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Introduction and results

1.1. Main results. We work with the following setting. Actually, c * = sup{E(x, y) : x local minimum of U , y global minimum of U } represents the maximum potential energy required to reach a global minimum y of U when starting from anywhere else.

Assumption (A)

We fix x 0 ∈ R d , c > 0 and β 0 > 0 and consider the time-inhomogeneous S.D.E.

(1)

X t = x 0 + B t -1 2 t 0 β s ∇U (X s )ds where β t = log(e cβ0 + t) c

and where (B t ) t≥0 is a d-dimensional Brownian motion. By Theorem 15 proved in the appendix, since U ≥ 0 under (A), (1) has a pathwise unique non-exploding solution (X t ) t≥0 . Here is our main result.

Theorem 1. Assume (A) and that R d e -α0U (x) dx < ∞ for some α 0 > 0. Fix c > c * , x 0 ∈ R d and β 0 > 0 and consider the unique solution (X t ) t≥0 to [START_REF] Azencott | Simulated annealing. Séminaire Bourbaki[END_REF]. Then lim t→∞ U (X t ) = 0 in probability.

One of the ingredients of the proof is the following proposition, which asserts that, in full generality, the simulated annealing is successful on the event where the process (X t ) t≥0 does not escape to infinity in large time.

Proposition 2. Assume (A), fix c > c * , x 0 ∈ R d and β 0 > 0. For (X t ) t≥0 the solution to [START_REF] Azencott | Simulated annealing. Séminaire Bourbaki[END_REF],

∀ ε > 0, lim t→∞ P lim inf s→∞ |X s | < ∞ and U (X t ) > ε = 0.
1.2. Comments and references. The simulated annealing has been introduced by Kirkpatrick-Gelatt-Vecchi [START_REF] Kirkpatrick | Optimization by simulated annealing[END_REF] as a numerical procedure to find a (possibly non unique) global minimum of a function U on a given state space. We refer to Azencott [START_REF] Azencott | Simulated annealing. Séminaire Bourbaki[END_REF] for an early review of the method and its links with the theory of Freidlin-Wentzell [START_REF] Freidlin | Random perturbations of dynamical systems[END_REF].

With our notation and in our context where the state space is R d , the main idea of the simulated annealing is the following. The solution to [START_REF] Azencott | Simulated annealing. Séminaire Bourbaki[END_REF], with β constant, has µ β (dx) = Z -1 β e -βU (x) dx as invariant probability distribution, if Z β = R d e -βU (x) dx < ∞. Using that min U = 0 and that ∇U is locally bounded, we deduce that there is κ > 0 such that Z β ≥ e -1 {U ≤1/β} dx ≥ κβ -d for all β ≥ 1. Hence under the condition that Z α0 < ∞ for some α 0 > 0, it holds that for all ε > 0, [START_REF] Fang | An improved annealing method and its large-time behavior[END_REF] µ β (U > ε) ≤ Z -1

β {U >ε} e -βU (x) dx ≤ β d κ Z α0 e -(β-α0)ε -→ 0 as β → ∞.
Hence one hopes that the solution to [START_REF] Azencott | Simulated annealing. Séminaire Bourbaki[END_REF], with lim t→∞ β t = ∞, satisfies lim t→∞ U (X t ) = 0 in probability. However, it is necessary that β t increases sufficiently slowly to infinity, so that Law(X t ) remains close, for all times, to µ βt . If β t increases too fast to infinity, one may remain stuck near a local minimum of U , as in the classical deterministic gradient method.

A major contribution is due to Holley-Kusuoka-Stroock [START_REF] Holley | Asymptotics of the spectral gap with applications to the theory of simulated annealing[END_REF], see also Holley-Stroock [START_REF] Holley | Simulated annealing via Sobolev inequalities[END_REF]. Replacing R d by a compact manifold M , they showed that when β t c -1 log(1 + t), the simulated annealing procedure is successful, i.e. lim t→∞ U (X t ) = 0 in probability, if and only if c > c * . Their proof is almost purely analytic and very elegant. It relies on precise spectral gap estimates providing an asymptotically optimal Poincaré inequality. They use at many places the compactness of the state space. This kind of proof involving functional inequalities has been extended to the non-compact case of R d by Royer [START_REF] Royer | A remark on simulated annealing of diffusion processes[END_REF] and Miclo [START_REF] Miclo | Recuit simulé sur R n . Étude de l'évolution de l'énergie libre[END_REF], at the price of many growth conditions on U , like Zitt [START_REF] Zitt | Annealing diffusions in a potential function with a slow growth[END_REF], taking advantage of some weak Poincaré inequalities, worked under another set of rather stringent conditions, still implying that all the local minima of U are lying in a compact set. He in particular assumes that |∇U | is bounded and that there is ε > 0 such that, for all x outside a compact, U (x) ≥ log 1+ε |x| and ∆U (x) ≤ 0.

Here we only assume that R d e -α0U (x) dx < ∞ for some α 0 > 0, which seems very natural in view of [START_REF] Fang | An improved annealing method and its large-time behavior[END_REF]. This covers and consequently extends the previously cited works in R d . In particular, nothing forbids U to oscillate, as strongly as it wants, and as far as it wants from compact sets, and thus in particular to have an unbounded set of local minima.

We believe that all the results of the paper hold true when

U ∈ C 2 (R d ) (instead of U ∈ C ∞ (R d )).
We assume that U ∈ C ∞ (R d ) for simplicity, in particular because we want to apply serenely the results of Holley-Kusuoka-Stroock [START_REF] Holley | Asymptotics of the spectral gap with applications to the theory of simulated annealing[END_REF], where the potential is assumed to be smooth, although it is likely they do not really use it.

1.3. Short heuristics. Let us emphasis that our proof relies on the following two main points. An entropy computation, see Heuristic Computation 5, shows that the condition R d e -α0U (x) dx < ∞ implies that lim inf t→∞ |X t | < ∞ a.s. Now, recall that in the compact case, see Holley-Kusuoka-Stroock [START_REF] Holley | Asymptotics of the spectral gap with applications to the theory of simulated annealing[END_REF] or Miclo [START_REF] Miclo | Une étude des algorithmes de recuit simulé sous-admissibles[END_REF], it a.s. holds that lim sup t→∞ U (X t ) = c, where c > 0 is the constant appearing in the definition of (β t ) t≥0 , see [START_REF] Azencott | Simulated annealing. Séminaire Bourbaki[END_REF]. Combining these two points, it seems rather clear from the Borel-Cantelli Lemma that, in the non compact setting, the process should also satisfy lim sup t→∞ U (X t ) = c a.s., see points (d)-(e) in the next subsection for more details concerning a weaker, but sufficient, statement. Hence it will eventually remain in a compact set and Theorem 1 will follow from the compact case.

Apart from Heuristic Computation 5, which seems new and efficient, there are a number of technical issues, that are detailed in the next subsection.

1.4. Plan of the proof. We denote by (X t ) t≥0 the solution to [START_REF] Azencott | Simulated annealing. Séminaire Bourbaki[END_REF]. We assume (A) and the conditions that R d e -α0U (x) dx < ∞ for some α 0 > 0 and c > c * . (a) In Section 2, we prove some auxiliary weak regularization property for the law of the solution to [START_REF] Azencott | Simulated annealing. Séminaire Bourbaki[END_REF]. This allows us, when applying P.D.E. techniques, to do as if the law of X 0 had a bounded density concentrated around x 0 , with a precise bound as a function of β 0 .

(b) In Section 3, we show that lim inf t→∞ |X t | < ∞: the process cannot escape to infinity in large time. This does not use the condition c > c * . The key argument is the following: under the additional assumptions that Law(X 0 ) is smooth and β 0 > α 0 , we prove the important a priori estimate sup t≥0 E[U (X t )] < ∞, see Heuristic Computation 5, which a priori implies that lim inf t→∞ |X t | < ∞ by the Fatou lemma and since lim |x|→∞ U (x) = ∞. We then make all this rigorous and get rid of the additional assumptions using point (a) and that our process does not explode in finite time.

This central a priori estimate is derived from a rather original entropy computation. Let us mention that deducing that sup t≥0 E[U (X t )] < ∞ directly from the Itô formula would necessarily require some stringent conditions on ∇U and ∆U .

(c) In Section 4, we verify in Lemma 7 that, with an abuse of language, U (X t ) → 0 in probability as t → ∞ on the event where sup t≥0 |X t | < ∞. This is easy, by localization, in view of the results of Holley-Kusuoka-Stroock [START_REF] Holley | Asymptotics of the spectral gap with applications to the theory of simulated annealing[END_REF] 

|X t | ≤ C B ≥ 1 2 .
This is rather natural: in the compact setting, it is well-known, see [START_REF] Holley | Asymptotics of the spectral gap with applications to the theory of simulated annealing[END_REF] or Miclo [START_REF] Miclo | Une étude des algorithmes de recuit simulé sous-admissibles[END_REF], that lim sup t→∞ U (X t ) = c a.s. It would not be too difficult to deduce that in the non-compact case, there exists

C t0,x0 > 0 such that P t0,x0 (sup t≥0 |X t | ≤ C t0,x0 ) ≥ 1/2.
The main issue is to show that C t0,x0 does not depend too much on t 0 and x 0 . This is tedious, and we have to revisit the proof of [START_REF] Holley | Asymptotics of the spectral gap with applications to the theory of simulated annealing[END_REF].

(e) In Section 5, we prove Proposition 2: by (d), on the event lim inf s→∞ |X s | < ∞, our process will eventually be absorbed in a compact set, so that sup s≥0 |X s | < ∞, whence the success of the simulated annealing by point (c). Our proof completely breaks down for slower freezing schemes, i.e. if β t log t as t → ∞: in such a case, point (d) above cannot hold true, even non uniformly in t 0 and x 0 .

Observe that we do not assume any Lyapunov condition, which would involve ∆U and ∇U and would forbid U to oscillate too strongly.

As already mentioned and in view of (2), our only assumption, i.e. the existence of an invariant probability measure for some (low) temperature, is very natural and allows for potentials with a very general shape.

1.6. On the main assumption. However, we have shown in a previous paper with Monmarché [START_REF] Fournier | Simulated annealing in R d with slowly growing potentials[END_REF] that things may work even when R d e -αU (x) dx = ∞ for all α > 0. In [3, Theorem 1], we show that under (A) and when x • ∇U (x) ≥ a/ log |x| outside a compact, the simulated annealing works if c > c * and a > c(d -2)/2. This applies e.g. when U (x) = a log log(1 + |x| 2 ) outside a compact.

We also show in [3, Proposition 2], if U (x) = a log log(1 + |x| 2 ) with a < c(d -2)/2, then X t escapes to infinity as t → ∞ with positive probability, so that the simulated annealing fails, even when c > c * (since here c * = 0).

Observe that the condition x • ∇U (x) ≥ a/ log |x| outside a compact is much stronger than its integrated version U (x) ≥ a log log(1+|x| 2 ) (outside a compact), in particular, all the local minima of U have to belong to a compact.

One might think that the above results could be reinforced as follows: the simulated annealing is successful if U (x) ≥ a log log(1 + |x| 2 ) with a > c(d -2)/2 (and c > c * ), and fails if U (x) ≤ a log log(1 + |x| 2 ) with a < c(d -2)/2. This is not case. Indeed, we found some intricate conditions [3, Assumption (H 2 (α)) or Assumption (H 3 (α, β))], allowing for some very oscillating potentials, under which the simulated annealing is successful. In particular, it is stated in [3, Proposition 3] that if d ≥ 2, for all p ≥ 1, we can find a potential U such that log •p (1 + |x| 2 ) ≤ U (x) ≤ 3 log •p (1 + |x| 2 ) outside a compact, for which c * = 1 and for which the simulated annealing works for all c ∈ (1, 2). Note here that if d ≥ 3, the condition U (x) ≤ a log log(1 + |x| 2 ) is fulfilled (outside a compact) with any a > 0, e.g. a = (d -2)/2, but if c = 3/2, the simulated annealing is successful although a < c(d -2)/2. Thus, without the condition that R d exp(-α 0 U (x))dx < ∞ for some α 0 > 0, the situation may be very intricate and really depend on the shape of U . In particular, the above results show that for two potentials U and V satisfying (A), such that U (x) ≤ V (x) for all x ∈ R d (which suggests that U is less confining than V ), it is possible that the simulated annealing process related to V escapes to infinity with positive probability, while the simulated annealing procedure works for U . 1.7. Non-explosion. The non-explosion of the solution to (1), using only that U ≥ 0, is checked in the appendix. Actually, we treat, without major complication, the more general case where β : R + → (0, ∞) is any smooth function and where U : R d → R is smooth and satisfies U (x) ≥ -L(1 + |x| 2 ) for some constant L > 0. This is not so easy, since we do not want to assume any local condition on ∇U . We use purely deterministic techniques inspired by the seminal work of Grigor'yan [START_REF] Grigor'yan | Stochastically complete manifolds[END_REF], also exposed in [START_REF] Grigor'yan | Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds[END_REF]Section 9] and by the paper of Ichihara [START_REF] Ichihara | Explosion problems for symmetric diffusion processes[END_REF], both dealing with more general but time-homogeneous processes.

Let us mention that in the homogeneous case, Ichihara uses the P.D.E. satisfied by v(x) = E x [e -σ1 ], where σ 1 = inf{t ≥ 0 : |X t | ≤ 1}, while Grigor'yan rather studies the P.D.E. satisfied by w(t, x) = P x [ζ < t], where ζ is the life-time of the solution. In the inhomogeneous setting, we study, roughly, the P.D.E. satisfied by u(t, x) = E t,x [e -ζ ], where ζ is the life-time of the solution. The situation is slightly more complicated, but we manage to take advantage of some computations found in [START_REF] Grigor'yan | Stochastically complete manifolds[END_REF] and [START_REF] Ichihara | Explosion problems for symmetric diffusion processes[END_REF] to show that u ≡ 0.

Weak regularization

We prove some weak regularization that will allow us, when using P.D.E. techniques, to replace the Dirac initial condition δ x0 by some bounded functions concentrated around x 0 . One might invoke the Hörmander theorem, but since we need a precise bound as a function of β 0 (see Lemma 14 below), we will rather use the following weaker lemma based on stopping times. Lemma 3. Assume (A) and fix c > 0. For any A > 1, there is a constant

C (1)
A such that for any x 0 ∈ {U ≤ A}, any β 0 > 0, denoting by (X t ) t≥0 the corresponding solution to (1), there exists a stopping time τ ∈ [0, 1] such that sup t∈[0,τ ] |X t -x 0 | ≤ 1 and such that the law of (τ, X τ ) has a density bounded by exp(C (1)

A (β 0 + 1))1 {[0,1]×B(x0,1)} .
Proof. We fix x 0 ∈ {U ≤ A} and β 0 > 0. We introduce some random variable R, uniformly distributed in [1/2, 1] and independent of (X t ) t≥0 . We claim that

τ = inf{t ≥ 0 : |X t -x 0 | = R} ∧ R satisfies the requirements of the statement. First, τ ≤ R ≤ 1 and sup t∈[0,τ ] |X t -x 0 | ≤ R ≤ 1.
Next, we consider a d-dimensional Brownian motion (W t ) t≥0 independent of R and we set τ = inf{t ≥ 0 : |W t | = R} ∧ R. We introduce the martingale

L t = - 1 2 t∧τ 0 β s ∇U (x 0 + W s ) • dW s ,
as well as its exponential E t = exp(L t -1 2 L t ), which is uniformly integrable by the Novikov criterion, see Revuz-Yor [14, Proposition 1.15 p 332], because

L ∞ ≤ 1 4 (sup B(x0,1) |∇U | 2 ) 1 0 β 2
s ds is bounded. The Girsanov theorem tells us that under E ∞ • P, the process

B t∧τ = W t∧τ + 1 2 t∧τ 0 β s ∇U (x 0 + W s )ds, t ≥ 0
is a (stopped) Brownian motion, so that x 0 + W t∧τ is a (stopped) solution to [START_REF] Azencott | Simulated annealing. Séminaire Bourbaki[END_REF]. Hence for all measurable φ : R

+ × R d → R + , E[φ(τ, X τ )] = E[φ(τ , x 0 + W τ )E ∞ ].
By the Itô formula,

β t∧τ U (x 0 + W t∧τ ) = β 0 U (x 0 ) + t∧τ 0 β s U (x 0 + W s )ds -2L t + 1 2 t∧τ 0 β s ∆U (x 0 + W s )ds, whence, since U ≥ 0 and β ≥ 0, L ∞ ≤ 1 2 β 0 U (x 0 ) + τ 0 β s U (x 0 + W s )ds + 1 2 τ 0 β s ∆U (x 0 + W s )ds . Recalling that τ ≤ 1, that sup [0,τ ] |W s | ≤ R ≤ 1 that x 0 ∈ {U ≤ A}, that β s ≤ 1/c and that sup [0,1] β s ≤ β 0 + 1/c, we deduce that L ∞ ≤ 1 2 β 0 + 1 c A + sup x∈{U ≤A} sup y∈B(x,1) U (y) + 1 2 |∆U (y)| ≤ C A (1 + β 0 ),
for some finite constant C A > 0 depending on A and c. We used that 1+β0) and for all measurable φ : R

∪ x∈{U ≤A} B(x, 1) is bounded because lim |x|→∞ U (x) = ∞. Hence E ∞ = exp(L ∞ -1 2 L ∞ ) ≤ exp(L ∞ ) ≤ e C A (
+ ×R d → R + , (4) E[φ(τ, X τ )] ≤ e C A (1+β0) E[φ(τ , x 0 + W τ )].
We now verify that (τ , W τ ) has a bounded density, necessarily supported in [0, 1] × B(0, 1). For r > 0, we introduce τ r = inf{t > 0 : |W t | = r}. We have τ = τ R ∧ R, so that the density of (τ , W τ ) is bounded by the sum of the densities of (τ

R , W τ R ) and (R, W R ). Recall that R ∼ U([1/2, 1]). The density of (R, W R ) is 2e -|x| 2 /(2r) /(2πr) d/2 1 {r∈[1/2,1],x∈R d } , which is bounded.
Next, denoting by µ r (s) the density of τ r , we have by scaling that µ r (s) = r -2 µ 1 (r -2 s), because τ r has the same law as r 2 τ 1 . One may then check that the density of (τ

R , W τ R ) is |x| -d-1 µ 1 (|x| -2 r)1 {r>0,|x|∈[1/2,1]} , up to some normalization constant. Since µ 1 is bounded, so is the density of (τ R , W τ R ).
Denoting by C the bound of the density of (τ , W τ ), we conclude from ( 4) that (τ, X τ ) has a density bounded by Ce C A (1+β0) 1 {s∈[0,1],x∈B(x0,1)} . The conclusion follows.

No escape in large time

In this section, we prove that lim inf

t→∞ |X t | < ∞. Proposition 4. Assume (A) and fix c > 0, x 0 ∈ R d and β 0 > 0. Suppose that there is α 0 > 0 such that R d e -α0U (x) dx < ∞. For (X t ) t≥0 the solution to (1), lim inf t→∞ |X t | < ∞ a.s.
The crucial point is the following uniform in time a priori estimate.

Heuristic Computation 5. Assume (A), fix c > 0, β 0 > 0 and assume that there is α 0 ∈ (0, β 0 ) such that R d e -α0U (x) dx < ∞. Let f 0 be a probability density on R d . Let (X t ) t≥0 be the solution to (1) starting from X 0 with law f 0 . If

κ(f 0 ) = R d f 0 (x) log(1 + f 0 (x)e β0U (x) )dx < ∞, setting a 0 = [ R d e -α0U (x) dx] -1 , we have, if f t = Law(X t ) has a smooth enough density, sup t≥0 E[U (X t )] ≤ κ(f 0 ) -log(a 0 ) β 0 -α 0 .
This relies on a rather indirect entropy computation. As already mentioned, obtaining a uniform in time moment bound, using the Itô formula, would require much more stringent conditions involving ∇U and ∆U . Observe that the computation below is rather original, in that we do not differentiate the true relative entropy x) dx, but rather the relative entropy without normalization constant R d f t (x) log(f t (x)e βtU (x) )dx. Strangely, using the true relative entropy functional does not seem to provide interesting results.

R d f t (x) log(f t (x)Z βt e βtU (x) )dx, where Z β = R d e -βU (
Informal proof. The law f t of X t weakly solves

∂ t f t (x) = 1 2 div[∇f t (x) + β t f t (x)∇U (x)] = 1 2 div[e -βtU (x) ∇(f t (x)e βtU (x) )]. (5) 
We do as if f t was a smooth strong solution to [START_REF] Friedman | Partial differential equations of parabolic type[END_REF] and proceed to integrations by parts without justification. For any smooth φ : R + → R, we have, setting ψ(u) = uφ (u) -φ(u) for all u ≥ 0,

d dt R d φ(f t (x)e βtU (x) )e -βtU (x) dx (6) = R d ∂ t f t (x)φ (f t (x)e βtU (x) ) + β t U (x)f t (x)φ (f t (x)e βtU (x) ) -β t U (x)φ(f t (x)e βtU (x) )e -βtU (x) dx = - 1 2 R d |∇(f t (x)e βtU (x) )| 2 φ (f t (x)e βtU (x) )e -βtU (x) dx + β t R d U (x)ψ(f t (x)e βtU (x) )e -βtU (x) dx.
For the last equality (first term), we used ( 5) and an integration by parts.

We now apply [START_REF] Grigor'yan | Stochastically complete manifolds[END_REF] with the convex function φ(u) = u log(1 + u), for which ψ(u) = u 2 1+u ≤ u, to find, throwing away the nonpositive term, h t ≤ β t u t , where we have set

h t = R d f t (x) log(1 + f t (x)e βtU (x) )dx and u t = R d U (x)f t (x)dx = E[U (X t )]. But h t ≥ R d f t (x) log(f t (x)e βtU (x) )dx = R d f t (x) log(f t (x))dx + β t u t ≥ (β t -α 0 )u t + log(a 0 ). We used that R d f (x) log(f (x)/g(x)
)dx ≥ 0 for any pair of probability densities f and

g on R d , whence R d f t (x) log(f t (x))dx ≥ R d f t (x) log(a 0 exp(-α 0 U (x))dx = log(a 0 ) -α 0 u t . We conclude, since h 0 = κ(f 0 ), that (β t -α 0 )u t ≤ h t -log(a 0 ) ≤ κ(f 0 )-log(a 0 )+ t 0 β s u s ds = κ(f 0 )-log(a 0 )+ t 0 β s β s -α 0 (β s -α 0 )u s ds,
whence, by the Gronwall lemma,

(β t -α 0 )u t ≤ [κ(f 0 ) -log(a 0 )] exp t 0 β s ds β s -α 0 = [κ(f 0 ) -log(a 0 )] β t -α 0 β 0 -α 0 . Consequently, E[U (X t )] = u t ≤ [κ(f 0 ) -log(a 0 )]/[β 0 -α 0 ] for all t ≥ 0.
We now try to deduce from this informal computation the rigorous results we need.

Lemma 6. If ∇U is bounded together with all its derivatives and if the initial density f 0 belongs to C c (R d ), the a priori estimate of Heuristic Computation 5 rigorously holds true for the solution to (1) starting from X 0 ∼ f 0 .

Proof. We first justify rigorously [START_REF] Grigor'yan | Stochastically complete manifolds[END_REF], for all t ∈ (0, ∞), with φ(u) = u log(1+u). Recall that f t is the law of X t . Since U has at most linear growth and ∇U is bounded, it is (widely) enough to check that

(f t (x)) t>0,x∈R d is a strong solution to (5), i.e. 2∂ t f t (x) = ∆f t (x)+β t ∇U (x)•∇f t (x)+β t f t (x)∆U (x)
on (0, ∞) × R d and satisfies, for all 0 < t 0 < t 1 , for some constants C t0,t1 > 0 and λ t0,t1 > 0,

∀t ∈ [t 0 , t 1 ], x ∈ R d , f t (x) + |∂ t f t (x)| + |∇f t (x)| + |D 2 f t (x)| ≤ C t0,t1 exp(-λ t0,t1 |x| 2 ).
To prove those bounds, we use classical results found in Friedman [START_REF] Friedman | Partial differential equations of parabolic type[END_REF], that apply to uniformly parabolic equations with bounded and Lipschitz coefficients (actually, Hölder is enough): by [5, Chapter 1, Theorem 12], we have f t (x) = R d Γ(x, t; ξ, 0)f 0 (ξ)dξ, with, for some C T > 0 and λ > 0, for all t ∈ [0, T ], all x ∈ R d , [START_REF] Grigor'yan | Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds[END_REF] |Γ(x, t; ξ, 0

)| + t 1/2 |∇ x Γ(x, t; ξ, 0)| + t|D 2 Γ(x, t; ξ, 0)| ≤ C T t -d/2 e -λ|x-ξ| 2 /t .
The above estimates for Γ and ∇Γ are nothing but [5, Chapter 1, Equations (6.12) and (6.13)], and the estimate on D 2 Γ is proved similarly, using [5, Chapter 1, Equation (4.11)]. The Gaussian upper-bounds of

f t (x), |∇f t (x)| and |D 2 f t (x)| follow, because f 0 ∈ C c (R d ).
Finally, the bound on

∂ t f t (x) follows from the fact that 2|∂ t f t (x)| ≤ |∆f t (x)| + β t ||∇U || ∞ |∇f t (x)| + β t ||∆U || ∞ f t (x).
Hence, all the arguments in Heuristic Computation 5 are correct for t ∈ (0, ∞), and we conclude that for all t 0 > 0, sup t≥t0 E[U (X t )] ≤ (β t0 -α 0 ) -1 (κ(f t0 ) -log(a 0 )). To complete the proof, the only issue is to show that lim t0→0+ κ(f t0 ) = κ(f 0 ). This can be deduced from the continuity of Section 7], and the fact that there are C T > 0 and λ T > 0 such that f t (x) ≤ C T e -λ T |x| 2 for all t ∈ [0, T ] and x ∈ R d . This follows from [START_REF] Grigor'yan | Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds[END_REF], the fact that

f t (x) on [0, ∞) × R d , see [5, Chapter 1,
f t (x) = R d Γ(x, t; ξ, 0)f 0 (ξ)dξ and that f 0 ∈ C c (R d ).
We can now prove the main result of this section.

Proof of Proposition 4. We assume (A) and that R d e -α0U (x) dx < ∞ for some α 0 > 0. We fix c > 0, x 0 ∈ R d and β 0 > 0 and aim to check that for (X t ) t≥0 the solution to (1), lim inf t→∞ |X t | < ∞ a.s. We divide the proof in four steps.

Step 1. We of course may assume additionally that β 0 > α 0 : fix t 0 ≥ 0 large enough so that β t0 > α 0 and observe that (X t0+t ) t≥0 solves (1), with x 0 replaced by X t0 and β 0 replaced by β t0 (and with the Brownian motion (B t0+t -B t0 ) t≥0 ). Since lim inf t→∞ |X t | = lim inf t→∞ |X t0+t |, the conclusion follows.

Step 2. From now on, we assume that β 0 > α 0 . We introduce the stopping time τ ∈ [0, 1] as in Lemma 3. We recall that sup [0,τ ] |X t -x 0 | ≤ 1 and that for h ∈ L 1 ([0, 1] × B(x 0 , 1)) the density of (τ, X τ ), there is C > 0 (depending on x 0 and β 0 ) such that h(u, x) ≤ C1 {u∈[0,1],x∈B(x0,1)} .

Step 3. For n ≥ |x 0 | + 1, we introduce U n ∈ C ∞ (R d ) such that U n (x) = U (x) for all x ∈ B(0, n) and U n (x) = |x| as soon as |x| ≥ n + 1, with furthermore U n (x) ≥ min(U (x), |x|) -1 for all x ∈ R d . Then ∇U n is bounded together all its derivatives. We denote by (X n t ) t≥0 the solution to (1), with U n instead of U . By a classical uniqueness argument (using that ∇U is locally Lipschitz continuous), X and X n coincide until they reach B(0, n) c . In particular, X t = X n t for all t ∈ [0, τ ] and, setting

ζ n = inf{t ≥ 0 : |X τ +t | ≥ n} = inf{t ≥ 0 : |X n τ +t | ≥ n}, it a.s. holds that X n τ +t = X τ +t for all t ∈ [0, ζ n ]. Since lim n ζ n = ∞ a.
s., we conclude that for all t ≥ 0, lim n U n (X n τ +t ) = U (X τ +t ) a.s. As we will check in Step 4, [START_REF] Holley | Asymptotics of the spectral gap with applications to the theory of simulated annealing[END_REF] sup

n≥|x0|+1 sup t≥0 E[U n (X n τ +t )] < ∞.
By the Fatou lemma, we will conclude that sup t≥0 E[U (X τ +t )] < ∞. By the Fatou Lemma again, this will imply that E[lim inf t→∞ U (X t )] < ∞. Since lim |x|→∞ U (x) = ∞ by (A), this will show that lim inf t→∞ |X t | < ∞ a.s. and thus complete the proof.

Step 4. Here we verify [START_REF] Holley | Asymptotics of the spectral gap with applications to the theory of simulated annealing[END_REF]. Denote, for x ∈ R d and β > 0, by f n,x,β t the law at time t of the solution to (1) with x 0 = x, with β 0 replaced by β and with U n instead of U . We then have, since

h is the density of (τ, X τ ) = (τ, X n τ ), E[U n (X n τ +t )] = E[E[U n (X n τ +t )|F τ ]] = [0,1]×B(x0,1) h(u, x) R d U n (y)f n,x,βu t (dy) dudx.
Consider any probability density

f 0 ∈ C c (R d ) such that f 0 > c1 B(x0,1)
, for some constant c > 0.

We thus have h(u, x) ≤ C1 {u∈[0,1],x∈B(x0,1)} ≤ (C/c)f 0 (x), and write

E[U n (X n τ +t )] ≤ C c sup u∈[0,1] R d f 0 (x) R d U n (y)f n,x,βu t (dy) dx = C c sup u∈[0,1] E[U n (Y n,u t )],
where (Y n,u t ) t≥0 is the solution to (1) starting from X 0 ∼ f 0 , with β 0 replaced by β u and U by U n . To conclude the step, it only remains to verify that sup

n≥|x0|+1 sup u∈[0,1] sup t≥0 E[U n (Y n,u t )] < ∞. But Lemma 6 tell us that, setting κ n,u (f 0 ) = R d f 0 (x) log(1 + f 0 (x)e βuUn(x) )dx and a n = [ R d e -α0Un(x) dx] -1 , it holds that E[U n (Y n,u t )] ≤ κ n,u (f 0 ) -log a n β u -α 0 .
This last quantity is uniformly bounded, because

• β u ≥ β 0 > α 0 for all u ∈ [0, 1] (by Step 1); • sup n≥|x0|+1,u∈[0,1] κ n,u (f 0 ) < ∞, since f 0 ∈ C c (R d ), β u ≤ β 1 for all u ∈ [0, 1] and U n (x) = U (x) for all x ∈ Supp f 0 if n is large enough; • sup n≥|x0|+1 (-log a n ) < ∞, since R d e -α0Un(x) dx ≤ e α0 [ R d e -α0U (x) dx + R d e -α0|x| dx] < ∞, recall that U n (x) ≥ min{U (x), |x|} -1.

Localization and absorption

Here we prove that on the event where sup t≥0 |X t | < ∞, the simulated annealing procedure is successful. We also check that each time the process (X t ) t≥0 comes back in a given compact, it has a large probability to be absorbed forever in a (larger) compact.

Lemma 7. Assume (A), fix c > c * , x 0 ∈ R d and β 0 > 0 and consider the solution (X t ) t≥0 to (1). For any ε > 0,

lim t→∞ P sup s≥0 |X s | < ∞ and U (X t ) > ε = 0.
Proposition 8. Assume (A) and fix c > c * . For any A ≥ 1, there is b A > 1 and K A > A such that if x 0 ∈ {U ≤ A} and β 0 ≥ b A , for (X t ) t≥0 the solution to (1), we have

P sup t≥0 U (X t ) ≤ K A ≥ 1 2 .
The rest of the section is dedicated to the proof of these two results. Lemma 7 will easily follow from a result of Holley-Kusuoka-Stroock [START_REF] Holley | Asymptotics of the spectral gap with applications to the theory of simulated annealing[END_REF] concerning the compact case.

Concerning Proposition 8, let us recall from Holley-Kusuoka-Stroock [START_REF] Holley | Asymptotics of the spectral gap with applications to the theory of simulated annealing[END_REF], see also Miclo [START_REF] Miclo | Une étude des algorithmes de recuit simulé sous-admissibles[END_REF], that in the compact setting, lim sup t→∞ U (X t ) = c a.s. and moreover for any ε > 0, if x 0 belongs to a connected component of {U ≤ c + ε} containing a global minimum of U , it holds that P(sup t≥0 U (X t ) ≤ c + ε) > 0. This immediately extends to the non-compact setting, since the set {U ≤ c + ε} is compact. Unfortunately, such a result is not uniform in β 0 > 0, and we really need a uniform bound, see Step 2 of the proof of Proposition 2 in Section 5. We believe it is not possible to deduce Proposition 8 from [START_REF] Holley | Asymptotics of the spectral gap with applications to the theory of simulated annealing[END_REF][START_REF] Miclo | Une étude des algorithmes de recuit simulé sous-admissibles[END_REF]. At this end, we have to work hard, following the ideas of [START_REF] Holley | Asymptotics of the spectral gap with applications to the theory of simulated annealing[END_REF], taking much less care about many constants and obtaining much less precise results (e.g. it might be possible to control K A in Proposition 8) but carefuly tracking the dependence in β 0 and x 0 .

In the whole section, we assume (A) and work with some fixed c > c * . We introduce some notation.

Notation 9. Let K ≥ 1. (a) We consider L K > 0 such that {U ≤ K} ⊂ [-(L K -1), (L K -1)] d . We denote by M K the torus [-L k , L K ) d , that is R d quotiented by the equivalence relation x ∼ y if and only if for all i = 1, . . . , d, (x i -y i )/(2L K ) ∈ Z. (b) We also consider U K ∈ C ∞ (M K ) such that min M K U K = 0, such that U K (x) = U (x) for all
x ∈ {U ≤ K}, and such that

c K * = sup{E K (x, y) : x, y ∈ M K } ≤ c * , where E K (x, y) = inf{max t∈[0,1] U K (γ t ) -U K (x) -U K (y) : γ ∈ C([0, 1], M K ), γ 0 = x, γ 1 = y}. (c) For x 0 ∈ {U ≤ K} ⊂ M K and β 0 > 0, we introduce the inhomogeneous M K -valued diffusion (9) X K t = x 0 + B t - 1 2 t 0 β s ∇U K (X K s )ds modulo 2L K ,
where (B t ) t≥0 is a d-dimensional Brownian motion, where β t = c -1 log(e cβ0 + t) as in (1) and

for x = (x 1 , . . . , x d ) ∈ R d , x modulo 2L K = x i -2L K x i + L K 2L K i=1,...,d ∈ [-L K , L K ) d .
For point (b), it suffices to choose a smooth version of U K = min{U, K}, see [3, Step 1 of the proof of Lemma 6].

Observe that the same constant c K * appears in [START_REF] Fang | An improved annealing method and its large-time behavior[END_REF], where Fang-Qian-Gong study a modified simulated annealing process in which, roughly, β t does not go to infinity when the process lies in the region {U ≥ K}. This is a natural modification, since there is no reason to spend a lot of time in this region.

Since U K = U on {U ≤ K} and since U is locally Lipschitz continuous, a simple uniqueness argument shows the following.

Remark 10. For any K ≥ 1, any x 0 ∈ {U ≤ K}, any β 0 > 0, for (X t ) t≥0 the solution to (1) and (X K t ) t≥0 the solution to (9), both driven by the same Brownian motion, it holds that sup

t≥0 U K (X K t ) ≤ K = sup t≥0 U K (X K t ) ≤ K, sup t≥0 |X K t -X t | = 0 = sup t≥0 U (X t ) ≤ K .
We can now give the Proof of Lemma 7. By [8, Theorem 2.7] and since c > c

* ≥ c K * , U K (X K t ) → 0 in probability, as t → ∞, for each K ≥ 1. We fix η > 0. Since lim |x|→∞ U (x) = ∞, there is K η > 0 such that P(sup s≥0 |X s | < ∞, sup s≥0 U (X s ) > K η ) ≤ η.
We then write, using Remark 10,

P sup s≥0 |X s | < ∞ and U (X t ) > ε ≤η + P sup s≥0 U (X s ) ≤ K η and U (X t ) > ε =η + P sup s≥0 U Kη (X Kη s ) ≤ K η and U Kη (X Kη t ) > ε ≤η + P U Kη (X Kη t ) > ε .
We conclude that lim sup t→∞ P(sup s≥0 |X s | < ∞ and U (X t ) > ε) ≤ η, whence the result since η > 0 is arbitrarily small.

We next introduce the invariant probability measure of the time-homogeneous version of (9).

Remark 11. There is a constant κ 0 > 0 such that, for all K ≥ 1, all β > 0, it holds that

Z K β := M K exp(-βU K (x))dx ≥ κ 0 (β + 1) -d .
We also have Z K β ≤ (2L K ) d . We introduce the probability density

µ K β (x) = (Z K β ) -1 exp(-βU K (x)), x ∈ M K . Proof. Since min R d U = 0, there is x * ∈ R d such that U (x * ) = 0. Fix r * > 0 such that B(x * , r * ) ⊂ {U ≤ 1} ⊂ M K . Denote by C = sup B(x * ,r * ) |∇U |. For all K ≥ 1, all x ∈ B(x * , r * ), we have that x ∈ {U ≤ 1} ⊂ M K and U K (x) = U (x) ≤ C|x -x * |.
Hence for all β > 0,

Z K β ≥ B(x * ,r * ) exp(-βC|x -x * |)dx ≥ e -1 Vol(B(x * , r * ∧ (1/(Cβ))),
from which the lower-bound follows. The upper-bound is trivial.

As a final preliminary, we recall the crucial spectral gap estimate of Holley-Kusuoka-Stroock [8, Theorem 1.14 and Remark 1.16], in the special case of the torus. We use that c K * ≤ c * , see Notation 9-(b) (in the notation of [START_REF] Holley | Asymptotics of the spectral gap with applications to the theory of simulated annealing[END_REF], m = c K * ). Lemma 12 (Holley-Kusuoka-Stroock). Fix K ≥ 1. There is a constant γ K > 0 such that for all φ ∈ C 1 (M K ), for all β > 0,

M K |∇φ(x)| 2 µ K β (x)dx ≥ λ K (β) M K φ(x) - M K φ(y)µ K β (y)dy 2 µ K β (x)dx, with λ K (β) = γ K (β + 1) 2-5d exp(-βc * ).
The constant γ K drastically depends on K but, as we will see, this is not an issue.

Lemma 13. Fix K ≥ 1. There is a constant b

K > 0 such that if β 0 ≥ b (1) 
K , then for any density f K 0 ∈ C(M K ), for f K t the density of X K t , the solution to (9) starting from

X K 0 ∼ f K 0 , ∀ t ≥ 0, M K (f K t (x)) 2 µ K βt (x) dx ≤ max 2, M K (f K 0 (x)) 2 µ K β0 (x) dx .
Proof. The function (f K t (x)) t≥0,x∈M K is a weak solution to the uniformly parabolic equation

∂ t f K t (x) = 1 2 div(∇f K t (x)+β t f K t (x)∇U K (x)
). It can be seen as a periodic solution of the same equation in R d , with U K and f K 0 replaced by their periodic continuation. We thus can apply some classical results, see Friedman [5, Chapter 1, Theorems 10 and 12] and conclude that (

f K t (x)) t≥0,x∈M K belongs to C([0, ∞) × M K ) ∩ C 1,2 ((0, ∞) × M K ).
The periodic continuation of f K 0 has an infinite mass, but this is allowed by [START_REF] Friedman | Partial differential equations of parabolic type[END_REF]. Since furthermore M K is bounded, all the computations below are easily justified.

We introduce

ϕ(t) = M K (f K t (x)) 2 µ K βt (x) dx = Z K βt M K (f K t (x)) 2 e βtU K (x) dx. Since (Z K βt ) = -β t M K U K (
x)e -βtU K (x) dx ≤ 0, we have, for all t > 0,

ϕ (t) ≤ Z K βt M K 2[∂ t f K t (x)]f K t (x)e βtU K (x) dx + β t Z K βt M K U K (x)(f K t (x)) 2 e βtU K (x) dx. Recalling that ∂ t f K t (x) = 1 2 div(∇f K t (x) + β t f K t (x)∇U K (x)
), proceeding to an integration by parts in the first term and to a rough upper-bound in the second one, we find

ϕ (t) ≤ -Z K βt M K |∇f K t (x) + β t f K t (x)∇U K (x)| 2 e βtU K (x) dx + β t ||U K || ∞ ϕ(t) = - M K ∇ f K t (x) µ K βt (x) 2 µ K βt (x)dx + β t ||U K || ∞ ϕ(t).
By Lemma 12 with φ(x) = f K t (x)/µ K βt (x), for which M K φ(y)µ K βt (y)dy = 1 , we conclude that

ϕ (t) ≤ -λ K (β t ) M K f K t (x) µ K βt (x) -1 2 µ K βt (x)dx+β t ||U K || ∞ ϕ(t) = -λ K (β t )[ϕ(t)-1]+β t ||U K || ∞ ϕ(t).
But we know from Lemma 12 that for all β > 0,

λ K (β) ≥ γ K (β + 1) 2-5d e -βc * ≥ γ K e -β(c+c * )/2
for some other constant γ K > 0, since c > c * . Setting α = (c -c * )/(2c) ∈ (0, 1), so that (c + c * )/2 = c(1 -α), recalling that β t = log(e cβ0 + t)/c, we conclude that

ϕ (t) ≤ - γ K (e cβ0 + t) 1-α [ϕ(t) -1] + ||U K || ∞ c(e cβ0 + t) ϕ(t).
Let b

(1)

K = 1 αc log(2||U K || ∞ /(γ K c)), so that if β 0 ≥ b (1) 
K , for all t ≥ 0,

||U K || ∞ c(e cβ0 + t) ≤ γ K 2(e cβ0 + t) 1-α , whence ϕ (t) ≤ - γ K 2(e cβ0 + t) 1-α [ϕ(t) -2].
We classically conclude that indeed, if

β 0 ≥ b (1)
K , then for all t ≥ 0, ϕ(t) ≤ max(2, ϕ(0)). From the previous lemma and the Cauchy-Schwarz inequality, we deduce the following.

Lemma 14. For

A ≥ 1, let D A = 2C (1) A +C (2) A +1+4c and K A = D A +1, where C (1)
A was introduced in Lemma 3 and where C

(2)

A = sup x∈{U ≤A} sup y∈B(x,2) U (y). There is a constant C (3) A > 0 such that, if β 0 ≥ b (1) K A (see Lemma 13) and x 0 ∈ {U ≤ A}, it holds that sup [0,τ ] U K A (X K A t ) ≤ D A a.s. and ∀ t ≥ 0, P(U K A (X K A τ +t ) ≥ D A ) ≤ C (3) A (e cβ0 + t) 2 , where (X K A t
) t≥0 is the solution to (9) starting from x 0 and where τ is the stopping time introduced in Lemma 3 (for the solution (X t ) t≥0 to (1) driven by the same Brownian motion as (X

K A t ) t≥0 ). Proof. We fix A ≥ 1, β 0 ≥ b (1) K A and x 0 ∈ {U ≤ A}. First, since B(x 0 , 1) ⊂ {U ≤ D A } (because D A ≥ C (2) A ), since sup [0,τ ] |X t -x 0 | ≤ 1 and since D A ≤ K A , Remark 10 tells us that X t = X K A t for all t ∈ [0, τ ]. In particular, sup [0,τ ] U K A (X K A t
) ≤ D A and the law of (τ, X K A τ ) = (τ, X τ ) has a density h(u, x) bounded by e C (1) A (β0+1) 1 {u∈[0,1],x∈B(x0,1)} , see Lemma 3.

Denote, for x ∈ R d and β > 0, by f K A ,x,β t the law of the solution of ( 9) with K = K A , with x 0 = x and with β 0 replaced by β. We then have

P(U K A (X K A τ +t ) ≥ D A ) =E[P(U K A (X K A τ +t ) ≥ D A |F τ )] = [0,1]×B(x0,1)
h(u, x)

{U K A ≥D A } f K A ,x,βu t (dy) dudx.
Consider a probability density

f 0 ∈ C c (R d ) such that (2v d ) -1 1 B(x0,1) ≤ f 0 ≤ 1 B(x0,2)
, v d being the volume of the unit ball. We write

P(U K A (X K A τ +t ) ≥ D A ) ≤2v d e C (1) A (β0+1) sup u∈[0,1] R d {U K A ≥D A } f K A ,x,βu t (dy) f 0 (x)dx (10) =2v d e C (1) A (β0+1) sup u∈[0,1] P(U K A (Y A,u t ) ≥ D A ),
where (Y A,u t ) t≥0 is the solution to ( 9) with K = K A , starting from Y 0 ∼ f 0 , with β 0 replaced by β u . We now denote by f A,u t the density of Y A,u t and use the Cauchy-Schwarz inequality to write

P(U K A (Y A,u t ) ≥ D A ) = {U K A ≥D A } f A,u t (x)dx (11) ≤ {U K A ≥D A } µ K A βt+u (x)dx 1/2 M K A [f A,u t (x)] 2 dx µ K A βt+u (x) 1/2
.

By Lemma 13, we know that, since

β u ≥ β 0 ≥ b (1) K A , M K A [f A,u t (x)] 2 dx µ K A βt+u (x) ≤ 2 ∨ M K A [f 0 (x)] 2 dx µ K A βu (x) ≤ 2 ∨ B(x0,2) dx µ K A βu (x) = 2 ∨ B(x0,2) Z K A βu e βuU (x) dx.
Recalling the definition of C

(2)

A and that Z K A βu ≤ (2L K A ) d , see Remark 11, we find ( 12)

M K A [f A,u t (x)] 2 dx µ K A βt+u (x) ≤ 2 ∨ [2 d v d (2L K A ) d e C (2) A βu ] = 2 d v d (2L K A ) d e C (2) A βu .
Next, since the volume of M K A is smaller than (2L K A ) d , we have

{U K A ≥D A } µ K A βt+u (x)dx ≤ (2L K A ) d e -βt+uD A Z K A βt+u .
By Remark 11 again, ( 13)

{U K A ≥D A } µ K A βt+u (x)dx ≤ (2L K A ) d (β t+u + 1) d e -βt+uD A κ 0 ≤ C A e -βt+u(D A -1) ,
for some constant C A > 0 of which we now allow the value to change from line to line. Gathering ( 10)-( 11)-( 12)-( 13), we find

P(U K A (X K A τ +t ) ≥ D A ) ≤ C A e C (1) A (β0+1) sup u∈[0,1] e -βt+u(D A -1)/2+C (2) A βu/2 .
Since s → β s is non-decreasing and

D A -1 > C (2)
A ,

P(U K A (X K A τ +t ) ≥ D A ) ≤ C A e C (1) A βt sup u∈[0,1] e -βt+u(D A -1-C (2) A )/2 ≤ C A e -βt(D A -1-C (2) A -2C (1) 
A )/2 .

Recalling finally that D A = 2C

(1)

A + C (2) 
A + 1 + 4c and that β t = c -1 log(e cβ0 + t), we conclude that

P(U K A (X K A τ +t ) ≥ D A ) ≤ C A e -2cβt = C A (e cβ0 + t) 2
as desired.

We finally give the Proof of Proposition 8. We fix A ≥ 1 and introduce

D A , K A = D A + 1, b (1) 
K A and C (3)
A as in Lemma 14. We will show that one can find b A > b

(1)

K A such that if β 0 > b A and x 0 ∈ {U ≤ A}, the solution (X K A t ) t≥0 to (9) satisfies P sup t≥0 U K A (X K A t ) ≤ K A ≥ 1 2 .
By Remark 10, this will show the result. By Lemma 14, we have sup

[0,τ ] U K A (X K A t ) ≤ D A ≤ K A a.
s., so that we only have to check that

P sup t≥0 U K A (X K A τ +t ) ≤ K A ≥ 1 2 . We consider φ A ∈ C ∞ (R + ), with values in [0, 1], such that φ A = 0 outside [D A , K A ] and such that φ A ((D A + K A )/2) = 1,

and we introduce ψ

A = φ A • U K A : M K A → [0, 1]. Setting L A βt ψ A (x) = 1 2 (∆ψ A (x) -β t ∇ψ A (x) • ∇U K A (x)), we have |L A βt ψ A (x)| ≤ C (4) 
A (1

+ β t )1 {U K A (x)≥D A } , where C (4) 
A is a constant involving the supremum on M K A of U K A and its two first derivatives.

We now fix b

A > b (1) K A such that for all β 0 ≥ b A , ∞ 0 C (3) A C (4) A [1 + log(e cβ0 + t + 1)] c(e cβ0 + t) 2 dt = ∞ e cβ 0 C (3) 
A C

A [1 + log(s + 1)] cs 2 ds ≤ 1 40 .

By Itô's formula and since ψ

A (X K A τ ) = 0 (because U K A (X K A τ ) ≤ D A ), ψ A (X K A τ +t ) = M t + R t
, where (M t ) t≥0 is a martingale issued from 0 and where

R t = t 0 L A βτ+s ψ A (X K A τ +s )ds.
By Lemma 14, since

|L A βτ+t ψ A (x)| ≤ C (4) 
A (1 + β t+1 )1 {U K A (x)≥D A } and since β 0 ≥ b A ≥ b (1) 
K A , E sup t≥0 |R t | ≤ C (4) A ∞ 0 (1 + β t+1 )P(U K A (X K A τ +t ) ≥ D A )dt ≤ ∞ 0 C (3) 
A C

A (1 + β t+1 ) (e cβ0 + t) 2 dt ≤ 1 40 . Consequently, for E = {sup t≥0 |R t | < 1/10}, we have P(E c ) ≤ 1/4. (4) 
On E, we have M t = M t∧σ , where σ = inf{t ≥ 0 :

M t / ∈ [-1/10, 11/10]}, because M t + R t = ψ A (X K A τ +t ) takes values in [0, 1]. On {sup t≥0 U K A (X K A τ +t ) ≥ K A }, the process ψ A (X K A τ +t ) must up- cross [0, 1] at least once, so that on E ∩ {sup t≥0 U K A (X K A τ +t ) ≥ K A }, the martingale M t = M t∧σ
must up-cross [1/10, 9/10] at least once. Hence

P sup t≥0 U K A (X K A τ +t ) ≥ K A ≤ P(E c ) + P(E, (M t∧σ ) t≥0 up-crosses [1/10, 9/10]) ≤ 1/4 + p,
where p = P((M t∧σ ) t≥0 up-crosses [1/10, 9/10]).

By Doob's up-crossing inequality, see e.g. Revuz-Yor [14, Proposition 2.1 page 61] we know that, for any continuous martingale (Z t ) t≥0 , any a < b, denoting by U T,a,b the number of up-crossings of

[a, b] by (Z t ) t≥0 during [0, T ], it holds that (b -a)E[U T,a,b ] ≤ E[(Z T -a) -].
Thus for N T the number of up-crossings of [1/10, 9/10] by the martingale (M t∧σ ) t≥0 during [0, T ], it holds that p = lim

T →∞ P(N T ≥ 1) ≤ lim T →∞ E[N T ] ≤ lim T →∞ E[(M T ∧σ -1/10) -] 8/10 ≤ 2/10 8/10 = 1 4 .
We used that M T ∧σ ≥ -1/10 by definition of σ. We conclude that, for all β > b A , we have

P(sup t≥0 U K A (X K A τ +t ) ≥ K A ) ≤ 1/2 as desired.

Success of the simulated annealing

We now show that no escape in large time implies the success of the simulated annealing.

Proof of Proposition 2. We assume (A), fix c > c * , x 0 ∈ R d , β 0 > 0 and consider the solution (X t ) t≥0 to (1). Since lim |x|→∞ U (x) = ∞, our goal is to show that for any fixed ε > 0,

lim t→∞ P lim inf s→∞ U (X s ) < ∞ and U (X t ) > ε = 0.
Step 1. It suffices to show that for each A ≥ 1, setting

Ω A = {lim inf s→∞ U (X s ) < A},
it holds that Ω A ⊂ {sup s≥0 |X s | < ∞}. Indeed, if this hold true, we fix η > 0, consider A η > 0 large enough so that P(A η ≤ lim inf s→∞ U (X s ) < ∞) < η and write

P lim inf s→∞ U (X s ) < ∞ and U (X t ) > ε ≤η + P(Ω Aη and U (X t ) > ε) ≤η + P sup s≥0 |X s | < ∞ and U (X t ) > ε .
Thus lim sup t→∞ P(lim inf s→∞ U (X s ) < ∞ and U (X t ) > ε) ≤ η by Lemma 7. Since η > 0 is arbitrarily small, the conclusion follows.

Step 2. We fix A ≥ 1 and show that for

Ω A = {lim inf s→∞ U (X s ) < A}, we have Ω A ⊂ {sup s≥0 |X s | < ∞}.
We introduce b A > 1 and K A > A as in Proposition 8 and consider t A ≥ 0 large enough so that β t A ≥ b A . We set S 0 = t A and, for all k ≥ 1,

T k = inf{t > S k-1 : U (X t ) ≤ A} and S k = inf{t > T k : U (X t ) ≥ K A },
with the convention that inf ∅ = ∞.

We start from

P(S k+1 < ∞|S k < ∞) =P(T k+1 < ∞, S k+1 < ∞|S k < ∞) =E 1 {T k+1 <∞} P(S k+1 < ∞|F T k+1 ) S k < ∞ .
But on {T k+1 < ∞} and conditionally on F T k+1 , (X T k+1 +t ) t≥0 is a solution to (1), starting from X T k+1 ∈ {U ≤ A}, with β 0 replaced by β T k+1 ≥ β t A ≥ b A . Hence, using Proposition 8, a.s.,

1 {T k+1 <∞} P(S k+1 < ∞|F T k+1 ) = 1 {T k+1 <∞} P sup t≥0 U (X T k+1 +t ) ≥ K A ≤ 1/2.
All this shows that for all k ≥ 1, P(S k+1 < ∞|S k < ∞) ≤ 1/2.

Consequently, there a.s. exists k ≥ 1 such that S k = ∞, and we introduce

k 0 = inf{k ≥ 1 : S k = ∞}. We then have S k0-1 < ∞ = S k0 . By definition of Ω A , it holds that T k0 < ∞ on Ω A . Since U (X t ) < K A for all t ∈ [T k0 , S k0 ) = [T k0 , ∞) (on Ω A ), this implies that Ω A ⊂ lim sup s→∞ U (X s ) ≤ K A ⊂ sup s≥0 |X s | < ∞ as desired.
We conclude the section with the Proof of Theorem 1. We assume (A) and that there is α 0 > 0 such that R d e -α0U (x) dx < ∞. We fix c > 0, x 0 ∈ R d , β 0 > 0 and consider the unique solution (X t ) t≥0 to [START_REF] Azencott | Simulated annealing. Séminaire Bourbaki[END_REF]. By Proposition 4, lim inf t→∞ |X t | < ∞ a.s. If moreover c > c * , lim t→∞ U (X t ) = 0 in probability by Proposition 2.

Appendix: non-explosion

It remains to study the non-explosion of our process. Surprisingly, this is rather tedious, except if assuming some Lyapunov condition, for example that -x•∇U (x) ≤ C(1+|x| 2 ), which forbids too nasty oscillations. We will prove the following result, which is much stronger (but more natural) than what we really need, since U ≥ 0 under (A). Then it holds that ζ = ∞ a.s.

Since ∇U is locally Lipschitz continuous, the existence of a pathwise unique possibly exploding solution is classical. This result is rather natural: as is well-known, the solution to [START_REF] Revuz | Continuous martingales and Brownian motion[END_REF], with U (x) = -(1 + |x| 2 ) α explodes if and only if α > 1. The difficulty relies in the fact that we do not want to assume any local property on ∇U . Let us mention that the proof below, assuming that U ≥ 0, would be slightly simpler but less transparent.

Our proof is inspired by methods found in Ichihara [START_REF] Ichihara | Explosion problems for symmetric diffusion processes[END_REF], who uses Dirichlet forms, and Grigor'yan [START_REF] Grigor'yan | Stochastically complete manifolds[END_REF] and [START_REF] Grigor'yan | Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds[END_REF]Section 9], who studies manifold-valued diffusions. Both deal with the time-homogeneous case (β t = β 0 for all t ≥ 0). In [START_REF] Grigor'yan | Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds[END_REF], non-explosion is proved under some very weak conditions (allowing e.g. for some additional logarithmic factors in (15)), while [START_REF] Ichihara | Explosion problems for symmetric diffusion processes[END_REF] is more stringent (roughly, he treats only the case where U (x) ≥ -L(1 + |x|)).

We start with the following remark.

Remark 16. (i) To prove Theorem 15, one may assume additionally that [START_REF] Zitt | Annealing diffusions in a potential function with a slow growth[END_REF] there is t 0 > 0 such that β t = β t0 for all t ≥ t 0 .

(ii) For any x 0 ∈ R d , for (X t ) t∈[0,ζ) the solution to [START_REF] Revuz | Continuous martingales and Brownian motion[END_REF] and for t > 0, the measure f t defined by f t (A) = P(ζ > t, X t ∈ A) is absolutely continuous with respect to the Lebesgue measure on R d .

(iii) It suffices to prove Theorem 15 for a.e. x 0 ∈ R d .

Proof. (i) Assume that Theorem 15 holds under the additional condition [START_REF] Zitt | Annealing diffusions in a potential function with a slow growth[END_REF] and consider β : R + → (0, ∞) of class C ∞ . We fix T > 0, introduce β : R + → (0, ∞) of class C ∞ satisfying [START_REF] Zitt | Annealing diffusions in a potential function with a slow growth[END_REF], such that β t = βt on [0, T ] and we introduce the corresponding solution ( Xt ) t∈[0, ζ) . We have

(X t ) t∈[0,T ∧ζ) = ( Xt ) t∈[0,T ∧ ζ) , whence in particular {ζ ≤ T } = { ζ ≤ T }. Since ζ = ∞ a.
s., we conclude that P(ζ ≤ T ) = 0. Since T is arbitrarily large, this implies that ζ = ∞ a.s.

(ii) Fix a Lebesgue-null set A ∈ R d . Since ∇U is bounded on compact sets, we deduce from the Girsanov theorem that P(ζ n > t, X t ∈ A) = 0 for all n ≥ 1. By monotone convergence, we conclude that P(ζ > t, X t ∈ A) = 0 as desired.

(iii) Assume that for any β : R + → (0, ∞) of class C ∞ , P 0,x (ζ < ∞) = 0 for a.e. x ∈ R d . Then for a given β : R + → (0, ∞) of class C ∞ , for all t ≥ 0, P t,x (ζ < ∞) = 0 for a.e. x ∈ R d . Since ζ > 0 a.s. by continuity, we may write, for all x 0 ∈ R d ,

P 0,x0 (ζ < ∞) = lim t→0 P 0,x0 (t < ζ < ∞) = lim t→0 E 0,x0 [1 {ζ>t} P t,Xt (ζ < ∞)] = 0.
We used the Markov property and that 1 {ζ>t} P t,Xt (ζ < ∞) = 0 a.s. when t > 0 by point (ii) and since P t,x (ζ < ∞) = 0 for a.e. x ∈ R d .

Above and in the whole section, we denote by E t0,x0 the expectation concerning the process starting from x 0 ∈ R d at time t 0 ≥ 0: under E t0,x0 , the process (X t ) t≥0 solves (in law) the S.D.E.

X t = x 0 + B t -1 2 t 0 β t0+s ∇U (X s )ds.
In the whole section, we denote by v d the volume of the unit ball and, for r > 0, we set

B r = {x ∈ R d : |x| < r}, Br = {x ∈ R d : |x| ≤ r} and ∂B r = {x ∈ R d : |x| = r}.
We will study of the following Kolmogorov backward equation, which consists of a particular case of the Feynman-Kac formula.

Lemma 17. Adopt the assumptions of Theorem 15 and suppose [START_REF] Zitt | Annealing diffusions in a potential function with a slow growth[END_REF]. Fix n ≥ 1 and α > 0. There is a function u

n,α ∈ C 1,2 (R + × Bn ) such that u n,α = 1 on R + × ∂B n and (17) ∂ t u n,α (t, x) + L βt u n,α (t, x) = αu n,α (t, x) for (t, x) ∈ [0, ∞) × B n . For ϕ : R d → R of class C 2 , β > 0 and x ∈ R d , we have set L β ϕ(x) = 1 2 [∆ϕ(x) -β∇U (x) • ∇ϕ(x)].
For any t ≥ 0, any x ∈ Bn , it holds that u n,α (t

, x) = E t,x [exp(-αζ n )].
Proof. This relies one more time on classical results found in Friedman [START_REF] Friedman | Partial differential equations of parabolic type[END_REF]. We fix some t 0 ≥ 0 such that β t = β t0 for all t ≥ t 0 . All the coefficients of (17) are smooth and bounded, since restricted to Bn , whose boundary is smooth. Hence all the results cited below do indeed apply.

By [5, Chapter 3, Theorem 19], there exists a solution v n,α ∈ C 2 ( Bn ) to the elliptic boundary problem L βt 0 v n,α = αv n,α on B n and v n,α = 1 on ∂B n . By [5, Chapter 3, Theorem 7] (after time-reversing), there exists a solution w n,α belonging to C 1,2 ([0, t 0 ] × Bn ) to the parabolic problem ∂ t w n,α + L βt w n,α = αw n,α on (0, t 0 ) × B n , with boundary condition w n,α = 1 on [0, t 0 ] × ∂B n and terminal condition w n,α (t 0 , x) = v n,α (x) on B n .

The function u n,α defined by u n,α (t, x) = v n,α (x) if t ≥ t 0 and u n,α (t, x) = w n,α (t, x) if t ∈ [0, t 0 ] satisfies the conditions of the statement.

Finally, using the Itô formula and (17), one checks that for all t ≥ 0, all x ∈ B n , all T ≥ 0,

E t,x [u n,α (T ∧ ζ n , X T ∧ζn )e -α(T ∧ζn) ] = u n,α (t, x).
We let T → ∞ and find that E t,x [e -αζn ] = u n,α (t, x) by dominated convergence and since u n,α (ζ n , X ζn ) = 1 a.s.

Remark 18. By the Green formula, for all β > 0, for all r > 0, for all ϕ : Br → R of class C 1 and ψ : Br

→ R of class C 2 , 2 Br ϕ(x)L β ψ(x)e -βU (x) dx = - Br ∇ϕ(x) • ∇ψ(x)e -βU (x) dx + ∂Br ϕ(x)[∇ψ(x) • ν(x)]e -βU (x) dS,
where ν(x) = x/|x| is the unit vector normal to ∂B r and where dS is its surface element.

Although this is already known, see Grigor'yan [7, Section 9], we recall for the sake of completeness how to treat the homogeneous case. We use an approach closer to the one of Ichihara [START_REF] Ichihara | Explosion problems for symmetric diffusion processes[END_REF], who however assumes more than [START_REF] Royer | A remark on simulated annealing of diffusion processes[END_REF] and whose proof is more intricate and relies on the study of v

(x) = E x [e -σ1 ], where σ 1 = inf{t ≥ 0 : |X t | ≤ 1}.
Proposition 19. Assume that U : R d → R is C ∞ and satisfies [START_REF] Royer | A remark on simulated annealing of diffusion processes[END_REF]. If β t = β 0 > 0 for all t ≥ 0, then P x (ζ < ∞) = 0 for a.e. x ∈ R d .

Proof. For α > 0 and n ≥ 1, we set u α (x) = E x [e -αζ ] and u n,α (x) = E x [e -αζn ]. We divide the proof into 2 steps. We recall that L is defined in [START_REF] Royer | A remark on simulated annealing of diffusion processes[END_REF].

Step 1. Here we prove that for all r > 0, there is a constant C r > 0 such that (18) ∀α > 0, Br u 2 α (x)e -β0U (x) dx ≤ C r e -α/(2β0L) .

By Proposition 17, u n,α ∈ C 2 ( Bn ), u n,α = 1 on ∂B n and L β0 u n,α = αu n,α on B n . For any r ∈ (0, n], we have

Φ n,α (r) := Br (2αu 2 n,α (x) + |∇u n,α (x)| 2 )e -β0U (x) dx = ∂Br u n,α (x)[∇u n,α (x) • ν(x)]e -β0U (x) dS.
Indeed, it suffices to write 2αu 2 n,α = 2u n,α L β0 u n,α and to use Remark 18 with ϕ = ψ = u n,α . Hence for all r ∈ (0, n], since 2αa

2 + b 2 ≥ 2 √ 2αab, Φ n,α (r) = ∂Br (2αu 2 n,α (x) + |∇u n,α (x)| 2 )e -β0U (x) dS ≥2 √ 2α ∂Br u n,α (x)|∇u n,α (x)|e -β0U (x) dS ≥ 2 √ 2αΦ n,α (r). Thus Φ n,α (r) ≤ Φ n,α (n)e 2 √ 2α(r-n) for all r ∈ (0, n].
But, writing 2αu n,α = 2L β0 u n,α and using Remark 18 with ϕ = 1 and ψ = u n,α , x) dx ≤ 2αv d n d e β0L(1+n 2 ) by [START_REF] Royer | A remark on simulated annealing of diffusion processes[END_REF]. All this shows that for all α > 0, all n ≥ 1, all r ∈ (0, n],

2 Bn αu n,α (x)e -β0U (x) dx = ∂Bn [∇u n,α (x) • ν(x)]e -β0U (x) dS = Φ n,α (n), because u n,α = 1 on ∂B n . Hence Φ n,α (n) ≤ 2α Bn e -β0U ( 
Br u 2 n,α (x)e -β0U (x) dx ≤ 1 2α Φ n,α (r) ≤ v d n d e β0L(1+n 2 ) e 2 √ 2α(r-n) .
But u α (x) ≤ u n,α (x) for all n ≥ 1, all x ∈ R d . Hence for r > 0 fixed, with the choice n = r + √ α/(β 0 L), we conclude that, for some constant C r > 0 depending on r (and on L and d),

Br u 2 α (x)e -β0U (x) dx ≤ v d (r + √ α/(β 0 L)) d e β0L(1+2r 2 )+2α/(β0L) e -2 √ 2α/(β0L) ≤ C r e -α/(2β0L) .
Step 2. We now conclude. Assume by contradiction that With the choice η = 1/(8β 0 L), this contradicts (18).

Using in particular some clever ideas found in Grigor'yan [START_REF] Grigor'yan | Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds[END_REF]Section 9], who studies, in the homogeneous case, the P.D.E. satisfied by w(t, x) = P x [ζ < t], we can now give the Proof of Theorem 15. We consider U : R d → R and β : R + → (0, ∞) of class C ∞ . We recall that ζ = lim n ζ n , with ζ n = inf{t ≥ 0 : |X t | ≥ n}. We set u n (t, x) = E t,x [e -ζn ] and u(t, x) = E t,x [e -ζ ], omitting the subscript α since we now always work with α = 1. By Remark 16, we may moreover suppose that there is t 0 > 0 such that β t = β t0 for all t ≥ t 0 , and it suffices to prove that u(0, x) = 0 for a.e. x ∈ R d . Since u(t 0 , x) = 0 for a.e. x ∈ R d by Proposition 19, it is sufficient to prove that (19) ∃δ 0 > 0, ∀t 1 ∈ [0, t 0 ],

R d u(t 1 , x)dx = 0 ⇒ ∀t ∈ [(t 1 -δ 0 ) ∨ 0, t 1 ], R d u(t, x)dx = 0 .
Step 1. Here we check that for all a ∈ [0, 1], all b ≥ 0, all ε > 0, all η > 0, ab ≤ a ηε + e ηb-1/ε η .

We fix a ∈ [0, 1], ε > 0, and η > 0 and study f (b) = a ε +e ηb-1/ε -ηab. We have f (0) > 0, f (∞) = ∞ and f (b) = η[e ηb-1/ε -a]. If a ≤ e -1/ε , then f is non-decreasing, so that f is nonnegative on R + . If now a > e -1/ε , then f attains its minimum at b 0 = 1 η [log a + 1 ε ] and f (b 0 ) = a -a log a > 0.

Step 2. Here we prove that are some constants δ > 0 and κ 0 > 0 such that for all t 1 ∈ [0, t 0 ], all R > 1, there is a C 1 function α t1,R : [(t 1 -δ) ∨ 0, t 1 ] × R d → [0, 1] enjoying the properties that 2(2δ + t -t 1 ) , which equals 0 on [(t 1 -δ) ∨ 0, t 1 ] × B R and solves ∂ t ξ t1,R + 1 2 |∇ξ t1,R | 2 = 0 on [(t 1 -δ) ∨ 0, t 1 ] × B c R . If δ > 0 is small enough, the function α t1,R (t, x) = η R (x) exp(-ξ t1,R (t, x)/2) enjoys the desired properties: it is C 1 , [0, 1]-valued, we have α t1,R (t, x) = 1 if |x| ≤ R and α R (t, x) = 0 if |x| ≥ 4R, and we have

α t1,R = 1 on [(t 1 -δ) ∨ 0, t 1 ] × B R , α t1,R = 0 on [(t 1 -δ) ∨ 0, t 1 ] × B c
|∇α t1,R | 2 -∂ t [α 2 t1,R ] = ∇η t1,R - 1 2 η t1,R ∇ξ t1,R 2 e -ξ t 1 ,R + η 2 t1,R e -ξ t 1 ,R ∂ t ξ t1,R ≤ 2|∇η t1,R | 2 + 1 2 η 2 t1,R |∇ξ t1,R | 2 + η 2 t1,R ∂ t ξ t1,R e -ξ t 1 ,R = 2|∇η t1,R | 2 e -ξ t 1 ,R .
Since |∇η t1,R | ≤ R -1 1 B 4R \B 2R and since ξ t1,R ≥ R 2 4δ on [(t 1 -δ) ∨ 0, t 1 ] × B c 2R , we deduce from [START_REF] Royer | A remark on simulated annealing of diffusion processes[END_REF], that m t1,R (t) ≤2R -2 e -R 2 /(4δ) e βtL(1+16R 2 ) Vol(B 4R \ B 2R ).

Since β is bounded on [0, t 0 ], it indeed suffices to choose δ > 0 small enough to complete the step.

Step 3. We consider δ > 0 as in Step 2, fix t 1 ∈ [0, t 0 ] and set, for R > 1, n ≥ 5R and t ∈ [(t 1 -δ) ∨ 0, t 1 ],

ϕ n,t1,R (t) = R d u 2
n (t, x)α 2 t1,R (t, x)e -βtU (x) dx.

The goal of this step is to verify that there is a constant κ 1 > 0 such that (20) ∀t 1 ∈ [0, t 0 ], ∀R > 1, ∀n ≥ 5R, ∀t ∈ [(t 1 -δ)∨0, t 1 ], ϕ n,t1,R (t) ≥ -κ 1 R 2 ϕ n,t1,R (t)+e -R 2 .

By (17) (with α = 1), we know that ∂ t u n (t, x) = u n (t, x) -L βt u n (t, x) on [0, ∞) × B n . Since Supp α t1,R (t, •) ⊂ B 4R and since n ≥ 5R, we may write ϕ n,t1,R (t) = I n,t1,R (t) + J n,t1,R (t) -K n,t1,R (t), where But since u(t 1 , x) = 0 for a.e. x ∈ R d , it holds that ϕ t1,R (t 1 ) = 0 for all R > 1. Hence for all fixed t ∈ [(t 1 -δ 0 ) ∨ 0, t 1 ], all fixed R 0 > 0, all R > R 0 > 1, since α t1,R (t, •) ≥ 1 B R 0 , B R 0 u 2 (t, x)e -βtU (x) dx ≤ ϕ t1,R (t) ≤ e -R 2 /2 , whence B R 0 u 2 (t, x)e -βtU (x) dx = 0 and thus u(t, x) = 0 for a.e. x ∈ R d as desired.

I n,t1,R (t) = R d 2[u n (t,

  Fix a dimension d ≥ 1 and a function U :R d → R + of class C ∞ such that lim |x|→∞ U (x) = ∞ and min x∈R d U (x) = 0. For x, y ∈ R d , we set E(x, y) = inf max t∈[0,1] U (γ t ) -U (x) -U (y) : γ ∈ C([0, 1], R d ), γ 0 = x, γ 1 = yand we suppose that c * = sup{E(x, y) : x, y ∈ R d } < ∞.

  |x|→∞ |∇U (x)| = ∞ and ∀ x ∈ R d , ∆U (x) ≤ C + |∇U (x)| 2 .

1 . 5 .

 15 (f) Still in Section 5, we conclude the proof of Theorem 1: lim inf t→∞ |X t | < ∞ a.s. by (b), whence the success of the simulated annealing by (e). More comments. It is well-known that, even in the compact case, the condition c > c * is necessary, see Holley-Kusuoka-Stroock [8, Corollary 3.11].

Theorem 15 . 2 t 0 β

 1520 Assume that U : R d → R and β : R + → (0, ∞) are of class C ∞ . Fix x 0 ∈ R d and consider the pathwise unique maximal solution(X t ) t∈[0,ζ) to (14) X t = x 0 + B t -1 s ∇U (X s )ds, where ζ = lim n ζ n , with ζ n = inf{t ≥ 0 : |X t | ≥ n}. Assume that(15)there is L > 0 such that for all x ∈ R d , U (x) ≥ -L(1 + |x| 2 ).

  R d P x (ζ < ∞)dx > 0 and fix η > 0. It holds that R d P x (ζ ≤ η)dx > 0.Else we would have, by the Markov property,R d P x (ζ ≤ 2η)dx = R d P x (η < ζ ≤ 2η)dx = R d E x [1 {ζ>η} P Xη (ζ ≤ η)]dx = 0 thanks to Remark 16-(ii).Iterating the argument, we would find thatR d P x (ζ ≤ Kη)dx = 0 for all K ≥ 1, whence R d P x (ζ < ∞)dx = 0. Consequently, we can find r 0 > 0 such that q := Br 0 [P x (ζ ≤ η)] 2 e -β0U (x) dx > 0. We then have, since u α (x) = E x [e -αζ ] ≥ e -αη P x (ζ ≤ η), ∀α > 0,Br 0 u 2 α (x)e -β0U (x) dx ≥ qe -2αη .

4R 2 .

 2 and, for all t ∈ [(t 1 -δ) ∨ 0, t 1 ],m t1,R (t) := R d |∇α t1,R (t, x)| 2 -∂ t [α 2 t1,R (t, x)] + e -βtU (x) dx ≤ κ 0 e -RWe start with aC ∞ -function η R : R d → [0, 1] such that η R = 1 on B 2R , η R = 0 on B c 4R and |∇η R | ≤ 1/R.We also introduce theC 1 function on [(t 1 -δ) ∨ 0, t 1 ] × R d defined by ξ t1,R (t, x) = (|x| -R) 2 +

  applied to a large flat torus: the condition sup t≥0 |X t | < ∞ almost tells us that we are in a compact setting. (d) Still in Section 4, we check, although stated in slightly different words, see Proposition 8, that for any B ≥ 1, there are C B > B and t B > 0 such that

	inf |x0|≤B,t0≥t B	P t0,x0 sup t≥0

  x) -L βt u n (t, x)]u n (t, x)α 2 t1,R (t, x)e -βtU (x) dx,

	J n,t1,R (t) =	R d	u 2 n (t, x)∂ t [α 2 t1,R (t, x)]e -βtU (x) dx,
	K n,t1,R (t) =β t	R d	U (x)u 2 n (t, x)α 2 t1,R (t, x)e -βtU (x) dx.

Using Remark 18 with any r > 4R, since α t1,R (t, •) is supported in B 4R , we have

We finally used that a 2 -2ab ≥ -b 2 with a = |∇u n |α t1,R and and b = u n |∇α t1,R |. Thus

n,t1,R (t), where

by [START_REF] Royer | A remark on simulated annealing of diffusion processes[END_REF], and

n,t1,R ≤

. This ends the step.

Step 4. We now conclude that (19) holds true with δ 0 = min{δ, 1/(2κ 1 )}, where δ > 0 and κ 1 > 0 were introduced in Steps 2 and 3. We thus fix t 1 ∈ [0, t 0 ] and assume that R d u(t 1 , x)dx = 0. Integrating (20), we find that for all t ∈ [(t 1 -δ 0 ) ∨ 0, t 1 ], all R > 1 and all n ≥ 5R,

the last inequality following from the fact that t 1 -t ≤ δ 0 ≤ 1/(2κ 1 ).

Since lim n u n (t, x) = u(t, x) by dominated convergence and since α t1,R (t, •) is compactly supported, we have lim n ϕ n,t1,R (t) = ϕ t1,R (t), where ϕ R (t) = R d u 2 (t, x)α 2 t1,R (t, x)e -βtU (x) dx. We thus find, for all t ∈ [(t 1 -δ 0 ) ∨ 0, t 1 ], all R > 1 ϕ t1,R (t) ≤ e R 2 /2 ϕ t1,R (t 1 ) + e -R 2 /2 .