Lemma 3 (for the solution (X;);>o to (1) driven by the same Brownian motion as (X{*)i>o).

Vt>0, PUg,(XE4)>Dy) <

Proof. We fix A > 1, By > bgl and xg € {U < A}. First, since B(xg,1) C {U < D4} (because
Dy > C’f)), since supjg . | Xt — 20| <1 and since Dy < K4, Remark 10 tells us that X; = XtKA
for all t € [0,7]. In particular, supjy - Uk, (XF4) < D, and the law of (1, XX4) = (1, X;) has a

density h(u,z) bounded by eCi&l)(ﬁo"‘l)1{u€[071]7163(1071)}, see Lemma 3.
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Denote, for 2 € R? and 8 > 0, by ftKA’m’ﬁ the law of the solution of (9) with K = K4, with
xo = x and with Sy replaced by 5. We then have
P(Ux,(X74) = Da) =EP(Ux 4 (X74) = Dal|F,)]

_ / h(u, ) [ / FRamb (dy)}dudx.
[0,1] x B(z0,1) {Uk,>Da}

Consider a probability density fo € C.(R?) such that (204) 1B (wy,1) < fo < 1B(z,,2), Va being
the volume of the unit ball. We write

(1) T
(10) B, (X54) = Da) <2006t ) sy [ [ Fx e (dy)] folr)da
u€l0,1] JRY = J{Uk , >Da}

:2vdeC£41>(5°+1) sup P(Ug, (YtA’“) >Da),
u€0,1]

where (Y;A’“)tzo is the solution to (9) with K = K4, starting from Yy ~ fo, with 8y replaced by
Bu. We now denote by ftA "“ the density of YtA’u and use the Cauchy-Schwarz inequality to write

(1) PUk, (V™) > Dy) = / A () de
{Uk,2Da}

1/2 A (2)]2da\ 1/2
<(/ phs o) ([ MRy T
{Uk,>Da} Mi, Mg, (2)
By Lemma 13, we know that, since 3, > By > bgl ,

M (2))2d 2d d
/ [fi KEI)} €z <2V / [fogi‘)] T <2v / KAJ: —9v / ZéiAeﬁuU(z)dx'
My, gt (@) M, Mg () B(z0.2) pg, (2) B(0,2)

Recalling the definition of Cff) and that ZéiA < (2Lk,)%, see Remark 11, we find

Au 2

’ d

(12) /M W 2V [2dvd(2LKA)d€C£‘2)B“] = 2d’Ud(2LKA)d€C‘(42)B".
Ka Bt+u

Next, since the volume of M, is smaller than (2L, )¢, we have

(2LK )d6_5t+uDA
/{U >Da} 'ué(tj—u (iC)dm S AZKA
o Bitu
By Remark 11 again,
’ de—Bi+uDa
(13) / phA (w)de < (2L, ) (B + 1)% < CpePrru(Pa1)
{Uk,>Da} u .

for some constant C'4 > 0 of which we now allow the value to change from line to line. Gathering
(10)-(11)-(12)-(13), we find

P(Ur o (XE4) > Da) < Cacs’Gotl) gup ¢ FrrnPa=1)/24C750/2
u€l0,1]

Since s — [, is non-decreasing and D4 — 1 > Cf),

e (2) @) o0
P(Uk, (Xﬁft) >Dy) < C’A@CA1 Bt sup e Prru(Da—1-C30)/2 < C’Ae*ﬁt(D*‘*lch2 —2¢40)/2,
u€[0,1]
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Recalling finally that Dy = 201(41) + Cf) +1+4c and that 8; = ¢! log(e® + 1), we conclude that
Ca

(ecﬂo + t)2

as desired. d

]P)(UKA(Xf-SrAt) > DA) < CAe—2c6t _

We finally give the

Proof of Proposition 8. We fix A > 1 and introduce D, K4 = Dy +1, b(la and Cf) as in Lemma
14. We will show that one can find by > b%i such that if By > ba and z¢ € {U < A}, the solution
(XE4) 10 to (9) satisfies

1
P((sup U, (X[4) < Ka) = o
>0 2

By Remark 10, this will show the result. By Lemma 14, we have supjo,] Uk (XtKA) <Dy <Ky
a.s., so that we only have to check that

1
P(supUKA(XfiAt) < KA) > -
t>0 2

We consider ¢4 € C*(R4), with values in [0,1], such that ¢4 = 0 outside [D4, K4] and such
that ¢4((Da+ Ka)/2) =1, and we introduce ¢4 = ¢4 o Uk, : Mk, — [0,1]. Setting

LA9A@) = 5(Aba() - BVA() - VUK, (),

we have [£4 a(z)| < c¥a +Bt)Lvy , (x)>Da}» Where Y is a constant involving the supremum
on Mg, of Uk, and its two first derivatives.

We now fix by > b(Ig such that for all 8y > b4,

/°° W + log(e® +t +1)] = /°° CB W +log(s + 1)) Lol
0 c(ecBo + )2 o cs? ~40°

By It6’s formula and since 4 (XX4) = 0 (because Uy , (XE4) < D),
/(/)A(X‘Ilfﬁt) = Mt + Rt7

where (M,;)¢>0 is a martingale issued from 0 and where
t
R, = / L4 wa(XEA)ds.
0

By Lemma 14, since |£?T+t1/114(x)\ < Cif)(l + ﬂtH)l{UKA (x)>D4} and since By > ba > b(lg,

fe’e] fe%e] (3) (4)
(4) Ka CA CA (1 IBtJrl) 1
E < 1+ P(U X > Dy)dt < dt < —.
[§12113|Rt|} <Cy /o ( Be41)P(Uk , ( T+t) > Dy) ,/0 (6060 )2 =10

Consequently, for £ = {sup,>q |R:| < 1/10}, we have P(E°) < 1/4.

On E, we have M; = Mp,, where o = inf{t > 0 : M, ¢ [-1/10,11/10]}, because M; + R, =
Ya(XEA) takes values in [0,1]. On {sup;>0 Uk, (XEA) > K4}, the process 14 (XX4) must up-
cross [0, 1] at least once, so that on £ N {sup,>q Uk, (XEA) > K}, the martingale M; = M,
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must up-cross [1/10,9/10] at least once. Hence
IP’( sup Ug, (X54) > KA> < P(E®) + P(E, (Myno)iso up-crosses [1/10,9/10]) < 1/4 + p,
>0

where p = P((Mins)1>0 up-crosses [1/10,9/10]).

By Doob’s up-crossing inequality, see e.g. Revuz-Yor [14, Proposition 2.1 page 61] we know that,
for any continuous martingale (Z;):>0, any a < b, denoting by Ur 4, the number of up-crossings
of [a,b] by (Z;)¢>0 during [0, T, it holds that (b — a)E[Ur,q5] < E[(Z7 —a)_].

Thus for Np the number of up-crossings of [1/10,9/10] by the martingale (Mire)i>0 during
[0, 77, it holds that

p= lim P(Nr >1) < lim E[N7] < lim E[(Mrro —1/10)-] < 2/10 _ 1

T—00 T T—oo T—oc0 8/10 — 8/10 4
We used that Mp,, > —1/10 by definition of . We conclude that, for all § > ba, we have
P(sup;>o Uk, (Xﬁf‘t) > K4) <1/2 as desired. O

5. SUCCESS OF THE SIMULATED ANNEALING
We now show that no escape in large time implies the success of the simulated annealing.

Proof of Proposition 2. We assume (A), fix ¢ > c., zg € R? By > 0 and consider the solution
(Xt)t>0 to (1). Since lim|,|,o U(x) = 00, our goal is to show that for any fixed ¢ > 0,

tlirgop(liminfU(Xs) < 00 and U(X;) > a) =0.

S§— 00

Step 1. Tt suffices to show that for each A > 1, setting
Q4 = {liminf U(X;) < A},
S§— 00

it holds that Q4 C {sup,>q|Xs| < oo}. Indeed, if this hold true, we fix > 0, consider A, > 0
large enough so that P(A, < liminf, . U(X;) < 00) < 1 and write

P(liminf U(X,) < 00 and U(X,) > &) <n+ P(Q4, and U(X,) > )

S5— 00

§n+P(§1iIg|XS| < oo and U(Xy) > 5).

Thus limsup,_, . P(liminfs o, U(Xs) < oo and U(X;) > €) < n by Lemma 7. Since n > 0 is
arbitrarily small, the conclusion follows.

Step 2. We fix A > 1 and show that for Q4 = {liminfs, U(Xs) < A}, we have Q4 C
{supszo | Xs| < o0}

We introduce by > 1 and K4 > A as in Proposition 8 and consider ¢4 > 0 large enough so that
Bty > ba. Weset Sy =t4 and, for all £ > 1,

T, = inf{t > S, 1: U(Xt) < A} and S = inf{t > Ty : U(Xt) > KA},
with the convention that inf ) = co.
We start from

P(Sg+1 < 00|Sk < 00) =P(Tj41 < 00, Sk41 < 00|Sk < 00)

=E |:1{Tk+1<oo}P(Sk+1 < OO‘ka+1) Sk < OO} .
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But on {T}41 < oo} and conditionally on Fr,,, (X1, +t)i>0 is a solution to (1), starting from
X1,,, € {U < A}, with g replaced by fBr,,, > B¢, > ba. Hence, using Proposition 8, a.s.,

17,1 <00} P(Sky1 < 00| Fry,) = 1{Tk+1<oo}P(§l>lg U(X1y,i4t) = KA) <1/2.

All this shows that for all & > 1, P(Sk 41 < 00|Sk < 00) < 1/2.
Consequently, there a.s. exists k > 1 such that Sy = oo, and we introduce
ko =inf{k > 1: S, = co}.
We then have Si,—1 < 0o = Si,. By definition of Q4, it holds that Ty, < oo on Q4. Since
U(Xt) < K4 for all t € [Ty,, Sky) = [Tky»00) (on Q4), this implies that

Qa4 C {limsupU(Xs) < KA} C {§1§8|XS| < oo}

Ede el

as desired. O
We conclude the section with the

Proof of Theorem 1. We assume (A) and that there is ag > 0 such that [p, e~ V@) dr < 0o, We
fix ¢ > 0, 29 € R, By > 0 and consider the unique solution (X;);>o to (1). By Proposition 4,
liminf;_, o | X¢| < 0o a.s. If moreover ¢> ¢, lim;_, o, U(X;) =0 in probability by Proposition 2. O

6. APPENDIX: NON-EXPLOSION

It remains to study the non-explosion of our process. Surprisingly, this is rather tedious, except
if assuming some Lyapunov condition, for example that —x-VU (x) < C(1+|z|?), which forbids too
nasty oscillations. We will prove the following result, which is much stronger (but more natural)
than what we really need, since U > 0 under (A).

Theorem 15. Assume that U : R — R and B : R, — (0,00) are of class C*. Fiz xo € R% and
consider the pathwise unique mazimal solution (X¢)icjo,¢c) to

1 t
(14) X, =0+ By — 5/ B, VU(X,)ds,
0

where ¢ = lim,, (,, with ¢, = inf{t > 0:|X;| > n}. Assume that
(15) there is L > 0 such that for all x € R?, U(x) > —L(1 + |z|?).
Then it holds that ( = oo a.s.

Since VU is locally Lipschitz continuous, the existence of a pathwise unique possibly exploding
solution is classical. This result is rather natural: as is well-known, the solution to (14), with
U(z) = —(1 + |z[*)* explodes if and only if o > 1. The difficulty relies in the fact that we do not
want to assume any local property on VU. Let us mention that the proof below, assuming that
U > 0, would be slightly simpler but less transparent.

Our proof is inspired by methods found in Ichihara [10], who uses Dirichlet forms, and Grigor’yan
[6] and [7, Section 9], who studies manifold-valued diffusions. Both deal with the time-homogeneous
case (By = Py for all ¢ > 0). In [7], non-explosion is proved under some very weak conditions
(allowing e.g. for some additional logarithmic factors in (15)), while [10] is more stringent (roughly,
he treats only the case where U(z) > —L(1 + |z])).

We start with the following remark.
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Remark 16. (i) To prove Theorem 15, one may assume additionally that
(16) there is tg > 0 such that By = By, for allt > to.
(it) For any zo € R?, for (X;)iejo,c) the solution to (14) and for t > 0, the measure f, defined
by fi(A) =P(¢ > t, X; € A) is absolutely continuous with respect to the Lebesque measure on RY.
(iii) It suffices to prove Theorem 15 for a.e. xo € RY.
Proof. (i) Assume that Theorem 15 holds under the additional condition (16) and consider 3 :
Ry — (0,00) of class C*°. We fix T'" > 0, introduce 3 : Ry — (0,00) of class C*° satisfying
(16), such that B, = B, on [0, T] and we introduce the corresponding solution (X;);c[ ). We have
(Xt)teo,rre) = (Xt)te[O,T/\f)v whence in particular {¢ < T} = {¢ < T}. Since ( = 0o a.s., we
conclude that P(¢ < T') = 0. Since T is arbitrarily large, this implies that ( = co a.s.

(ii) Fix a Lebesgue-null set A € R%. Since VU is bounded on compact sets, we deduce from
the Girsanov theorem that P({, > t,X; € A) = 0 for all n > 1. By monotone convergence, we
conclude that P(¢ > t,X; € A) = 0 as desired.

(iii) Assume that for any 8 : Ry — (0,00) of class C°°, Py (¢ < o0) = 0 for a.e. z € RY. Then
for a given B : Ry — (0,00) of class C, for all t > 0, P; (¢ < 00) = 0 for a.e. z € R Since
¢ > 0 a.s. by continuity, we may write, for all zo € R?,

P02 (¢ < 00) = T Po g (t < ¢ < 00) = lm oz [11¢50yPr x, (¢ < 00)] = 0.

We used the Markov property and that 1;¢54P; x,(¢ < 00) =0 a.s. when ¢ > 0 by point (ii) and
since P; . (¢ < 00) = 0 for a.e. x € R% O

Above and in the whole section, we denote by E, ,, the expectation concerning the process
starting from zo € R? at time to > 0: under E¢,. 2., the process (X;)¢>0 solves (in law) the S.D.E.

Xy = a0+ By — 3 [ Brors VU (X)ds.
In the whole section, we denote by v, the volume of the unit ball and, for r > 0, we set
B.={zecR%: |z|<r}, B,={zrcR?:|z[<r} and 0B, ={rcR:|z|=71}.

We will study of the following Kolmogorov backward equation, which consists of a particular
case of the Feynman-Kac formula.

Lemma 17. Adopt the assumptions of Theorem 15 and suppose (16). Fizn >1 and o > 0. There
is a function up € Cl12(Ry x By,) such that Un,o =1 on Ry x 0B, and

(17) Ot o (b, @) + L, Uno(t, ) = qup o(t,z)  for (t,x) € [0,00) X By,
For p : R?* = R of class C?, B> 0 and x € R?, we have set

1
Lop(z) = S[A¢(z) = BVU(2) - V().
For any t >0, any x € B, it holds that u, o(t,z) = E; z[exp(—a(,)].

Proof. This relies one more time on classical results found in Friedman [5]. We fix some ¢y > 0 such
that By = fBy, for all t > #o. All the coefficients of (17) are smooth and bounded, since restricted
to B, whose boundary is smooth. Hence all the results cited below do indeed apply.

By [5, Chapter 3, Theorem 19], there exists a solution v, , € C?(B,) to the elliptic boundary
problem Eﬁto Up,a = QUp o O B,, and v, o =1 on 0B,
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By [5, Chapter 3, Theorem 7] (after time-reversing), there exists a solution w, o belonging
to C12([0,t0] x By,) to the parabolic problem diwy, o + Lg,Wna = Qwy o on (0,ty) X By, with
boundary condition wy o =1 on [0, tg] x 0B,, and terminal condition wy, «(to, z) = v o(z) on By,.

The function uy,  defined by up, o (t, ) = vy o () if £ > to and wy, o (8, ) = wno (¢, z) if t € [0, o]
satisfies the conditions of the statement.

Finally, using the It6 formula and (17), one checks that for all ¢t > 0, all z € B,,, all T' > 0,
Et,w[un,a(T A Cn; XTACn)e_a(TAcn)] = un,a (t7 l‘)

We let T — oo and find that E;,[e "] = w,o(t,) by dominated convergence and since
Un,a(Cn, Xc,) =1 a.s. O

Remark 18. By the Green formula, for all 8> 0, for all r >0, for all ¢ : B, = R of class C!
and ¢ : B, = R of class C?,

2 [ etsp@e e =~ [ Vola) Tue s
B,

[ e@)(Tut)  via)le Vs,
OB,
where v(x) = x/|x| is the unit vector normal to OB, and where dS is its surface element.

Although this is already known, see Grigor’yan [7, Section 9], we recall for the sake of complete-
ness how to treat the homogeneous case. We use an approach closer to the one of Ichihara [10],
who however assumes more than (15) and whose proof is more intricate and relies on the study of
v(z) = Eyle” 7], where o1 = inf{t > 0: |X,| < 1}.

Proposition 19. Assume that U : R? — R is O and satisfies (15). If By = By > 0 for all t > 0,
then P, (¢ < o0) =0 for a.e. x € RY.

Proof. For a > 0 and n > 1, we set uy(z) = E;[e”%] and uy, o(2) = E.[e~*"]. We divide the
proof into 2 steps. We recall that L is defined in (15).

Step 1. Here we prove that for all » > 0, there is a constant C,. > 0 such that
(18) Va > 0, / ui(x)e_ﬂﬂU(“)dx < e/ (280L)
BT

By Proposition 17, .o € C*(B,), Una = 1 on B, and L tp o = Uy on B,. For any
r € (0,n], we have

B, (1) = / (2002 () + |Vtty o (2)[2)e PV @ dg
B

r

:/ Un,a(2)[Viga(2) - v(z)]e PV qg.
OB,

Indeed, it suffices to write Qan’a = 2up, o L8, Un,o and to use Remark 18 with ¢ = 1 = uy 4.
Hence for all r € (0,n], since 2aa? + b* > 2v/2aab,

¥, (r) = /8 (20020 (0) + Vit () P)e U

>2v2a U o ()| Vg o (2)|e V@ AS > 2¢/2a®,, o (7).
aB’V‘
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Thus ®,, o (1) < By (n)e2V22 =) for all 1 € (0,n).
But, writing 20t = 2L£8,Un,« and using Remark 18 with ¢ =1 and ¥ = up q,

2/ aunya(x)e*BOU(i)dx = / [Vt o) - I/(x)]e*ﬁOU(’”)dS = ®, o(n),
B 9B,

n

because .o = 1 on B,. Hence ®, o(n) < 2a [, e~ PU@ gz < 20 mdePol14n%) by (15). All
this shows that for all & > 0, all n > 1, all € (0,n],

/ W2 (2)e~PU@) 4y < QL% (r) < vgndefoL(1+n®) 2vEa(r—n)
B, o

But ua(z) < upo(z) for all n > 1, all € RY Hence for » > 0 fixed, with the choice n =
r+v/a/(BoL), we conclude that, for some constant C;. > 0 depending on r (and on L and d),

/ Ui(l‘) OU(:L’)dx < Ud(r+f/(5OL))d BoL(1+2r2 )+2a/(ﬁgL)ef2\fa/(,80L) <Cre” 2B0L)
B

Step 2. We now conclude. Assume by contradiction that f]R" (¢ < 00)dz > 0 and fix n > 0.
It holds that f]Rd (¢ <n)dx > 0. Else we would have, by the Markov property,

/ P, (¢ < 2q)de = / P.(n < ¢ < 2q)dz = / EalLicomPx, (€ < m)ldz =0
R4 R4 R4

thanks to Remark 16-(ii). Iterating the argument, we would find that [, P(¢ < Kn)dz = 0 for
all K > 1, whence [p, P.(¢ < oo)dz = 0.

Consequently, we can find rqg > 0 such that ¢ := fB (¢ < n)]PePUEdz > 0. We then
have, since uy(z) = E,[e™ %] > e P, (¢ < 1),

Ya > 0, / u? (x)e PV @y > ge2om,
B

T0

With the choice n = 1/(88pL), this contradicts (18). O

Using in particular some clever ideas found in Grigor’'yan [7, Section 9], who studies, in the
homogeneous case, the P.D.E. satisfied by w(t, z) = P, [ < t], we can now give the

Proof of Theorem 15. We consider U : R — R and 3 : R — (0, 00) of class C>. We recall that
¢ = limy, Gy, with ¢, = inf{t > 0:|X;| > n}. We set u,(t,z) = E; . [e~%"] and u(t,x) = E; .[e~],
omitting the subscript « since we now always work with a = 1. By Remark 16, we may moreover
suppose that there is g > 0 such that 8; = S, for all t > tp, and it suffices to prove that u(0,z) =0
for a.e. x € R%. Since u(ty,r) = 0 for a.e. x € R by Proposition 19, it is sufficient to prove that

(19) 36 > 0,¥4 € [0, 4], {/ ulty, @)z = 0} = {vi € [(t, — d) v O,tl],/

R4 Rd
Step 1. Here we check that for all @ € [0,1], all b > 0, all e > 0, all > 0,

a enb—l/a
ab < — +

ne n
We fixa € [0,1], € > 0, and 1) > 0 and study f(b) = 2+e"~1/=—nab. We have f(0) > 0, f(o0) = oo
and f/(b) = n[e"™~1/¢ —a]. If a < e~'/%, then f is non-decreasing, so that f is nonnegative on R .
If now a > e~ '/¢, then f attains its minimum at by = %[loga + 1] and f(by) = a — aloga > 0.

u(t,x)dr = 0}.
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Step 2. Here we prove that are some constants § > 0 and ko > 0 such that for all ¢; € [0, ], all
R > 1, there is a C'* function ay, g : [(t1 — &) V 0,t1] x RY — [0, 1] enjoying the properties that
o, r=1on[(t1 —9)VO0,t1] x Bg, oy, g =0on [(t1 —9)VO0,t1] x Bip
and, for all ¢ € [(t1 — ) V 0,14],
2
moalt) = [ (IVan n(t.0) - diad, plt,0)]) e < roe ™
R
We start with a C*°-function ng : R — [0, 1] such that ng = 1 on Bag, ng = 0 on By and

|V773| S l/R.
We also introduce the C! function on [(t; — &) V 0,%1] x R? defined by

(=l -R)3
i r(t,T) = W t—t1)

which equals 0 on [(t; —8) V0, #1] x B and solves 8:&, g+ 2|V&, r|? = 0 on [(t1 — ) V0, 1] x B,

If 6 > 0 is small enough, the function oy, r(t,2) = nr(x) exp(—&;, r(t, z)/2) enjoys the desired
properties: it is C, [0, 1]-valued, we have ay, r(t,z) = 1if |z| < R and ag(t,z) = 0 if |z| > 4R,
and we have

1 2 _ _
Vo, rl* = 8lof, 5] :‘VnthR - 577t1,RV5t1,R e SR ol pe Tt R0, R
1 _ _
<(21Vne, vl + 502 RIVEL R+ 7, 100G 1 )€ E0 R = 2V, plPe¢00n,

Since |V, gl < R™'1p,,\B,, and since &, r > {f—; on [(t1 — 6) V 0,t1] x By, we deduce from
(15), that

my, g(t) S2R™2e™ B/ W0) SLUAIORY) NGB, 1\ Byg).
Since £ is bounded on [0, to], it indeed suffices to choose § > 0 small enough to complete the step.

Step 3. We consider 6 > 0 as in Step 2, fix t; € [0,t] and set, for R > 1, n > 5R and
te((ty —d)V0,t],

ool = [ (6002 ot 00
Rd
The goal of this step is to verify that there is a constant x; > 0 such that
(20) Vt1 € [0,t0], VR > 1, ¥n > 5R, VYt € [(t1=0)VO, ta], ¢, 4, r(t) > —K1 [RQ@n,thR(t)-i-e_R?]

By (17) (with o = 1), we know that Jyu,(t,x) = un(t,x) — Ls,un(t,z) on [0,00) x B,. Since
Supp a4, r(t,-) C Bsr and since n > 5R, we may write

(piz,thR(t) - n»thR(t) + Jnytl,R(t) - Kn7t17R(t)7

where

Lt p(t) = / 20un(t,x) — L, un(t, 2)un(t, z)ad, gt x)e P V@ da,
R4 i

T ®) = [ w0100, plt.a)e O,
]Rd

Knsynlt) =5, [ U@ (t.0)ad, plt.a)e V.
RA
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Using Remark 18 with any r > 4R, since ay, r(t,-) is supported in Bsg, we have
In’tl’R(t) Z - 2/ Lﬁtun(tv x)[un(ta -T)Oét21,R(t, Jf)]eiﬁtU(ﬁ)dx
Rd
= [ Vuu(t,2) - Viua(t,2)a, a(t,2)le V@ da
R

:/ {\Vun(t a:)\Qozt R(t x) + 2uy (t, )y, v (t, 2)Vu,(t, z) - VozthR(t,:c)} e Pl gy
R4

= / ui(tvx)|VO[t17R(t7x)‘zefﬁtU(z)dz'
R

We finally used that a® — 2ab > —b? with a = |Vu,|oy, g and and b = u,|Vay, g|. Thus

Loty 2(0) + Ty r(t) > /

ui(t,x) (Bt[afl,R(t,x)] — |Vat1l’R(t’x)|2)e—BtU(w)dx
]Rd

> —/ (|Vatl,R(t,x)\2 laf g(t, m)]) e PU@ Az > —gge K
R4 +
by Step 2. We used that u2(t,z) € [0, 1].
We next write K, +, r(t) = K&t)hR( )+ + K&

miy R r(t), where

K. r(0) =5, / Lwwo U@t o)l gt e)e Y Pde < CRgnu a(t),

because | 3’| is bounded on [0, to] and because |1{y<o3U| < L(1+ (4R)?) on Supp o, r(t,) C Bar
by (15), and

KC0n®) = [ 1wwsa U@ (t2)od, alta)e O

By Step 1 with a = u}(t,z)0f, g(t,x) € [0,1],b=U(x) > 0,7 =p; >0and e = (2R) ">

Kfft) r < |Bt| {2R2u%(t,x)afl r(t,x) + erU(””)72R2]e*’BfU(””)dx
1, B, Bun ,
_ 1B

o 2R ennlt) + Vol(Bag)e ™"

SC{R n,ty,R(1) +6_R2}7
since |B;|/B: is bounded on [0, ¢p]. This ends the step.

Step 4. We now conclude that (19) holds true with 6o = min{d, 1/(2x1)}, where § > 0 and k1 > 0
were introduced in Steps 2 and 3. We thus fix ¢; € [0,%o] and assume that [, u(t1, z)dz = 0.

Integrating (20), we find that for all ¢ € [(t; — do) V 0,¢1], all R > 1 and all n > 5R,
@n,tl,R(t) < (pn,thR(tl)emRz(tlft) +R7267R2 [emRQ(tlft) _ 1] < 6R2/2§0n,t1,R(t1) +67R2/2,
the last inequality following from the fact that t; —t < 69 < 1/(2k1).

Since lim,, u, (t,z) = u(t,x) by dominated convergence and since atl R(t, ) is cornpactly sup-
ported, we have lim, ¢n 1, r(t) = @i, r(t), where pr(t) = [pau?(t,x)ai g(t,x)e” BU@) dz. We
thus find, for all ¢ € [(t; — d9) V 0,%1], all R > 1

2 2
ou, r(t) < e oy (t) +e T2
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t since u(t1,z) = 0 for a.e. € R?, it holds that ¢4, r(t1) = 0 for all R > 1. Hence for all fixed
[(t1 — d0) V 0,¢1], all fixed Ro > 0, all R > Ry > 1, since ay, r(t,-) > 1pg,,

/ 2t 2)e U@ Az < o, p(t) < e /2,

BRO

ence [5 u?(t,x)e PV @ dz = 0 and thus u(t,z) = 0 for a.e. z € R? as desired. O
0
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