

Analysis Of Drain Current Transient Stability Of AlGaN/GaN HEMT stressed under HTOL & HTRB, By Random Telegraph Noise And Low Frequency Noise Characterizations

Jean-Guy Tartarin, Oana Lazar, Axel Rumeau, Bernard Franc, Laurent Bary,

B. Lambert

► To cite this version:

Jean-Guy Tartarin, Oana Lazar, Axel Rumeau, Bernard Franc, Laurent Bary, et al.. Analysis Of Drain Current Transient Stability Of AlGaN/GaN HEMT stressed under HTOL & HTRB, By Random Telegraph Noise And Low Frequency Noise Characterizations. Microelectronics Reliability, 2020, 114, pp.113895. 10.1016/j.microrel.2020.113895. hal-03180595

HAL Id: hal-03180595 https://hal.science/hal-03180595

Submitted on 25 Mar 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Analysis Of Drain Current Transient Stability Of AlGaN/GaN HEMT stressed under HTOL & HTRB, By Random Telegraph Noise And Low Frequency Noise Characterizations

J.G. Tartarin, O. Lazar, A. Rumeau, B. Franc, L. Bary, B. Lambert

Abstract – The charges in wide bandgap Gallium Nitride (GaN) High Electron Mobility Transistors (HEMT) can be identified by means of various methods such as electrical transient and pulsed measurements, or noise spectroscopy methods, usually performed at different temperatures to extract activation energies. These traps can be passivated or activated according to electrical or thermal conditions over the lifetime. Therefore, the distinction between harmful traps (with consequences on performances) and harmless traps (without impact on electrical behaviour) must be performed. In this paper, devices stressed by HTOL (High Temperature Operating Life) are characterized by time domain electrical techniques (transient and pulsed), and with low frequency noise (LFN) experimental tools. By performing characterizations on the gate and on the drain, it is also possible to identify the drain current sensitivity to charges located in specific regions of the transistor (command or channel zones). The proposed case study discriminates the traps in the GaN buffer and at the vicinity of the AlGaN/GaN interface. The HTOL stress impacts the traps at the interface border zone in the AlGaN layer. This causes a drift in the threshold voltage V_{th} , also with a hysteresis depending on direction of increasing or decreasing sweep of the gate voltage during the characterization. Also the Schottky diode leakage current profile at the transition voltage between forward and reverse biasing mode has been analysed versus temperature. The thermal sensitivity of the drift of the threshold voltage and of the transition voltage is attributed to the kinetics of ionization and neutralization of the donor traps with the applied gate voltage. This drift of V_{th}, and the action of many other traps or charges, cause the drain current to vary over time. These results are finally compared to those obtained by HTRB stress (High Temperature Reverse Bias), presenting similar degradation signatures over a longer stress period.

1. GaN HEMT technologies; impact of trapping effects

Thanks to large efforts dedicated to technology development and reliability campaigns, nitride technologies have now penetrated the market; however, to the powerfrequency regression limit must be added the temperature and other electrical related frontiers that define the SOA. Moreover, the High Electron Mobility Transistors (HEMT) developed with GaN technologies are sensitive to trapping effects, which consequence is a limited confidence in the stability of the quiescent point or RF dynamic signal for power amplifiers or also pulse to pulse stability in radar applications. Therefore, it is necessary to detect these traps, to locate them and to find their activation parameter as illustrated in previous studies [1]. A lack of stability of the I_{DS} current has long been attributed to traps in the channel or in the buffer layer. But an analysis of the electrical low frequency noise spectra in the 2DEG (drain current spectral density S_{ID}) generally features almost constant noise sources in the channel before and after the application of stresses, while the gate current spectral density (S_{IG}) evolve by several orders of magnitude (revealing an evolution of traps related to the gate region). It means that the 2DEG channel is insensitive to the stress, and that the drain current degradation mainly comes from the gated zone (vertical or lateral zones). On the other hand, despite their insensitivity with stress, LF noise contributors to the drain noise current spectra S_{ID} can reveal traps on which the drain current IDS(time) depend. We analyze transient measurements on I_{DS} with LFN on the gate and drain accesses before and after HTOL stress. A focus is given on the thermal drift of the threshold voltage Vth and on the thermal behavior of the leakage current, as markers of the degradation kinetic. Then HTRB stress is mentioned relatively to HTOL.

2. AlGaN/GaN HEMT performances before and after stress.

The batch of devices under test relate to a process under development from a European company, and not to the qualified one (now commercially available) although the main technological features have remained unchanged (Figure 1). The devices feature 8 gate fingers of $125 \,\mu$ m width (gate length 0.25 μ m) grown on SiC substrate, and with 25% of Al content.

Fig. 1. Schematic of the HEMT structure under test, with DC biasing conditions to keep I_{DS} current constant vs variable electrical field (V_{GS}=constant with V_{DG} variable), or to maintain the drain-source electrical field constant vs variable electron density in the 2DEG (V_{DG}=constant with V_{GS} variable) or with a mixed biasing at constant V_{DS} (i.e. variable V_{DG} and V_{GS} –thus I_{DS}). These biasing conditions are used for transient and Low Frequency Noise characterizations.

Fig. 2. Synoptic of the characterization flow for the electrical time domain measurements and for the LF noise spectral measurements. Virgin and stressed AlGaN/GaN HEMT devices are sharing the same experimental procedure.

- A set of ten HEMT (2 virgin devices, 8 stressed devices) is considered for the HTOL (High Temperature Operating Life) stress during 105 hours, performed at 175 °C ambient temperature (320° C junction temperature) and under V_{DS}=30V, I_{DS}=180mA/mm.

- A set of six HEMT (3 virgin devices, 3 stressed devices) is considered for the study case of HTRB (High Temperature Reverse Bias) stress during 1000 hours at a junction temperature of 200 °C (quiescent biasing point: V_{DS} =30 V, V_{GS} =V_{pinchoff}).

These two HTOL and HTRB stresses are key industrial items prone to reveal the epitaxial quality of materials, and so the device reliability of GaN based HEMT:

-After 105 hours of HTOL stress, measurements reveal a drop of 45% on I_{DSS} (measurement taken at $V_{GS} = 1$ V and $V_{DS} = 8$ V), 130% increase on R_{ON} , 5% to 15% increase on V_{th} and one decade degradation on I_{GS}.

- After 1000 hours of HTRB stress, aged devices feature a mean degradation of 15% on I_{DSS} (measurement still taken at $V_{GS} = 1$ V and $V_{DS} = 8$ V), 40% increase on R_{ON} , 7% increase on V_{th} and no degradation on I_{GS} is evidenced for half of the stressed devices (degradation by one decade for the second half).

In the next characterization section, as the HTRB stress provokes less degradation on I_{DSS} and R_{ON} after 1000 hours of stress than those observed after HTOL over a shorter stress period, case study is focused on this later stress with DC and transient electrical characterization, and with low frequency noise measurements. However, comparable variations are observed on the threshold voltage V_{th} and on the leakage current during the two stress campaigns. An analysis is carried out at the end of the *Discussion* section, regarding behavior of devices subjected to HTOL stress and those having undergone HTRB stress. The synoptic of the characterization plan, as described in Figure 2, concerns:

- DC characteristics performed with increasing/decreasing V_{DS} and V_{GS} sweeps. These are realized for different integration time conditions to evidence some trapping effects, even at this stage of characterization. Measurements are performed at various temperatures ranging from 80 K to 400 K by step of 25 K.

- Pulsed V_{GS} characterizations are performed for various V_{DS} , to evaluate the lag effects, and to sense the impact of traps in the gate-source and gate-drain region (interface or bulk).

- Transient measurements are performed for various biasing conditions from pinched channel (off) to partially or totally open channel (on), to track the evolution of I_{DS} versus time.

- Low Frequency Noise (LFN) spectroscopy on gate and drain current has been performed at ambient temperature, for various biasing conditions as explained below. Traps ranging from 1 μ s to 1 s can be revealed on both the drain and gate currents, in accordance with the spectral range of the experimental bench.

3. Electrical and Noise characterization.

Multiple measurements are carried out for a given quiescent point to highlight a possible impact of the characterization setup conditions on the measured data (impact of the increasing or decreasing sweep of the control voltage, of the memory effects and thermal effects, of the recoverable or permanent degradation even during the characterization). For pulsed electrical and for low frequency noise measurements, biasing conditions have been selected in the saturated zone (as depicted in Fig. 1) to:

-maintain the current density constant (V_{GS} constant) while varying the electrical field between drain and gate V_{DG} , to reveal the influence of this later zone.

-control the current density at variable V_{GS} , while keeping constant the electrical field in the channel through drain-gate voltage V_{DG} , to evidence gate related defects on the 2DEG density of electrons.

-perform a mixed characterization mode on the quiescent biasing conditions to corroborate the hypothesis rising from the two previous experiments.

The presence of deep-levels in various locations of the HEMT, as depicted in Figure 1, degrades the RF dynamic performances and the reliability of a device. The previous biasing conditions are used to refine the location of the traps.

3.1. Pulsed I-V characterizations

All virgin and stressed devices have been extensively characterized. The difference on pulsed output characteristics in

Fig. 3. Pulsed output characteristics for virgin device a) and HTOL stressed device b). Pulse width is 500 μ s, for duty cycle varying from 1 % to 5 % (i.e. period T of 10 to 50 ms). Arrows indicate the sweep direction of V_{DS}, for two quiescent V_{DS-Q}=0 V (black plot) and V_{DS-Q}=12 V (red dotted plot), while V_{GS-Q}=0 V.

Figure 3 is revealed for various quiescent conditions of V_{DS-O}. Similar plots have largely been reported in the literature related to GaN HEMT structures, as in [2], where (co)doping of the buffer is investigated as the cause for such signature. To resume this variation in I_{DS} near the knee region (saturated / ohmic region), neither the period nor the width of the pulse impact significantly the output characteristic of the devices. Also, measurement performed with increasing or decreasing V_{DS} or V_{GS} sweeps feature almost identical plots at ambient temperature. Only the initial quiescent condition of V_{DS-Q} (0 V or 12 V) causes this variation in the I_{DS} -V_{DS} plots, which results in a lower I_{DS} current when quiescent biasing $V_{DS-Q} = 12$ V. As the isothermal conditions are respected (IDS at higher dissipated power, i.e. $V_{GS} = 0$ V and $V_{DS} = 12$ V, are almost the same for the two V_{DS-Q} conditions), this difference cannot be attributed to thermal effects, but more likely to the quiescent state of the electrical field between drain and source (i.e. V_{DS-Q}). The difference between a virgin device and a representative HTOL stressed device is depicted in Figure 3. Gate lag measurements have been performed on the virgin devices with figure of merit as low as $GL_{\%}{=}3\%$ as defined by (1), using the output characteristic in class A biasing at maximum voltage and current swing. The measurement of the pulsed output characteristics are performed at quiescent points of (V_{GS-Q}=0V; V_{DS-Q}=0V) and under pinched conditions (V_{GSQ}<- 7V ; V_{DS-Q}=0V).

$$GL_{\%} = 100 \times \frac{\Delta I \Delta U_{(V_{GS-Q} < V_{th} \& V_{DS-Q} = 0V)} - \Delta I \Delta U_{(V_{GS-Q} = 0V \& V_{DS-Q} = 0V)}}{\Delta I \Delta U_{(V_{GS-Q} = 0V \& V_{DS-Q} = 0V)}}$$
(1)

$$DL_{\%} = 100 \times \frac{\Delta I \Delta U_{(V_{GS-Q} < V_{th} \& V_{DS-Q} \neq 0V)} - \Delta I \Delta U_{(V_{GS-Q} = 0V \& V_{DS-Q} = 0V)}}{\Delta I \Delta U_{(V_{GS-Q} = 0V \& V_{DS-Q} = 0V)}}$$
(2)

However, the gate lag degrades by only $\Delta(GL_{\%})=3\%$ after the HTOL stress. The gate lag remains constant during HTRB stress for half of the devices, and degrades by $\Delta(GL_{\%})=2\%$ for the other half of samples under test. Drain lag is a combined response of the quiescent gate and drain voltage conditions, but with a higher drain voltage impact on the 2DEG density of electrons (2). It is measured at DL_% = 7 % for virgin devices, and DL_% = 12 % for HTOL stressed devices.

When considering I_{DS} plots by changing V_{GS} quiescent point turned on from 0 V to a lower value as illustrated in Figure 4, the effect of traps is clearly highlighted even on a virgin device for various V_{DS} voltages on slow drain current transients. This capture and emission process features time constant decreasing when V_{DS} (temperature) increases. V_{GS} is also related to the thermal time constant dependence of the traps through I_{DS} (by $V_{DG \star}$ I_{DS}), which are not easy to discriminate from pure selfheating effects. However, the trapping effect dependence to the temperature is not considered in this paper. Last, measurements performed at various final quiescent points V_{GS} (same profiles as for Figure 4) reveal that the variations of I_{DS} are related to V_{GS} for the transient variation in the magnitude of IDS, and then to V_{DG} ($V_{DG}=V_{DS}-V_{GS}$) for the steady state of I_{DS} as expected. Such behavior has been simulated by TCAD models; it is attributed to traps in the buffer and possibly in the AlGaN barrier [3][4]. This

Fig. 4. Transient profile of pulsed plots of I_{DS} versus time for a virgin device. AlGaN/GaN HEMT is turned on from pinched 2DEG to $V_{GS} = 0$ V(I_{DSS}) at t = 0 till t = 10 ms, then the device is biased at $V_{GS} = -1.3$ V, for various $V_{DS} = 5$, 6, 7, 8 V.

is consistent with the activation of more ionized or neutralized acceptor traps with the electrical field.

3.2. Time domain characterization

A set of measurements is performed at different initial conditions over the batch of virgin and aged devices. V_{GS} is triggered from pinched to open channel conditions (-7 V to 0 V), or V_{DS} is triggered from 0 V to [4 V, 8 V, 12 V] (or using more complex profiles) [5]. It is evidenced that:

-not surprisingly, virgin devices are more sensitive to thermal effects at the early establishment of V_{DS} , according to the more elevated DC power than that of stressed devices.

-during successive measurements, traps are activated and the $I_{\rm DS}$ characteristic is lowered (up to 1 second of pulse width). Then the $I_{\rm DS}$ plot is stabilized after 3 successive measurements (10^{th} measurement is compared with the 1^{st} one on Figure 5). The initial plot is recovered when applying positive $V_{\rm GS}$ voltage or after 1 minute with no biasing. Again the role of the gate biasing on the recovery of $I_{\rm DS}$ is evidenced.

-HTOL stress makes I_{DSS} (at $V_{GS} = 0$ V) decrease as a possible consequence of the threshold voltage V_{th} increase. Therefore we have focused on the threshold voltage variations for different

Fig. 5. Transient evolution of I_{DS} over 10 successive measurements before (blue plots) and after (red plots) the application of HTOL stress. V_{GS} =0V (open channel condition) while V_{DS} is triggered from 0V to 12V at time t=0.

Fig. 6. Pulsed transconductance gain g_m versus V_{GS} . Quiescent conditions are (V_{GS-Q} =0V; V_{DS-Q} =0V) and measurement is plotted for $V_{DS-meas}$ =8V. a) Virgin and HTOL stressed devices at ambient temperature featuring positive V_{th} drift. b) HTOL stressed device for temperature ranging from 80 K (dark blue plot) to 400 K (orange plot) by step of 25 K, from which the negative bias temperature instability (NBTI) of V_{th} is extracted.

temperatures. The analytical expression of V_{th} is given in (3):

$$V_{th} = \frac{\Phi_B}{e} - \frac{d\sigma}{e} - \frac{\Delta E_C}{e} + \frac{E_{f0}}{e} - \frac{edN_{St}}{\varepsilon} - \frac{eN_b}{C_b}$$
(3)

where ϕ_B , d, σ , ΔE_C , E_{f0} are the height of the Schottky barrier, the thickness of the AlGaN barrier, the total polarization charge at the barrier-AlGaN/GaN interface, the discontinuity of the conduction band at the AlGaN/GaN heterojunction, the difference between the intrinsic Fermi level and the conduction band edge of the GaN channel. The last two terms in (3) describe the effects of the interface or surface traps (N_{St} is the net-charged interface or surface traps per unit area) and bulk traps in the buffer (N_b is the effective net-charged buffer traps per unit area) [6]. Finally, ε and C_b are respectively the permittivity of the AlGaN layer and the effective buffer-to-channel capacitance per unit area respectively. As most of the parameters from equation (3) should be kept unchanged (Φ_B , ΔE_C , E_{f0} are not stress dependent parameters), only the modification of interface polarization charges σ (spontaneous and piezoelectric) or even buffer charges or surface/interface traps are likely to modify V_{th}.

Transconductance gain g_m is extracted from pulsed transfer characteristics I_{DS} -V_{GS}. Figure 6.a compares a virgin device with an HTOL stressed HEMT. A shift in the threshold voltage is

Fig. 7. Pulsed I_{DS}-V_{GS} transfer characteristic for an HTOL aged device measured at 175 K by decreasing (1), or by increasing (2) V_{GS} sweep. Biasing conditions are (V_{GS-Q}=0V; V_{DS-Q}=0V) and measurement is plotted at V_{DS-meas.}=8V.

evidenced as the signature of the stress endurance period. The fixed defects in the GaN, AlGaN or GaN cap layers can act like traps. According to the density of defects, this could lead to a drift of the intrinsic potential and an energy band bowing, thus a V_{th} drift. Therefore, characterization at various temperatures has been performed from 80 K to 350 K. The negative bias temperature instability (NBTI) is noticeable through the thermal drift in the threshold voltage as evidenced in Figure 6.b. This NBTI has been previously reported, and it was associated with nitrogen vacancies near the AlGaN/GaN [7] interface or at the AlGaN surface [8]. However, an hysteresis is experienced on the I_{GS}-V_{GS} plots (and thus in the drift magnitude of V_{th}), according to the increasing or decreasing sweep of V_{GS}, as depicted in Figure 7. The higher drift on V_{th} is measured for increasing V_{GS} sweep (2), with a changing slope in I_{DS} near the pinch-off zone (and so visible on the enhancement in g_m near V_{th} in figure 6b), and for the lowest temperatures. This is the consequence of a fast increase of IDS when the channel starts to be filled with electrons. This low temperature change in the slope is no longer activated from a specific V_{DS} voltage (around 10V), or when decreasing the V_{GS} sweep (1). The dynamic activation of traps in this particular zone stand as a probable hypothesis, as discussed in the last section, and according to equation (3).

These V_{th} drifts with temperature are plotted for the virgin transistor and for a representative HTOL stressed transistor in Figure 8. When we perform a decreasing V_{GS} sweep from 3 V to -6 V (the V_{GS} range is reduced to [-5 V; 0 V] in Figure 6), this accentuation of g_m no longer occurs, and the V_{th} drift with temperature is lowered. The variation of V_{th} is more pronounced for the stressed device when V_{GS} increases than when V_{GS} decreases, whereas no noticeable change is experienced on the virgin device. It seems that traps are activated/passivated near the pinching region by increasing V_{GS}.

To assess such trap evolution according to the direction of sweep on V_{GS} , DC measurements of the gate leakage current have been performed at various temperatures as depicted in Figure 9 (diode mode, open drain). First, the inversion point, i.e. the gate voltage V_{inv} when the sign of the current I_{GS} changes (i.e. at the forward-reverse transition voltage), varies according

Fig. 8. Negative drift of the threshold voltage V_{th} with temperature (NBTI). V_{th} is extracted from transconductance gain g_m , i.e. the derivative slope of I_{DS} versus V_{GS} in Figure 6, and for V_{GS} increasing/decreasing voltage sweeping (HP4156C signal analyzer).

Fig. 9. Thermal dependance of the leakage current in diode mode (DC measurements). Arrows on the plots indicate the increasing (left) or the decreasing (right) sweeping direction for V_{GS}. The drift of the inversion voltage V_{inv} (i.e. when the leakage current is null if not using a logarithmic scale) is identified for each sweep direction.

to the increase or the decrease in the V_{GS} sweep. V_{inv} increases by 1.2 V (Figure 9 left) or decreases by 1.4 V (Figure 9 right) for the specific temperature range. This behavior is revealed in diode configuration (open/shorted drain) and in transistor mode.

The inversion voltage V_{inv} can be an original marker revealing the change in the charges density under the gate. The latter is possibly correlated to the weaker drift of V_{th} ($\Delta V_{th} = 0.8$ V for the increase of V_{GS} sweep).

3.3. Low Frequency Noise spectral measurements

Gate and Drain current low frequency noise (LFN) characterization (resp. through current spectral densities S_{IG} and S_{ID}) have been performed according to biasing conditions exposed in Figure 1. From the LFN spectra on the drain access, numerous generation-recombination (GR) centers are identified as already published in numerous articles (see for instance [5][9][10]), but no major difference in these spectra allows any distinction between aged or virgin devices. Figure 10 represents the drain current spectral density for a virgin device and for a stressed device; the spectra are almost identical for these devices within the explored V_{GS} and V_{DS} biasing conditions (the saturated current I_{DSS} cannot be reached due to setup limitation). For comparison between devices, these spectra are usually normalized as S_{ID}/I_D (under saturated biasing condition) to get rid of the drain current level, and when considering the 1/f flicker noise source. Many generation-recombination centers can be noticed in the spectra from Figure 10, but this representation is still valid at a frequency of 1 kHz as proposed in Figure 11. The spectral density S_{ID}/I_D on the drain access

Fig. 10. LFN drain current spectral density S_{ID} in the saturated biasing region for various V_{GS} and V_{DS} voltage biasing (V_{DS} ranges from 5 to 8V, V_{GS} ranges from -0.7 to -2V with I_{DS} <100mA due to setup limitation).

measured at 1 kHz is plotted versus the three different voltage configurations as depicted in Figure 1. $\Delta S_{ID}/I_D$ versus Δ voltage data in Figure 11 are relative to a reference value (S_{ID}/I_D)_{ref} measured at a reference quiescent point of V_{GS}=-2V and $V_{DS}=7V$ (thus $V_{DG}=9V$). The three biasing conditions are plotted ∆voltage respectively versus expressed by Δ voltage= Δ V_{DG}+ Δ V_{SG} for constant V_{DS}=7V (blue symbols), or Δ voltage= Δ V_{DG} for constant V_{GS}=-2V (red symbols), and Δ voltage= Δ V_{SG} for constant V_{DG}=9V (green symbols). These three sets of measurements at constant V_{DS} , V_{GS} or V_{DG} reveal a linear trend of the normalized drain current spectral density. Since the normalization S_{ID}/I_D gets rid of the value of I_{DS} at these different DC biasing conditions, this linear trend reveals the relation between the defects density that increases with the extension of the electrical field (between Gate and Source or Gate and Drain accesses). This also explains the smaller variation under constant V_{DG} , since only V_{GS} can vary over a small range of values. As virgin and stressed devices share the same LFN characteristics on the normalized drain spectral density versus these various biasing voltages in Figure 11, this reveals that the channel is not altered by the stress condition.

LFN characterizations on the gate access has been performed in diode mode (open and shorted drain), and in transistor saturated mode. Measurements are performed with custom LFN setup which allows very low current spectral densities down to 10⁻²⁴ A²/Hz for the lower range of leakage current. Figure 12 represents the gate current spectral density S_{IG}, and a normalized representation S_{IG}/I_G versus frequency. The normalized S_{IG}/I_G spectra for the virgin device remains almost constant for all forward and reverse biasing conditions, with less than an order of magnitude of variation for V_{GS} in the range of [-9 V; 1.2 V] in spite of different conduction modes for the reverse and forward leakage current. This variation of the normalized gate current spectral density is in the range of three orders of magnitude for HTOL stressed devices as depicted in Figure 13. It can also be noticed the presence of low frequency (below 10 Hz) and medium frequencies (above 1 kHz) GR centers as evidenced for aged devices in diode configuration in Figure 13. The normalized S_{IG}/I_G LFN spectra is higher in transistor biasing condition than in diode mode since the activation of the electrical field V_{DG} in transistor mode also

Fig. 11. $\Delta S_{ID}/I_D$ relative normalized LFN drain current spectral density at 1 kHz versus relative Δ voltage. The initial S_{ID}/I_D measurements from Figure 10 are performed in the saturated biasing region, under different V_{GS}, V_{DG} or V_{DS} biasing voltage. Empty symbols are for a Virgin device (left). Filled symbols are for a representative device after HTOL stress (right).

Fig. 12. LFN gate current spectral density in diode mode for a virgin device (open drain). The diode is measured in forward and reverse biasing conditions (-9V, -3V, 0.8V, 1V, 1.2V). The left caption represents S_{IG}, and the right caption represents the normalized S_{IG}/I_G^{α} (power factor for I_G is taken at α =1, but it can be found at different values, see for instance [11].

changes the leakage path; these spectra are constituted by a higher number of GR centers (continuum) as the space charge region extension increases with V_{DS} in this transistor configuration (cf. Figure 11). Moreover, transient measurements with an oscilloscope have been performed on I_{GS} (with a current probe) to discriminate Random Telegraph Noise (RTN) centers from the numerous GR centers in transistor saturated mode (RTN and GR centers share the same Lorentzian signature in their spectral representation). RTN centers are identified on virgin and stressed devices (Figure 14). First, it can be stated that the GR centers measured in transistor saturated mode on aged device from Figure 13, between 1 Hz and 10 Hz, are not associated with RTN centers. Surprisingly, a delimitation zone can be easily drawn between the virgin device and the HTOL stressed device. For this study, we only focus on the determination of distinct signatures before and after HTOL stress, with higher corner frequencies (so shorter trapping constants) for aged devices. This means that trapping centers have been modified or created during the HTOL stress. These traps, as revealed by S_{IG}, are located in the vertically stacked layers below the gate. The action of traps under the gate have already been identified [12], with correlated effects on IGS and I_{DS} currents, and also in connection with the inversion voltage on the I_{GS}-V_{GS} plots [13].

4. Discussion.

Fig. 13. Normalized LFN spectral density S_{IG}/I_G for a HTOL stressed device (diode and transistor mode at different V_{GS} or V_{DS} quiescent voltages).

From the cross-analysis between electrical and LF noise experiments, we now propose an interpretation of the variations of V_{th} , and thus of the subsequent current drift.

Firstly, as evidenced by S_{ID} and S_{IG} LFN measurements, various types of traps are revealed through GR or RTN centers. Some of them are not bind to the HTOL stress as they remain almost constant regardless the aged or virgin devices under test (traps extracted from S_{ID} in the 2DEG channel activated with the space charged region extension). From TCAD simulations, donor buffer traps can explain the linear dependence of S_{ID} with the space charged region extension.

Secondly, trap density involved in the characterization of the drain current spectral density S_{ID} (related to I_{DS}) is largely higher than that involved in I_{GS} LFN spectra. Donor buffer traps evoked previously for S_{ID} could probably also explain some of the thermal drift on V_{th} for decreasing V_{GS} sweep. However, these bulk (donor) charges cannot explain the impact of the V_{GS} increasing/decreasing sweep direction at low temperature as discussed in section 3.1 and 3.2, and as depicted in Figure 7. RTN plots depicted in Figure 14 clearly evidence a difference between stressed and virgin devices, and traps positioned on the leakage path are proposed to explain the V_{th} shift from this hysteresis in I_{DS} - V_{GS} plot according to the sweeping direction of V_{GS} .

Figure 15 presents a drawing of the energy band diagram were only traps at the vicinity of the AlGaN/GaN interface are depicted. Donor traps with energy levels $E_{T-donor}$ close to the conduction band E_C are considered to be ionized for strongly negative V_{GS} values (i.e. situation when V_{GS} sweep increases from -6 to +3V). These donor traps are considered to be neutral if filled with an electron, for V_{GS} values when the fermi level E_{Fi} is above the energy level of the trap $E_{T-donor}$ (i.e. situation when V_{GS} sweep decreases from +3V to -6V). In Figure 15, donors are located at the AlGaN/GaN interface or in a near border zone in the AlGaN layer to illustrate this hysteresis mechanism.

(1) Case when decreasing V_{GS} from +3V to -6V (reduced to [- 4V; 0 V] in Figure 7): donors remain passivated till the 2DEG is fully depleted. Then E_{Fi} shifts below $E_{T-donor}$ level, and donors start to get ionized. This ionization of the donors has no impact on the control of the depleted 2DEG when V_{GS} still decreases. So $V_{th-decr.}$ is not modified during V_{GS} sweep.

Fig. 14. Random Telegraph Noise (RTN) centers extracted from I_{GS} for various reverse and forward diode biasing in the range of (-11V, +2V) on virgin devices (red plots, lower frequency centers) and on HTOL stressed device (blue plots, higher frequency centers).

Fig. 15. Energy band diagram near the AlGaN/GaN interface. E_F relative level to E_C , E_V and E_{Fi} moves with decreasing / increasing V_{GS} voltage. Border donor-traps are passivated when V_{GS} decreases (1) (leading to a stable $V_{th-decr}$). Border donor-traps are evolving near the $V_{th-incr}$ pinch-off voltage when V_{GS} increases (2) as depicted in Figure 7.

(2) Case when increasing V_{GS} from -6V to +3V: border donors near the interface are ionized (N_D^+) under strongly negative V_{GS} . These positive charges act as an internal generator which field is opposite to the applied voltage V_{GS} , and then $V_{th\text{-}incr.} > V_{th\text{-}decr.}$ (thus $n_{i\text{-}incr.} < n_{i\text{-}decr.}$). This situation lasts till V_{GS} increases to $V_{th\text{-}incr.}$, and when the energy level of the donors equals the fermi level ($E_{T\text{-}donor}=E_{Fi}$). Then, the 2DEG starts to be filled with electrons, and ionized donor-traps recombine with few of these electrons from the 2DEG (this negligible quantity of derived electrons do not reduce n_i). The donor traps are then neutral, and the internal generator disappears; V_{th} goes to a lower value (as for the decreasing sweep, $V_{th\text{-}decr.}$) and the electron density increases to its value such as with neutral donor case.

Of course, the explanation for the BTI as illustrated in Figure 8 involves other traps, but the negative drift magnitude with temperature is almost the same for virgin and HTOL stressed devices (in exception of increasing V_{GS} sweep for aged devices as previously discussed). Buffer traps are then probably also under concern, as Figure 14 suggests through the large number of defects revealed by RTN characterization.

Last, all the discussed characteristics for HTOL stressed devices have also been evidenced for HTRB stressed devices, in a lesser proportion in spite of a longer stress period. It is assumed that the same degradation process rises from these two stresses, but it is accelerated under HTOL conditions.

5. Conclusions.

The impact of the dynamic or static charges in the gated zone of AlGaN/GaN HEMT is evidenced both on the drain current and on the gate leakage current, based on a wide set of experimental setups concerning electrical pulsed and transient measurements, as well as RTN and LFN noise characterizations.

It has been evidenced the threshold voltage dependence with temperature changes after HTOL stress, and that an hysteresis is revealed according to the increasing or decreasing V_{GS} sweep. This hysteresis degrades when temperature decreases (with variation of ΔV_{th} =0.1 V at 200 K, and up to ΔV_{th} =0.5 V at 100 K), and it can be integrated in a compact model to account for its effect in a power amplifier where the dynamic swing of V_{GS} could affect the circuit performance.

From diode characterization versus temperature, the transition zone between forward and reverse biasing is also V_{GS} sweep dependent, and is sensed through the shift in the inversion voltage V_{inv} .

Charges responsible for such V_{th} and V_{inv} dependency with V_{GS} sweep are investigated by noise spectral characterizations. Low Frequency Noise measurements have revealed that the defects in the 2DEG (through drain current spectral density measurements S_{ID}) do not evolve during stress, even if traps are evidenced, which feature a dependence upon the lateral electrical field between gate-drain or gate-source in a lesser way. From low frequency gate current spectral densities S_{IG}, the normalization versus the leakage current reveals the impact of the stress on the charges beneath the gate. Also random telegraph noise on the gate leakage current (RTN from time domain characterization) evidences specific signatures before and after the application of the stress: aged devices feature traps with shorter time constants, and could possibly be involved in the V_{th} and Vinv hysteresis signatures. An explanation invoking donors under the gate near the AlGaN/GaN interface, allows a coherent explanation of the measurements.

Finally, similar electro-thermal and low frequency noise signatures for HTOL and HTRB stresses suggest the same origin of the defects, but with accelerated degradation for HTOL stress during a shorter period than for HTRB.

References

- [1] G. Meneghesso et al., IOP Semicond. Sci. Technol. 28, 2013 (8pp).
- [2] M.J. Uren et al., IEEE Trans. on Electron Devices, Vol. 59, No. 12, December 2012, pp. 3327-3333.
- [3] N.K. Subrimani et al., 14th European Microwave Integrated Circuits Conference (EuMIC), Paris, France, 2019, pp. 21-24, doi: 10.23919/EuMIC.2019.8909549.
- [4] C. De, G. Dutta, 2018, 4th IEEE Int. Conf. on Emerging Electronics (ICEE), India, pp. 1-5, doi: 10.1109/ICEE44586.2018.8938017.
- [5] JG Tartarin et al., IEEE Int. Wireless Symposium (IWS), Beijing, 2013, pp. 1-4, doi: 10.1109/IEEE-IWS.2013.6616840.
- [6] Y. Cai et al. 2006 IEEE Trans. Electron Devices 53 2207-2215.
- [7] D. Maier et al., invited paper in IEEE Trans. Device, Mater. Reliab., Vol. 10, No. 4, December 201, pp.427-436.
- [8] N. Wang et al., AIP Advances volume 7, Issue 9, 095317, September 2017, doi: 10.1063/1.4997384.
- [9] N.K. Subrimani et al., IEEE Electron Device Letters, Vol. 39, No. 1, January 2018, pp.107-110.
- [10] J.G. Tartarin et al., IEEE Int. Conference on Noise and Fluctuations, ICNF 2017, Lithuania, 4p.
- [11] J.G. Tartarin et al., 'Gate defects in AlGaN/GaN HEMTs revealed by low frequency noise measurements', IEEE Int. Conference on Noise and Fluctuations, ICNF 2013, France, 4p.
- [12] J.G. Tartarin et al., Elsevier Micro. Reliability, Vol 76-77, September 2017, pp.344-349.
- [13] O. Lazar et al., 2015, Microelectronics Reliability 55, pp. 1714-1718.