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WEAKLY NONLINEAR MULTIPHASE GEOMETRIC OPTICS FOR

HYPERBOLIC QUASILINEAR BOUNDARY VALUE PROBLEMS:

CONSTRUCTION OF A LEADING PROFILE

CORENTIN KILQUE

Abstract. We investigate in this paper the existence of the leading profile of a WKB expansion
for quasilinear initial boundary value problems with a highly oscillating forcing boundary term.
The framework is weakly nonlinear, as the boundary term is of order O(ε) where the frequencies
are of order O(1/ε). We consider here multiple phases on the boundary, generating a countable
infinite number of phases inside the domain, and we therefore use an almost periodic functional
framework. The major difficulties of this work are the lack of symmetry in the leading profile
equation and the occurrence of infinitely many resonances (opposite to the simple phase case
studied earlier) The leading profile is constructed as the solution of a quasilinear problem, which
is solved using a priori estimates without loss of derivatives. The assumptions of this work are
illustrated with the example of isentropic Euler equations in space dimension two.
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res and Ẽi
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1. Introduction

We consider in this paper hyperbolic quasilinear initial boundary value problems with a highly
oscillating forcing boundary term. We are interested in constructing, in the high frequency
asymptotic, an approximate solution to this problem in the form of a WKB expansion. This
is the type of question studied in hyperbolic geometric optics. The general idea is to consider
an hyperbolic system, of which the source term, the initial term or the boundary term (in the
case of boundary value problems) is highly oscillatory, namely with frequencies of order 1/ε
and to look for an approximate solution to the system in the form of an asymptotic expansion.
First the equation satisfied by the terms of the asymptotic expansion needs to be formally
derived, and then to be solved in a suitable functional space. Once this formal series has been
constructed, one may prove that the truncated sums actually approaches the exact solution in
the high frequencies asymptotic. The present paper addresses the first part of this framework,
and more precisely we prove existence and uniqueness for the leading profile of the asymptotic
expansion.

The study of hyperbolic geometric optics goes back to [Lax57] for the study of the linear
Cauchy problem. When the system is nonlinear, the multiplicity of phases in the source term,
initial term or boundary term is important since nonlinear interactions between phases may
occur. In the case of only one phase, the construction of an asymptotic expansion was first
performed by [CB64]. For the justification of this asymptotic expansion we can refer to [JR92]
in the semi-linear case and [Guè93] in the quasi-linear case. The first study of the multiphase
case for the Cauchy problem goes back to [HMR86]. The question has then been largely resolved
by J.L. Joly, G. Métivier and J. Rauch, see in particular [JMR93], [JMR94] and [JMR95]. The
natural question is to obtain results for boundary value problems, similar to the ones for the
Cauchy problems. In [Chi91], the author deals with a semi-linear boundary value problem for
a system of two equations, the general case of multiple equations being treated for example in
[Wil96] and [Wil00]. The quasi-linear case but with only one phase on the boundary is treated
notably in [Wil02], [CGW11], [CW13] (the latter taking interest into the justification, which is
not addressed in this paper) and [Her15]. This work is an extension to the multiphase case:
we deal with the same quasi-linear boundary value problem, but with multiple phases on the
boundary.

Because of the multiple frequencies on the boundary, the nonlinearity of the problem generates
a countable infinite number of phases inside the domain, forcing us to consider an almost-periodic
framework, the group of frequencies being, in general, not finitely generated. This almost-
periodic functional framework has been previously used to construct approximate solutions to
systems with multiple phases, for semi-linear systems in the context of Wiener algebras by
[JMR94] for the Cauchy problem and [Wil96] for the boundary value problem. For quasi-linear
systems, Bohr-Besicovich spaces are generally used, notably by [JMR95] for the Cauchy problem.
In this work we attempt to achieve the next step, namely to obtain a similar result as the one
of [JMR95], for quasi-linear boundary value problems. We adapt the functional framework of
[JMR95] to the context of boundary value problems, by considering functions that are quasi-
periodic with respect to the tangential fast variables and almost-periodic with respect to the
normal fast variable. Concerning the regularity, we choose a Sobolev control for the (slow and
fast) tangential variables, and a uniform control for the normal variables. The leading profile
of the WKB expansion is then obtained as the solution of a quasilinear problem which takes
into account the potentially infinite number of resonances between the phases. We solve this
quasilinear problem in a classical way by proving estimates without loss of regularity. The
example of gas dynamics is used all along the paper to illustrate the general assumptions that
will be made during the analysis. The main difference between this paper and [JMR95] is the
absence of symmetry in the problem. Indeed, starting with an evolution problem in time, we
modify it to obtain a propagation problem in the normal variable xd, with respect to which the
system is not hyperbolic. In [JMR95], these symmetries are used for the a priori estimates to
handle the resonance terms that appear in the equations. Even though it is relatively easy in our
problem to create symmetries for the self-interaction terms, it is more delicate for the resonance
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terms, which, unlike the case of [CGW11], are in infinite number. The last assumption of the
paper is made to deal with this issue, and in essence controls the lack of symmetry of resonance
terms. The notions associated to it appear in [Rau12, Chapter 11].

The proof of existence of a leading profile is divided in three parts: formal derivation of the
equation satisfied by the leading profile, reduction and decoupling of these equations, and finally
energy estimates on these equations. Formal derivation of the WKB cascade is quite classical
in geometric optics, and consists on formally replacing the series in the exact system (system
(2.1) in the following). As usual, this cascade is decoupled using projectors and an operator
on the space of profiles. The said operator remains formal in this paper, and the projectors
require a small divisors assumption to be rigorously defined. The second part of the proof takes
interest into decoupling and reducing the system to a system for the oscillating resonant modes,
a system for each oscillating non-resonant mode, and a system for the evanescent part. In order
to do that, extending the system into modes, we begin by showing that the mean value satisfies
a decoupled system with zero source term and boundary term, and is therefore zero. Next
we prove that the outgoing modes are also zero, deriving energy estimates for them. For this
purpose we use a suitable scalar product on the space of profiles, that requires a compact support
in the normal direction. Therefore a finite speed propagation is proven beforehand. Once there
are only incoming and evanescent modes, it is easy to determine a boundary condition for each
mode from the original boundary condition, and therefore decouple the system. The equation
satisfied by the evanescent part gives a formula for it using the double trace on the boundary, so
its construction is quite straightforward. However we need to check that the constructed solution
is actually in the space of evanescent profiles. To construct the oscillating parts we show a priori
estimates without loss of regularity for the linearized oscillating systems, which allow us to prove
the well-posedness of these linearized systems, and then by an iterative scheme the existence of
solutions to the original systems. To derive the energy estimates we use an alternative scalar
product that takes advantage of propagation in the normal direction. Several terms need to be
handled. The transport and Burgers ones are quite classical to treat, and the assumption on
the set of resonances is used to address the resonant ones. Since it is quite usual, we do not
give the details of the construction of the solution to the linearized systems and the iterative
schemes. Reassembling the constructed profiles we finally get the leading profile solution to the
initial system.

The paper is organized as follows. After the first section devoted to this introduction, the
second one introduces the problem and states the usual assumptions on the system. First
the problem studied in this work is precisely described, and the example of Euler equations
that will be used throughout the analysis is introduced, and then characteristic frequencies and
the strict hyperbolicity assumption are looked at. Finally interest is made on properties and
assumption about the boundary condition. Assumptions of this section ensure that the initial
boundary problem is well posed locally in time for the exact solution. However, due to the high
frequencies in the forcing term, we do not know if the lifespan of the exact solution is uniform
with respect to the small wavelength. Third section is devoted to the functional framework of the
paper. After a motivation of this framework with a formal study of the frequencies created inside
the domain and some assumptions on it, we describe the spaces of profiles which will be used,
and introduce scalar products on these functional spaces. After this rather long introduction
of the problem and assumptions, the ansatz of the expansion and the main result are stated
in section 4. The proof is then divided in two sections. The fifth one is a formal derivation of
the equations satisfied by the leading profile. First the cascade of equations for the profiles is
obtained by a formal WKB study. It gives rise to a certain fast problem, that is resolved in a
second part, which allows to finally write the decoupled equations for the leading profile. The
last section of this paper is the core of the proof. First some coefficients associated to resonances
are introduced and the last assumption of this work is made about these coefficients to deal with
the lack of symmetry in resonance terms. We proceed by making rigorous the results of the fifth
section analysis which will be used after. Next part is devoted to reducing and decoupling the
equations into an equation for the evanescent part, and equations for the resonant oscillating
part and each non-resonant oscillating part. A lot of the techniques used in this part are used in
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the next two ones, that achieves the main step of the proof, namely proving energy estimates on
the linearized equations for the oscillating resonant and non-resonant parts. These estimates are
used in the following part to construct an oscillating solution, using an iterative scheme. It is also
proven that the constructed evanescent part belongs to the space of evanescent profiles. Finally
a conclusion and some perspectives are drawn. In the appendix is presented three technical
proofs that have been postponed, and are about notions of the second section.

In all the paper the letter C denotes a positive constant that may vary during the analysis,
possibly without any mention being made, and for every matrix M , the notation tM refers to
its real transpose.

2. Notations and assumptions

2.1. Presentation of the problem. Given a time T > 0 and an integer d > 2, let ΩT be the
domain ΩT := (−∞, T ] × Rd−1 × R+ and ωT := (−∞, T ] × Rd−1 its boundary. We denote as
t ∈ (−∞, T ] the time variable, x = (y, xd) ∈ Rd−1 × R+ the space variable, with y ∈ Rd−1 the
tangential variable and xd ∈ R+ the normal variable, and at last z = (t, x) = (t, y, xd). We also
denote by z′ = (t, y) ∈ ωT the variable of the boundary {xd = 0}. For i = 1, . . . , d, we denote
by ∂i the operator of partial derivative with respect to xi. Finally we denote as α ∈ Rd+1 and
ζ ∈ Rd the dual variables of z ∈ ΩT and z′ ∈ ωT . We consider the following problem

(2.1)





L(uε, ∂z)u
ε := ∂tu

ε +
d∑

i=1

Ai(u
ε) ∂iu

ε = 0 in ΩT ,

B uε|xd=0 = ε gε on ωT ,

uε|t60 = 0,

where the unknown uε is a function from ΩT to an open set O of RN containing zero, with
N > 1, the matrices Aj are regular functions of O with values in MN (R) and the matrix B
belongs to MM×N (R) and is of maximal rank. The integer M is made precise in Assumption
3 below. To simplify the notations and clarify the proofs we consider here linear boundary
conditions, but it would be possible to deal with non-linear ones. Furthermore we assume the
boundary to be noncharacteristic, that is the following assumption is made.

Assumption 1 (Noncharacteristic boundary). For all u in O, the matrix Ad(u) is invertible.

The dependence on ε > 0 of system (2.1) comes from the source term ε gε on the boundary
ωT , where the quasi-periodic function gε is defined, for z′ in ωT , as

(2.2) gε(z′) = G

(
z′,

z′ · ζ1
ε

, . . . ,
z′ · ζm
ε

)
,

where G is a function of the Sobolev space H∞(Rd×Tm), with m > 2, that vanishes for negative
times t and of zero mean with respect to θ in Tm, and where ζ1, . . . , ζm are frequencies of Rd\{0}.
Here the notation T stands for the torus R/2πZ. We denote by ζ the m-tuple ζ := (ζ1, . . . , ζm).
The function G being periodic and of zero mean with respect to θ, we may write

(2.3) G(z′, θ) =
∑

n∈Zm\{0}

Gn(z
′) ein·θ,

where Gn is in H∞(Rd) and is zero for negative times t, for all n in Zm \ {0}. The framework
of weakly non-linear geometric optics is chosen here, namely we expect the leading profile in
the asymptotic expansion to be of order ε, which explains the ε factor in front of gε in the
boundary condition. Note that without loss of generality, we can assume that ζ1, . . . , ζm are
linearly independent over Q.

Condition uε|t60 = 0 in (2.1) expresses the nullity of the initial conditions. The time of

existence T > 0 is not fixed at first and is likely to become sufficiently small to ensure existence
of a leading profile.
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The study of [Wil02], [CGW11] and [Her15] is here extended to several phases on the bound-
ary. No assumption on the group of boundary frequencies generated by the frequencies (ζ1, . . . ,
ζm) is made, apart from it being finitely generated. In particular it may not be discrete.

We want to approximate the exact solution to (2.1), in the limit where ε goes to 0, by an
approximate solution that behaves as ε in range, and 1/ε in frequency. This is the weakly
nonlinear geometric optics framework, see [Rau12] and [Mét09]. Recall that in this paper we do
not prove stability, i.e. that the approximate solution converges in some sense to the exact one,
since we do not know if the latter exists on a time interval independent of ε. To obtain this kind
of result, we first have to make several suitable assumptions about the original problem. The
rest of this section is devoted to these assumptions, and focuses on the characteristic frequencies
associated with the system. Let us first detail the example that inspires the general framework
developed in this paper.

Example 2.1. The isentropic compressible Euler equations in two dimensions provide a system
of the form of (2.1). Under regularity assumptions on the solution, the associated boundary
value problem reads

(2.4)





∂tV
ε +A1(V

ε) ∂1V
ε +A2(V

ε) ∂2V
ε = 0 in ΩT ,

B V ε
|xd=0 = ε gε on ωT ,

V ε
|t60 = 0,

with V ε = (vε,uε) ∈ R3, where vε ∈ R∗
+ represents the fluid volume, and uε ∈ R2 its velocity,

and where the functions A1 and A2 are defined on R∗
+ × R2 as

(2.5) A1(V ) :=




u1 −v 0

−c(v)2/v u1 0

0 0 u1



, A2(V ) :=




u2 0 −v

0 u2 0

−c(v)2/v 0 u2



,

with c(v) > 0 representing the sound velocity in the fluid, which depends on its volume v. The
noncharacteristic boundary Assumption 1 for system (2.4) is now discussed. In this article, we
consider geometric optics expansions for system (2.1) constructed as perturbations around the
equilibrium 0, performing a change of variables if necessary. For the Euler system the natural
coefficients A1, A2 are rather used, and a perturbation around the equilibrium V0 = (v0, 0, u0) is
considered, where v0 > 0 is a fixed volume, and (0, u0) is an incoming subsonic velocity, that is
such that 0 < u0 < c0, where we denote c0 := c(v0).

The Assumption 1 concerns in this case the invertibility of the matrix A2(V ) for V =
(v, u1, u2) ∈ R∗

+ × R2 in the neighborhood V0. The determinant of the matrix A2(V ) is given
by detA2(V ) = u2 (u

2
2 − c(v)2), which is nonzero if the velocity u2 satisfies 0 < u2 < c(v). The

equilibrium V0 verifying this condition, every small enough neighborhood O of V0 suits to satisfy
Assumption 1.

The rest of the section is dedicated to the characteristic frequencies related to the problem
and the associated assumptions.

2.2. Strict hyperbolicity. The following definition introduces the notion of characteristic fre-
quency.

Definition 2.2. For α = (τ, η, ξ) ∈ R × Rd−1 × R, the symbol L(0, α) associated with L(0, ∂z)
is defined as

L(0, α) := τI +
d−1∑

i=1

ηiAi(0) + ξAd(0).
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Then we define its characteristic polynomial as p(τ, η, ξ) := detL
(
0, (τ, η, ξ)

)
. We say that

α ∈ R1+d is a characteristic frequency if it is a root of the polynomial p, and we denote by C
the set of characteristic frequencies.

The following assumption, called strict hyperbolicity (see [BGS07, Definition 1.2]), is made.
Assumptions 1 of non-characteristic boundary and of hyperbolicity (whether strict or with con-
stant multiplicity) are very usual, see e.g. [Wil96, CGW11, JMR95], and related to the structure
of the problem. Assumption of hyperbolicity of constant multiplicity, which is more general than
Assumption 2 of strict hyperbolicity, is sometimes preferred like in [CGW11, JMR95]. We chose
here to work with the latter for technical reasons.

Assumption 2 (Strict hyperbolicity). There exist real functions τ1 < · · · < τN , analytic with
respect to (η, ξ) in Rd \ {0}, such that for all (η, ξ) ∈ Rd \ {0} and for all τ ∈ R, the following
factorisation is verified

p(τ, η, ξ) = det
(
τI +

d−1∑

i=1

ηiAi(0) + ξAd(0)
)
=

N∏

k=1

(
τ − τk(η, ξ)

)
,

where the eigenvalues −τk(η, ξ) of the matrix A(η, ξ) :=
∑d−1

i=1 ηiAi(0) + ξAd(0) are therefore

simple. Consequently, for all (η, ξ) ∈ Rd\{0}, the following decompositions of CN into dimension
1 eigenspaces hold

CN = kerL
(
0, τ1(η, ξ), η, ξ

)
⊕ · · · ⊕ kerL

(
0, τN (η, ξ), η, ξ

)
,(2.6)

CN = Ad(0)
−1 kerL

(
0, τ1(η, ξ), η, ξ

)
⊕ · · · ⊕Ad(0)

−1 kerL
(
0, τN (η, ξ), η, ξ

)
.(2.7)

For k = 1, . . . , N and for (η, ξ) in Rd \ {0}, we define the projectors πk(η, ξ) and π̃k(η, ξ),
respectively associated with decompositions (2.6) and (2.7).

For k = 1, . . . , N and (η, ξ) ∈ Rd \ {0}, we also denote as Ek(η, ξ) a unitary eigenvector
generating the eigenspace kerL

(
0, τk(η, ξ), η, ξ

)
, so that

(2.8) E1(η, ξ), . . . , EN (η, ξ)

is a real normal basis of CN adapted to decomposition (2.6). Observe that the family

(2.9) Ad(0)
−1E1(η, ξ), . . . , Ad(0)

−1EN (η, ξ)

is therefore a real normal basis of CN adapted to decomposition (2.7).

Remark 2.3. i) We will be led further on to consider the modified operator

L̃(0, ∂z) := Ad(0)
−1 L(0, ∂z).

This justifies the introduction of the modified symbol L̃(0, α) := Ad(0)
−1 L(0, α), and thus

of the projector π̃k(η, ξ), the symbols L(0, α) and L̃(0, α) having different ranges.

ii) Since the matrix A(η, ξ) =
∑d−1

i=1 ηiAi(0)+ ξAd(0) is real for (η, ξ) ∈ Rd and the eigenvalues

τ1, . . . , τN are real, decompositions (2.6) and (2.7) also hold in RN , but we are interested in
the ones of CN since some functions that will be studied are complex valued.

iii) If α = (τ, η, ξ) is a characteristic frequency, then by definition and according to Assumption
2, the triplet (τ, η, ξ) satisfies

N∏

k=1

(
τ − τk(η, ξ)

)
= 0.

There exists therefore an integer k between 1 and N such that τ = τk(η, ξ). In other words,
the characteristic manifold C is the union of the N hypersurfaces given by {τ = τk(η, ξ)},
k = 1, . . . , N .

Remark 2.4. One can verify that in Assumption 2, the functions τk for k = 1, . . . , N are positively
homogeneous of degree 1 in Rd \ {0}. The projectors πk and π̃k for k = 1, . . . , N are therefore
positively homogeneous of degree 0 in Rd \ {0}.
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Example 2.5. Returning to Example 2.1, for system (2.4) linearized around V0 = (v0, 0, u0), the
characteristic polynomial p reads

p(τ, η, ξ) = det




τ + ξ u0 −v0 η −v0 ξ

−c20 η/v0 τ + ξ u0 0

−c20 ξ/v0 0 τ + ξ u0




= (τ + ξ u0)
(
(τ + ξ u0)

2 − c20 (η
2 + ξ2)

)
.

Thus the eigenvalues of the matrix A(η, ξ) = η A1(V0) + ξ A2(V0) are the additive inverse of the
roots with respect to τ of the polynomial p, given by

(2.10) τ1(η, ξ) := −u0 ξ − c0
√
η2 + ξ2, τ2(η, ξ) := −u0 ξ, τ3(η, ξ) := −u0 ξ + c0

√
η2 + ξ2.

The functions τ1, τ2 and τ3 are analytic and distinct in R2 \ {0}. System (2.4) is therefore
strictly hyperbolic, which means that it satisfies Assumption 2 of strict hyperbolicity. We have
represented in Figure 1 the characteristic frequencies α = (τ, η, ξ) ∈ R3 for system (2.4).

η

ξ

τ

τ = τ1(η, ξ)

τ = τ2(η, ξ)

τ = τ3(η, ξ)

Figure 1. Characteristic frequencies for the isentropic compressible Euler sys-
tem (2.4)

We now define projectors derived from the CN decomposition (2.6), that we extend to non-
characteristic frequencies. We also determine some equalities between the kernel and range of

the projectors πα and π̃α and of the matrices L(0, α) and L̃(0, α). The proof is based on the one
of [CG10, Lemma 3.2].

Definition 2.6. Let α = (τ, η, ξ) ∈ R1+d \ {0} be a characteristic frequency and k the in-
teger between 1 and N such that τ = τk(η, ξ). We denote by πα := πk(η, ξ) (resp. π̃α :=
π̃k(η, ξ)) the projection from CN onto the eigenspace kerL

(
0, τk(η, ξ), η, ξ

)
(resp. the subspace

Ad(0)
−1 kerL

(
0, τk(η, ξ), η, ξ

)
) according to decomposition (2.6) (resp. (2.7)). If the frequency

α ∈ R1+d \ {0} is not characteristic, we denote πα = π̃α := 0 and if α = 0 we denote
π0 := π̃0 := I. For all α in Rd+1, we can verify that πα satisfies

(2.11) kerL(0, α) = ker L̃(0, α) = Imπα,

and

(2.12) ImL(0, α) = ker πα,
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and that the projector π̃α satisfies

(2.13) Im L̃(0, α) = ker π̃α,

recalling that L̃(0, α) refers to the modified symbol L̃(0, α) := Ad(0)
−1 L(0, α).

For all α ∈ R1+d \ {0}, we denote by Qα the partial inverse of the matrix L(0, α), namely the
unique matrix Qα such that Qα L(0, α) = L(0, α)Qα = I − πα. If α = 0, we define Qα := I.

Proof. Consider α = (τ, η, ξ) in Rd+1. Equation (2.11) is satisfied by definition of πα, and

equality of the kernels kerL(0, α) and ker L̃(0, α), the matrix Ad(0) being invertible. Regarding
equation (2.12), we first note that by the rank-nullity theorem and by definition of πα, the
subspaces ImL(0, α) and ker πα have the same dimension. We denote by k0 the integer between
1 and N such that τ = τk0(η, ξ). We consider then an element L(0, α)X of ImL(0, α), with X

in CN that we decompose according to (2.6), as X =
∑N

k=1 πk(η, ξ)X. For k = 1, . . . , N , the
projector πk(η, ξ) admitting the eigenspace of the matrix A(η, ξ) associated with the eigenvalue
−τk(η, ξ) as range, we have

L(0, α)X =

N∑

k=1

(
τk0(η, ξ) I +A(η, ξ)

)
πk(η, ξ)X

=
∑

k 6=k0

(
τk0(η, ξ)− τk(η, ξ)

)
πk(η, ξ)X.

Equation (2.11) being satisfied, we deduce that L(0, α)X belongs to
⊕

k 6=k0

kerL
(
0, (τk(η, ξ), η, ξ)

)
,

which, by definition of the projectors πk, is equal to the kernel of πk0(η, ξ) = πα. With the
equality of dimensions, equation (2.12) is therefore verified. The proof of equation (2.13) is

similar: we consider X in CN that we decompose as X =
∑N

k=1 πk(η, ξ)X, and then we write

L̃(0, α)X = Ad(0)
−1

N∑

k=1

(
τk0(η, ξ) I +A(η, ξ)

)
πk(η, ξ)X

= Ad(0)
−1

∑

k 6=k0

(
τk0(η, ξ) − τk(η, ξ)

)
πk(η, ξ)X,

so that L̃(0, α)X belongs to
⊕

k 6=k0

Ad(0)
−1 kerL

(
0, (τk(η, ξ), η, ξ)

)
= ker π̃α.

Once again by equality of dimensions it leads to equation (2.13). �

Remark 2.7. i) For every k = 1, . . . , N , the projectors πk(η, ξ) and π̃k(η, ξ) are positively
homogeneous of degree 0 in (η, ξ) ∈ Rd \{0}. Furthermore, by strict hyperbolicity, the basis
E1(η, ξ), . . . , EN (η, ξ) and Ad(0)

−1E1(η, ξ), . . . , Ad(0)
−1EN (η, ξ) are analytic with respect

to (η, ξ) ∈ Rd \ {0}, and the maps (η, ξ) 7→ πk(η, ξ) and (η, ξ) 7→ π̃k(η, ξ) are therefore
analytic in Rd \ {0}. Thus, by compactness of the sphere Sd−1, for all k = 1, . . . , N , the
projectors πk(η, ξ) and π̃k(η, ξ) are uniformly bounded with respect to (η, ξ) ∈ Rd \ {0}.
The projectors πα and π̃α are therefore bounded with respect to α in R1+d.

ii) Unlike the projectors πk and π̃k, k = 1, . . . , N , the projectors πα and π̃α are homogeneous of
degree 0 with respect to α in Rd+1, and not only positively homogeneous. Indeed, the claim is
obvious if α is zero or noncharacteristic, and if α is a nonzero characteristic frequency, and λ
a nonzero real number, then, since kerL(0, λ α) = kerL(0, α) and ImL(0, λ α) = ImL(0, α),
we have πλα = πα. The proof is the same for π̃α.
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2.3. The uniform Kreiss-Lopatinskii condition and some preliminary results. We de-
fine the following space of frequencies

Ξ := {ζ = (σ = τ − iγ, η) ∈ (C× Rd−1)\{0} | γ > 0},
Σ :=

{
ζ ∈ Ξ | τ2 + γ2 + |η|2 = 1

}
,

Ξ0 := {ζ ∈ Ξ | γ = 0},
Σ0 := Ξ0 ∩Σ.

We also define the matrix that we get when applying the Laplace-Fourier transform to the
operator L(0, ∂z). For all ζ = (σ, η) ∈ Ξ, let

A(ζ) := −iAd(0)−1
(
σI +

d−1∑

i=1

ηj Aj(0)
)
.

The noncharacteristic boundary Assumption 1 is used here to define the matrix A(ζ). We note
that if ζ = (τ, η) ∈ Ξ0, and if iξ is an imaginary eigenvalue of A(ζ), then the frequency (τ, η, ξ)
is a real characteristic frequency, and vice versa.

Hersh lemma [Her63, Lemma 1] ensures that for ζ in Ξ\Ξ0, the matrix A(ζ) has no eigenvalue
of zero real part, and that the stable subspace associated with the eigenvalues of negative real
part, denoted by E−(ζ), is of constant dimension, denoted p. Furthermore, the integer p is
obtained as the number of positive eigenvalues of the matrix Ad(0). We denote by E+(ζ) the
unstable subspace A(ζ) associated with eigenvalues of positive real part, that is of dimension
N − p.

In [Kre70] (see also [CP82, Theorem 3.5] and [BGS07, Lemma 4.5]) it is shown that the stable
and unstable subspaces E± extend continuously to the whole space Ξ in the strictly hyperbolic
case (Assumption 2). We still denote by E± the extensions to Ξ. The main assumption of this
work may now be stated, which, along with Assumptions 1 and 2, ensures that system (2.1)
is well posed locally in time. Indeed the three assumptions 1, 2 and 3 are stable under small
perturbations around the equilibrium. Just like Assumptions 1 and 2, the following assumption
is very structural to the problem.

Assumption 3 (Uniform Kreiss-Lopatinskii condition). For all ζ ∈ Ξ, we have

kerB ∩ E−(ζ) = {0}.
In particular, it forces the rank of the matrix B to be equal to the dimension of E−(ζ), namely
M = p.

Remark 2.8. Historically, the first given definition of the uniform Kreiss-Lopatinskii condition
did not involve the extension of E− to Ξ0. The original definition states that, for all ζ ∈ Ξ \Ξ0,

kerB ∩ E−(ζ) = {0} ,
and that the linear map

(
B|E−(ζ)

)−1
is uniformly bounded with respect to ζ ∈ Ξ \ Ξ0, see for

instance [Sar65]. Indeed, the space E−(ζ) being homogeneous of degree zero and continuous
with respect to ζ ∈ Ξ, and by compactness of the unitary sphere Σ, we note that Assumption 3

implies that the linear map
(
B|E−(ζ)

)−1
is uniformly bounded with respect to ζ ∈ Ξ.

It has already been discussed that for ζ ∈ Ξ\Ξ0, the matrix A(ζ) has no imaginary eigenvalue.
We now commit to describe more precisely the matrix A(ζ) for ζ in Ξ0 as well as the continuous
extension to Ξ0 of the spaces E±(ζ). The following result, proved by Kreiss [Kre70] for the
strictly hyperbolic case that is of interest here, Métivier [Mét00] for the constantly hyperbolic
case, and extended by Métivier and Zumbrun [MZ05] to an even more general framework, gives
a very useful decomposition of the matrix A(ζ) when ζ belongs to Ξ0.

Proposition 2.9 (Block structure). When Assumption 2 is satisfied, for all ζ ∈ Ξ, there exist
a neighborhood V of ζ in Ξ, an integer L > 1, a partition N = ρ1 + · · · + ρL and an invertible
matrix T analytic in V such that for all ζ ∈ V, we have

T (ζ)A(ζ)T (ζ)−1 = diag
(
A1(ζ), . . . ,AL(ζ)

)
,
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Figure 2. Incoming (i), outgoing (o) and glancing (g) vector field.

where for all j the matrix Aj(ζ) is of size ρj and satisfies one of the following properties:

i) the real part of the matrix Aj(ζ), defined by (Aj(ζ) +Aj(ζ)
∗)/2, is positive-definite,

ii) the real part of the matrix Aj(ζ) is negative-definite,
iii) ρj = 1, Aj(ζ) is imaginary when γ is zero and ∂γAj(ζ) ∈ R∗,
iv) ρj > 1, the coefficients of Aj(ζ) are imaginary when γ is zero, there exists ξj ∈ R such

that

Aj(ζ) =




i ξj i 0

. . . i

0 i ξj


 ,

and the bottom left coefficient of ∂γAj(ζ) is real and non zero.

This result, commonly referred to as ”block structure” [BGS07, Section 5.1.2], is fundamental
for the proof of Proposition 2.21 below. In the aim of describing the subspaces E±(ζ) for ζ ∈ Ξ0,
the vector fields associated with each real characteristic phase are now defined.

Definition 2.10. Let α = (τ, η, ξ) ∈ Rd+1\ {0} be a characteristic frequency, and k the integer
between 1 and N such that τ = τk(η, ξ). The group velocity vα associated with α is defined as

vα := ∇η,ξ τk(η, ξ).

We shall say that α is glancing (resp. incoming, outgoing) if ∂ξτk(η, ξ) is zero (resp. negative,
positive). Then the vector field Xα associated with α is defined as

(2.14) Xα := ∂t − vα · ∇x = ∂t −∇ητk(η, ξ) · ∇y − ∂ξτk(η, ξ) ∂xd .

The vector field Xα is represented in Figure 2 in the glancing, incoming and outgoing case.

Example 2.11. We start by giving an example of a boundary condition for Example 2.1 satisfying
the uniform Kreiss-Lopatinskii condition. For this purpose we look for a matrix B in M2,3(R) of
maximal rank, that generates strictly dissipative boundary conditions (see [BGS07, Definition
9.2]), namely such that its kernel, which is of dimension 1, is generated by a nonzero vector E
satisfying

tE S(V )A2(V )E < 0

for all V in the neighborhood of V0, where the matrix S(V ) refers to a Friedrichs symmetrizer
of the system. Such strictly dissipative boundary conditions satisfy in particular the uniform
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Kreiss-Lopatinskii condition, see [BGS07, Proposition 4.4]. In our example, the following sym-
metrizer may be considered

S(V ) = diag
(
c(v)2, v2, v2

)
.

Recall that, in the notations of the example, a symmetrizer S(V ) is a positive definite matrix
such that the matrices S(V )A1(V ) and S(V )A2(V ) are symmetric for all V in a neighborhood
of V0. It is then determined that a suitable vector E is given by E = (v0, 0, u0), since in that
case we have

tE S(V0)A2(V0)E = u0 v
2
0 (u

2
0 − c20)

the right-hand side quantity being negative by assumption on V0, so it stays negative in a
neighborhood of V0. Thus a matrix B of maximal rank whose kernel is generated by E is for
example given by

B :=


 0 v0 0

−u0 0 v0


 ,

which gives an example of a boundary condition satisfying the uniform Kreiss-Lopatinskii con-
dition for Example 2.1 of compressible isentropic Euler equations in dimension 2.

Interest is now made on the eigenvalues of the matrix A(τ, η) for the system of Example 2.1.
Their expressions, for (τ, η) ∈ R2 \ {0}, depend on the sign of τ2 − η2 (c20 − u20), as represented
in Figure 3.

If |τ | >
√
c20 − u20 |η|, i.e. if ζ = (τ, η) is in the so-called hyperbolic regionH ([Ben14, Definition

2.1]), then the matrix A(ζ) admits three simple imaginary eigenvalues given by

i ξ1(τ, η) := i
τ u0 + sign(τ) c0

√
τ2 − η2 (c20 − u20)

c20 − u20
,(2.15a)

i ξ2(τ, η) := i
τ u0 − sign(τ) c0

√
τ2 − η2 (c20 − u20)

c20 − u20
,(2.15b)

i ξ3(τ, η) := i
−τ
u0
,(2.15c)

where sign(x) := x/|x| for x 6= 0. The number ξ1(τ, η) being real, the frequency α1(τ, η) :=(
τ, η, ξ1(τ, η)

)
is a real characteristic frequency. It is then determined that we have τ =

τ3
(
η, ξ1(τ, η)

)
if τ > 0 and τ = τ1

(
η, ξ1(τ, η)

)
if τ < 0. A calculation gives, if τ > 0,

∂ξτ3
(
η, ξ1(τ, η)

)
=

√
τ2 − η2(c20 − u20)

η2 + ξ21(τ, η)
,

and, if τ < 0,

∂ξτ1
(
η, ξ1(τ, η)

)
=

√
τ2 − η2(c20 − u20)

η2 + ξ21(τ, η)
.

Thus the frequency α1(τ, η) =
(
τ, η, ξ1(τ, η)

)
is always outgoing. Likewise, it is determined that

the real characteristic frequency α2(τ, η) :=
(
τ, η, ξ2(τ, η)

)
is always incoming, and the frequency

α3(τ, η) :=
(
τ, η, ξ3(τ, η)

)
is incoming as well.

If ζ is located in the so-called glancing region G, i.e. if |τ | =
√
c20 − u20 |η|, then the matrix

A(ζ) admits one imaginary simple eigenvalue i ξ3(ζ) which is still given by formula (2.15c), and
a double imaginary eigenvalue given by

i ξ1(ζ) = i ξ2(ζ) = i
τ u0

c20 − u20
.

In this case we still have τ = τ3
(
η, ξ1(τ, η)

)
if τ > 0 and τ = τ1

(
η, ξ1(τ, η)

)
if τ < 0, and

regarding the characteristic frequency α3(τ, η) =
(
τ, η, ξ3(τ, η)

)
, we still have τ = τ2

(
η, ξ3(τ, η)

)
.

Thus it is determined that

∂ξτ1
(
η, ξ1(τ, η)

)
= ∂ξτ3

(
η, ξ1(τ, η)

)
= 0,
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Figure 3. Areas of Ξ0 for the isentropic compressible Euler equations

and therefore, regardless of the sign of τ , the frequency α1(τ, η) is glancing. As for it, the
frequency α3(τ, η) is always incoming.

Finally if |τ | <
√
c20 − u20 |η| and so if ζ is in the so-called mixed region EH, then the matrix

A(ζ) has one simple imaginary eigenvalue i ξ3(ζ) given by formula (2.15c), and two simple
eigenvalues of nonzero real part (symmetric with respect to the imaginary axis), that are still
denoted by i ξ1 et i ξ2 and which are given by

i ξ1(τ, η) := i
τ u0 + i c0 sign(τ)

√
η2 (c20 − u20)− τ2

c20 − u20
,

i ξ2(τ, η) := i
τ u0 − i c0 sign(τ)

√
η2 (c20 − u20)− τ2

c20 − u20
.

The real characteristic frequency α3(τ, η) =
(
τ, η, ξ3(τ, η)

)
is once again incoming.

In the following, in order for the matrix factor of the partial derivative with respect to the

normal variable xd in the equations to be the identity matrix, the modified operator L̃(u, ∂z) :=

Ad(u)
−1 L(u, ∂z) shall be considered. For j = 1, . . . , d − 1, we denote Ãj := A−1

d Aj and Ã0 :=

A−1
d . The following lemma, which is a result of [Lax57] adapted by [CGW11, Lemma 2.11], shows

that, under suitable assumptions, the operator π̃α L̃(0, ∂z)πα is given by a constant coefficient

scalar transport operator, and therefore that the operator π̃α L̃(0, ∂z) acts on polarized profiles
(i.e. profiles U such that πα U = U) as a much simpler operator.

Lemma 2.12 ([CGW11, Lax Lemma]). Let α = (τ, η, ξ) ∈ R1+d \ {0} be a real non glancing
characteristic frequency and k the integer between 1 and N such that τ = τk(η, ξ). Then we have

π̃α L̃(0, ∂z)πα =
−1

∂ξτk(η, ξ)
Xα π̃α πα,

where Xα is the vector field associated with α defined by (2.14). Then we denote

X̃α :=
−1

∂ξτk(η, ξ)
Xα = ∂xd −

1

∂ξτk(η, ξ)
∂t +

1

∂ξτk(η, ξ)
∇ητk(η, ξ) · ∇y.

For the sake of completeness, the proof of [CGW11] is recalled here.

Proof. According to identity (2.11), we have

(2.16) L̃
(
0, (τk(η, ξ), η, ξ)

)
πk(η, ξ) =

(
τk(η, ξ) Ã0(0) +

d−1∑

i=1

ηi Ãi(0) + ξ I
)
πk(η, ξ) = 0.

The Dunford formula and the implicit function theorem ensure that in the strictly hyperbolic
case, the projectors πk as well as the real functions τk are differentiable with respect to (η, ξ)
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in Rd \ {0} (they even depend analytically of (η, ξ)). Thus identity (2.16) is differentiated with
respect to ξ in a neighborhood of a frequency (η, ξ) in Rd \ {0} to obtain

(
∂ξτk(η, ξ) Ã0(0) + I

)
πk(η, ξ) +

(
τk(η, ξ) Ã0(0) +

d−1∑

i=1

ηi Ãi(0) + ξ I
)
∂ξπk(η, ξ) = 0,

and therefore, multiplying by π̃k(η, ξ) on the left, according to identity (2.13), we get

(2.17) π̃k(η, ξ) Ã0(0)πk(η, ξ) = − 1

∂ξτk(η, ξ)
π̃k(η, ξ)πk(η, ξ).

Likewise, for i = 1, . . . , d − 1, equality (2.16) is differentiated with respect to ηi and next
multiplied by π̃k(η, ξ) to obtain

π̃k(η, ξ)
(
∂ηjτk(η, ξ) Ã0(0) + Ãi(0)

)
πk(η, ξ) = 0.

With (2.17), we thus get

π̃k(η, ξ) Ãi(0)πk(η, ξ) =
∂ηiτk(η, ξ)

∂ξτk(η, ξ)
π̃k(η, ξ)πk(η, ξ),

which concludes the proof of the lemma. �

The following results use the classical Lax Lemma, whose proof is similar to the one of Lemma
2.12. The result is recalled here.

Lemma 2.13 ([Lax57]). Let α = (τ, η, ξ) ∈ R1+d \ {0} be a real characteristic frequency and k
the integer between 1 and N such that τ = τk(η, ξ). Then we have

πα L(0, ∂z)πα = Xα πα,

where Xα is the vector field associated with α defined by (2.14).

The first lemma below, quite standard, states that the group velocities vα are bounded. The
result presented here is not optimal, considering the constant C can be taken equal to 1, but it
is sufficient for our analysis, and its proof is simpler.

Lemma 2.14. There exists a positive constant C such that, for k = 1 . . . , N and (η, ξ) in
Rd \ {0}, we have

|∇η,ξτk(η, ξ)| 6 C sup
(η,ξ)∈Sd−1

ρ
(
A(η, ξ)

)
,

where we recall that A(η, ξ) has been defined for (η, ξ) in Rd \ {0} in Assumption 2, and where
ρ
(
A(η, ξ)

)
refers to the spectral radius of the matrix A(η, ξ). Then we denote by V∗ the finite

quantity

V∗ := C sup
(η,ξ)∈Sd−1

ρ
(
A(η, ξ)

)
,

which bounds the group velocities.

Proof. First note that the quantity V∗ is actually finite. Indeed, according to Assumption 2, we
have

ρ
(
A(η′, ξ′)

)
= max

k=1,...,N

∣∣τk(η′, ξ′)
∣∣ ,

and the real functions τ1, . . . , τN are analytic in Rd \ {0}, and thus bounded on Sd−1.
Now let (η, ξ) be in Rd \{0} and k between 1 and N . According to Lax Lemma 2.13, we have,

for (η′, ξ′) in Sd−1,

πk(η, ξ)A(η
′, ξ′)πk(η, ξ) = −dτk(η, ξ) · (η′, ξ′)πk(η, ξ).

But since the following equality holds,

|∇η,ξτk(η, ξ)| = sup
(η′,ξ′)∈Sd−1

∣∣dτk(η, ξ) · (η′, ξ′)
∣∣ ,
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we obtain

(2.18) |∇η,ξτk(η, ξ)| 6 ‖πk(η, ξ)‖ sup
(η′,ξ′)∈Sd−1

∥∥A(η′, ξ′)
∥∥ .

On an other hand, because of Remark 2.7, there exists a positive constant C such that

(2.19) ‖πk(η, ξ)‖ 6 C, k = 1, . . . , N,

uniformly with respect to (η, ξ) in Rd \ {0}. Finally, Assumption 2 claims that the matrix
A(η′, ξ′) is diagonalizable and well-conditioned, so there exists a positive constant C such that

(2.20) sup
(η′,ξ′)∈Sd−1

∥∥A(η′, ξ′)
∥∥ 6 C sup

(η′,ξ′)∈Sd−1

ρ
(
A(η′, ξ′)

)
.

Equations (2.18), (2.19), and (2.20) then lead to the result. �

The second result quantitatively links the vector π̃αEk(η, ξ) to the vector Ek(η, ξ), which will
be useful in the following to get a control from below of the first vector. It is mentioned, for its
second part, in [CG10].

Lemma 2.15. Let α = (τ, η, ξ) ∈ R1+d \ {0} be a real characteristic frequency and k the integer
between 1 and N such that τ = τk(η, ξ). Then we have

π̃αEk(η, ξ) = −∂ξτk(η, ξ)Ad(0)−1Ek(η, ξ).

In particular, if the frequency α is not glancing, the projector π̃α induces an isomorphism from
Imπα to Im π̃α.

Proof. First the vector Ek(η, ξ) is decomposed in basis (2.9) adapted to decomposition (2.7):

(2.21) Ek(η, ξ) =

N∑

j=1

λj Ad(0)
−1Ej(η, ξ),

so that we have π̃αEk(η, ξ) = λk Ad(0)
−1Ek(η, ξ). Thus the aim is to determine the coefficient

λk. Given that παEk(η, ξ) = Ek(η, ξ), and according to decomposition (2.21), we have

Ad(0)πα Ek(η, ξ) =

N∑

j=1

λj Ej(η, ξ),

thus

παAd(0)πα Ek(η, ξ) = λk Ek(η, ξ).

And we conclude using Lax Lemma 2.13 which claims that παAd(0)πα = −∂ξτk(η, ξ)πα.
To show that the projector π̃α induces an isomorphism from Imπα to Im π̃α, the two spaces

Imπα and Im π̃α having the same dimension, it is sufficient to prove that the intersection

ker π̃α ∩ Imπα

is trivial. So we consider a vector X of CN belonging to this intersection. Because X belongs
to Imπα, by definition of the vector Ek(η, ξ), it writes

X = λEk(η, ξ),

where k is the integer between 1 and N such that α =
(
τk(η, ξ), η, ξ

)
and λ ∈ R. According to

the previous result, we have

π̃αX = −∂ξτk(η, ξ)Ad(0)−1X.

But we also have π̃αX = 0 by assumption and ∂ξτk(η, ξ) 6= 0, the frequency α being non-
glancing. We therefore obtain X = 0, which is the sought result. �

We are now in position to describe the decomposition of the stable subspace E−(ζ) for ζ ∈ Ξ0,
which uses the strict hyperbolicity Assumption 2.
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Proposition 2.16 ([Wil96], Proposition 3.4). Consider ζ = (τ, η) ∈ Ξ0. We denote by i ξj(ζ)
for j = 1, . . . ,M(ζ) the distinct complex eigenvalues of the matrix A(ζ), and if ξj(ζ) is real, we
shall denote by αj(ζ) := (τ, η, ξj(τ, η)) the associated real characteristic frequency. If ξj(ζ) is
real, we also denote by kj the integer between 1 and N such that τ = τkj(η, ξj(ζ)). Then the set
{1, 2, . . . ,M(ζ)} decomposes as the disjoint union

(2.22) {1, 2, . . . ,M(ζ)} = G(ζ) ∪ I(ζ) ∪ P(ζ) ∪ O(ζ) ∪ N (ζ),

where the sets G(ζ), I(ζ), P(ζ), O(ζ) and N (ζ) correspond to indexes j such that respectively
αj(ζ) is glancing, αj(ζ) is incoming, Im(ξj(ζ)) is positive, αj(ζ) is outgoing and Im(ξj(ζ)) is
negative.

Then the following decomposition of E−(ζ) holds

(2.23) E−(ζ) =
⊕

j∈G(ζ)

Ej−(ζ)⊕
⊕

j∈I(ζ)

Ej−(ζ)⊕
⊕

j∈P(ζ)

Ej−(ζ),

where for each index j, the subspace Ej−(ζ) is precisely described as follows.

i) If j ∈ P(ζ), the space Ej−(ζ) is the generalized eigenspace A(ζ) associated with the
eigenvalue i ξj(ζ).

ii) If j ∈ R(ζ), we have Ej−(ζ) = kerL
(
0, αj(ζ)

)
, which is of dimension 1.

iii) If j ∈ G(ζ), we denote by nj the algebraic multiplicity of the imaginary eigenvalue iξj(ζ).
For small positive γ, the multiple eigenvalue i ξj(τ, η) splits into nj simple eigenvalues,

denoted by i ξkj (τ − iγ, η), k = 1, . . . , nj , all of nonzero real part. We denote by µj the

number (independent of γ > 0) of the eigenvalues i ξkj (τ − iγ, η) of negative real part.

Then Ej−(ζ) is of dimension µj and is generated by the vectors w satisfying [A(ζ) −
iξj(ζ)]

µjw = 0. Furthermore, if nj is even, µj = nj/2 and if nj is odd, µj is equal to
(nj − 1)/2 or (nj + 1)/2.

Likewise, the unstable subspace E+(ζ) decomposes as

(2.24) E+(ζ) =
⊕

j∈G(ζ)

Ej+(ζ)⊕
⊕

j∈O(ζ)

Ej+(ζ)⊕
⊕

j∈N (ζ)

Ej+(ζ),

with similar description of the subspaces Ej+(ζ). In particular, if the set G(ζ) is empty, then

CN = E−(ζ)⊕ E+(ζ).

Remark 2.17. The notation ξj(ζ) should not be taken for a function ξj depending on ζ ∈
Ξ0. Indeed for example the set M(ζ) depends on ζ. However, note that the matrix A(ζ)
is homogeneous of degree 1 with respect to ζ in Ξ0. Thus the number M(ζ) as well as the
cardinality of the sets G(ζ), I(ζ) ∪ O(ζ) and P(ζ) ∪ N (ζ) depend only on the direction of ζ in
Ξ0. We therefore assume that, ζ ∈ Ξ0 being fixed, for λ ∈ R∗, the indexes 1, . . . ,M(λ ζ) are
arranged in a way that, for j = 1, . . . ,M(ζ), we have

ξj(λ ζ) = λ ξj(ζ), so that αj(λ ζ) = λαj(ζ).

With this ordering, we note that if for ζ ∈ Ξ0, the frequency αj(ζ) is glancing, incoming or
outgoing (resp. ξj(ζ) is of nonzero imaginary part), i.e. if j ∈ G(ζ) ∪ O(ζ) ∪ I(ζ) (resp.
j ∈ P(ζ)∪N (ζ)), then for λ ∈ R∗, the frequency αj(λ ζ) = λαj(ζ) is still glancing, incoming or
outgoing (resp. ξj(λ ζ) is still of nonzero imaginary part), that is to say j ∈ G(λ ζ) ∪ O(λ ζ) ∪
I(λ ζ) (resp. j ∈ P(λ ζ) ∪ N (λ ζ)). More precisely, if j ∈ P(ζ) (resp. N (ζ)), then j ∈ N (−ζ)
(resp. P(−ζ)).
Definition 2.18. Consider ζ ∈ Ξ0. We say that ζ is a glancing point and we denote ζ ∈ G
if, with notations of Proposition 2.16, there exists an index j between 1 and M(ζ) such that
j ∈ G(ζ), in other words, if ζ is such that there exists a real nonzero number ξ such that the
frequency (ζ, ξ) is characteristic and glancing.

An assumption is now made, that helps to prove that the projectors associated with decom-
position (2.23) are bounded uniformly with respect to ζ in Ξ0. This assumption has already
been made in [Sar65, Wil96], and seems essential, see [Wil00].
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Assumption 4. For all k = 1, . . . , N , and for all (η, ξ) ∈ Rd \ {0}, we have

∂τk
∂ξ

(η, ξ) = 0 ⇒ ∂2τk
∂ξ2

(η, ξ) 6= 0.

Remark 2.19. We will see during the proof of Proposition 2.21 in appendix A that assumption
4 implies that for all ζ in Ξ0, for all index j in G(ζ), we have nj = 2, using the notations of

Proposition 2.16. We deduce that µj = 1 and that the component Ej−(ζ) of the stable subspace

E−(ζ) is of dimension 1 and given by kerL
(
0, αj(ζ)

)
.

Definition 2.20. For ζ ∈ Ξ0 and, using the notations of Proposition 2.16, for an index j in

G(ζ) ∪ I(ζ), we denote by Πj−(ζ) the projection from E−(ζ) on the component Ej−(ζ) according
to decomposition (2.23).

We also denote by Πe−(ζ) the projection from E−(ζ) on the elliptic stable component Ee−(ζ) :=

⊕j∈P(ζ)E
j
−(ζ) according to decomposition (2.23).

Finally, if ζ is not glancing, that is if the set G(ζ) is empty, then according to Proposition
2.16 we have the following decomposition of CN

(2.25) CN =
⊕

j∈O(ζ)

Ej+(ζ)⊕
⊕

j∈N (ζ)

Ej+(ζ)⊕
⊕

j∈I(ζ)

Ej−(ζ)⊕
⊕

j∈P(ζ)

Ej−(ζ).

In that case we denote by Πe
CN

(ζ) the projection from CN on the stable elliptic component Ee−(ζ)

according to this decomposition, and by Πe,+
CN

(ζ) the projection from CN on the unstable elliptic

component Ee+(ζ) := ⊕j∈N (ζ)E
j
+(ζ) according to the same decomposition.

The following proposition will be a key result in our analysis. It uses in a crucial way As-
sumption 4, as well as the strict hyperbolicity Assumption 2.

Proposition 2.21 ([Wil96]). Under Assumptions 2 and 4, for ζ ∈ Ξ0, the projectors Πj−(ζ) for
j in G(ζ) ∪ I(ζ), and the projectors Πe−(ζ) are uniformly bounded with respect to ζ in Ξ0.

The proof of this result, omitted in [Wil96] and which requires some work, is postponed until
Appendix A.

Thanks to Assumption 4 we are also able to prove the following result, which continues Lemma
2.15, and establishes a control from below over the normal component of the group velocity,
and therefore over the vector π̃αEk(η, ξ) for all α =

(
τk(η, ξ), η, ξ

)
, involving the distance from(

τk(η, ξ), η
)
to the glancing set G. Its proof uses notations and results from the one of Proposition

2.21, and is therefore also skipped until Appendix A.

Lemma 2.22. There exists a positive constant C > 0 such that, if the real frequency α = (τ, η, ξ)
in R1+d \ {0} is characteristic, and if k between 1 and N is such that τ = τk(η, ξ), then we have

|∂ξτk(η, ξ)| > C
dist

(
(τ, η),G

)1/2

|(τ, η)|1/2 .

Using Lemma 2.15, we therefore obtain the following estimate

(2.26) |π̃αEk(η, ξ)| > C
dist

(
(τ, η),G

)1/2

|(τ, η)|1/2 .

3. Functional framework

3.1. Set of frequencies inside the domain. To define the functional framework that will
be used, we need first to determine a priori which frequencies may appear in the solution to
(2.1). For a detailed discussion of this analysis, reference is made to [Rau12, Chapters 9 and 10]
and [MA88]. The presence on the boundary of the frequencies ζ1, . . . , ζm creates, by nonlinear
interaction, the following group of frequencies on the boundary

(3.1) Fb := ζ1 Z+ · · · + ζm Z ⊂ Rd.
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The assumption is now made that this group does not contain any glancing point, which have
been introduced in Definition 2.18. This assumption is often made, and allows to avoid compli-
cations created by the glancing modes, see e.g. [CG10, CGW11].

Assumption 5. We have (
Fb \ {0}

)
∩ G = ∅.

In other words, with the notations of Proposition 2.16, for all ζ ∈ Fb \ {0}, the set G(ζ) of
indexes j between 1 and M(ζ) such that the characteristic frequency

(
ζ, ξj(ζ)

)
is glancing, is an

empty set.

However, attention must be paid on the fact that despite Assumption 5, the set Fb \ {0} may
contain frequencies arbitrary close to the set of glancing frequencies G, namely frequencies ζ
admitting a lifting inside the domain α =

(
τk(η, ξ), η, ξ

)
of which the normal component of the

group velocity given by −∂ξτk(η, ξ) is arbitrary close to zero. This phenomenon is well illustrated
in Example 3.1 of compressible isentropic Euler equations below. In the following, we will need
a control on the projectors Πe

CN
(ζ) for ζ in the group Fb\{0}, defined for ζ non glancing. Indeed

the norm of this projector increases when ζ gets close to the glancing set G. This is why a small
divisor assumption is now made, that gives a control over the distance between ζ in Fb and G
for large ζ, notably leading to Proposition 6.16 below.

Assumption 6. There exists a real number a1 and a positive constant c such that for all ζ in
Fb \ {0}, we have

dist
(
ζ,G

)
> c |ζ|−a1 .

Note that Assumption 5 is a consequence of Assumption 6, so could be omitted. However we
have chosen to keep both assumptions because they play two different roles in the proofs. Small
divisors Assumption 6 is quite unusual, and plays a technical role in the proofs.

The operator L(0, ∂z) being hyperbolic, the frequencies on the boundary ζ ∈ Fb \{0} are then
lifted inside the domain into frequencies (ζ, ξ). We will see that the polarization conditions for
the leading profile cancel the modes associated with noncharacteristic frequencies. Therefore,
since we are interested in bounded solutions, at this point only the incoming and evanescent
characteristic frequencies lifted from frequencies on the boundary are created. Assumption 5
is used here to exclude the possibility of creating glancing frequencies

(
ζ, ξj(ζ)

)
, that is with

j ∈ G(ζ). Thus, at this stage, the set of frequencies {0} ∪ F in ∪ Fev has been obtained for the
leading profile, where the sets F in and Fev are given by
(3.2)

F in :=
{(
ζ, ξj(ζ)

)
, ζ ∈ Fb \ {0} , j ∈ I(ζ)

}
, Fev :=

{(
ζ, ξj(ζ)

)
, ζ ∈ Fb \ {0} , j ∈ P(ζ)

}
.

Apart from exceptional cases, the set F in is not finitely generated, which imposes an almost-
periodic framework for the normal fast variable.

Interest is now made on resonances that may occur inside the domain. By nonlinear interac-
tion, two frequencies αjp(ζp) =

(
ζp, ξjp(ζp)

)
and αjq(ζq) =

(
ζq, ξjq(ζq)

)
of F in may resonate to

create a characteristic frequency αjr(ζr) =
(
ζr, ξjr(ζr)

)
in the following way:

np αjp(ζp) + nq αjq(ζq) = nr αjr(ζr), np, nq, nr ∈ Z \ {0} .
If the index jr belongs to the set O(ζr), that is to say if αjr(ζr) is an outgoing real characteristic
frequency, a new frequency inside the domain is thus created, which does not already belong to
the initial set F in defined above. The simplifying assumption that it does not occur is made, so
there is no outgoing characteristic frequency created through a resonant triplet. More precisely,
we assume that the outgoing and the incoming frequencies do not resonate one with the other.
The set of outgoing frequencies Fout is defined as

(3.3) Fout :=
{(
ζ, ξj(ζ)

)
, ζ ∈ Fb \ {0} , j ∈ O(ζ)

}
.

Assumption 7. i) There does not exist a couple (αp, αq) of incoming characteristic frequen-
cies F in and a couple of integers (np, nq) such that the frequency

np αp + nq αq
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is real, characteristic and outgoing.
ii) There does not exist a couple (αp, αq) of outgoing characteristic frequencies Fout and a

couple of integers (np, nq) such that the frequency

np αp + nq αq

is real, characteristic and incoming.

This is a strong assumption, that, up to our knowledge, cannot be found in the literature.
It implies that there is no outgoing mode in the leading profile of the expansion. For example
in [CGW11], there is no such assumption, but since there is only one phase on the boundary,
there are a finite number of resonances, conversely to our case. When there are outgoing modes,
they are coupled with incoming ones through the trace on the boundary. This is an issue since
it seems that the suitable functional framework for outgoing modes, tailored for evolution in
time, is different from the one for incoming modes, adapted to propagation in normal direction.
It also complicates the iterative process used to construct a solution. We have chosen here to
focus on the construction of a functional framework for incoming modes that allows to solve the
problem.

Note that if three real characteristic frequencies αp, αq, αr resonate as

np αp + nq αq = nr αr, np, nq, nr ∈ Z,

then according to the previous assumption, the frequencies αp, αq, αr are either all incoming or all
outgoing. On an other hand, despite Assumption 7, there may exist a countable infinite number
of resonances between incoming frequencies, as it is the case in Example 3.1 of compressible
isentropic Euler equations in dimension 2.

At this stage, for a new frequency to be created from F in, there must exist a resonance
between two frequencies of F in, that creates a real characteristic frequency which does not
already belong to F in. The frequencies in F in are incoming, and according to Assumption 7
above, a resonance between two incoming frequencies may only produce an incoming frequency,
which already belongs to F in. There is therefore no new frequency created, and the final set
of frequencies inside the domain created by nonlinear interaction on the boundary and lifting
inside the domain is given by

(3.4) F := {0} ∪
{
αj(ζ), ζ ∈ Fb \ {0} , j ∈ I(ζ) ∪ P(ζ)

}
.

We expect for the leading profile of the solution to (2.1) to feature all frequencies in F created
by lifting. It leads to consider, to maintain generality, all frequencies in F . Yet it seems unlikely
that the group generated by F may be finitely generated, which a priori excludes an asymptotic
expansion of the solution uε in the form of quasi-periodic functions. Following [JMR95] and
[CGW11] after, a quasi-periodic framework is nevertheless considered for the tangential fast
variables (the group of frequencies on the boundary being finitely generated), but an almost-
periodic framework for the normal fast variable is considered. The next subsection is devoted to
that question and describes the functional framework used in this analysis. This part is ended
by verifying the different assumptions and assertions made in this subsection for Example 2.1
of compressible isentropic Euler equations in dimension 2.

Example 3.1. The notations of Example 2.1 and those after are used. Assumptions 5,6 and 7
concern the group of frequencies on the boundary Fb, thus adequate frequencies on the boundary
must be considered for Example 2.1. To simplify the calculations, we take two frequencies ζ1

and ζδ given by ζ1 := (c0 η0, η0) and ζ
δ := (c0 δ η0, η0), with η0 > 0 and δ an irrational number

strictly larger than 1, so that ζ1 and ζδ are both in the hyperbolic region H. Recall that
c0 = c(v0) > 0 refers to the sound velocity and that the equilibrium V0 = (v0, 0, u0) satisfies
0 < u0 < c0. The boundary frequencies lattice Fb is therefore given in this example by

Fb =
{(
c0 η0 (p+ δ q), η0 (p+ q)

)
| p, q ∈ Z

}
⊂ R2.

We denote by ζp,q := (τp,q, ηp,q) :=
(
c0 η0 (p + δq), η0 (p + q)

)
the frequency of Fb given by

p ζ1 + q ζδ, for p, q in Z.
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p/q > K+ K+ > p/q > −δ p/q < −δ

q > 0
ζp,q is in the hyperbolic
region H with τp,q > 0

ζp,q is in the mixed region
EH

ζp,q is in the hyperbolic
region H with τp,q < 0

q < 0
ζp,q is in the hyperbolic
region H with τp,q < 0

ζp,q is in the mixed region
EH

ζp,q is in the hyperbolic
region H with τp,q > 0

Figure 4. Position of ζp,q depending on p and q.

A nonzero frequency ζp,q is glancing if and only if |τp,q| =
√
c20 − u20 |ηp,q|, that is to say if and

only if 1

(3.5)
p

q
∈
{√

1−M2 − δ

1−
√
1−M2

,
−
√
1−M2 − δ

1 +
√
1−M2

}
.

We have denoted by M the Mach number given by M := u0/c0, belonging to (0, 1). If the two
real numbers

(3.6) K− :=

√
1−M2 − δ

1−
√
1−M2

et K+ :=
−
√
1−M2 − δ

1 +
√
1−M2

are irrational, then there does not exist a relation of the form (3.5), and there is therefore no
glancing frequency in the group Fb \ {0}. Thus we make the assumption that K− and K+ are

irrational, so that the assumption 5 is verified. We may for example take M =
√
3/2 and δ > 1

irrational. We summarize now the different areas where the frequencies ζp,q may be, depending
on p and q. First note that we have 0 > K+ > K− > −δ. Recall that the frequency ζp,q
is in the hyperbolic region (resp. mixed region) if and only if |τp,q| >

√
c20 − u20 |ηp,q| (resp.

|τp,q| <
√
c20 − u20 |ηp,q|). We thus infer the classification given in Figure 4. The calculation steps

are not detailed, but one case is treated in more details below.

The remark concerning the group velocities that follows Assumption 5 is now illustrated.
For that purpose a sequence of frequencies on the boundary that draw near the glancing set
is considered, see Figure 5. The real number K+ given (3.6) being irrational, there exist two
sequences (pk)k and (qk)k of integers such that for k > 0, pk and qk are coprime, qk > 0, and
such that

pk
qk

>−−−−→
k→+∞

−
√
1−M2 − δ

1 +
√
1−M2

= K+.

Note that since K+ > K− > −δ, for all k > 0, we have pk/qk > K− > −δ, so on one hand
we have pk + δqk > 0, and on the other hand, independently of the sign of pk + qk, we have
pk + δqk >

√
1−M2 |pk + qk|. The frequencies ζpk,qk are therefore in the hyperbolic region H

with τ > 0, and draw near the glancing region G, see Figure 5. Since τpk,qk > 0, according to
Example 2.11, the last component of the group velocity associated with the frequency on the
inside α1(τpk,qk , ηpk,qk) is given by

∂ξτ3
(
ηpk,qk , ξ1(τpk,qk , ηpk,qk)

)
6

√
τ2pk,qk − η2pk,qk (c

2
0 − u20)

η2pk,qk
(3.7)

= c0

√
qk

(
1 +

√
1−M2

) pk + δqk − (pk + qk)(1 −M2)

(pk + qk)2

√
pk
qk

− −
√
1−M2 − δ

1 +
√
1−M2

.(3.8)

Note that the quantity under the first square root sign of (3.8) is non negative, since for all
k > 0, qk > 0 and pk/qk > K−, so that pk + δqk − (pk + qk)(1 −M2) > 0. This quantity being
bounded, the quantity (3.8) converges towards zero by construction of the integers (pk, qk). We
see that the normal group velocity (3.7) of the hyperbolic frequencies ζpk,qk converges towards

1If q = 0, then according to the relation |τp,q | =
√

c20 − u2
0 |ηp,q|, we have p2 = (1− u2

0/c
2
0) p

2 so p is also zero, i.e.
the frequency ζp,q is zero, which is excluded by assumption.
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zero as k goes to infinity. It shows that the normal group velocity of the hyperbolic frequencies,
although nonzero, may be arbitrary close to zero.

η

τ

G

H

EH

• • • •
• • •

ζp1,q1

ζp2,q2
ζp3,q3

ζp4,q4
. .
.

Figure 5. Sequence of frequencies that draw near the glancing region, of which
the normal group velocity goes to zero.

Interest is now made on Assumption 7 and into the resonances between real characteristic
frequencies. We recall the notations of Example 2.11, and we first determine that, in the
hyperbolic region, the eigenvalues i ξ1(ζ), i ξ2(ζ) and i ξ3(ζ), defined by (2.15), are given, for
ζ = ζp,q in Fb \ {0}, by

i ξ1(ζp,q) = i η0
M (p + δq) + sign(p+ δq)

√
(p+ q)2M2 + 2pq(δ − 1) + q2(δ2 − 1)

1−M2
,

i ξ2(ζp,q) = i η0
M (p + δq)− sign(p+ δq)

√
(p+ q)2M2 + 2pq(δ − 1) + q2(δ2 − 1)

1−M2
,

i ξ3(ζp,q) = −i η0
p+ δq

M
.

The case of the glancing region is excluded by assumption, and the one of the mixed region is
included in the following, considering there is in this case only one imaginary eigenvalue, which
is the linear eigenvalue i ξ3(ζ). We first observe that, the eigenvalue i ξ3(ζp,q) begin linear, it
generates resonances of the form

α3(ζp,q) + α3(ζr,s) = α3(ζp+r,q+s), ∀p, q, r, s ∈ Z.

The frequency α3(ζp,q) being always incoming, there are therefore already an infinite number
of resonances between incoming frequencies. From now on the notation α1,2 refers to one of
the characteristic frequency α1 or α2. Since by linearity of α3, the resonance between two
frequencies α3 and a frequency α1,2 is impossible, the two following cases of resonance are still
to be investigated:

α1,2(ζp,q) + α1,2(ζr,s) = α3(ζp+r,q+s) et α1,2(ζp,q) + α1,2(ζr,s) = α1,2(ζp+r,q+s).

In the first case, it is equivalent to the relation

(3.9)[
(p + q)2 − (r + s)2

]
M8 + 2

[
(p+ q)2 − (r + s)2

](
2(rs− pq)(δ − 1) + (s2 − q2)(δ2 − 1)

)
M6

+ C4(p, q, r, s, δ)M
4 +C2(p, q, r, s, δ)M

2 + (p + r + δq + δs)2 = 0

where coefficients C4(p, q, r, s, δ) and C2(p, q, r, s, δ) are polynomial in their variables. Two cases
may now occur, depending on whether the coefficient in front of M8 in equation (3.9) is zero or
not.
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i) Either we have (p+ q)2− (r+ s)2 6= 0, in which case equation (3.9) is a polynomial equation
of degree 4 in Q[δ] satisfied by M2.

ii) Or we have (p+q)2 = (r+s)2, and in this case (3.9) is a polynomial equation of degree at most
2 satisfied by M2 in Q[δ]. If once again the coefficients C4(p, q, r, s, δ) and C2(p, q, r, s, δ) in
front of M4 and M2 are zero, then we get p + r + δq + δs = 0. Therefore we have r = −p
and s = −q, that is to say ζr,s = −ζp,q, so the studied resonance is actually self-interaction
of ζp,q with itself to generate the zero frequency. Thus, if (p+ q)2 = (r+ s)2, the only cases
of a real resonance are those where M2 is a root of a polynomial of degree 1 or 2 in Q[δ].

It has therefore been determined that for a resonance of the first type to occur (not of self-
interaction type), then M2 needs to be a root of a polynomial of degree at most 4 in Q[δ].

For the second type of resonance, such a relation is verified if and if only if the following
relation holds

(3.10) (ps− qr)2(1−M2)(δ − 1)2 = 0,

that is to say, since we have 0 < M < 1 and δ > 1, if and only if the two frequencies ζp,q and ζr,s
are collinear. Then one may write ζp,q = λ ζt,w and ζr,s = µ ζt,w, with ζt,w a hyperbolic frequency,
and λ, µ in Z∗. Next verify that, since we have sign(λ (t+ δw)) = sign(λ) sign(t+ δw), the two
following relations hold ξ1(λ ζt,w) = λ ξ1(ζt,w) and ξ2(λ ζt,w) = λ ξ2(ζt,w). The same holds for the
two frequencies µ ζt,w and (λ+ µ) ζt,w. The only two resonances that may occur are therefore

λα1(ζt,w) + µα1(ζt,w) = (λ+ µ)α1(ζt,w) et λα2(ζt,w) + µα2(ζt,w) = (λ+ µ)α2(ζt,w),

which both are actually self-interaction of frequencies α1(ζt,w) and α2(ζt,w) with themselves: the
evolution of the harmonics λ and µ are coupled with the one of λ+ µ. In particular, the three
frequencies implied in this resonance are either all incoming or all outgoing. Thus, if M2 is not
a root of a polynomial of degree at most 4 in Q[δ], Assumption 7 is verified for the compressible
isentropic Euler equations in dimension 2, with the group of frequencies on the boundary that
has been considered.

We finally dig into the small divisors Assumption 6. One can check that2, depending on the
sign of p, q, the distance between ζp,q and the glancing set G is given by

dist(ζp,q,G) = C
∣∣∣(p+ δq)±

√
1−M2(p+ q)

∣∣∣ = Cq
(
1±

√
1−M2

) ∣∣∣∣
p

q
−K±

∣∣∣∣ .

If p and q are not of the same size scale, then the same holds for p+δq and p+q, so the previous
distance can be lower bounded by a positive constant. We thus may in the following assume
that

(3.11) C1|p| 6 |q| 6 C2|p|.
According to Roth theorem, see [Sch91, Theorem 2A], if the real numbers K+ and K− given
by (3.6) are algebraic numbers (and irrational, which has been previously assumed), then they
satisfy ∣∣∣∣K± − p

q

∣∣∣∣ > C |q|−(2+ε),

for all q ∈ N∗, p ∈ Z and ε > 0. So for all ζp,q in Fb \ {0}, we get, using (3.11),

dist(ζp,q,G) > C|q|−3/2
> C|ζp,q|−3/2,

and Assumption 6 is therefore verified.
In conclusion, for the compressible isentropic Euler equations in dimension 2 to satisfies

Assumptions 5, 6 and 7, it is therefore sufficient that the Mach number M and the parameter
δ > 1 are such thatK+ andK− are irrational algebraic numbers and thatM2 is not a polynomial
solution of degree at most 4 in Q[δ]. The set of solutions to such equations being countable, one

2Using the fact that the glancing set is constituted here of two lines, an elementary geometrical argument allows
to reduce to the distance with respect to η only, where the constant C is given by

C :=
η0 sin arctan(

√

c20 − u2
0)√

1−M2
.
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may convince himself that the set of real numbers M satisfying these properties is not empty.
One may for example choose M :=

√
3/2, which gives K− = 1 − 2δ and K+ = −(1 + 2δ)/3,

and also choose δ = 7
√
2 > 1. In this way the real numbers K+ and K− are actually irrational

algebraic numbers. On an other hand, a relation of the form (3.9) cannot be satisfied, except
for trivial cases on p, q, r, s, because one can check that it forms an algebraic equation of degree
4 in δ, which is not an algebraic number of degree 4.

3.2. Spaces of profiles. According to the analysis of which frequencies may appear in the
solution to (2.1), we must define for the leading profile a functional framework that allows to
consider superposition of waves of the form

a(z) ei α·z/ε,

for α a characteristic frequency in F . Since we choose a quasi-periodic framework for the fast
tangential variables, we write such a wave as

a(z) ei n1 ζ1·z′/ε · · · ei nm ζm·z′/ε ei ξ xd/ε,

where α = (ζ, ξ) with ζ = n1 ζ1 + · · · + nm ζm ∈ Fb and ξ ∈ C. Next we denote by θ =
(θ1, . . . , θm) ∈ Tm the fast tangential variables which substitute to (z′ · ζ1/ε, . . . , z′ · ζm/ε) and
ψd ∈ R+ the fast normal variable substituting to xd/ε.

For each integer s > 0 and for T > 0, we denote by Hs
+(ωT × Tm) the space of functions of

(t, y, θ) ∈ ωT × Tm, zero for negative times t, of which all derivatives of order less or equal to s
belong to L2(ωT × Tm).

Now we describe the general space that will contain the oscillating and evanescent profiles
spaces. We choose only a uniform control with respect to the fast and slow normal variables
since it would be difficult to control derivatives of the leading profile with respect to these two
variables.

Definition 3.2. For an integer s > 0 and for T > 0, we define the space Es,T as the set of
functions U of (z′, xd, θ, ψd) ∈ ωT ×R+ ×Tm ×R+, bounded continuous with respect to (xd, ψd)
in R+ × R+ with values in Hs

+(ωT × Tm), equipped with the obvious norm

‖U‖Es,T := sup
xd>0,ψd>0

‖U( . , xd, . , ψd)‖Hs
+(ωT×Tm) .

We may now introduce the space of oscillating profiles, corresponding to real frequencies αj(ζ).
Following [JMR95], we choose a quasi-periodic framework with respect to θ and an almost-
periodic one with respect to ψd, namely we consider the closure of the space of trigonometric
polynomials with respect to ψd in the space Es,T of quasi-periodic functions with respect to θ.
See [Cor09, Chapters 3, 4] for more details about almost-periodic functions with values in a
Banach space.

Definition 3.3. We call a trigonometric polynomial with respect to ψd every function U of Es,T
that writes as a finite sum in real numbers ξ,

U(z, θ, ψd) =
∑

ξ

Uξ(z, θ) e
i ψd ξ,

with Uξ in Cb(R+
xd
,Hs

+(ωT × Tm)) for all ξ.
The space of oscillating profiles Posc

s,T is then defined as the closure in Es,T of the set of trigono-
metric polynomials with respect to ψd. This space is equipped with the norm of Es,T .

Concerning evanescent profiles, corresponding to frequencies αj(ζ) with j ∈ P(ζ), we consider
quasi-periodic functions with respect to θ. The factors ei ξ ψd with Im ξ > 0 are expressed through
a convergence to zero as ψd goes to infinity.

Definition 3.4. For s > 0 and T > 0, the space Pev
s,T of evanescent profiles is defined as the set

of functions U of Es,T , converging to zero in Hs(ωT ×Tm) as ψd goes to infinity (for every fixed
xd > 0). The space Pev

s,T is equipped with the norm of Es,T .
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We may now describe the space of profiles, constructed as the sum of an oscillating and an
evanescent part.

Definition 3.5. For T > 0 and s > 0, we define the space of profiles Ps,T of regularity of order
s as

Ps,T := Posc
s,T ⊕ Pev

s,T ,

equipped with the obvious norm. If U belongs to Ps,T , we denote by Uosc ∈ Posc
s,T and U ev ∈ Pev

s,T

the profiles such that U = Uosc + U ev.

The proof of the fact that the spaces Posc
s,T and Posc

s,T are indeed in a direct sum is presented
later, after the introduction of a scalar product used in the proof.

One can find in [JMR95] a partial proof of the following result, that we recall here for the
sake of clarity.

Lemma 3.6 ([JMR95, Lemma 6.1.2]). For all T > 0 and for s > (d + m)/2, the spaces
Es,T , Posc

s,T , Pev
s,T and Ps,T are all normed algebras. Furthermore, if U and V decomposes in

Ps,T = Posc
s,T ⊕Pev

s,T as U = Uosc+U ev and V = V osc+V ev, then the oscillating part of the profile
UV is given by UoscV osc and and its evanescent part by UoscV ev + U evV osc + U evV ev.

Moreover, for T > 0 and s > 0, the spaces Es,T and Posc
s,T are Banach spaces.

Proof. The algebra properties for Es,T and Pev
s,T arise immediately from the one of Hs

+(ωT ×Tm).
The same holds for Posc

s,T since the set of trigonometric polynomials is stable under multiplication.

Finally, this algebra property for Hs
+(ωT × Tm) shows that if U belongs to Posc

s,T and V to Pev
s,T ,

then the product UV belongs to Pev
s,T , so the space Ps,T is also an algebra.

As for them, the completeness properties are obvious. �

3.3. Scalar products on the space of oscillating profiles. We now define three scalar
products that will be useful in the following, notably to obtain a priori estimates. This part
is adapted from [JMR95] to the framework of boundary value problems. We shall use a scalar
product with the time variable t fixed (as in [JMR95], which is a priori adapted to the Cauchy
problem) as well as a scalar product with the space variable xd fixed, more adapted to the initial
boundary problem.

For U, V two functions of ωT × R+ × Tm × R+, we denote, when the formulas are licit, for
xd > 0,

〈U |V 〉in (xd) := lim
R→+∞

1

R

∫ R

0
〈U |V 〉L2(ωT×Tm) (xd, ψd) dψd,(3.12)

for 0 < t < T ,

〈U |V 〉out (t) := lim
R→+∞

1

R

∫ R

0
〈U |V 〉L2(Rd−1×R+×Tm) (t, ψd) dψd.(3.13)

and, if K is a domain of ΩT bounded in the xd direction,

〈U |V 〉K := lim
R→+∞

1

R

∫ R

0
〈U |V 〉L2(K×Tm) (ψd) dψd.(3.14)

The first scalar product is suited to the study of incoming modes when the second one is for
the outgoing modes, and the last one will be used to prove the finite speed propagation of the
leading profile oscillating part.

If U and V are trigonometric polynomials of Posc
s,T of the form3

U(z, θ, ψd) =
∑

n∈Zm

∑

ξ∈R

Un,ξ(z) e
in·θ ei ξ ψd , V (z, θ, ψd) =

∑

n∈Zm

∑

ξ∈R

Vn,ξ(z) e
in·θ ei ξ ψd ,

3The sums in ξ are necessarily countable.
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then [Cor09, Theorem 3.4, Remark 4.17] ensure that the scalar products 〈U |V 〉in (xd) and
〈U |V 〉K are well-defined and satisfies, for xd > 0,

〈U |V 〉in (xd) = (2π)m
∑

n∈Zm

∑

ξ∈R

〈Un,ξ |Vn,ξ〉L2(ωT )
(xd),(3.15)

and

〈U |V 〉K = (2π)m
∑

n∈Zm

∑

ξ∈R

〈Un,ξ |Vn,ξ〉L2(K) .(3.16)

Indeed, for each function U of Posc
s,T , its trace with respect to ψd belongs to L2(K × Tm) for all

ψd > 0, and its trace with respect to xd, ψd belongs to L2(ωT ×Tm) for all xd, ψd > 0. If U and
V are moreover of compact support with respect to xd and if s > 1, then the traces of U and V
with respect to t, ψd belong to L2(Rd−1 × R+ × Tm), and the same results from [Cor09] ensure
that the scalar product 〈U |V 〉out (t) is well-defined and satisfy, for t > 0,

(3.17) 〈U |V 〉out (t) = (2π)m
∑

n∈Zm

∑

ξ∈R

〈Un,ξ |Vn,ξ〉L2(Rd−1×R+) (t).

In short, scalar products (3.12) and (3.14) (resp. (3.13)) are well-defined on the space of
profiles Posc

s,T , s > 0 (resp. for profiles of Posc
s,T with compact support with respect to xd with

s > 1), and formulas (3.15), (3.16) and (3.17) are satisfied in this case.
The incoming scalar product (3.12) is used to prove the following result.

Lemma 3.7. For all T > 0, the spaces Posc
0,T and Pev

0,T are in direct sum.

Proof. Consider a profile U in Posc
0,T ∩ Pev

0,T that writes, because it is an oscillating profile,

U(z, θ, ψd) =
∑

n∈Zm

∑

ξ∈R

Un,ξ(z) e
in·θ ei ξ ψd ,

the sum in ξ being countable. The profile U also being evanescent, for all xd > 0, the function
ψd 7→ U(., xd, ., ψd) converges to zero in L2(ωT ×Tm) as ψd goes to infinity. Thus, for all xd > 0,
we have

〈U |U〉in (xd) = 0,

since the mean value (in terms of (3.12)) of a continuous function on R+ converging to zero at
infinity is zero. But, since U is an oscillating profile, we have

〈U |U〉in (xd) = (2π)m
∑

n∈Zm

∑

ξ∈R

‖Un,ξ‖2L2(ωT )
(xd),

so, for all n, ξ, the function Un,ξ(xd) is zero in L2(ωT × Tm), and the profile U is therefore zero
as well. �

4. Ansatz and main result

We seek to construct an approximate solution to (2.1) under the form of a formal series
uε,app(z, z′ · ζ1/ε, . . . , z′ · ζm/ε, xd/ε), where uε,app is given by

(4.1) uε,app(z, θ, ψd) :=
∑

k>1

εk Uk(z, θ, ψd),

with at least U1 in Ps,T for some s > 0. As for them, correctors (Uk)k>2 a priori exhibit
frequencies that may not be characteristic. The convergence of the associated series then relies on
a small divisor assumption which is different from the previously made small divisor assumption
6. Thus we only consider correctors as formal trigonometric series involving all frequencies in
the group 〈F〉 generated by the set F .

We are now in place to state the main result of this work. It is placed under Assumptions 1
to 7, as well as Assumption 8 that will be made further on. We denote by h an integer larger or
equal to (3 + a1)/2 where a1 is the real number introduced in the small divisors Assumption 6.
Then we denote s0 := h+ (d+m)/2.
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Theorem 4.1. Let s be an integer such that s > s0. Under previously listed assumptions, there
exists a time T > 0 such that system (5.11) described below and that governs the evolution of
the leading profile in the asymptotic expansion (4.1) admits a unique solution U1 in Ps,T .

We recall that we have considered a forcing term G in H∞(Rd×Tm), zero for negative times t
and of zero mean with respect to θ in Tm, but the infinite regularity assumption is made only for
simplicity, and the estimates, and thus the existence time T , only depend on the Hs(Rd × Tm)
norm of G. More precisely, the existence time T depends on the operator L(0, ∂z), the frequencies
on the boundary ζ1, . . . , ζm, the order of regularity s, and the Hs(ωT ×Tm) norm of the forcing
term G.

The formal WKB study shows that the function

z 7→ εU1(z, z
′ · ζ1/ε, . . . , z′ · ζm/ε, xd/ε)

is formally an approximate solution to system (2.1).
Last two sections of the article are devoted to the proof of Theorem 4.1. In section 5 we start

by formally deriving the cascade of equations that must be verified by the amplitudes (Uk)k>1.
By resolving, first formally and then rigorously for a part of it (in section 6), a fast problem,
this cascade is triangularized and a system of equations for the leading profile is extracted from
it. Next, in section 6, after a discussion about the different types of resonances that appear,
the system is reduced to two decoupled systems for the oscillating and evanescent parts, the
one on the oscillating part involving only the incoming phases. The oscillating system is even
decoupled in a system for all resonant modes, and a system for each non-resonant mode. Then
a priori estimates are proved for the linearized system for the oscillating parts, leading to the
construction of solutions to these linearized systems. Such estimates prove in particular that
the solution to (5.11) is unique. An iterative scheme is then used to construct solutions to the
nonlinear systems, and the evanescent part is finally determined.

Unlike in [JMR95, Part 6], from which the following is mainly inspired, there is no symmetry
in the system, since it is not hyperbolic as a propagation system in the variable xd. This lack of
symmetry is a genuine obstacle to deal with the resonance terms (that are in infinite number)
in the a priori estimates. Assumption 8, concerning all resonances with the possible exception
of a finite number of them, allows to work around the problem and to obtain estimates for the
associated terms. Assumption 8 will be carefully verified for the Euler system.

5. Formal WKB study

5.1. Cascade of equations for the profiles. We seek to formally determine the equations
the sequence of profiles (Un)n>1 must satisfy for the formal series z 7→ uε,app(z, z′ · ζ1/ε, . . . , z′ ·
ζm/ε, xd/ε) given by (4.1) to be solution to system (2.1). In the following we wish for the
coefficient (a priori dependent on uε,app) in factor of the partial derivative with respect to xd to
be the identity matrix, so that its differential is zero. The analogous property for the partial
derivative in time is crucial in [JMR95] from which we mainly draw our analysis. This choice
is justified here by the particular role of the variable xd in a priori estimates for the principal
profile. This is why we are interested from now on in the following equivalent system

(5.1)





L̃(uε,app, ∂z)u
ε,app = 0 in ΩT ,

B uε,app|xd=0 = ε gε on ωT ,

uε,app|t60 = 0

where we have denoted

L̃(u, ∂z) := Ad(u)
−1 L(u, ∂z) = Ã0(u) ∂t +

d−1∑

i=1

Ãi(u) ∂i + ∂d,

with Ãi(u) := Ad(u)
−1Ai(u) for i = 0, . . . , d − 1, and A0(u) := I. In the following we may use

the notation ∂0 := ∂t.
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5.1.1. WKB Cascade inside the domain. We are now able to write the equations verified by the
profiles Uk, k > 1, by formally replacing uε,app by its formal expansion

uε,app =
∑

k>1

εk Uk

in system (5.1). First, we note that the following Taylor expansion is verified, for i = 0, . . . , d−1:

Ãi(u
ε,app) = Ãi(0) + ε dÃi(0) · U1 +

∑

k>2

εk
[
dÃi(0) · Uk +Gik−1

]
,

where, for k > 2, Gik−1 only depends on U1, . . . , Uk−1. The operator L̃
(
uε,app, ∂z

)
thus writes

(5.2) L̃
(
uε,app, ∂z

)
= L̃(0, ∂z) +

∑

k>1

εkL̃k(Uk, ∂z′),

with

L̃1

(
U1, ∂z′

)
:=

d−1∑

i=0

dÃi(0) · U1 ∂i, L̃k
(
Uk, ∂z′

)
:=

d−1∑

i=0

(
dÃi(0) · Uk +Gik−1

)
∂i, ∀k > 2.

For k > 2, despite the fact that only the Uk dependency is indicated in the operators L̃k(Uk, ∂z′),
these ones also depend on the profiles U1, . . . , Uk−1, via the functions Gik−1. The operator

L̃1(U1, ∂z′) depends however only on U1.

We see here the benefit of considering the modified operator L̃(u, ∂z): there is an xd derivative

only in the leading operator L̃(0, ∂z), and not in the other operators L̃k(Uk, ∂z′). Furthermore,
we verify that

L̃(uε,app, ∂z)
[
uε,app(z, z′ · ζ1/ε, . . . , z′ · ζm/ε, xd/ε)

]
(5.3)

=
[
L̃(uε,app, ∂z)u

ε +
1

ε

m∑

j=1

L̃(uε,app, ζj) ∂θju
ε,app +

1

ε
∂ψdu

ε,app
]

(z, z′ · ζ1/ε, . . . , z′ · ζm/ε, xd/ε).

where, for j = 1, . . . ,m, the symbol L̃(uε,app, ζj) is defined by
∑d−1

i=0 ζ
i
j Ãi(u

ε,app) with ζj =

(ζ0j , . . . , ζ
d−1
j ). Expansion (5.2) of the operator L̃(uε,app, ∂z) leads to the analogous expansions

of the operators L̃(uε,app, ζj) for j = 1, . . . ,m:

(5.4) L̃
(
uε,app, ζj

)
= L̃(0, ζj) +

∑

k>1

εkL̃k(Uk, ζj)

where

L̃1

(
U1, ζj

)
:=

d−1∑

i=0

ζ ij dÃi(0) · U1, L̃k
(
Uk, ζj

)
:=

d−1∑

i=0

ζ ij

(
dÃi(0) · Uk +Gik−1

)
, ∀k > 2.

Thus, according to expansions (5.2), (5.3) and (5.4), the following asymptotic expansion holds

L̃(uε,app, ∂z)
[
uε,app(z, z′ · ζ1/ε, . . . , z′ · ζm/ε, xd/ε)

]

=
1

ε

{ m∑

j=1

L̃(0, ζj) ∂θju
ε,app + ∂ψdu

ε,app
}
+ L̃(0, ∂z)u

ε +
m∑

j=1

L̃1(U1, ζj) ∂θju
ε,app

+
∑

k>1

εk
{
L̃k(Uk, ∂z′)u

ε,app +

m∑

j=1

L̃k+1(Uk+1, ζj) ∂θju
ε,app

}
,
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where the right hand side is evaluated in (z, z′·ζ1/ε, . . . , z′·ζm/ε, xd/ε). The operator L(uε,app, ∂z)
applied to uε,app(z, z′ · ζ1/ε, . . . , z′ · ζm/ε, xd/ε) is therefore given by the formal series

(5.5)

L̃(uε,app, ∂z)
[
uε,app(z, z′ ·ζ1/ε, . . . , z′ ·ζm/ε, xd/ε)

]
=

∑

k>0

εkWk(z, z
′ ·ζ1/ε, . . . , z′ ·ζm/ε, xd/ε),

where, if the variables θ and ψd are substituted to (z′ ·ζ1/ε, . . . , z′ ·ζm/ε) and xd/ε, the amplitudes
(Wk)k>0 of the formal series (5.5) are given by

(5.6a) W0 :=
{ m∑

j=1

L̃(0, ζj) ∂θj + ∂ψd

}
U1,

(5.6b) W1 :=
{ m∑

j=1

L̃(0, ζj) ∂θj + ∂ψd

}
U2 +

{
L̃(0, ∂z) +

m∑

j=1

L̃1(U1, ζj) ∂θj

}
U1,

and for k > 2,

(5.6c) Wk :=
{ m∑

j=1

L̃(0, ζj) ∂θj + ∂ψd

}
Uk+1 +

{
L̃(0, ∂z) +

m∑

j=1

L̃1(U1, ζj) ∂θj

}
Uk

+
k−1∑

l=1

{
L̃k−l(Uk−l, ∂z′) +

m∑

j=1

L̃k−l+1(Uk−l+1, ζj) ∂θj

}
Ul.

Formulas (5.6a) and (5.6b) correspond to the analogous ones in [CGW11, (1.33), (1.46)] in the
case m = 1.

Thus, for the formal series (4.1) to be solution to (2.1), the formal series (5.5) must be zero,
or equivalently

Wk = 0, ∀k > 0.

We note that each equation Wk = 0 involves the fast operator

L(∂θ, ∂ψd) :=
m∑

j=1

L̃(0, ζj) ∂θj + ∂ψd ,

which is linear and has constant coefficients, as customary in weakly nonlinear geometric optics,
see for example [Rau12, Section 9.4]. The subject of the following part is to study this operator
in order to rewrite equations (5.6) in an equivalent manner. Before that the WKB cascades on
the boundary and at initial time are determined.

5.1.2. WKB cascade on the boundary. Since we want the formal series (4.1) to satisfy the bound-
ary condition

B uε,app|xd=0 = ε gε,

the profiles (Uk)k>1 must verify, using variables (z′, θ), the following boundary conditions

(B U1)|xd=0,ψd=0 = G

(B Uk)|xd=0,ψd=0 = 0, k > 2.

5.1.3. Initial conditions. In a similar manner, the profiles (Uk)k>1 must satisfy the following
initial conditions

(Uk)|t60 = 0, k > 1.
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5.2. Resolution of the fast problem L(∂θ, ∂ψd)U = H. In this part we seek to resolve in
the formal trigonometric series framework the equation

L(∂θ, ∂ψd)U = H,

and more precisely, to formally determine the kernel and range of the operator L(∂θ, ∂ψd). We
follow, in a formal manner, the analysis of [Les07, Part 3]. Thus we consider U writing

U(z, θ, ψd) =
∑

n∈Zm

∑

ξ∈R

Uosc
n,ξ (z) e

in·θ ei ξ ψd +
∑

n∈Zm

U ev
n (z, ψd) e

in·θ,

and H writing

H(z, θ, ψd) =
∑

n∈Zm

∑

ξ∈R

Hosc
n,ξ(z) e

in·θ ei ξ ψd +
∑

n∈Zm

Hev
n
(z, ψd) e

in·θ,

where, for all n in Zm, the sum in ξ is countable. Then, by definition of the fast operator
L(∂θ, ∂ψd), we get

L(∂θ, ∂ψd)U(z, θ, ψd) =
∑

n∈Zm

∑

ξ∈R

i L̃
(
0, (n · ζ, ξ)

)
Uosc
n,ξ (z) e

in·θ ei ξ ψd

+
∑

n∈Zm

{
i L̃

(
0, (n · ζ, 0)

)
+ ∂ψd

}
U ev
n (z, ψd) e

in·θ,

where we recall that ζ refers to the m-tuple of elements of Rd given by ζ = (ζ1, . . . , ζm).
Therefore, the profile U is a solution to L(∂θ, ∂ψd)U = H if and only if, for all n in Zm and for
all ξ in R, we have

i L̃
(
0, (n · ζ, ξ)

)
Uosc
n,ξ (z) = Hosc

n,ξ(z),(5.7a)

and
(
i L̃

(
0, (n · ζ, 0)

)
+ ∂ψd

)
U ev
n (z, ψd) = Hev

n (z, ψd).(5.7b)

For n in Zm and for ξ in R, equation (5.7a) admits a solution if and only if Hosc
n,ξ belongs to

the range of the matrix L̃(0, (n · ζ, ξ)), that is to say, according to Definition 2.6, the kernel
ker π̃(n·ζ,ξ). According to Definition 2.6 of the partial inverse Qα, every solution is therefore of
the form

Uosc
n,ξ = Xn,ξ − iQ(n·ζ,ξ)Ad(0)H

osc
n,ξ ,

with Xn,ξ an element of Imπ(n·ζ,ξ), and thus satisfies

Uosc
n,ξ = π(n·ζ,ξ)U

osc
n,ξ − iQ(n·ζ,ξ)Ad(0)H

osc
n,ξ .

As for it, the differential equation (5.7b) admits a formal solution for every n in Zm. For n = 0,
the solution is formally given by

U ev
0
(z, ψd) = −

∫ +∞

ψd

Hev
0
(z, s) ds,

and, for n in Zm \ {0}, according to Duhamel’s principle, by

U ev
n
(z, ψd) =e

ψdA(n·ζ)Πe
CN

(n · ζ)U ev
n
(z, 0) +

∫ ψd

0
e(ψd−s)A(n·ζ)Πe

CN
(n · ζ)Hev

n
(z, s) ds(5.8)

−
∫ +∞

ψd

e(ψd−s)A(n·ζ)
(
I −Πe

CN
(n · ζ)

)
Hev

n (z, s) ds,

noting that i L̃
(
0, (n ·ζ, 0)

)
= −A(n ·ζ). Indeed, according to Assumption 5, the frequency n ·ζ

is not glancing and the projector Πe
CN

(n · ζ) is thus well defined. The Duhamel’s principle then
applies separately to Πe

CN
(n · ζ)U ev

CN
and (I −Πe

CN
(n · ζ))U ev

CN
. The first term of the right-hand

side of (5.8) is therefore well-defined, and the integral of the second one converges since, according

to Proposition 6.16 proved in appendix, the matrix etA(n·ζ)Πe
CN

(n ·ζ) is bounded by a decaying
exponential for t > 0. However we do not know if the integral of the third term converges.
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Indeed, Hev
n is only converging to zero at infinity, and the matrix etA(n·ζ) (I − Πe

CN
(n · ζ)) is

simply bounded for t 6 0, according to Proposition 6.16. The issue is essentially the same for
the integral defining U ev

0
. The following result is deduced from this analysis.

Lemma 5.1 ([Les07, Theorem 2.14]). The equation L(∂θ, ∂ψd)U = H admits a solution in the

framework of formal trigonometric series if and only if ẼiH = 0, and every solution is of the
form

U = EU +QH,

where projectors E and Ẽi and operator Q are formally defined further on. In particular we
have

kerL(∂θ, ∂ψd) = ImE and ImL(∂θ, ∂ψd) = ker Ẽi.

If U is given by

U(z, θ, ψd) =
∑

n∈Zm

∑

ξ∈R

Uosc
n,ξ (z) e

in·θ ei ξ ψd +
∑

n∈Zm

U ev
n (z, ψd) e

in·θ,

then Ẽi U is defined as

(5.9) Ẽi U(z, θ, ψd) :=
∑

n∈Zm

∑

ξ∈R

π̃(n·ζ,ξ)U
osc
n,ξ (z) e

i n·θ ei ξ ψd ,

EU as

EU(z, θ, ψd) :=
∑

n∈Zm

∑

ξ∈R

π(n·ζ,ξ) U
osc
n,ξ (z) e

i n·θ ei ξ ψd(5.10)

+
∑

n∈Zm\{0}

eψdA(n·ζ)Πe
CN

(n · ζ)U ev
n
(z, 0) ei n·θ,

and QU as

QU(z, θ, ψd) := −
∑

n∈Zm

∑

ξ∈R

iQ(n·ζ,ξ)Ad(0)U
osc
n,ξ (z) e

in·θ ei ξ ψd −
∫ +∞

ψd

U ev
0 (z, s) ds

+
∑

n∈Zm\{0}

(∫ ψd

0
e(ψd−s)A(n·ζ)Πe

CN
(n · ζ)U ev

n (z, s) ds

−
∫ +∞

ψd

e(ψd−s)A(n·ζ)
(
I −ΠeCN (n · ζ)

)
U ev
n (z, s) ds

)
ein·θ.

Note that, for now, the operator Q and the projectors E and Ẽi are only formally defined.

The projectors E and Ẽi, that are the only one involved in the leading profile equations, can be
defined in the space Ps,T , and this result will constitute a part of the following section. However,
the operator Q cannot be rigorously defined in the functional framework used here (the issues
are the absence of some small divisor control - in the same manner as in [JMR95], as well as a
lack of exponential decay for the evanescent profiles).

5.3. System of equations satisfied by the leading profile. According to expressions (5.6a)
and (5.6b) of the amplitudesW0 andW1, and using the previous Lemma 5.1, we get the following
system of equations for the leading profile U1, simply denoted from now on by U :

EU = U(5.11a)

Ẽi
[
L̃(0, ∂z)U +

m∑

j=1

L̃1(U, ζj) ∂θjU
]
= 0(5.11b)

B U|xd=0,ψd=0 = G(5.11c)

U|t60 = 0.(5.11d)
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We note that the leading profile U1 is polarized, in the sense that it satisfies equation (5.11a),
so according to Formula (5.10) defining projector E, only the characteristic frequencies occur in
its Fourier expansion. We shall see in the next section that the oscillating part Uosc of profile
U satisfies the problem

EUosc = Uosc(5.12a)

Ẽi
[
L̃(0, ∂z)U

osc +
m∑

j=1

L̃1(U
osc, ζj) ∂θjU

osc
]
= 0(5.12b)

B
(
Uosc + U ev

)
|xd=0,ψd=0

= G(5.12c)

Uosc
|t60 = 0.(5.12d)

The question is to know whether or not boundary condition (5.12c) determines on its own the
trace Uosc

|xd=0,ψd=0. As already explained in [CGW11] and [CW17], the answer depends on the

existence of a resonance between two incoming frequencies that generates an outgoing frequency.
Such a resonance pattern is excluded by Assumption 7. In this case the boundary condition
(5.12c) also determines the trace U ev

|xd=0,ψd=0, which, according to the polarization type condition,

immediately leads to the construction of the evanescent part of U .

6. Construction of the leading profile

Now that the system that must be verified by the leading profile U has been formally deter-
mined, we are in position to construct a solution to it. We begin in a first part by a discussion
about the different types of resonances that may appear in the system. In particular, the tech-
nical assumption is made that the resonances for which the lack of symmetry is not controlled
are in finite number. This assumption is made to deal with the lack of symmetry in the reso-
nances terms compared to the case of [JMR95]. In a second part, the projectors appearing in
system (5.11) as well as some results of section 5 are made rigorous, using the small divisors
Assumption 6. Then we proceed to the three main steps of the proof, namely the decoupling
of system (5.11), derivation of energy estimates for the linearized systems and construction of
the solution. First step is achieved in section 6.3 and consists in reducing the system (5.11)
to a system for the evanescent part, a system for the oscillating incoming resonant part and a
system for each oscillating incoming non-resonant part. Writing equation (5.11b) in extension
with modes, we isolate the system satisfied by the mean value to show that it is zero. Then it
is proven, using an energy estimate on the oscillating outgoing part, that every outgoing mode
is zero. To obtain this estimate, we use a scalar product defined only for profiles with bounded
xd-support. Therefore we need to show beforehand that a solution to (5.11) propagates in the
normal direction with finite velocity. The proof of this result is postponed after the introduction
of the techniques used in it, in section 6.4. Finally, using the fact that incoming modes are zero,
the boundary condition (5.11c) can be decoupled for each evanescent and incoming oscillating
mode, which will conclude the decoupling of the system. The derivation of a priori estimates
without loss of derivatives is performed in sections 6.4 and 6.5, one for the resonant part and
one for each non-resonant part, namely Burgers type equations. Each non-resonant mode must
be treated separately to avoid a factor unbounded with respect to the frequency, but part 6.5
presents no additional difficulty since it reuses techniques displayed in the previous one. The
derivation of a priori estimates for the linearized oscillating resonant system is presented in sec-
tion 6.4, beginning by the L2 estimate. It is obtained taking the incoming modes suited scalar
product between the linearized propagation equation and a modified profile. Four terms need to
be addressed, the transport and Burgers type (corresponding to self-interaction) ones are treated
classically (with an integration by part and using symmetry in the self-interaction terms), while
the two resonant ones are handled using the technical assumption on resonance terms. More
precisely this assumption asserts that these resonance terms (except for a finite number of them,
that are treated separately) are such that the lack of symmetry in it is controlled in a way that
the techniques used for the Burgers type terms can be adapted. The same method for energy
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estimates is used with a different scalar product to prove the finite speed propagation in this
section. Then the estimates for derivatives are obtained classically using commutator estimates.
Section 6.6 is devoted to construction of the solution. The oscillating part is constructed using
an usual procedure which is not detailed, and consists in proving existence of a linearized so-
lution with a finite difference scheme using the a priori estimates previously derived, and then
existence of the sought solution using an iterative scheme. Uniqueness is deduced from the a
priori estimates. As for the evanescent part, its expression is prescribed by a polarization type
condition, and we prove that the constructed profile belongs to the space of evanescent profiles.
It will achieve the proof of Theorem 4.1, and finally section 6.7 draws a conclusion and some
perspectives.

6.1. Resonance coefficient and additional assumption. The sets defined below permit to
gather the characteristic frequencies according to collinearity.

Definition 6.1. We consider the subset of Zm\{0}, denoted by BZm , constituted of all m-tuples
of coprime integers of which the first nonzero term is positive:

BZm :=

{
(n1, . . . , nm) ∈ Zm \ {0}

∣∣∣∣
n1 ∧ · · · ∧ nm = 1,

∃k ∈ {0, . . . ,m− 1} , n1, . . . , nk = 0, nk+1 > 0

}
.

One can verify that for all n of Zm \ {0}, there exists a unique element n0 of BZM and a unique
nonzero integer λ such that n = λn0.

Then we introduce the following notation for real characteristic frequencies lifted from fre-
quencies on the boundary.

Definition 6.2. For n in Zm \ {0}, we denote by C(n) the finite set of real numbers ξ such that
the frequency (n · ζ, ξ) is real and characteristic, namely

C(n) := {ξ ∈ R | (n · ζ, ξ) ∈ C} .
We also denote by Cin(n) (resp. Cout(n)) the set of real numbers ξ such that the frequency (n·ζ, ξ)
is real, characteristic and incoming (resp. outgoing), namely

Cin(n) = {ξj(n · ζ) | j ∈ I(n · ζ)} , Cout(n) = {ξj(n · ζ) | j ∈ O(n · ζ)} ,
with notations of Proposition 2.16.

We recall that according to Assumption 5, there is no glancing frequency in F , so the disjoint
union

C(n) = Cin(n) ∪ Cout(n)
is satisfied for all n in Zm \ {0}. All real characteristic frequencies have been considered here,
but there may also exist non-real characteristic frequencies lifted from n · ζ.
Remark 6.3. One can check that, according to Remark 2.17, the sets C, Cin and Cout are homo-
geneous of degree 1. Thus, if n belongs to Zm \ {0} and ξ to C(n), and if n0 in BZm and λ in Z∗

are such that n = λn0, then there exists ξ0 in C(n0) such that ξ = λ ξ0.

We now introduce some notations for the resonances.

Definition 6.4. For n in Zm \ {0} and ξ in C(n), we denote by E(n, ξ) the vector of the basis
E1, . . . , EN of CN given by (2.8) that generates the line kerL

(
0, (n · ζ, ξ)

)
.

Remark 6.5. Note that for n in Zm \ {0}, ξ in C(n) and λ in Z∗, since the linear subspaces
kerL

(
0, (n ·ζ , ξ)

)
and kerL

(
0, (λn ·ζ , λξ)

)
are equal, we infer E(n, ξ) = E(λn, λξ), so the vector

E(n, ξ) is homogeneous of degree 0.

The following definition is based on [Rau12, Chapter 11].

Definition 6.6. Let np, nq be two elements of Zm \ {0}, and let (ξp, ξq) in C(np) × C(nq) be
such that the frequency

(np · ζ, ξp) + (nq · ζ, ξq) =: (nr · ζ, ξr)
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is real and characteristic (i.e. such that there is a resonance). Then the resonance coefficient
Γ
(
(np, ξp), (nq, ξq)

)
is defined by the equation

π̃(nr ·ζ,ξr) L̃1

(
E(np, ξp),nq · ζ

)
E(nq, ξq) = Γ

(
(np, ξp), (nq, ξq)

)
π̃(nr ·ζ,ξr)E(nr, ξr).

This coefficient exists by definition of the projectors π̃k, for k = 1, . . . , N and according to
Lemma 2.15.

Remark 6.7. i) Since all quantities involved in the definition of Γ are homogeneous of degree
0 or 1, the coefficient Γ is homogeneous of degree 1, i.e. for all np, nq in Zm \ {0}, (ξp, ξq)
in C(np)× C(nq) such that the frequency (np · ζ, ξp) + (nq · ζ, ξq) is real characteristic (that
is such that there is a resonance) and for all λ in Z∗, we have

Γ
(
(λnp, λξp), (λnq, λξq)

)
= λΓ

(
(np, ξp), (nq, ξq)

)
.(6.1)

By definition and for the same reason, we also have, for n0 in Zm \{0} and ξ0 in C(n0), and
for λ1, λ2 in Z∗,

(6.2) Γ
(
λ1(n0, ξ0), λ2(n0, ξ0)

)
= λ2 Γ

(
(n0, ξ0), (n0, ξ0)

)
.

ii) Since according to Remark 2.7 the projectors π̃α are bounded and the vectors E(n, ξ) are
of norm 1, for all n in Zm \ {0} and all ξ in C(n), we have

∣∣Γ
(
(n, ξ), (n, ξ)

)∣∣ 6 C
|n|∣∣π̃(n·ζ,ξ)E(n, ξ)

∣∣ .

Therefore, according to the lower bound (2.26) of Lemma 2.22 and the small divisors As-
sumption 6, for all n in Zm \ {0} and all ξ in C(n), we have

(6.3)
∣∣Γ
(
(n, ξ), (n, ξ)

)∣∣ 6 C|n|h,
where h is an integer larger than (3 + a1)/2 with notation of Assumption 6.

iii) The quantity π̃(nr ·ζ,ξr) L̃1

(
E(np, ξp),nq · ζ

)
E(nq, ξq) being homogeneous of degree 1 with

respect to nq, the resonance coefficient Γ
(
(np, ξp), (nq, ξq)

)
formally corresponds to a partial

derivative with respect to the fast tangential variables, applied to the profile associated with
the frequency (nq · ζ, ξq).

The coefficients Γ defined above shall appear in the computations to obtain a priori estimates
for system (5.11). In particular, when these coefficients present some symmetry property, the
associated resonance is easy to control in the a priori estimates. Thus we discriminate the
resonances satisfying this symmetry property from the others.

Definition 6.8. Fix a constant C0 > 0. Let nr be in BZm, and ξr in C(nr). We consider the set
of 7-tuples (λp, λq, λr,np,nq, ξp, ξq) with λp, λq, λr in Z∗, np,nq in BZm , (ξp, ξq) in C(np)×C(nq),
(np · ζ, ξp) and (nq · ζ, ξq) non collinear and λp, λq, λr coprime numbers, that resonate to give
the resonance λr (nr · ζ, ξ) in the following way

λp (np · ζ, ξp) + λq (nq · ζ, ξq) = λr (nr · ζ, ξr).
This set is written as the disjoint union

R1(nr, ξr) ⊔R2(nr, ξr),

where the sets R1(nr, ξr) and R2(nr, ξr) are defined as follows.

i) The set R1(nr, ξr) is constituted of 7-tuples (λp, λq, λr,np,nq, ξp, ξq) satisfying

(6.4)
∣∣Γ
(
(λp np, λp ξp), (λq nq, λq ξq)

)
+ Γ

(
(λp np, λp ξp), (−λr nr,−λr ξr)

)∣∣ 6 C0

∣∣(λp np, λp ξp)
∣∣

where C0 > 0 is the constant which have been fixed in the beginning and which does not
depend on λp, λq, λr, np, nq, nr, ξp, ξq, ξr. These resonances are said to be of type 1.

ii) The 7-tuples (λp, λq, λr,np,nq, ξp, ξq) which do not satisfy the previous property constitute
the set of type 2 resonances, denoted by R2(nr, ξr).

Remark 6.9. i) Note that the sets R1(n, ξ) and R2(n, ξ) depend on the constant C0 > 0 fixed
at the beginning, although this dependence is not indicated.
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ii) According to Assumption 7, note that if the frequency (n ·ζ, ξ) is outgoing (resp. incoming),
then both sets R1(n, ξ) and R2(n, ξ) are constituted only of 7-tuples corresponding to
outgoing (resp. incoming) frequencies.

iii) Note that since the coefficients Γ are not symmetrical, the type of a resonance

λp (np · ζ, ξp) + λq (nq · ζ, ξq) = λr (nr · ζ, ξr),
depends on the way it is written. However, since condition (6.4) is symmetrical in (q, r),
the resonance

λp (np · ζ, ξp) + λq (nq · ζ, ξq) = λr (nr · ζ, ξr),
is of type 1 if and only if the resonance

λp (np · ζ, ξp)− λr (nr · ζ, ξr) = −λq (nq · ζ, ξq),
is of type 1.

iv) Also note that if a resonance of the form

λp (np · ζ, ξp) + λq (nq · ζ, ξq) = λr (nr · ζ, ξr),
holds, then for k in Z∗, the following resonance relation is also satisfied

k λp (np · ζ, ξp) + k λq (nq · ζ, ξq) = k λr (nr · ζ, ξr).
This explains the choice made in Definition 6.8 to consider only 3-tuples (λp, λq, λr) of
coprime integers and m-tuples np, nq and nr of BZm .

The previous definition leads to the last assumption of this work. It is made for technical
reasons, but, up to our knowledge, it is not a necessary assumption.

Assumption 8. There exists a constant C0 > 0 such that the sets R1(n, ξ) and R2(n, ξ), for n

in Zm \ {0} and ξ in C(n), defined in Definition 6.8 satisfy the two following properties.

a) The sets of incoming resonances of type 2 and outgoing resonances of types 1 and 2
⋃

n∈BZm

ξ∈Cin(n)

R2(n, ξ),
⋃

n∈BZm

ξ∈Cout(n)

(
R1(n, ξ) ∪R2(n, ξ)

)
,

are finite sets.
b) For all incoming frequency (n, ξ) of BZm × Cin(n) such that the set R1(n, ξ) is nonempty,

the following lower bound holds

(6.5)
∣∣π̃(n·ζ,ξ)E(n, ξ)

∣∣ > 1

C0
.

Remark 6.10. i) The self-interaction between two collinear frequencies always constitute a
resonance, but these terms should not be an issue in the analysis, since they induce terms of
Burgers type, which are commonly treated in the estimates. However the resonances of type
2 are difficult to control, that is why a finiteness assumption is made on this set, whereas
property (6.4) satisfied by resonances of type 1 allows to treat an infinite number of them
(to the prize of a uniform control). Such an infinity of resonances appears irremediably in
Example 2.1 of compressible isentropic Euler equations in dimension 2. It constitute one
of the main additional difficulty addressed here in comparison to the monophase case of
[CGW11].

ii) We already know that for (n, ξ) in BZm×C(n), the vector π̃(n·ζ,ξ)E(n, ξ) is bounded, accord-
ing to Remark 2.7, and that it is allowed to go to zero but in a controlled way, according to
estimate (2.26) and Assumption 6. In the case of an infinite number of resonances, namely
for incoming resonances of type 1, we also need to make sure that these vectors do not go
to zero, for a technical reason explained below. This is why we assume the uniform lower
bound (6.5) of Assumption 8. This assumption excludes the possibility of the existence of
a sequence of frequencies (n, ξ) such that R1(n, ξ) is nonempty, converging to the glancing
set G.
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According to Assumption 7, it has already been established that the sets of incoming and
outgoing frequencies F in and Fout defined in (3.2) and (3.3) do not resonate with each other.
This decomposition of the frequencies set in sets that do not resonate with each other is now to
be refined, which will allow to decouple the studied system according to these sets.

Definition 6.11. In this definition we confuse the frequency (n ·ζ, ξ) with the couple (n, ξ). Let
C0 > 0 be the constant fixed in Assumption 8. We denote by Fout

res the set of outgoing frequencies
(n, ξ) of BZm×Cout(n) involved in resonances of type 1 or 2, namely such that R1(n, ξ)∪R2(n, ξ)
is nonempty. Then the following disjoint union holds

(6.6) {(n, ξ) ∈ BZm × Cout(n)} = Fout
res ⊔

⊔

(n,ξ)∈(BZm×Cout(n))\Fout
res

{(n, ξ)} ,

where the set involved in the disjoint union do not resonate with each other. The set F in
res is

defined in a similar way for incoming frequencies, so that the following decomposition holds

(6.7) {(n, ξ) ∈ BZm × Cin(n)} = F in
res ⊔

⊔

(n,ξ)∈(BZm×Cin(n))\F in
res

{(n, ξ)} ,

where the set involved in the disjoint union do not resonate with each other.

Remark 6.12. In Assumption 8, the bound (6.5) a priori applies to couples (n, ξ) such that the
set R1(n, ξ) is nonempty. But since according to Assumption 8 there is only a finite number
of type 2 resonances, we can assume without loss of generality that this bound also applies to
couples (n, ξ) such that R1(n, ξ) is empty but R2(n, ξ) is not, namely to all elements of F in

res.
Therefore for all (n, ξ) in F in

res, the following bound holds

(6.8)
∣∣Γ
(
(n, ξ), (n, ξ)

)∣∣ 6 C|n|.
Note that the previous estimate differs from (6.3) by a linear control and not an algebraic control
of degree h.

Finally the projectors analogous to E and Ẽi, selecting only the incoming resonant frequencies,
are defined, and we verify after that Assumption 8 for the Euler equations example considered
in this paper.

Definition 6.13. For all formal trigonometric series U writing

U(z, θ, ψd) =
∑

n∈Zm

∑

ξ∈R

Uosc
n,ξ (z) e

in·θ ei ξ ψd +
∑

n∈Zm

U ev
n (z, ψd) e

in·θ,

the series Ẽi
in

res U is defined as

(6.9) Ẽi
in

res U(z, θ, ψd) :=
∑

(n0,ξ0)∈F in
res

∑

λ∈Z∗

π̃(λn0·ζ,λξ0) U
osc
λn0,λξ0(z) e

i λn0·θ ei λξ0 ψd ,

and Ein
res U as

Ein
resU(z, θ, ψd) :=

∑

(n0,ξ0)∈F in
res

∑

λ∈Z∗

π(λn0·ζ,λξ0) U
osc
λn0,λξ0(z) e

i λn0·θ ei λξ0 ψd .(6.10)

Example 6.14. We return to Example 2.1 of compressible isentropic Euler equations in dimension
2, for which we check the last assumption of this work, namely Assumption 8 about the control
of resonances. Recall the notations and results of Example 2.1 and those after, and notably the
analysis of the resonances made in Example 3.1, and consider a Mach number M satisfying the
previously made assumptions. Is has been shown that ifM2 is not an algebraic number of degree
less than 4 in Q[δ], then the only resonances (except for the self-interactions) occurring are those
involving the linear frequency α3(ζ), which are in infinite number, even with collinearity, and
between incoming frequencies. It will be shown that there exists a constant C0 > 0 such that
these resonances satisfy property (6.4) and such that all frequencies α3(ζp,q) satisfy the lower
bound (6.5), proving that system (2.4) verifies Assumption 8. First we look for the coefficients
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Γ for this type of resonances. Consider (p, q) and (r, s) in Z2 \ {0}. The aim is to determine the
coefficient

Γ
(
(p, q), ξ3(ζp,q), (r, s), ξ3(ζr,s)

)

relative to the resonance

α3(ζp,q) + α3(ζr,s) = α3(ζp+r,q+s),

denoted more briefly by Γ
(
(p, q), (r, s)

)
. Since, for ζ in R2 \{0}, the real characteristic frequency

α3(ζ) = (τ, η, ξ3(ζ)) satisfies τ = τ2
(
η, ξ3(ζ)

)
, we obtain

E
(
(p, q), ξ3(ζp,q)

)
= E2

(
ηp,q, ξ3(ζp,q)

)
, E

(
(r, s), ξ3(ζr,s)

)
= E2

(
ηr,s, ξ3(ζr,s)

)
,

E
(
(p + r, q + s), ξ3(ζp+r,q+s)

)
= E2

(
ηp+r,q+s, ξ3(ζp+r,q+s)

)
,

where E2(η, ξ) is the vector of basis (2.8) of CN given in this example by

E2(η, ξ) :=
1√

η2 + ξ2




0

ξ

−η


 , (η, ξ) ∈ R2 \ {0} .

Thus the associated vector of basis (2.9) is given by

A2(V0)
−1E2(η, ξ) =

1

(u20 − c20)
√
η2 + ξ2




−η v0
ξ
u20−c

2
0

u0

−η u0


 , (η, ξ) ∈ R2 \ {0} .

Also computing the vectors E1(η, ξ) and E3(η, ξ) for (η, ξ) ∈ R2 \ {0}, it is determined that
the projector π̃((p+r,q+s)·ζ,ξ3(ζp+r,q+s)) occurring in the coefficient Γ

(
(p, q), (r, s)

)
is given in this

example by π̃2(ηp+r,q+s, ξ3(ζp+r,q+s)) where, for (η, ξ) in R2 \ {0},

π̃2(η, ξ) =
1

u0(u20 − c20)(η
2 + ξ2)




−u0 c20 η2 −u20 v0 η ξ u20 v0 η
2

η ξ c20 (u
2
0 − c20)/v0 ξ2 u0 (u

2
0 − c20) −η ξ u0 (u20 − c20)

−η2 c20 u20/v0 −η ξ u30 u30 η
2



.

Thus the vector π̃2(η, ξ)E2(η, ξ) is given by u0A2(V0)
−1E2(η, ξ), for (η, ξ) in R2\{0}. It ensures

in particular that Assumption 8 is verified, since the following uniform lower bound holds

∣∣π̃α3(ζp,q)E
(
(p, q), ξ3(ζp,q)

)∣∣ =
∣∣π̃2

(
ηp,q, ξ3(ζp,q)

)
E2

(
ηp,q, ξ3(ζp,q)

)∣∣

=
∣∣u0A2(V0)

−1E2

(
ηp,q, ξ3(ζp,q)

)∣∣ > C
∣∣E2

(
(p, q), ξ3(ζp,q)

)∣∣ = C.

Returning to the determination of coefficients Γ
(
(p, q), (r, s)

)
, by computing differentials dÃi(V0),

we finally get

L̃1

(
E2

(
ηp,q, ξ3(ζp,q)

)
, ζr,s

)
E2

(
ηr,s, ξ3(ζr,s)

)

=
τp,q ηr,s − τr,s ηp,q√

η2p,q + τ2p,q/u
2
0

√
η2r,s + τ2r,s/u

2
0




v0 ηr,s/[u0 (u
2
0 − c20)]

τr,s/u
3
0

ηr,s/(u
2
0 − c20)



.
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The formula ξ3(ζ) = −τ/u0, for ζ = (τ, η) in R2 \ {0} has been used here. Then we have

π̃2(ηp+r,q+s, ξ3(ζp+r,q+s)) L̃1

(
E2

(
ηp,q, ξ3(ζp,q)

)
, ζr,s

)
E2

(
ηr,s, ξ3(ζr,s)

)

=
(τp,q ηr,s − τr,s ηp,q)(τp+r,q+s τr,s + u2 ηp+r,q+s ηr,s)

u20 (u
2
0 − c20)

√
η2p,q + τ2p,q/u

2
0

√
η2r,s + τ2r,s/u

2
0

(
η2p+r,q+s + τ2p+r,q+s/u

2
0

)




ηp+r,q+s v0/u0

τp+r,q+s (u
2
0 − c20)/u

3
0

ηp+r,q+s



.

We deduce from the relation π̃2(η, ξ)E2(η, ξ) = u0A2(V0)
−1E2(η, ξ) the following formula for

the pursued coefficient Γ
(
(p, q), (r, s)

)
:

(6.11) Γ
(
(p, q), (r, s)

)
= − (τp,q ηr,s − τr,s ηp,q)(τp+r,q+s τr,s + u20 ηp+r,q+s ηr,s)

u40

√
η2p,q + τ2p,q/u

2
0

√
η2r,s + τ2r,s/u

2
0

√
η2p+r,q+s + τ2p+r,q+s/u

2
0

.

We now check estimate (6.4) with these coefficients. Let (p, q), (r, s) and (t, w) be in Z2 \ {0}
such that (p, q) + (r, s) + (t, w) = (0, 0). One can verify, using the formulas τp,q = c0 (p+ δq) η0,
ηp,q = (p+ q) η0, p+ r = −t and q + s = −w, that we get

Γ
(
(p, q), (r, s)

)

=
(1− δ)(ps − qr)

(
(t+ δw) (r + δs) +M2 (t+ w) (r + s)

)
√

(p+ q)2 + (p+ δq)2/M2
√

(r + s)2 + (r + δs)2/M2
√

(t+ w)2 + (t+ δw)2/M2

η0 c
3
0

u40
.

Since ps− qr = −(pw − qt), we finally have

Γ
(
(p, q), (r, s)

)
+ Γ

(
(p, q), (t, w)

)
= 0,

so estimate (6.4) is in particular trivially satisfied and therefore so is Assumption 8. Note that
in this example, the set Fout

res is empty and the set F in
res is given by

F in
res = {α3(ζ) | ζ ∈ Fb} .

It concludes the analysis in this paper of the example of compressible isentropic Euler equations
in dimension 2, which, with the chosen parameters, satisfies all assumptions of this work.

Remark 6.15. Note that the coefficient Γ determined above corresponds to the one in [Rau12,
(11.5.9)].

In the following subsection, some rigorous results on projectors E and Ẽi will be proved, using
the small divisors Assumption 6.

6.2. Rigorous definition of projectors E, Ẽi, Ein
res and Ẽi

in

res. This part follows [JMR95,

Section 6.2]. Before considering the projectors E, Ẽi, Ein
res and Ẽi

in

res, we state the following
controls over spectral projectors, that will be used to rigorously define the projectors E and
Ein

res. The proof of these controls uses notations and results from the one of Proposition 2.21,
and is therefore postponed after it, in Appendix A.

Proposition 6.16. Under Assumption 6, there exists a constant c1 > 0 and a real number b1
such that, for all ζ in Fb \ {0}, the following estimates hold

∣∣∣etA(ζ) Πe−(ζ)
∣∣∣ 6 c1 e

−c1 t |ζ|−b1 6 c1, ∀t > 0,(6.12a)

∣∣∣etA(ζ) Πe
CN

(ζ)
∣∣∣ 6 c1 |ζ|b1 e−c1 t |ζ|

−b1
, ∀t > 0,(6.12b)

∣∣∣etA(ζ)
(
I −Πe

CN
(ζ)

)∣∣∣ 6 c1 |ζ|b1 , ∀t 6 0.(6.12c)
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We are now in position to rigorously define projectors E and Ẽi. The result concerning the
oscillating part comes from [JMR95, Proposition 6.2.1] and [CGW11, Proposition 2.2], but the
proof is recalled here. The result concerning the evanescent part is simpler, and reduces to prove
that some series converges.

Lemma 6.17 ([JMR95, Proposition 6.2.1]). For all T > 0 and s > 0, the projectors Ẽi and
E defined by (5.9) and (5.10) on the space of trigonometric polynomials each admit a unique
extension from the space Posc

s,T to itself. Moreover, for T0 > 0, their norm is uniformly bounded

with respect to T in ]0, T0].
On an other hand, for T > 0 and s > 0, the projector E is well-defined from the space

Pev
s+⌈b1⌉,T

to the space Pev
s,T . Furthermore it is uniformly bounded with respect to s and T . Recall

that b1 refers to the real number of Proposition 6.16.

Finally, for T > 0 and s > 0, the projectors Ẽi
in

res and Ein
res defined as (6.9) and (6.10) on the

space of trigonometric polynomials each admit a unique extension from the space Posc
s,T to itself.

Moreover, for T0 > 0, their norm is uniformly bounded with respect to T in ]0, T0].

Proof. First the oscillating case is investigated. We consider Uosc a trigonometric polynomial
writing

Uosc(z, θ, ψd) =
∑

n∈Zm

∑

ξ∈R

Uosc
n,ξ (z) e

in·θ ei ξ ψd ,

where each sum in ξ is finite, and we denote, for n ∈ Zm,

(6.13) Uosc
n

(z, ψd) :=
∑

ξ

Uosc
n,ξ (z) e

i ξ ψd .

According to formula (5.10) for the projector E and since the projectors πα are zero for every
noncharacteristic frequency α, we obtain, for n ∈ Zm,

EUosc
n

(z, ψd) =
∑

ξ∈C(n)

π(n·ζ,ξ)U
osc
n,ξ (z) e

i ξ ψd ,

so that, according to Remark 2.7 ensuring that the projectors πα are uniformly bounded,

|EUosc
n (z, ψd)|2 6 C N

∑

ξ∈C(n)

∣∣Uosc
n,ξ (z)

∣∣2 ,

using the fact that the cardinality of C(n) is at most N . On an other hand, according to (6.13),
for n in Zm and ξ in R, we have

Uosc
n,ξ (z) = lim

R→+∞

1

R

∫ R

0
Uosc
n

(z, ψd) e
−i ξ ψd dψd,

so that, using Cauchy-Schwarz inequality,

|EUosc
n (z, ψd)|2 6 C N2 lim

R→+∞

1

R

∫ R

0
|Uosc

n (z, ψd)|2 dψd.

Then Fatou’s lemma is applied to the sum with respect to n in Zm and the integration with
respect to z′ in ωT to get

∑

n∈Zm

‖EUosc
n

(., xd, ψd)‖2L2(ωT )
6 C N2 lim inf

R→+∞

1

R

∫ R

0

∑

n∈Zm

‖Uosc
n

(., xd, ψd)‖2L2(ωT )
dψd,

thus

‖EU(., xd, ., ψd)‖2L2(ωT×Tm) 6 C N2 sup
ψd>0

‖Uosc(., xd, ., ψd)‖2L2(ωT×Tm) ,

that is to say

‖EU‖E0,T 6
√
C N ‖U‖E0,T .

The projector E thus admits a uniformly bounded unique extension from Posc
0,T to Posc

0,T . The
result for the space Posc

s,T for s > 1 is obtained by observing that the projector E commutes with
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the partial derivatives with respect to z′ and θ. The same argument applies to the projector Ẽi,
which concludes the proof relative to the oscillating part.

Concerning the evanescent part of E, it must be proved that if U ev writing

U ev(z, θ, ψd) =
∑

n∈Zm

U ev
n
(z, ψd) e

in·θ

belongs to Pev
s+⌈b1⌉,T

, then EU ev is in Pev
s,T . By definition of the norm of Es,T and according to

the Parseval’s identity, we obtain

‖EU ev‖2Es,T = sup
xd>0,ψd>0

∑

n∈Zm\{0}

s∑

l=0

(1 + |n|2)s−l
∥∥∥eψdA(n·ζ)Πe

CN
(n · ζ)U ev

n
(., 0)

∥∥∥
2

Hl
+(ωT )

6 sup
xd>0,ψd>0

∑

n∈Zm\{0}

s∑

l=0

(1 + |n|2)s−l c21 |n · ζ|2 b1 ‖U ev
n
(., 0)‖2Hl

+(ωT )
,

according to estimate (6.12b) of Proposition 6.16 and recalling the notations of this result. It
leads to the following estimate

‖EU ev‖Es,T 6 C ‖U ev‖Es+⌈b1⌉,T
.

We investigate now the convergence towards zero in Hs(ωT × Tm) of the profile EU ev(xd, ψd),
for every fixed xd > 0. Consider ε > 0. Using the convergence of the following sum,

∑

n∈Zm\{0}

s∑

l=0

(1 + |n|2)s−l |n · ζ|2 b1 ‖U ev
n (., xd, 0)‖2Hl

+(ωT )
,

which is bounded by C ‖U ev‖2Es+⌈b1⌉,T
, there exists M > 0 such that

∑

|n|>M

s∑

l=0

(1 + |n|2)s−l |n · ζ|2 b1 ‖U ev
n (., xd, 0)‖2Hl

+(ωT )
6 ε.

Then we have

‖EU ev(xd, ψd)‖2Hs(ωT×Tm) =
∑

0<|n|6M

s∑

l=0

(1 + |n|2)s−l
∥∥∥eψdA(n·ζ)Πe

CN
(n · ζ)U ev

n (., 0)
∥∥∥
2

Hl
+(ωT )

+
∑

|n|>M

s∑

l=0

(1 + |n|2)s−l
∥∥∥eψdA(n·ζ)Πe

CN
(n · ζ)U ev

n
(., 0)

∥∥∥
2

Hl
+(ωT )

.

According to estimate (6.12b) of Proposition 6.16 and by construction of M , the second sum
of the right-hand side is less or equal to c21 ε. For the first one, according to the same estimate
(6.12b), we have

∑

0<|n|6M

s∑

l=0

(1 + |n|2)s−l
∥∥∥eψdA(n·ζ)Πe

CN
(n · ζ)U ev

n
(., 0)

∥∥∥
2

Hl
+(ωT )

6
∑

0<|n|6M

s∑

l=0

c21 (1 + |n|2)s−l |n · ζ|2 b1 e−2 c1 ψd |n·ζ|
−b1 ‖U ev

n
(., 0)‖2Hl

+(ωT )
.

The right-hand side is a finite sum of functions of ψd converging to zero at infinity, so there
exists B > 0 such that for |ψd| > B, the right-hand side is less or equal to ε. We get finally

‖EU ev(xd, ψd)‖2Hs(ωT×Tm) 6 (1 + c21) ε,

for all ψd such that |ψd| > B, and the aimed convergence follows. The profile EU ev thus satisfies
the condition of Definition 3.4 of the evanescent profiles of Pev

s,T , concluding the proof.

Concerning the projectors Ein
res and Ẽi

in

res, the proof is analogous to the one for the oscillating

part of E and Ẽ. �
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Now that the projectors E, Ẽi, Ein
res and Ẽi

in

res are well-defined, it can be proved that the
kernel in Ps,T of the fast operator L(∂θ, ∂ψd) is actually given by the range of the projector E.

Definition 6.18. For s > 0 and T > 0, we denote by Ns,T the range in Ps,T of Ps+⌈b1⌉,T

projected by E. We also denote N osc
s,T := Ns,T ∩ Posc

s,T and N ev
s,T := Ns,T ∩ Pev

s,T .

Lemma 6.19 ([JMR95, Lemma 6.2.3.]). The space Ns,T is the kernel in Ps,T of the operator
L(∂θ, ∂ψd).
Proof. Since Ns,T is equal to the kernel ker I −E in Ps,T , it must be shown that the equality of
kernels ker I − E = kerL(∂θ, ∂ψd) holds in Ps,T . Let U = Uosc + U ev be in kerL(∂θ, ∂ψd), and
write

U(z, θ, ψd) = U∗(z, ψd) +
∑

n∈Zm\{0}

Un(z, ψd) e
in·θ,

where Un decomposes in Ps,T = Posc
s,T ⊕Pev

s,T as Un = Uosc
n

+U ev
n

for all n in Zm \ {0}. Then one
gets the following differential equations,

∂ψd U
∗ = 0, and

(
−A(n · ζ) + ∂ψd

)
Un = 0, ∀n ∈ Zm \ {0} .

Thus, on one hand, it follows U∗(z, ψd) = U∗(z), which therefore belongs to Posc
s,T . On the

other hand, for every n in Zm, the amplitude Un admits the following expansion, according to
decomposition (2.25) of CN into subspaces stable under the action of A(n · ζ),

Un = Πe
CN

(n · ζ)Un +Πe,+
CN

(n · ζ)Un +
∑

ξ∈C(n)

π(n·ζ,ξ)Un,

where, recalling the notations of Definition 2.20, Πe
CN

(n · ζ)Un (resp. Πe,+
CN

(n · ζ)Un) belongs to
the stable (resp. unstable) elliptic component Ee−(n ·ζ) (resp. Ee+(n ·ζ)), and for ξ = ξj(n ·ζ) ∈
C(n), π(n·ζ,ξ)Un belongs to the subspace kerL

(
0, αj(n · ζ)

)
(recall that according to proposition

2.16, for j in I(n · ζ), we have Ej−(n · ζ) = kerL
(
0, αj(n · ζ)

)
, and a similar result holds for j in

O(n · ζ)). Using that A(n · ζ) = −iL̃(0,n · ζ) and the property of the projectors π(n·ζ,ξ), we get
the following differential equations for each part,

∂ψd
(
Πe

CN
(n · ζ)Un

)
= A(n · ζ)

(
Πe

CN
(n · ζ)Un

)
,(6.14a)

∂ψd
(
Πe,+

CN
(n · ζ)Un

)
= A(n · ζ)

(
Πe,+

CN
(n · ζ)Un

)
,(6.14b)

∂ψd
(
π(n·ζ,ξ)Un

)
= i ξ

(
π(n·ζ,ξ)Un

)
, ∀ξ ∈ C(n).(6.14c)

Resolving equation (6.14a), one get

Πe
CN

(n · ζ)Un(z, ψd) = eψdA(n·ζ)Πe
CN

(n · ζ)Un(z, 0),

which goes to zero as ψd goes to infinity, so belongs to Pev
s,T . In the same way, we get, with

(6.14b),

Πe,+
CN

(n · ζ)Un(z, ψd) = eψdA(n·ζ)Πe,+
CN

(n · ζ)Un(z, 0).

But since Πe,+
CN

(n · ζ) is the projector on the unstable elliptic component, if Πe,+
CN

(n · ζ)Un(z, 0)

is nonzero then Πe,+
CN

(n · ζ)Un is unbounded, so we have

Πe,+
CN

(n · ζ)Un = 0.

Finally, (6.14c) gives, for ξ in C(n),
π(n·ζ,ξ)Un(z, ψd) = ei ξ ψd π(n·ζ,ξ)Un(z, 0),

which belongs to Posc
s,T . To summarize, Un = Uosc

n
+ U ev

n
is given by

Uosc
n

(z, ψd) =
∑

ξ∈C(n)

π(n·ζ,ξ)Un(z, 0) e
i ξ ψd , U ev

n
(z, ψd) = eψdA(n·ζ)Πe,+

CN
(n · ζ)Un(z, 0),

so the equality EU = U clearly holds.
Conversely, if U ev = EU ev, it immediately leads to L(∂θ, ∂ψd)U ev = 0. On an other hand,

supposingUosc = EUosc, we consider a sequence (Uosc
ν )ν of trigonometric polynomials converging
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in Es+⌈b1⌉,T towards Uosc. By continuity of the projector E, the sequence of trigonometric
polynomials (EUosc

ν )ν converges in Es,T towards Uosc. But one can check immediately that
these trigonometric polynomials satisfy L(∂θ, ∂ψd)EUosc

ν = 0, then passing to the limit yields
to L(∂θ, ∂ψd)Uosc = 0. �

Remark 6.20. In the proof above, it has been proven in particular that if U = Uosc+U ev belongs
to N osc

s,T ⊕N ev
s,T , then the profile Uosc writes

(6.15) Uosc(z, θ, ψd) = U∗(z) +
∑

n∈Zm\{0}

∑

ξ∈C(n)

Uosc
n,ξ (z) e

in·θ ei ξ ψd ,

with, for n in Zm \ {0} and ξ in C(n), π(n·ζ,ξ)Uosc
n,ξ = Uosc

n,ξ , and the profile U ev writes

(6.16) U ev(z, θ, ψd) =
∑

n∈Zm\{0}

eψdA(n·ζ)Πe
CN

(n · ζ)U ev
n
(z, 0) ei n·θ.

The previous remark leads to the following result, which links the norm Cb(R+
ψd
, L2(ωT ×Tm))

of a profile of N osc
0,T and its incoming scalar product (3.12) with itself. This result will be used

in the following to deduce from a priori estimates on the scalar product a priori estimates on
the norm Posc

s,T . It is analogous to [JMR95, Lemma 6.2.4], in a weaker form (because of a lack of

symmetry in our context).

Lemma 6.21. There exists a constant C > 0 such that for every profile Uosc of N osc
0,T , we have,

for xd > 0,

C ‖Uosc‖2Cb(R+
ψd
,L2(ωT×Tm))

(xd) 6 〈Uosc |Uosc〉in (xd) 6 ‖Uosc‖2Cb(R+
ψd
,L2(ωT×Tm))

(xd).

Proof. The second inequality is obvious by definition of the scalar product 〈. | .〉in, since we have

〈Uosc |Uosc〉in (xd) = lim
R→+∞

1

R

∫ R

0
‖Uosc‖2L2(ωT×Tm) (xd, ψd) dψd 6 sup

ψd>0
‖Uosc‖2L2(ωT×Tm) (xd, ψd).

On the other hand, according to Remark 6.20, if Uosc belongs to N osc
0,T , then the profile writes

Uosc(z, θ, ψd) = U∗(z) +
∑

n∈Zm\{0}

∑

ξ∈C(n)

Uosc
n,ξ (z) e

in·θ ei ξ ψd ,

where, for n in Zm \ {0} and ξ in C(n), each amplitude satisfies Uosc
n,ξ = π(n·ζ,ξ)U

osc
n,ξ . The

Parseval’s identity then gives

‖Uosc‖2L2(ωT×Tm) (xd, ψd) = ‖U∗‖2L2(ωT )
+

∑

n∈Zm\{0}

∥∥∥∥∥∥

∑

ξ∈C(n)

Uosc
n,ξ (z) e

i ξ ψd

∥∥∥∥∥∥

2

L2(ωT )

.

Therefore, since for all n in Zm \ {0}, the set C(n) is of cardinality at most N , we have

‖Uosc‖2L2(ωT×Tm) (xd, ψd) 6 ‖U∗‖2L2(ωT )
+N

∑

n∈Zm\{0}

∑

ξ∈C(n)

∥∥Uosc
n,ξ

∥∥2
L2(ωT )

(xd)

6 C 〈Uosc |Uosc〉in (xd),
according to formula (3.15). The first inequality of Lemma 6.21 follows finally by passing to the
supremum in ψd > 0. �

6.3. Reducing the system. It is shown in this part that in every solution to system (5.11)
there occur only incoming modes (in particular every solution is of zero mean), and every solution
is supported in a finite interval in xd. We also show that system (5.11) decouples according to
the oscillating and the evanescent part, and even, for the oscillating part, according to the set
F in
res of resonant modes and each non resonant mode. More precisely, the following result is

proved. Recall that s0 is given by s0 = h+ (d+m)/2 where h is an integer greater or equal to
(3 + a1)/2 occurring in estimate (6.3), with a1 the real number of Assumption 6.
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Proposition 6.22. Consider T > 0, and s > s0. Every solution U in Ps,T of system (5.11) is
such that its oscillating part Uosc features only incoming modes. Furthermore, system (5.11) on
U = Uosc + U ev in Ps,T is equivalent to the following decoupled systems, the first one involving
the resonant incoming modes,

Ein
res U

osc
res = Uosc

res(6.17a)

Ẽi
in

res

[
L̃(0, ∂z)βTU

osc
res +

m∑

j=1

L̃1(βTU
osc
res , ζj) ∂θjβTU

osc
res

]
= 0(6.17b)

(
Uosc
res

)
|xd=0,ψd=0

= Hosc
res(6.17c)

(
Uosc
res

)
|t60

= 0,(6.17d)

then the system verified by each non resonant incoming mode, for (n0, ξ0) in
(
BZm × Cin(n0)

)
\

F in
res,

X̃(n0·ζ,ξ0)Sn0,ξ0 + Γ
(
(n0, ξ0), (n0, ξ0)

)
Sn0,ξ0∂ΘSn0,ξ0 = 0(6.18a)
(
Sn0,ξ0

)
|xd=0

= hn0,ξ0(6.18b)
(
Sn0,ξ0

)
|t60

= 0,(6.18c)

and finally the system for the evanescent part U ev,

EU ev = U ev(6.19a)

U ev
|xd=0,ψd=0 = Hev,(6.19b)

where, if the solution Uosc (occurring only incoming modes and being polarized) writes

Uosc(z, θ, ψd) =
∑

n0∈BZm

ξ0∈Cin(n0)

∑

λ∈Z∗

σλ,n0,ξ0(z) e
i λn0·θ ei λξ0 ψd E(n0, ξ0),

where σλ,n0,ξ0 are scalar functions, then the resonant part Uosc
res is given by

Uosc
res (z, θ, ψd) =

∑

(n0,ξ0)∈F in
res

∑

λ∈Z∗

σλ,n0,ξ0(z) e
i λn0·θ ei λξ0 ψd E(n0, ξ0),

and the scalar component Sn0,ξ0 : ΩT × T → C for each non resonant direction (n0, ξ0) in(
BZm × Cin(n0)

)
\ F in

res, is given by

Sn0,ξ0(z,Θ) :=
∑

λ∈Z∗

σλ,n0,ξ0(z) e
iλΘ,

where the function βT of xd, of class C∞, equals 1 on [0,V∗T ] and 0 on [2V∗T,+∞) (where V∗

has been defined in Lemma 2.14), and where Hosc
res , hn0,ξ0 for (n0, ξ0) in

(
BZm × Cin(n0)

)
\ F in

res,
and Hev are defined from G by the formulas

Hosc
res (z

′, θ) :=
∑

(n0,ξ0)∈F in
res

∑

λ∈Z∗

Π
j(λn0,λξ0)
− (λn0 · ζ)

(
B|E−(λn0·ζ)

)−1
Gλn0(z

′) eiλn0·θ,(6.20a)

hn0,ξ0(z
′,Θ) :=

∑

λ∈Z∗

〈
Π
j(λn0,λξ0)
− (λn0 · ζ)

(
B|E−(λn0·ζ)

)−1
Gλn0(z

′)
∣∣∣E(n0, ξ0)

〉
CN

eiλΘ,(6.20b)

Hev(z′, θ) :=
∑

n∈Zm\{0}

Πe−(n · ζ)
(
B|E−(n·ζ)

)−1
Gn(z

′) ein·θ,(6.20c)

where, for n in Zm\{0} and ξ in Cin(n), j(n, ξ) is the index such that ξ = ξj(n,ξ)(n·ζ). Recall that
amplitudes Gn of the function G have been defined by (2.3), and that projectors Ein

res and Ẽi
in

res

have been introduced in Definition 6.13. Note that in these notations, solution U decomposes as

U(z, θ, ψd) = Uosc
res (z, θ, ψd) +

∑

(n0,ξ0)∈
(BZm×Cin(n0))\F in

res

Sn0,ξ0(z,n0 · θ + ξ0 ψd)E(n0, ξ0) + U ev(z, θ, ψd).
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To prove Theorem 4.1, it is therefore equivalent to prove that there exists solutions Uosc
res ,

Sn0,ξ0 and U ev to systems (6.17), (6.18) and (6.19).
In this part dedicated to the proof of Proposition 6.22, we consider a solution U to (5.11)

sufficiently regular, and we start by showing that its mean value U∗ is zero, by extracting from
(5.11) a homogeneous linear hyperbolic system satisfied by it. To show that there is no outgoing
mode, the scalar product (3.13) for outgoing modes is used, which is defined for profiles of
compact support with respect to xd. Thus we must prove before that the considered solution
U is of compact support with respect to xd. Then the outgoing modes are isolated in equation
(5.11), deducing that they are zero. First the left term of equation (5.11b) is rewritten.

6.3.1. Rewriting the evolution equation. According to remark 6.20, since U satisfies the polar-
ization condition (5.11a), and according to Remark 6.20, the profile writes U = Uosc + U ev,
where

(6.21a) Uosc(z, θ, ψd) = U∗(z) +
∑

n∈Zm\{0}

∑

ξ∈C(n)

Uosc
n,ξ (z) e

in·θ ei ξ ψd ,

and

(6.21b) U ev(z, θ, ψd) =
∑

n∈Zm\{0}

eψdA(n·ζ)Πe
CN

(n · ζ)U ev
n (z, 0) ein·θ ,

with π(n·ζ,ξ)U
osc
n,ξ = Uosc

n,ξ for all n, ξ. Then Uosc is rewritten to take advantage of collinearities,

using notations of Part 6.1. Let n be in Zm \ {0}, and n0 in BZm , λ in Z∗ such that n = λn0,
and let also ξ be in C(n). Since the set C is homogeneous of degree 1, we have C(n) = λ C(n0),
so there exists ξ0 in C(n0) such that ξ = λ ξ0. By polarization of the profile U , the amplitude
Uosc
n,ξ belongs to the kernel of L

(
0, (n · ζ, ξ)

)
, which is given according to Definition 6.4 by

VectE(n, ξ) = VectE(n0, ξ0). One may thus write

Uosc
n,ξ (z) = σλ,n0,ξ0(z)E(n0, ξ0),

where σλ,n0,ξ0 is a scalar function defined on ΩT . Since the profile Uosc is assumed to be real,
coefficients σλ,n0,ξ0 satisfy σ−λ,n0,ξ0 = σλ,n0,ξ0 for all λ, n0 and ξ0. In this notation, the profile
Uosc writes

Uosc(z, θ, ψd) = U∗(z) +
∑

n0∈BZm

ξ0∈C(n0)

∑

λ∈Z∗

σλ,n0,ξ0(z) e
i λn0·θ ei λξ0 ψd E(n0, ξ0).

Note that according to identity (3.17) and since the vectors E(n0, ξ0) are of norm 1, when it is
well-defined, the scalar product 〈Uosc |Uosc〉out (t) is given in these notations by

〈Uosc |Uosc〉out (t) = (2π)m ‖U∗‖2L2(Rd−1×R+) (t) + (2π)m
∑

n0∈BZm

ξ0∈C(n0)

∑

λ∈Z∗

‖σλ,n0,ξ0‖2L2(Rd−1×R+) (t).

Recall that the scalar product 〈. | .〉out is defined only for profiles with compact support in the
normal direction, but we will prove that every solution of (5.11) is indeed compactly supported
in the xd-direction before using this scalar product.

Since the projector Ẽi occurring in equation (5.11b) only acts on oscillating profiles, the

oscillating part of the term L̃(0, ∂z)U +
∑m

j=1 L̃1(U, ζj) ∂θjU must be determined. On one hand,

the oscillating part of L̃(0, ∂z)U is given by

L̃(0, ∂z)U
osc = L̃(0, ∂z)U

∗ +
∑

n0∈BZm

ξ0∈C(n0)

∑

λ∈Z∗

L̃(0, ∂z)σλ,n0,ξ0 e
i λn0·θ ei λξ0 ψd E(n0, ξ0).

These two terms correspond to terms (6.23a) and (6.23b) of equation (6.23) below.
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On the other hand, according to Lemma 3.6 concerning the algebra properties of the space of

profiles Ps,T , the oscillating part of the quadratic term
∑m

j=1 L̃1(U, ζj) ∂θjU is given by

m∑

j=1

L̃1(U
osc, ζj) ∂θjU

osc =
∑

n0∈BZm

ξ0∈C(n0)

∑

λ∈Z∗

L̃1(U
∗, i λn0 · ζ)E(n0, ξ0)σλ,n0,ξ0 e

i λn0·θ ei λξ0 ψd(6.22)

+
∑

n1,n2∈BZm

∑

ξ1∈C(n1)
ξ2∈C(n2)

∑

λ1,λ2∈Z∗

L̃1(E(n1, ξ1), i λ2n2 · ζ)E(n2, ξ2)

σλ1,n1,ξ1 σλ2,n2,ξ2 e
i (λ1n1+λ2n2)·θ ei (λ1ξ1+λ2ξ2)ψd .

The first term of the right hand side of equation (6.22) corresponds to term (6.23c) of equation
(6.23) below. In the second term of the right hand side of equation (6.22), since the projectors

π̃α appear in the projector Ẽi, only the frequencies
(
(λ1n1 + λ2n2) · ζ, λ1ξ1 + λ2ξ2

)
that are

characteristic will be preserved.

i) If n1 = n2, ξ1 = ξ2 and λ1 = −λ2, the created frequency is zero, so it is characteristic. This
non oscillating term corresponds to term (6.23d) of equation (6.23) below.

ii) If n1 = n2, ξ1 = ξ2 and λ1 + λ2 6= 0, then the nonzero frequency obtained is given by
(λ1 + λ2) (n1 · ζ, ξ1) which is characteristic. This is called self-interaction of the frequency
(n1 · ζ, ξ1) with itself, and constitutes term (6.23e) of equation (6.23).

iii) Finally, in the remaining cases, if the nonzero frequency obtained λ1 (n1 ·ζ, ξ1)+λ2 (n2 ·ζ, ξ2)
is characteristic, then it corresponds to a resonance in the sense of Definition 6.8. Namely
there exist λ0 in Z∗, n0 in BZm and ξ0 in C(n0) such that

λ1 (n1 · ζ, ξ1) + λ2 (n2 · ζ, ξ2) = λ0 (n0 · ζ, ξ0),
thus there exists ℓ in Z∗ such that (λ1, λ2, λ0) = ℓ (λp, λq, λr) where the 7-tuple (λp, λq, λr,
np,nq, ξp, ξq) belongs to one of the setsR1(n0, ξ0) orR2(n0, ξ0). These resonances constitute
terms (6.23f) and (6.23g) of equation (6.23).

According to the expression of the projector Ẽi and since π̃0 = Id, the term Ẽi
[
L̃(0, ∂z)U +∑m

j=1 L̃1(U, ζj) ∂θjU
]
is thus given by

Ẽi
[
L̃(0, ∂z)U +

m∑

j=1

L̃1(U, ζj) ∂θjU
]
= L̃(0, ∂z)U

∗(6.23a)

+
∑

n0∈BZm

ξ0∈C(n0)

∑

λ∈Z∗

π̃(n0·ζ,ξ0) L̃(0, ∂z)E(λn0, λξ0)σλ,n0,ξ0 e
i λn0·θ ei λξ0 ψd ,(6.23b)

constituting the transport terms of the mean value and the oscillating part, then the terms of
resonances with the mean value as well as the resonances creating a zero frequency

+
∑

n0∈BZm

ξ0∈C(n0)

∑

λ∈Z∗

π̃(n0·ζ,ξ0) L̃1(U
∗, i λn0 · ζ)E(λn0, λξ0)σλ,n0,ξ0 e

i λn0·θ ei λξ0 ψd(6.23c)

+
∑

n0∈BZm

ξ0∈C(n0)

∑

λ∈Z∗

L̃1(E(−λn0,−λξ0), i λn0 · ζ)E(λn0, λξ0)σλ,n0,ξ0 σ−λ,n0,ξ0 ,(6.23d)

and finally the self-interaction term

+
∑

n0∈BZm

ξ0∈C(n0)

∑

λ∈Z∗

∑

λ1,λ2∈Z∗

λ1+λ2=λ

π̃(n0·ζ,ξ0) L̃1(E(λ1n0, λ1ξ0), i λ2 n0 · ζ)(6.23e)

E(λ2n0, λ2ξ0)σλ1,n0,ξ0 σλ2,n0,ξ0 e
i λn0·θ ei λξ0 ψd ,
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and the resonances of types 1 and 2 terms

+
∑

n0∈BZm

ξ0∈C(n0)

∑

(λp,λq,λr,np,nq,
ξp,ξq)∈R1(n0,ξ0)

∑

ℓ∈Z∗

π̃(n0·ζ,ξ0) L̃1(E(ℓλpnp, ℓλpξp), iℓλqnq · ζ)(6.23f)

E(ℓλqnq, ℓλqξq)σℓλp,np,ξp σℓλq,nq,ξq e
i ℓ λr n0·θ ei ℓ λrξ0 ψd

+
∑

n0∈BZm

ξ0∈C(n0)

∑

(λp,λq,λr,np,nq,
ξp,ξq)∈R2(n0,ξ0)

∑

ℓ∈Z∗

π̃(n0·ζ,ξ0) L̃1(E(ℓλpnp, ℓλpξp), iℓλqnq · ζ)(6.23g)

E(ℓλqnq, ℓλqξq)σℓλp,np,ξp σℓλq,nq,ξq e
i ℓ λr n0·θ ei ℓ λrξ0 ψd .

The homogeneity of degree zero of the projectors π̃α has been used here. In the following,
Definition 6.6 of coefficients Γ will be used to rewrite the different terms of (6.23). In equation
(6.23), the vectors E(n, ξ) being homogeneous of degree 0, coefficients λ, λ1, λ2, λp, λq and ℓ may
or may not appear. They are indicated here because they will be useful in a computation below.
They may however be removed without any mention being made.

6.3.2. The mean value is zero. We prove now that the mean value U∗ is zero, by extracting the

system verified by it. According to equation (6.23), the mean value of the term Ẽi
(
L̃(0, ∂z)U +∑m

j=1 L̃1(U, ζj) ∂θjU
)
is a priori given by

(6.24) L̃(0, ∂z)U
∗ +

∑

n0∈BZm

ξ0∈C(n0)

∑

λ∈Z∗

L̃1(E(n0, ξ0), iλn0 · ζ)E(n0, ξ0)σλ,n0,ξ0 σ−λ,n0,ξ0 .

The change of variables λ = −λ then shows that term (6.24) is actually zero. Indeed one can
compute

∑

n0∈BZm

ξ0∈C(n0)

∑

λ∈Z∗

L̃1(E(n0, ξ0), iλn0 · ζ)E(n0, ξ0)σλ,n0,ξ0 σ−λ,n0,ξ0

=
∑

n0∈BZm

ξ0∈C(n0)

∑

λ∈Z∗

L̃1(E(n0, ξ0),−iλn0 · ζ)E(n0, ξ0)σ−λ,n0,ξ0 σλ,n0,ξ0

=−
∑

n0∈BZm

ξ0∈C(n0)

∑

λ∈Z∗

L̃1(E(n0, ξ0), iλn0 · ζ)E(n0, ξ0)σλ,n0,ξ0 σ−λ,n0,ξ0 = 0.

The second term of (6.24) being zero, the non oscillating terms of (6.23) are given by the

term L̃(0, ∂z)U
∗ only. Thus, using system (5.11), we see that the mean value U∗ satisfies the

decoupled system 



L̃(0, ∂z)U
∗ = 0,

B U∗
|xd=0 = 0,

U∗
|t60 = 0

since G is of zero mean value. The mean value U∗ therefore satisfies a boundary value problem

verifying the uniform Kreiss-Lopatinskii condition with a strictly hyperbolic operator L̃(0, ∂z).
According to [Kre70], the problem is thus well-posed so U∗ is zero on ΩT .

At this point we should note that equation (6.23) can be decoupled between incoming and
outgoing modes, thanks to Assumption 7 and the nullity of terms (6.23a), (6.23c) and (6.23d).
The difficulty in decoupling the system now relies on decoupling the boundary condition, and
we use the fact that there is no outgoing mode to do it. In its turn the nullity of outgoing modes
relies on the nullity of the mean value.
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6.3.3. Finite speed propagation. It can be proved that if U is a smooth enough solution to (5.11),
then it is supported in a finite interval in xd. More precisely the following result is verified.

Lemma 6.23. Consider T > 0 and s > s0, and let U in Ps,T be a solution to system (5.11).
Then its oscillating part Uosc is zero outside the dihedron {(t, y, xd) ∈ ΩT | 0 6 xd 6 V∗t} (see
Figure 6).

The proof of this lemma uses techniques developed below, so it is postponed, in order to focus
on the derivation of a priori estimates. We use the fact that U travels at finite speed in the
normal direction, according to Lemma 2.14.

According to this result, in system (5.11) and the associated linearized systems, the profile
Uosc can be replaced by βT U

osc, where βT is the function of C∞
0 (R+

xd
) introduced in Proposition

6.22, equating 1 on [0,V∗T ] and 0 on [2V∗T,+∞). In the following, the scalar product (3.13)
suited for outgoing profiles can be used, since it is well-defined for profile of compact support
with respect to xd.

6.3.4. There is no outgoing mode. The aim is now to determine the equations satisfied by the
outgoing modes. According to equation (6.23), since the mean value U∗ is zero, the following
equality holds

∑

n0∈BZm

ξ0∈Cout(n0)

∑

λ∈Z∗

X̃(n0·ζ,ξ0) σλ,n0,ξ0 e
i λn0·θ ei λξ0 ψd π̃(n0·ζ,ξ0)E(n0, ξ0)(6.25a)

+
∑

n0∈BZm

ξ0∈Cout(n0)

∑

λ∈Z∗

∑

λ1,λ2∈Z∗

λ1+λ2=λ

i σλ1,n0,ξ0 σλ2,n0,ξ0 Γ
(
λ1(n0, ξ0), λ2(n0, ξ0)

)
(6.25b)

ei λn0·θ ei λξ0 ψd π̃(n0·ζ,ξ0)E(n0, ξ0)

+
∑

n0∈BZm

ξ0∈Cout(n0)

∑

(λp,λq,λr,np,nq,ξp,ξq)
∈R1(n0,ξ0)∪R2(n0,ξ0)

∑

ℓ∈Z∗

i σℓλp,np,ξp σℓλq,nq,ξq Γ
(
ℓλp(np, ξp), ℓλq(nq, ξq)

)
(6.25c)

ei ℓ λrn0·θ ei ℓ λrξ0 ψd π̃(n0·ζ,ξ0)E(n0, ξ0) = 0.

The Lax Lemma 2.12 has been used here to rewrite the term (6.23b) as the term (6.25a), using
that, by definition, we have E(n0, ξ0) = π(n0·ζ,ξ0)E(n0, ξ0), and Definition 6.6 of coefficients Γ
has also been used to rewrite the terms (6.23e) and (6.23g) as (6.25b) and (6.25c). Note that
according to Assumption 7, all modes Uosc

n,ξ involved in equation (6.25) are outgoing modes, and
also that the equations are now scalar up to a constant vector depending only on the directions.

Equation (6.25) is coupled to the initial condition

(6.26)
(
Uosc
n,ξ

)
|t60

= 0, n ∈ Zm \ {0} , ξ ∈ Cout(n).

We thus seek to solve the problem (6.25), (6.26). We will prove a priori estimates for this
purpose, using the scalar product (3.13). The decomposition (6.6) of Definition 6.11 will be
used, and the set Fout

res of outgoing frequencies involved in resonances will be treated separately,
which is finite according to Assumption 8.

Non resonant modes. First the modes that are not involved in resonances are investigated,
namely we consider n0 in BZm and ξ0 in Cout(n0) such that (n0, ξ0) does not belong to Fout

res . The
sets R1(n0, ξ0) and R2(n0, ξ0) are therefore empty, so, according to equation (6.25), we obtain

∑

λ∈Z∗

X̃(n0·ζ,ξ0) σλ,n0,ξ0 e
i λn0·θ ei λξ0 ψd π̃(n0·ζ,ξ0)E(n0, ξ0)(6.27a)

+
∑

λ∈Z∗

∑

λ1,λ2∈Z∗

λ1+λ2=λ

i σλ1,n0,ξ0 σλ2,n0,ξ0 λ2 Γ
(
(n0, ξ0), (n0, ξ0)

)
(6.27b)

ei λn0·θ ei λξ0 ψd π̃(n0·ζ,ξ0)E(n0, ξ0) = 0.
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Here we have used identity (6.2) to get the term (6.27b). Note that if, for z in ΩT and Θ in T,
we define

Sn0,ξ0(z,Θ) :=
∑

λ∈Z∗

σλ,n0,ξ0(z) e
iλΘ,

then one can check that the real valued function Sn0,ξ0 satisfies the following scalar Burgers
equation

X̃(n0·ζ,ξ0)Sn0,ξ0 + Γ
(
(n0, ξ0), (n0, ξ0)

)
Sn0,ξ0∂ΘSn0,ξ0 = 0,

that could be solved classically. Indeed, recall that X̃(n0·ζ,ξ0), defined in Lemma 2.12, is given
by

X̃(n0·ζ,ξ0) =
−1

∂ξτk(n0,ξ0)(n0 · η, ξ0)
∂t +

1

∂ξτk(n0,ξ0)(n0 · η, ξ0)
∇ητk(n0,ξ0)(n0 · η, ξ0) · ∇y + ∂xd .

If, for k = 1, . . . ,m, we denote by ηk the last d − 1 coordinates of ζk, then we have denoted
by η the m-tuple η := (η1, . . . , ηm), in a similar way than ζ. In this notation, for each n0, the
frequency n0 · η is given by the d− 1 last coordinates of n0 · ζ.

We choose however to explain on this easy example the techniques that shall be applied in
the following to equations that go beyond the scope of the mere Burgers equations.

We take the scalar product 〈. | .〉out of equality (6.27) with the quantity

∑

λ∈Z∗

σλ,n0,ξ0 e
i λn0·θ ei λξ0 ψd

π̃(n0·ζ,ξ0)E(n0, ξ0)∣∣π̃(n0·ζ,ξ0)E(n0, ξ0)
∣∣2 ,

to obtain
∑

λ∈Z∗

〈
X̃(n0·ζ,ξ0) σλ,n0,ξ0

∣∣∣ σλ,n0,ξ0

〉
L2(Rd−1×R+)

(t)(6.28a)

+
∑

λ∈Z∗

∑

λ1,λ2∈Z∗

λ1+λ2=λ

i λ2 Γ
(
(n0, ξ0), (n0, ξ0)

)
〈σλ1,n0,ξ0 σλ2,n0,ξ0 | σλ,n0,ξ0〉L2(Rd−1×R+) (t) = 0.(6.28b)

Note that the scalar product is well defined since Uosc is of compact support with respect to xd.
An integration by parts shows that the transport term (6.28a) satisfies

2Re (6.28a) =
∑

λ∈Z∗

−1

∂ξτk(n0,ξ0)(n0 · η, ξ0)
∂t ‖σλ,n0,ξ0‖2L2(Rd−1×R+) (t)

−
∑

λ∈Z∗

‖σλ,n0,ξ0‖2L2(Rd−1) (t, 0).

We have denoted by k(n0, ξ0) the integer between 1 and N such that if (τ, η, ξ0) := (n0 · ζ, ξ0),
then τ = τk(n0,ξ0)(η, ξ0). It leads to the following equality

2Re (6.28a) =
−1

∂ξτk(n0,ξ0)(n0 · η, ξ0)
d

dt

∑

λ∈Z∗

‖σλ,n0,ξ0‖2L2(Rd−1×R+) (t)(6.29)

−
∑

λ∈Z∗

‖σλ,n0,ξ0‖2L2(Rd−1) (t, 0).

Then the Burgers term (6.28b) is studied, and more precisely the following sums, that is S
given by

S :=
∑

λ∈Z∗

∑

λ1,λ2∈Z∗

λ1+λ2=λ

i λ 〈σλ1,n0,ξ0 σλ2,n0,ξ0 | σλ,n0,ξ0〉L2(Rd−1×R+) (t, xd).

and, for j = 1, 2,

Sj :=
∑

λ∈Z∗

∑

λ1,λ2∈Z∗

λ1+λ2=λ

i λj 〈σλ1,n0,ξ0 σλ2,n0,ξ0 |σλ,n0,ξ0〉L2(Rd−1×R+) (t, xd),
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the term (6.28b) being given by Γ
(
(n0, ξ0), (n0, ξ0)

)
S2. First, one can verify that S = S1 + S2.

But, on one hand, we have immediately S1 = S2. On the other hand, the following equality
holds:

S =
∑

λ∈Z∗

∑

λ1,λ2∈Z∗

λ1+λ2=λ

i λ 〈σλ1,n0,ξ0 σλ,n0,ξ0 | σλ2,n0,ξ0〉L2(Rd−1×R+) (t, xd)

then, with the consecutive changes of variables λ2 = λ1 + λ2 and λ1 = −λ1,

S =
∑

λ∈Z∗

∑

λ1,λ2∈Z∗

λ2−λ1=λ

i λ2 〈σλ1,n0,ξ0 σλ2,n0,ξ0 | σλ,n0,ξ0〉L2(Rd−1×R+) (t, xd)

=
∑

λ∈Z∗

∑

λ1,λ2∈Z∗

λ2+λ1=λ

i λ2 〈σ−λ1,n0,ξ0 σλ2,n0,ξ0 | σλ,n0,ξ0〉L2(Rd−1×R+) (t, xd)

finally, since we have σ−λ1,n0,ξ0 = σλ1,n0,ξ0 (the profile Uosc being real), one gets

S =
∑

λ∈Z∗

∑

λ1,λ2∈Z∗

λ2+λ1=λ

i λ2 〈σλ1,n0,ξ0 σλ2,n0,ξ0 | σλ,n0,ξ0〉L2(Rd−1×R+) (t, xd)

= −S2.

It follows from S = 2S2 that S2 = 0, so the term (6.28b) is zero. With equalities (6.28) and
(6.29), we thus obtain

d

dt

∑

λ∈Z∗

‖σλ,n0,ξ0‖2L2(Rd−1×R+) (t) + ∂ξτk(n0,ξ0)(n0 · η, ξ0)
∑

λ∈Z∗

‖σλ,n0,ξ0‖2L2(Rd−1) (t, 0) = 0,

and therefore, with the initial condition (6.26), for t > 0, we get

∑

λ∈Z∗

‖σλ,n0,ξ0‖2L2(Rd−1×R+) (t) + ∂ξτk(n0,ξ0)(n0 · η, ξ0)
∫ t

0

∑

λ∈Z∗

‖σλ,n0,ξ0‖2L2(Rd−1) (ρ, 0) dρ = 0.

Since the quantity ∂ξτk(n0,ξ0)(n0 · η, ξ0) is positive (the frequency (n0 · ζ, ξ0) being outgoing),
we deduce that σλ,n0,ξ0 is zero for all λ in Z∗, and Uosc

λn0,λξ0
is therefore zero for n0 in BZm , ξ0 in

Cout(n0) such that R2(n0, ξ0) and R2(n0, ξ0) are empty, and λ in Z∗.
Resonant modes. Outgoing modes involved in resonances are now investigated, namely the

couples (n0, ξ0) of the set Fout
res , that are coupled through equation (6.25), because of the reso-

nances, and therefore must be treated all together. From equation (6.25) is deduced the equation
for the resonant modes, involving, in addition to a transport and a Burgers terms, a resonant
one. There holds

∑

(n0,ξ0)∈Fout
res

∑

λ∈Z∗

X̃(n0·ζ,ξ0) σλ,n0,ξ0 e
i λn0·θ ei λξ0 ψd π̃(n0·ζ,ξ0)E(n0, ξ0)(6.30a)

+
∑

(n0,ξ0)∈Fout
res

∑

λ∈Z∗

∑

λ1,λ2∈Z∗

λ1+λ2=λ

i λ2 σλ1,n0,ξ0 σλ2,n0,ξ0 Γ
(
(n0, ξ0), (n0, ξ0)

)
(6.30b)

ei λn0·θ ei λξ0 ψd π̃(n0·ζ,ξ0)E(n0, ξ0)

+
∑

(n0,ξ0)∈Fout
res

∑

(λp,λq,λr,np,nq,ξp,ξq)
∈R1(n0,ξ0)∪R2(n0,ξ0)

∑

ℓ∈Z∗

i ℓ σℓλp,np,ξp σℓλq,nq,ξq Γ
(
λp(np, ξp), λq(nq, ξq)

)
(6.30c)

ei ℓ λrn0·θ ei ℓ λrξ0 ψd π̃(n0·ζ,ξ0)E(n0, ξ0) = 0.



48 CORENTIN KILQUE

Identities (6.1) and (6.2) have been used here. Two profiles constructed from the resonant modes
are defined here, that will be used in the following

Uosc
Rout(z, θ, ψd) :=

∑

(n0,ξ0)∈Fout
res

∑

λ∈Z∗

σλ,n0,ξ0(z) e
i λn0·θ ei λξ0 ψd E(n0, ξ0),

Ũosc
Rout(z, θ, ψd) :=

∑

(n0,ξ0)∈Fout
res

∑

λ∈Z∗

σλ,n0,ξ0(z) e
i λn0·θ ei λξ0 ψd π̃(n0·ζ,ξ0)E(n0, ξ0).

Taking the scalar product 〈. | .〉out of equality (6.30) with the profile Ũosc
Rout , one gets

∑

(n0,ξ0)∈Fout
res

∑

λ∈Z∗

∣∣π̃(n0·ζ,ξ0)E(n0, ξ0)
∣∣2
〈
X̃(n0·ζ,ξ0) σλ,n0,ξ0

∣∣∣σλ,n0,ξ0

〉
L2(Rd−1×R+)

(t)(6.31a)

+
∑

(n0,ξ0)∈Fout
res

∑

λ∈Z∗

∑

λ1,λ2∈Z∗

λ1+λ2=λ

i λ2 Γ
(
(n0, ξ0), (n0, ξ0)

) ∣∣π̃(n0·ζ,ξ0)E(n0, ξ0)
∣∣2(6.31b)

〈σλ1,n0,ξ0 σλ2,n0,ξ0 |σλ,n0,ξ0〉L2(Rd−1×R+) (t)

+
∑

(n0,ξ0)∈Fout
res

∑

(λp,λq,λr ,np,nq,ξp,ξq)
∈R1(n0,ξ0)∪R2(n0,ξ0)

∑

ℓ∈Z∗

i ℓΓ
(
λp(np, ξp), λq(nq, ξq)

) ∣∣π̃(n0·ζ,ξ0)E(n0, ξ0)
∣∣2(6.31c)

〈
σℓλp,np,ξp σℓλq ,nq,ξq

∣∣ σℓλr,n0,ξ0

〉
L2(Rd−1×R+)

(t) = 0.

The first two terms are treated in the same way as for the non resonant modes (see above), so
we obtain

2Re (6.31a) =−
∑

(n0,ξ0)∈Fout
res

∣∣π̃(n0·ζ,ξ0)E(n0, ξ0)
∣∣2

∂ξτk(n0,ξ0)(n0 · η, ξ0)
d

dt

∑

λ∈Z∗

‖σλ,n0,ξ0‖2L2(Rd−1×R+) (t)(6.32)

−
∑

(n0,ξ0)∈Fout
res

∑

λ∈Z∗

‖σλ,n0,ξ0‖2L2(Rd−1) (t, 0)

6−C
d

dt

〈
Ũosc
Rout

∣∣∣ Ũosc
Rout

〉
out

(t),

with C > 0, using that Fout
res is finite and that the group velocity ∂ξτk(n0,ξ0)(n0 · η, ξ0) is pos-

itive. On an other hand, with the same techniques than for the non resonant modes, one
gets (6.31b) = 0. Finally the resonance term (6.31c) is investigated. Since the sets Fout

res and⋃
(n0,ξ0)∈Fout

res

(
R1(n0, ξ0) ∪R2(n0, ξ0)

)
are finite, the following bound holds

∣∣Γ
(
λp(np, ξp), λq(nq, ξq)

)∣∣ ∣∣π̃(n0·ζ,ξ0)E(n0, ξ0)
∣∣2 6 C,

where the constant C > 0 is independent of np,nq,nr, ξp, ξq and ξr. Thus a term of the form
〈f ∗ g | g〉 is obtained in (6.31c), which is estimated using Cauchy-Schwarz and Young inequali-
ties, and the injection of L2(Tm) into L1(Tm), which gives the following estimate on the term
(6.31c):

(6.33) |2Re (6.31c)| 6 C ‖Uosc
Rout‖Es,T

〈
Ũosc
Rout

∣∣∣ Ũosc
Rout

〉
out

(t).

It follows from equations (6.30), (6.32) and (6.33) the differential inequality

d

dt

〈
Ũosc
Rout

∣∣∣ Ũosc
Rout

〉
out

(t) 6 C ‖Uosc
Rout‖Es,T

〈
Ũosc
Rout

∣∣∣ Ũosc
Rout

〉
out

(t)

The initial conditions (6.26) ensure that
(
Ũosc
Rout

)
|t=0

= 0, so, for t > 0, we have
〈
Ũosc
Rout

∣∣∣ Ũosc
Rout

〉
out

(t) =
∑

(n0,ξ0)∈Fout
res

∑

λ∈Z∗

‖σλ,n0,ξ0‖2L2(Rd−1×R+) (t) = 0.

Thus, for all (n0, ξ0) in Fout
res and λ in Z∗, and for all t > 0, the function σλ,n0,ξ0(t, .) is zero,

therefore the same holds for the outgoing amplitude Uosc
λn0,λξ0

, for all (n0, ξ0) in Fout
res and λ in

Z∗.
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In conclusion, it has been proven that for every profile U regular enough solution to system
(5.11), its mean value U∗ as well as each of its outgoing modes Uosc

n,ξ , n ∈ Zm \ {0}, ξ ∈ Cout(n),
are zero.

6.3.5. Decoupling the system. Because of the algebra property of the space of profiles Ps,T , and
since the projectors E and Ẽi preserve the decomposition Ps,T = Posc

s,T ⊕Pev
s,T , equations (5.11a)

and (5.11b) decoupled according to the oscillating and evanescent parts, and the same holds for
equation (5.11d). The evanescent part therefore satisfies the equation

EU ev = U ev

and the oscillating part the equations

EUosc = Uosc

Ẽi
[
L̃(0, ∂z)U

osc +
m∑

j=1

L̃1(U
osc, ζj) ∂θjU

osc
]
= 0.

The second equation may be rewritten as, using notations for Uosc that have been already
introduced,

∑

n0∈BZm

ξ0∈Cin(n0)

∑

λ∈Z∗

X̃(n0·ζ,ξ0) σλ,n0,ξ0 e
i λn0·θ ei λξ0 ψd π̃(n0·ζ,ξ0)E(n0, ξ0)(6.34a)

+
∑

n0∈BZm

ξ0∈Cin(n0)

∑

λ∈Z∗

∑

λ1,λ2∈Z∗

λ1+λ2=λ

i λ2 σλ1,n0,ξ0 σλ2,n0,ξ0 Γ
(
(n0, ξ0), (n0, ξ0)

)
(6.34b)

ei λn0·θ ei λξ0 ψd π̃(n0·ζ,ξ0)E(n0, ξ0)

+
∑

n0∈BZm

ξ0∈Cin(n0)

∑

(λp,λq ,λr,np,nq,ξp,ξq)
∈R1(n0,ξ0)∪R2(n0,ξ0)

∑

ℓ∈Z∗

i ℓ σℓλp,np,ξp σℓλq,nq,ξq Γ
(
λp(np, ξp), λq(nq, ξq)

)
(6.34c)

ei ℓ λrn0·θ ei ℓ λrξ0 ψd π̃(n0·ζ,ξ0)E(n0, ξ0) = 0.

This equation decouples according to the set F in
res of resonant modes, and each of the non resonant

mode. For each mode (n0, ξ0) in (BZm × Cin(n0)) \ F in
res, which is therefore such that the sets

R1(n0, ξ0) and R2(n0, ξ0) are empty, we define

Sn0,ξ0(z,Θ) :=
∑

λ∈Z∗

σλ,n0,ξ0(z) e
iλΘ.

Then, according to equations (6.34a) and (6.34b), this function satisfies the following scalar
Burgers equation

X̃(n0·ζ,ξ0)Sn0,ξ0 + Γ
(
(n0, ξ0), (n0, ξ0)

)
Sn0,ξ0 ∂ΘSn0,ξ0 = 0.

On an other hand the resonant modes of F in
res satisfy the independent equation

∑

(n0,ξ0)∈F in
res

∑

λ∈Z∗

X̃(n0·ζ,ξ0) σλ,n0,ξ0 e
i λn0·θ ei λξ0 ψd π̃(n0·ζ,ξ0)E(n0, ξ0)

+
∑

(n0,ξ0)∈F in
res

∑

λ∈Z∗

∑

λ1,λ2∈Z∗

λ1+λ2=λ

i λ2 σλ1,n0,ξ0 σλ2,n0,ξ0 Γ
(
(n0, ξ0), (n0, ξ0)

)

ei λn0·θ ei λξ0 ψd π̃(n0·ζ,ξ0)E(n0, ξ0)

+
∑

(n0,ξ0)∈F in
res

∑

(λp,λq ,λr,np,nq,ξp,ξq)
∈R1(n0,ξ0)∪R2(n0,ξ0)

∑

ℓ∈Z∗

i ℓ σℓλp,np,ξp σℓλq,nq,ξq Γ
(
λp(np, ξp), λq(nq, ξq)

)

ei ℓ λrn0·θ ei ℓ λrξ0 ψd π̃(n0·ζ,ξ0)E(n0, ξ0) = 0,
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that may be rewritten, with already introduced notations (see Definition 6.13), as

Ẽi
in

res

[
L̃(0, ∂z)U

osc
res +

m∑

j=1

L̃1(U
osc
res , ζj) ∂θjU

osc
res

]
= 0.

Note that by assumption on the set F in
res, all modes involved in this equation are part of the set

F in
res. Furthermore it is clear that the polarization condition EUosc = Uosc as well as the initial

condition decouple in the same way. Therefore, to conclude the proof of Proposition 6.22, it
must be shown that the boundary condition also decouples in this manner.

6.3.6. Determination of the trace on the boundary. It is possible to determine the traces on the
boundary (Uosc

res )|xd=0,ψd=0, (Sn0,ξ0)xd=0 and U ev
|xd=0,ψd=0 from the boundary condition (5.11c)

using the fact that there are only incoming modes, which will prove the intended decoupling of
the system. According to polarization conditions (6.21a) and (6.21b), and since there are only
incoming frequencies, for n in Zm \ {0}, boundary condition (5.11c) writes

(6.35) B
[ ∑

ξ∈Cin(n)

π(n·ζ,ξ)U
osc
n,ξ (z

′, 0) + Πe
CN

(n · ζ)U ev
n
(z′, 0, 0)

]
= Gn(z

′),

where the amplitudes Gn have been defined with the formula (2.3). For all ξ in Cin(n), the term
π(n·ζ,ξ)U

osc
n,ξ belongs to kerL

(
0, (n ·ζ , ξ)

)
which is included in E−(n ·ζ) according to Proposition

2.16, since the frequency (n · ζ, ξ) is incoming. In the same way, according to the definition of
the projector Πe

CN
(n · ζ), the term Πe

CN
(n · ζ)U ev

n (z, 0) belongs to the space E−(n · ζ). The
vector on which acts the matrix B in (6.35) therefore belongs to E−(n · ζ), and the matrix B
restricted to this subspace is invertible according to the uniform Kreiss-Lopatinskii condition

Assumption 3. It then follows by projecting on the spaces Ej−(n · ζ) and Ee−(n · ζ) the following
boundary conditions

π(n·ζ,ξ)U
osc
n,ξ (z

′, 0) = Π
j(n,ξ)
− (n · ζ)

(
B|E−(n·ζ)

)−1
Gn(z

′), ξ ∈ Cin(n),(6.36a)

Πe
CN

(n · ζ)U ev
n
(z′, 0, 0) = Πe−(n · ζ)

(
B|E−(n·ζ)

)−1
Gn(z

′),(6.36b)

where, for ξ in Cin(n), j(n, ξ) is the index such that ξ = ξj(n,ξ)(n · ζ). Therefore, according to
(6.36) and the polarization conditions (6.21a) and (6.21b), the profiles Hosc

res and Hev defined by
(6.20) are such that (Uosc

res )|xd=0,ψd=0 = Hosc
res and U ev

|xd=0,ψd=0 = Hev. On an other hand, since,

according to (6.36a), we have, for all (n0, ξ0) in (BZm × Cin(n0)) \ F in
res,

(σλ,n0,ξ0)|zd=0E(n0, ξ0) = Π
j(λn0,λξ0)
− (λn0 · ζ)

(
B|E−(λn0·ζ)

)−1
Gλn0·ζ ,

and since the vectors E(n0, ξ0) are of norm 1, the function hn0,ξ0 defined by formula (6.20b)
satisfies (Sn0,ξ0)xd=0 = hn0,ξ0 . We finally check that the boundary termsHosc

res , hn0,ξ0 andH
ev are

controlled in Hs(ωT ) by G. On one hand, according to the uniform Kreiss-Lopatinskii condition
3, the inverse matrix (B|E−(n·ζ))

−1 is uniformly bounded, see Remark 2.8. On the other hand,

according to Proposition 2.21, projectors Π
j(n,ξ)
− (n ·ζ) and Πe−(n ·ζ) are uniformly bounded with

respect to n in Zm \{0}. According to formulas (2.3) and (6.20) and the Parseval’s identity, the
sought control in L2(ωT ) is ensured. The control in Hs(ωT × Tm) for all s > 0 follows, using

that the quantities Π
j(n,ξ)
− (n · ζ)

(
B|E−(n·ζ)

)−1
and Πe−(n · ζ)

(
B|E−(n·ζ)

)−1
do not depend on z′

in ωT . Therefore we obtain
(6.37)

‖Hosc
res ‖2Hs(ωT×Tm) +

∑

(n0,ξ0)∈
(BZm×Cin(n0))\F in

res

‖hn0,ξ0‖2Hs(ωT×T) + ‖Hev‖2Hs(ωT×Tm) 6 C ‖G‖2Hs(ω×Tm) ,

where the positive constant C does not depend on T or s. This completes the proof of Proposition
6.22.
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6.4. A priori estimate on the linearized system for the oscillating resonant part.

According to Proposition 6.22, the study may be narrowed down to the one of systems (6.17),
(6.18) and (6.19). This part deals with the first one, and we will prove a priori estimates on the
associated linearized system, which will be used to show the convergence of an iterative scheme.
Recall that s0 is given by s0 = h + (d + m)/2 where h is an integer greater than (3 + a1)/2,
occurring in estimate (6.3), whith a1 the real number of Assumption 6.

Proposition 6.24. Consider s > s0 and let Uosc
res be in Posc

s,T , V
osc
res in N osc

s,T both involving only
incoming resonant modes, and F osc

res in Posc
s,T , satisfying the system

Ein
res U

osc
res = Uosc

res(6.38a)

Ẽi
in

res

[
L̃(0, ∂z)βTU

osc
res +

m∑

j=1

L̃1(βTV
osc
res , ζj) ∂θjβTU

osc
res

]
= Ẽi F osc

res(6.38b)

(
Uosc
res

)
|xd=0,ψd=0

= Hosc
res(6.38c)

(
Uosc
res

)
|t60

= 0,(6.38d)

where Hosc is defined by equation (6.20a). Then the profile Uosc
res satisfies the a priori estimate

(6.39) ‖Uosc
res ‖2Es,T 6 C1 e

C(V )V∗T ‖G‖2Hs(ωT×Tm) + V∗T eC(V )V∗T ‖F osc
res ‖2Es,T ,

where C(V ) := C1

(
1 + ‖V osc

res ‖2Es,T
)
, with C1 > 0 a positive constant depending only on the

operator L(0, ∂z) and of s. Recall that the real number V∗, which bounds the group velocities vα,
has been defined in Lemma 2.14.

Consider from now on an integer s > s0.

6.4.1. Rewriting the linearized oscillating system. In system (6.38) which is the linearization of
system (6.17) around V osc

res in Posc
s,T , a source term F osc

res in Posc
s,T has been added, which will be

useful to deduce from the L2 estimate the higher order estimates, as well as in the iterative
schemes used to construct solutions to the linearized system (6.38) and to system (6.17). To
simplify the equations, the function βT will be omitted in the following.

The analysis conducted in the previous subsection is now reproduced to rewrite the left term
of equality (6.38b). Since the profile Uosc

res satisfies the polarization condition (6.38a) and involves
only incoming modes, according to Remark 6.20, it writes

(6.40) Uosc
res (z, θ, ψd) =

∑

(n0,ξ0)∈F in
res

∑

λ∈Z∗

Uosc
λn0,λξ0(z) e

iλn0 ·θ eiλξ0 ψd .

with Uosc
λn0,λξ0

= π(λn0·ζ,λξ0) U
osc
λn0,λξ0

for all n0, ξ0, λ. In the same way, since V osc
res is in N osc

s,T with
only incoming resonant modes, we have

(6.41) V osc
res (z, θ, ψd) =

∑

(n0,ξ0)∈F in
res

∑

λ∈Z∗

V osc
λn0,λξ0(z) e

iλn0 ·θ eiλξ0 ψd .

with V osc
λn0,λξ0

= π(λn0·ζ,λξ0) V
osc
λn0,λξ0

for all n0, ξ0, λ. Once again, for (n0, ξ0) in F in
res and λ in Z∗,

since the profiles U and V are polarized, we write

Uosc
λn0,λξ0(z) = σλ,n0,ξ0(z)E(n0, ξ0),

V osc
λn0,λξ0(z) = ωλ,n0,ξ0(z)E(n0, ξ0).

Note that according to identity (3.15), the scalar product 〈Uosc
res |Uosc

res 〉in (xd) is given in this
notation by

〈Uosc
res |Uosc

res 〉in (xd) = (2π)m
∑

(n0,ξ0)∈F in
res

∑

λ∈Z∗

‖σλ,n0,ξ0‖2L2(ωT )
(xd).
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Since the projector Ẽi
in

res is applied to the source term F osc
res , one can assume without loss of

generality that the latter writes

F osc
res (z, θ, ψd) =

∑

(n0,ξ0)∈F in
res

∑

λ∈Z∗

Fλ,n0,ξ0(z) e
in·θ eiξ ψd .

We then denote, for (n0, ξ0) in F in
res and λ in Z∗, by fλ,n0,ξ0 the scalar function of ΩT such that

π̃(n0·ζ,ξ0) Fλ,n0,ξ0 = fλ,n0,ξ0 π̃(n0·ζ,ξ0)E(n0, ξ0)

so that Ẽi
in

res F
osc
res writes

Ẽi
in

res F
osc
res (z, θ, ψd) =

∑

(n0,ξ0)∈F in
res

∑

λ∈Z∗

fλ,n0,ξ0(z) e
in·θ eiξ ψd π̃(n0·ζ,ξ0)E(n0, ξ0).

According to estimate (6.5) of Assumption 8, there exists a positive constant C such that for
all (n0, ξ0) in F in

res and all λ in Z∗, we have

(6.42) ‖fλ,n0,ξ0‖L2(ΩT )
6 C ‖Fλ,n0,ξ0‖L2(ΩT )

.

In this notation, the resonant incoming modes satisfy the following coupled equation, con-

necting the source term Ẽi
in

res F
osc
res

∑

(n0,ξ0)∈F in
res

∑

λ∈Z∗

fλ,n0,ξ0(z) e
i λn0·θ ei λξ0 ψd π̃(n0·ζ,ξ0)E(n0, ξ0)(6.43a)

with the sum of a transport term, corresponding to L̃(0, ∂z)U
osc
res ,

=
∑

(n0,ξ0)∈F in
res

∑

λ∈Z∗

X̃(n0·ζ,ξ0) σλ,n0,ξ0 e
i λn0·θ ei λξ0 ψd π̃(n0·ζ,ξ0)E(n0, ξ0),(6.43b)

a self-interaction term,

+
∑

(n0,ξ0)∈F in
res

∑

λ∈Z∗

∑

λ1,λ2∈Z∗

λ1+λ2=λ

i λ2 ωλ1,n0,ξ0 σλ2,n0,ξ0 Γ
(
(n0, ξ0), (n0, ξ0)

)
(6.43c)

ei λn0·θ ei λξ0 ψd π̃(n0·ζ,ξ0)E(n0, ξ0),

and resonance terms of type 1,

+
∑

(n0,ξ0)∈F in
res

∑

(λp,λq ,λr,np,nq,
ξp,ξq)∈R1(n0,ξ0)

∑

ℓ∈Z∗

i ℓ ωℓλp,np,ξp σℓλq,nq,ξq Γ
(
λp(np, ξp), λq(nq, ξq)

)
(6.43d)

ei ℓ λrn0·θ ei ℓ λrξ0 ψd π̃(n0·ζ,ξ0)E(n0, ξ0),

and of type 2,

+
∑

(n0,ξ0)∈F in
res

∑

(λp,λq ,λr,np,nq,
ξp,ξq)∈R2(n0,ξ0)

∑

ℓ∈Z∗

i ℓ ωℓλp,np,ξp σℓλq,nq,ξq Γ
(
λp(np, ξp), λq(nq, ξq)

)
(6.43e)

ei ℓ λrn0·θ ei ℓ λrξ0 ψd π̃(n0·ζ,ξ0)E(n0, ξ0).

Note that in terms (6.43c), (6.43d) and (6.43e), factors λ2 Γ
(
(n0, ξ0), (n0, ξ0)

)
and Γ

(
λp(np, ξp),

λq(nq, ξq)
)
imply that something like a derivative with respect to θ is applied to U . To obtain

estimates without loss of derivatives, one therefore needs the θ derivative to apply to the coeffi-
cient V osc

res , which is the whole point of the following paragraph. Terms (6.43c) and (6.43e) are
treated in the same way as the corresponding terms for the outgoing modes, whereas Assumption
8 is used to treat term (6.43d) of resonances of type 1.
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6.4.2. L2 estimate. This subsection is devoted to the proof of the following lemma.

Lemma 6.25. Consider s > s0 and T > 0, and let Uosc
res be in Posc

1,T , F
osc
res in Posc

0,T and V osc
res

in N osc
s,T , only involving resonant incoming modes, satisfying system (6.38). Then the following

estimate holds for xd > 0,

(6.44)
d

dxd
〈Uosc

res |Uosc
res 〉in (xd) 6 C 〈F osc

res |F osc
res 〉in (xd) + C

(
1 + ‖V osc

res ‖Es,T
)
〈Uosc

res |Uosc
res 〉in (xd).

Proof. Consider the modified profile Ũosc
res given by

Ũosc
res (z, θ, ψd) :=

∑

(n0,ξ0)∈F in
res

∑

λ∈Z∗

σλ,n0,ξ0(z) e
i λn0·θ ei λξ0 ψd

π̃(n0·ζ,ξ0)E(n0, ξ0)

|π̃(n0·ζ,ξ0)E(n0, ξ0)|2
.

Note that despite the factor |π̃(n0·ζ,ξ0)E(n0, ξ0)|−1 that could present a problem, the profile Ũosc
res

is well defined, since the set F in
res satisfies the property (6.5) ensuring that these factors are

uniformly lower bounded. They have been introduced to balance the factors |π̃(n0·ζ,ξ0)E(n0, ξ0)|
which will occur in the estimate. These factors may not be uniformly bounded with respect to
(n0, ξ0) varying in the (potentially infinite) set of directions (n0, ξ0) of BZm × Cin(n0) such that
R1(n0, ξ0) ∪R2(n0, ξ0) is empty, justifying the choice to treat them separately below.

Taking the double of the real part of the scalar product (3.12) of equality (6.43) with the

profile Ũosc
res , one gets an equality, with on one side the term

2Re

〈
Ẽi

in

res F
osc
res

∣∣∣∣ Ũ
osc
res

〉

in

(xd),

which is estimated in the following way:
∣∣∣∣2Re

〈
Ẽi

in

res F
osc
res

∣∣∣∣ Ũ
osc
res

〉

in

(xd)

∣∣∣∣ =
∣∣∣2Re

〈
F̂ osc
res

∣∣∣ Ûosc
res

〉
in
(xd)

∣∣∣

6 C
〈
F̂ osc
res

∣∣∣ F̂ osc
res

〉1/2

in
(xd)

〈
Ûosc
res

∣∣∣ Ûosc
res

〉1/2

in
(xd)

6 C 〈F osc
res |F osc

res 〉in (xd) + C 〈Uosc
res |Uosc

res 〉in (xd),(6.45)

where it has been denoted

F̂ osc
(n0,ξ0)

(z, θ, ψd) :=
∑

λ∈Z∗

fλ,n0,ξ0(z) e
i λn0·θ ei λξ0 ψd

π̃(n0·ζ,ξ0)E(n0, ξ0)∣∣π̃(n0·ζ,ξ0)E(n0, ξ0)
∣∣ ,

and

Ûosc
(n0,ξ0)

(z, θ, ψd) :=
∑

λ∈Z∗

σλ,n0,ξ0(z) e
i λn0·θ ei λξ0 ψd

π̃(n0·ζ,ξ0)E(n0, ξ0)∣∣π̃(n0·ζ,ξ0)E(n0, ξ0)
∣∣ ,

so that the profile Ûosc
res is such that its scalar product with itself equals the one of Uosc

(n0,ξ0)
with

itself, and according to estimate (6.42), the scalar product of F̂ osc
res with itself is bounded, up to

a positive multiplicative constant, by the one of F osc
res with itself. Since the lower bound (6.5) is

in general not verified by the non resonant modes, the analogue of estimate (6.45) seems false,
explaining why these modes cannot be treated in the same way as the resonant modes in this
subsection, which leads us to go back to scalar equations for the first ones.

Now the right hand side terms of the equality obtained by taking the double of the real part

of the scalar product of equality (6.43) with Ũosc
res are investigated. The analysis of the terms

corresponding to terms (6.43b), (6.43c) and (6.43e) is analogous to the one made for the outgoing
modes.
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Concerning the transport term (6.43b), identity (3.15) and an integration by parts lead to

(6.46) 2Re
〈
(6.43b)

∣∣∣ Ũosc
res

〉
in
(xd) =

d

dxd
〈Uosc

res |Uosc
res 〉in (xd)

+ (2π)m
∑

(n0,ξ0)∈F in
res

∑

λ∈Z∗

−1

∂ξτk(n0,ξ0)(n0 · η, ξ0)
‖σλ,n0,ξ0‖2L2(Rd−1) (T ).

Note that since all modes are incoming here, the quantity −∂ξτk(n0,ξ0)(n0 ·η, ξ0) is positive for all
(n0, ξ0), which will allow us to omit the second term on the right of the equality in the estimates
below.

For the self-interaction term (6.43c) one can compute,
〈
(6.43c)

∣∣∣ Ũosc
res

〉
in
(xd)

= (2π)m
∑

(n0,ξ0)∈F in
res

∑

λ∈Z∗

∑

λ1,λ2∈Z∗

λ1+λ2=λ

iλ2 Γ
(
(n0, ξ0), (n0, ξ0)

)
〈ωλ1,n0,ξ0 σλ2,n0,ξ0 |σλ,n0,ξ0〉L2(ωT )

(xd)

(6.47a)

= (2π)m
∑

(n0,ξ0)∈F in
res

∑

λ∈Z∗

∑

λ1,λ2∈Z∗

λ1+λ2=λ

iλΓ
(
(n0, ξ0), (n0, ξ0)

)
〈ωλ1,n0,ξ0 σλ2,n0,ξ0 | σλ,n0,ξ0〉L2(ωT )

(xd)

(6.47b)

− (2π)m
∑

(n0,ξ0)∈F in
res

∑

λ∈Z∗

∑

λ1,λ2∈Z∗

λ1+λ2=λ

iλ1 Γ
(
(n0, ξ0), (n0, ξ0)

)
〈ωλ1,n0,ξ0 σλ2,n0,ξ0 |σλ,n0,ξ0〉L2(ωT )

(xd).

(6.47c)

But with already detailed computations, one gets (6.47b) = −(6.47a), so

2Re
〈
(6.43c)

∣∣∣ Ũosc
res

〉
in
(xd) =

− (2π)m
∑

(n0,ξ0)∈F in
res

∑

λ∈Z∗

∑

λ1,λ2∈Z∗

λ1+λ2=λ

iλ1 Γ
(
(n0, ξ0), (n0, ξ0)

)
〈ωλ1,n0,ξ0 σλ2,n0,ξ0 |σλ,n0,ξ0〉L2(ωT )

(xd).

Note that this term differs from (6.47a) because of the coefficient λ1 instead of λ2, which makes
the derivatives with respect to θ apply on the coefficient V osc

res instead of on the unknown Uosc
res .

Upper bound (6.8) therefore leads to
∣∣∣2Re

〈
(6.43c)

∣∣∣ Ũosc
res

〉
in
(xd)

∣∣∣

6 C
∑

(n0,ξ0)∈F in
res

∑

λ∈Z∗

∑

λ1,λ2∈Z∗

λ1+λ2=λ

|λ1n0|
∣∣∣〈ωλ1,n0,ξ0 σλ2,n0,ξ0 | σλ,n0,ξ0〉L2(ωT )

(xd)
∣∣∣ .

The term on the right of the equality is of the form 〈fg | g〉, so we get

(6.48)
∣∣∣2Re

〈
(6.43c)

∣∣∣ Ũosc
res

〉
in
(xd)

∣∣∣ 6 C ‖V osc
res ‖Es,T 〈Uosc

res |Uosc
res 〉in (xd).

For term (6.43e) of type 2 resonances, we write
〈
(6.43e)

∣∣∣ Ũosc
res

〉
in
(xd) =

∑

(n0,ξ0)∈F in
res

∑

(λp,λq,λr ,np,nq,
ξp,ξq)∈R2(n0,ξ0)

∑

ℓ∈Z∗

iℓΓ
(
λp(np, ξp), λq(nq, ξq)

)

〈
ωℓλp,np,ξp σℓλq,nq,ξq

∣∣σℓλr ,nr,ξr
〉
L2(ωT )

(xd).

Then the following upper bound is derived, for all (λp, λq, λr,np,nq, ξp, ξq) ∈ R2(n0, ξ0) with
n0 ∈ BZm , ξ0 ∈ Cin(n0) (which constitutes a finite set, see Assumption 8),

∣∣Γ
(
λp(np, ξp), λq(nq, ξq)

)∣∣ 6 C|λp| |np, ξp| ,
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where the constant C > 0 is independent of np,nq,n0, ξp, ξq and ξ0. Once again, with this
bound, the derivative with respect to θ no longer apply on Uosc

res but only on V osc
res . The following

estimate is thus deduced:

(6.49)
∣∣∣2Re

〈
(6.43e)

∣∣∣ Ũosc
res

〉
in
(xd)

∣∣∣ 6 C ‖V osc
res ‖Es,T 〈Uosc

res |Uosc
res 〉in (xd).

Finally term (6.43d) of type 1 resonances is investigated, which is treated following [Rau12,
Chapter 11]. Once again the aim is to have a derivative applying totally on V osc

res . First the set
on which the sum (6.43d) is taken is parameterized in a different way. The set R1 of type 1
incoming resonant 6-tuples is defined as

R1 :=





(
ℓ λp np, ℓ λp ξp, ℓ λq nq,

ℓ λq ξq,−ℓ λr n0,−ℓ λr ξ0
)

∣∣∣∣∣∣
ℓ ∈ Z∗, n0 ∈ BZm, ξ0 ∈ Cin(n0),

(λp, λq, λr,np,nq, ξp, ξq) ∈ R1(n0, ξ0)



 .

Note that if (np, ξp,nq, ξq,nr, ξr) is in R1, then np + nq + nr = 0, and ξp + ξq + ξr = 0. We
also see that, according to remark 6.9, a 6-tuple (np, ξp,nq, ξq,nr, ξr) is in R1 if and only if the
symmetrical 6-tuple (np, ξp,nr, ξr,nq, ξq) is in R1. According to identity (6.1), we have

(6.43d) =
∑

(n0,ξ0)∈F in
res

∑

(λp,λq,λr,np,nq ,
ξp,ξq)∈R1(n0,ξ0)

∑

ℓ∈Z∗

i ωℓλp,np,ξp σℓλq,nq,ξq Γ
(
(ℓλpnp, ℓλpξp), (ℓλqnq, ℓλqξq)

)

ei ℓλrn0·θ ei ℓλrξ0 ψd π̃(ℓλrn0·ζ,ℓλrξ0)E(ℓλrn0, ℓλrξ0)

=
∑

(np,ξp,nq ,ξq,
nr ,ξr)∈R1

i ωnp,ξp σnq,ξq Γ
(
(np, ξp), (nq, ξq)

)
e−inr·θ e−iξr ψd π̃(nr ·ζ,ξr)E(nr, ξr).

If n in Zm \ {0} and ξ in C(n) write as (n, ξ) = λ (n0, ξ0) with n0 ∈ BZm , ξ ∈ C(n0) and λ ∈ Z∗,
we have denoted

σn,ξ := σλ,n0,ξ0 , and ωn,ξ := ωλ,n0,ξ0 .

Therefore we have〈
(6.43d)

∣∣∣ Ũosc
res

〉
in
(xd) =

∑

(np,ξp,nq,ξq,
nr,ξr)∈R1

iΓ
(
(np, ξp), (nq , ξq)

) 〈
ωnp,ξp σnq ,ξq

∣∣σ−nr ,−ξr

〉
L2(ωT )

(xd)

=
∑

(np,ξp,nq,ξq,
nr,ξr)∈R1

iΓ
(
(np, ξp), (nq , ξq)

)〈
ω−np,−ξp σ−nr,−ξr

∣∣σnq ,ξq
〉
L2(ωT )

(xd)

=
∑

(np,ξp,nq,ξq,
nr,ξr)∈R1

−iΓ
(
(np, ξp), (nr, ξr)

)〈
ωnp,ξp σnq ,ξq

∣∣ σ−nr,−ξr

〉
L2(ωT )

(xd).

We have used here the fact that ωnp,ξp = ω−np,−ξp , the profile V osc being real, a change of
variables (np,nr,nq, ξp, ξr, ξq) = −(np,nq,nr, ξp, ξq, ξr), the fact that −R1 = R1 and the identity
(6.1). Thus we obtain

2Re
〈
(6.43d)

∣∣∣ Ũosc
res

〉
in
(xd)

=
∑

(np,ξp,nq,ξq,
nr ,ξr)∈R1

i
{
Γ
(
(np, ξp), (nq , ξq)

)
+ Γ

(
(np, ξp), (nr , ξr)

)} 〈
ωnp,ξp σnq ,ξq

∣∣ σ−nr,−ξr

〉
L2(ωT )

(xd).

Using the uniform estimate (6.4) given by Assumption 8, one obtains
∣∣∣2Re

〈
(6.43d)

∣∣∣ Ũosc
res

〉
in
(xd)

∣∣∣ 6 C
∑

(np,ξp,nq,ξq,
nr ,ξr)∈R1

|(np, ξp)|
∣∣∣
〈
ωnp,ξp σnq ,ξq

∣∣σ−nr ,−ξr

〉
L2(ωT )

(xd)
∣∣∣

6 C
∥∥V osc

Rin

∥∥
Es,T

〈Uosc
res |Uosc

res 〉in (xd).(6.50)
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Only the profiles V osc
res and Uosc

res appear in the estimate since only frequencies of F in
res occur in

R1.
Equations (6.43) and (6.46) and estimates (6.45), (6.48), (6.49) and (6.50) finally lead to

(6.51)
d

dxd
〈Uosc

res |Uosc
res 〉in (xd) 6 C 〈F osc

res |F osc
res 〉in (xd) + C

(
1 + ‖V osc

res ‖Es,T
)
〈Uosc

res |Uosc
res 〉in (xd),

which is the expected differential inequality. �

6.4.3. Proof of Lemma 6.23. All requisite techniques to show Lemma 6.23 have now been devel-
oped, so the proof is given here. It follows [BGS07, Section 1.3.1]. Recall that at this stage, we
have considered a solution U to (5.11) regular enough, and we have shown that its mean value
is zero.

Proof (Lemma 6.23). It has been shown that if U is a solution to (5.11), then, with already
introduced notations, we have

∑

n0∈BZm

ξ0∈C(n0)

∑

λ∈Z∗

X̃(n0·ζ,ξ0) σλ,n0,ξ0 e
i λn0·θ ei λξ0 ψd π̃(n0·ζ,ξ0)E(n0, ξ0)(6.52a)

+
∑

n0∈BZm

ξ0∈C(n0)

∑

λ∈Z∗

∑

λ1,λ2∈Z∗

λ1+λ2=λ

i λ2 σλ1,n0,ξ0 σλ2,n0,ξ0 Γ
(
(n0, ξ0), (n0, ξ0)

)
(6.52b)

ei λn0·θ ei λξ0 ψd π̃(n0·ζ,ξ0)E(n0, ξ0)

+
∑

n0∈BZm

ξ0∈C(n0)

∑

(λp,λq,λr ,np,nq,
ξp,ξq)∈R1(n0,ξ0)∪R2(n0,ξ0)

∑

ℓ∈Z∗

i ℓ σℓλp,np,ξp σℓλq,nq,ξq(6.52c)

Γ
(
λp(np, ξp), λq(nq, ξq)

)
ei ℓ λrn0·θ ei ℓ λrξ0 ψd π̃(n0·ζ,ξ0)E(n0, ξ0) = 0.

Let us point out that despite formula (6.52) looks like formula (6.34), the former only uses the
fact that the mean value U∗ is zero, and involves both incoming and outgoing modes.

For 0 6 t0 6 T and x0d > 0, consider the domain K(t0, x
0
d), bounded with respect to xd, given

by

K(t0, x
0
d) :=

{
(t, y, xd) ∈ ΩT

∣∣V∗t 6 xd 6 x0d + V∗(t0 − t), 0 6 t 6 t0
}
,

see Figure 6. Let us prove that Uosc is zero on the upper boundary of this domain, namely for
t = t0 and V∗t0 6 xd 6 x0d, which suffices to prove that Uosc is zero outside {0 6 xd 6 V∗t} for
all t in [0, T ]. Take the scalar product (3.14) of expression (6.52) with the modified profile

−
∑

n0∈BZm

ξ0∈C(n0)

∑

λ∈Z∗

∂ξτk(n0,ξ0)(n0 · η, ξ0)σλ,n0,ξ0 e
i λn0·θ ei λξ0 ψd π̃(n0·ζ,ξ0)E(n0, ξ0),
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to obtain, according to (3.16),

∑

n0∈BZm

ξ0∈C(n0)

∑

λ∈Z∗

〈
X(n0·ζ,ξ0) σλ,n0,ξ0

∣∣σλ,n0,ξ0

〉
L2(K(t0,x0d))

∣∣π̃(n0·ζ,ξ0)E(n0, ξ0)
∣∣2

(6.53a)

+
∑

n0∈BZm

ξ0∈C(n0)

∑

λ∈Z∗

∑

λ1,λ2∈Z∗

λ1+λ2=λ

i λ2 Γ
(
(n0, ξ0), (n0, ξ0)

)
〈σλ1,n0,ξ0 σλ2,n0,ξ0 |σλ,n0,ξ0〉L2(K(t0,x0d))

(6.53b)

(
− ∂ξτk(n0,ξ0)(n0 · η, ξ0)

) ∣∣π̃(n0·ζ,ξ0)E(n0, ξ0)
∣∣2

+
∑

n0∈BZm

ξ0∈C(n0)

∑

(λp,λq,λr ,np,nq,
ξp,ξq)∈R1(n0,ξ0)∪R2(n0,ξ0)

∑

ℓ∈Z∗

i ℓΓ
(
λp(np, ξp), λq(nq, ξq)

)(
− ∂ξτk(n0,ξ0)(n0 · η, ξ0)

)(6.53c)

〈
σℓλp,np,ξp σℓλq,nq,ξq

∣∣σλ,n0,ξ0

〉
L2(K(t0,x0d))

∣∣π̃(n0·ζ,ξ0)E(n0, ξ0)
∣∣2 = 0.

Term (6.53a) is obtained by noting that, with the notations of Definition 2.10 and Lemma 2.12,

we have
(
− ∂ξτk(η, ξ)

)
X̃α = Xα. First term (6.53a) is investigated. According to Green’s

formula, for all n0 in BZm, ξ0 in C(n0) and λ in Z∗, we obtain

2Re
〈
X(n0·ζ,ξ0) σλ,n0,ξ0

∣∣ σλ,n0,ξ0

〉
L2(K(t0,x0d))

= 2Re

∫

∂K(t0,x0d)

(
nt + ~nx · v(n0·ζ,ξ0)

)
|σλ,n0,ξ0 |2 dS,

where the notation vα has been introduced in Definition 2.10, ~n := (nt, ~nx) is the outward
normal vector associated with ∂K(t0, x

0
d), and dS is the surface measure. The vector ~n is

given (see Figure 6), for the upper boundary by ~n = (1, 0, . . . , 0), for the lower boundary by

~n = (−1, 0, . . . , 0), for the left boundary by ~n = (V∗, 0, . . . , 0,−1)/
√

1 + (V∗)2 and for the right

boundary by ~n = (V∗, 0, . . . , 0, 1)/
√

1 + (V∗)2. Thus we get

2Re
〈
X(n0·ζ,ξ0) σλ,n0,ξ0

∣∣σλ,n0,ξ0

〉
L2(K(t0,x0d))

=2 ‖σλ,n0,ξ0‖2L2(Rd−1×[V∗t0,x0d])
(t0)− 2 ‖σλ,n0,ξ0‖2L2(Rd−1×[0,x0d])

(0)

+
2√

1 + (V∗)2

∫

{(t,y,V∗t),06t6t0}

(
V∗ − ∂ξτk(n0,ξ0)(n0 · η, ξ0)

)
|σλ,n0,ξ0 |2 dS

+
2√

1 + (V∗)2

∫

{(t,y,x0d+V∗(t0−t)),06t6t0}
(
V∗ + ∂ξτk(n0,ξ0)(n0 · η, ξ0)

)
|σλ,n0,ξ0 |2 dS.

Then note that on one hand we have ‖σλ,n0,ξ0‖2L2(Rd−1×R+) (0) = 0 according to the initial

condition (5.11d), and on the other hand, according to Lemma 2.14, the quantities
(
V∗ −

∂ξτk(n0,ξ0)(n0 · η, ξ0)
)
and

(
V∗ + ∂ξτk(n0,ξ0)(n0 · η, ξ0)

)
are non-negative. Therefore,

(6.54) 2Re (6.53a) > 2
∑

n0∈BZm

ξ0∈C(n0)

∑

λ∈Z∗

‖σλ,n0,ξ0‖2L2(Rd−1×[V∗t0,x0d])
(t0)

∣∣π̃(n0·ζ,ξ0)E(n0, ξ0)
∣∣2 .

As for them, terms (6.53b) and (6.53c) are treated the same way as before. For the self-
interaction term (6.53b), it is proved in the same manner than term (6.28b) that it satisfies

2Re (6.53b) = 0.

For the resonance term (6.53c), the same techniques as for terms (6.49) and (6.50) are used.
According to Lemma 2.14, the group velocities

(
−∂ξτk(n0,ξ0)(n0·η, ξ0)

)
can be uniformly bounded

to obtain

(6.55) |2Re (6.53c)| 6 C ‖Uosc‖Es,T
∑

n0∈BZm

ξ0∈C(n0)

∑

λ∈Z∗

‖σλ,n0,ξ0‖2L2(K(t0,x0d))

∣∣π̃(n0·ζ,ξ0)E(n0, ξ0)
∣∣2 .
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xd

t

y

6≡ 0 K(t0, x
0
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Figure 6. Propagation zone.

Noting that

∑

n0∈BZm

ξ0∈C(n0)

∑

λ∈Z∗

‖σλ,n0,ξ0‖2L2(K(t0,x0d))

∣∣π̃(n0·ζ,ξ0)E(n0, ξ0)
∣∣2

=

∫ t0

0

∑

n0∈BZm

ξ0∈C(n0)

∑

λ∈Z∗

‖σλ,n0,ξ0‖2L2(Rd−1×[V∗t,x0d+V∗(t0−t)])
(t)

∣∣π̃(n0·ζ,ξ0)E(n0, ξ0)
∣∣2 dt,

using equations (6.53), (6.54) and (6.55) and according to the Grönwall’s inequality, it follows
∑

n0∈BZm

ξ0∈C(n0)

∑

λ∈Z∗

‖σλ,n0,ξ0‖2L2(Rd−1×[V∗t0,x0d])
(t0)

∣∣π̃(n0·ζ,ξ0)E(n0, ξ0)
∣∣2 = 0.

Therefore, for all n0 in BZm , ξ0 in C(n0) and λ in Z∗, the function σλ,n0,ξ0 is zero on
{
t = t0,

V∗t0 6 xd 6 x0d
}
, so the profile Uosc is also zero in this set, concluding the proof of the

Lemma. �

6.4.4. Estimating the derivatives. Returning to the proof of the a priori estimate, Proposition
6.24 is proved here using estimate (6.44) of Lemma 6.25. Consider a multi-index α of Nd+m such

that |α| 6 s. Since the operator ∂αz′,θ commutes with the projectors Ein
res and Ẽi

in

res, the profile

∂αz′,θU
osc satisfies a system of the form (6.38), with ∂αz′,θG as boundary term, and Ẽi

in

res

[
∂αz′,θF

osc
res +

Fα
]
as source term, where Fα is the following commutator

Fα :=
[ m∑

j=1

L̃1(V
osc
res , ζj) ∂θj , ∂

α
z′,θ

]
Uosc
res .

Thus, according to estimate (6.44) and applying the triangle inequality, we get

(6.56)
d

dxd

〈
∂αz′,θU

osc
res

∣∣ ∂αz′,θUosc
res

〉
in
(xd) 6 C

〈
∂αz′,θF

osc
res

∣∣ ∂αz′,θF osc
res

〉
in
(xd) + C 〈Fα |Fα〉in (xd)

+ C
(
1 + ‖V osc

res ‖Es,T
) 〈
∂αz′,θU

osc
res

∣∣ ∂αz′,θUosc
res

〉
in
(xd).

Note that according to Lemma 6.21 we have

〈Fα |Fα〉in (xd) 6 ‖Fα‖2Cb(R+
ψd
,L2(ωT×Tm))

(xd),

and in the same way

〈
∂αz′,θF

osc
res

∣∣ ∂αz′,θF osc
res

〉
in
(xd) 6

∥∥∂αz′,θF osc
res

∥∥2
Cb(R

+
ψd
,L2(ωT×Tm))

(xd).
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On an other hand, according to the algebra property of Hs(ωT ×Tm) (since s > (d+m)/2 + 1)
and the commutator estimate [BGS07, Proposition C.13], we obtain

‖Fα‖2Cb(R+,L2(ωT×Tm)) (xd) 6 C ‖V osc
res ‖2Cb(R+,Hs(ωT×Tm)) (xd) ‖Uosc

res ‖2Cb(R+,Hs(ωT×Tm)) (xd)

6 C ‖V osc
res ‖2Es,T ‖Uosc

res ‖2Cb(R+,Hs(ωT×Tm)) (xd).

Finally, by definition of the Hs(ωT × Tm) norm and according to Lemma 6.21, we get

‖Uosc
res ‖2Cb(R+,Hs(ωT×Tm)) (xd) =

∑

|α|6s

∥∥∂αz′,θUosc
res

∥∥2
Cb(R+,L2(ωT×Tm))

(xd)(6.57)

6 C
∑

|α|6s

〈
∂αz′,θU

osc
res

∣∣ ∂αz′,θUosc
res

〉
in
(xd).

Therefore, by summing equations (6.56) for |α| 6 s, one gets

(6.58)
d

dxd

∑

|α|6s

〈
∂αz′,θU

osc
res

∣∣ ∂αz′,θUosc
res

〉
in
(xd) 6 C ‖F osc

res ‖2Cb(R+
ψd
,Hs(ωT×Tm))

(xd)

+ C
(
1 + ‖V osc

res ‖2Es,T
) ∑

|α|6s

〈
∂αz′,θU

osc
res

∣∣ ∂αz′,θUosc
res

〉
in
(xd).

Thus, according to Grönwall’s inequality,

(6.59)
∑

|α|6s

〈
∂αz′,θU

osc
res

∣∣ ∂αz′,θUosc
res

〉
in
(xd) 6 eC(V )xd

∑

|α|6s

〈
∂αz′,θU

osc
res

∣∣ ∂αz′,θUosc
res

〉
in
(0)

+

∫ xd

0
eC(V )(xd−x

′
d) ‖F osc

res ‖2Cb(R+
ψd
,Hs(ωT×Tm))

(x′d) dx
′
d,

where C(V ) = C(1 + ‖V osc
res ‖2Es,T ). The trace on the boundary Uosc

res is therefore given by(
Uosc
res

)
|xd=0,ψd=0

= Hosc
res where Hosc

res is determined by equation (6.20a). Remark 2.8, Propo-

sition 2.21 and Lemma 6.21 ensure that, for |α| 6 s,

〈
∂αz′,θU

osc
res

∣∣ ∂αz′,θUosc
res

〉
in
(0) 6

∥∥∂αz′,θUosc
res (0)

∥∥2
L2(ωT×Tm)

=
∥∥∂αz′,θHosc

res

∥∥2
L2(ωT×Tm)

(6.60)

6 C
∥∥∂αz′,θG

∥∥2
L2(ωT×Tm)

.

It thus follows, with (6.57), (6.59) and (6.60),

(6.61) ‖Uosc
res ‖2Cb(R+

ψd
,Hs(ωT×Tm))

(xd) 6 CeC(V )xd ‖G‖2Hs(ωT×Tm)

+

∫ xd

0
eC(V )(xd−x

′
d) ‖F osc

res ‖2Cb(R+
ψd
,Hs(ωT×Tm))

(x′d) dx
′
d.

Because of the function βT in equation (6.38b), it is possible to bound xd by 2V∗T then to pass
to the upper bound with respect to xd in estimate (6.61) to obtain the required estimate (6.39),
concluding the proof of Proposition 6.24.

6.5. A priori estimate for the linearized Burgers equations. We prove now a priori esti-
mates for the linearized Burgers equations (6.18), corresponding to the non-resonant incoming
modes. These a priori estimates will be used to prove the existence of solution to these Burgers
equations. However the estimates will have to be summed with respect to (n0, ξ0), so we wish
for constants independent of (n0, ξ0). This part is devoted to the proof of the following result.
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Proposition 6.26. Consider (n0, ξ0) ∈ (BZm ×Cin(n0))\F in
res, s > s0 and let Sn0,ξ0, Wn0,ξ0 and

Fn0,ξ0 be in C(R+
xd
,Hs(ωT × T)) of zero mean, satisfying the scalar boundary value problem

X̃(n0·ζ,ξ0)Sn0,ξ0 + Γ
(
(n0, ξ0), (n0, ξ0)

)
Wn0,ξ0∂ΘSn0,ξ0 = Fn0,ξ0(6.62a)
(
Sn0,ξ0

)
|xd=0

= hn0,ξ0(6.62b)
(
Sn0,ξ0

)
|t60

= 0,(6.62c)

where hn0,ξ0 is defined by equation (6.20b). Then the function Sn0,ξ0 satisfies the a priori esti-
mate

(6.63) ‖Sn0,ξ0‖2C(R+
xd
,Hs(ωT×T))

6 C1 e
C(W )V∗T ‖hn0,ξ0‖2Hs(ωT×Tm) + V∗T eC(W )V∗T ‖Fn0,ξ0‖2C(R+

xd
,Hs(ωT×T))

,

where C(W ) := C1

(
1+ ‖Wn0,ξ0‖2C(R+

xd
,Hs(ΩT×T))

)
, with C1 > 0 a constant depending only on the

operator L(0, ∂z) and of s, but not on n0, ξ0. Recall that the real number V∗, bounding the group
velocities vα, has been defined in Lemma 2.14.

First the L2(ωT×T) estimate, analogous to estimate (6.44) for resonant modes, is investigated,
and equation (6.62a) is rewritten. Write Sn0,ξ0 , Wn0,ξ0 and Fn0,ξ0 in C(R+

xd
,Hs(ωT × T)) as

Sn0,ξ0(z,Θ) =
∑

λ∈Z∗

σλ,n0,ξ0(z) e
iλΘ, Wn0,ξ0(z,Θ) =

∑

λ∈Z∗

ωλ,n0,ξ0(z) e
iλΘ,

Fn0,ξ0(z,Θ) =
∑

λ∈Z∗

fλ,n0,ξ0(z) e
iλΘ,

with σλ,n0,ξ0 , ωλ,n0,ξ0 and fλ,n0,ξ0 scalar functions on ΩT . Then equation (6.62a) writes

∑

λ∈Z∗

fλ,n0,ξ0(z) e
i λn0·θ eiλΘ = X̃(n0·ζ,ξ0)

∑

λ∈Z∗

σλ,n0,ξ0 e
iλΘ,

(6.64a)

+ Γ
(
(n0, ξ0), (n0, ξ0)

) ∑

λ∈Z∗

∑

λ1,λ2∈Z∗

λ1+λ2=λ

i λ2 ωλ1,n0,ξ0 σλ2,n0,ξ0 e
iλΘ.(6.64b)

Recall that the vector field X̃(n0·ζ,ξ0), defined in Lemma 2.12, is given by

X̃(n0·ζ,ξ0) =
−1

∂ξτk(n0,ξ0)(n0 · η, ξ0)
∂t +

1

∂ξτk(n0,ξ0)(n0 · η, ξ0)
∇ητk(η0,ξ0)(n0 · η, ξ0) · ∇y + ∂xd .

By taking the double of the real part of the L2(ωT ×T) scalar product of equality (6.64) with
the function Sn0,ξ0 , one obtains an equality, with on one side of it the term

2Re 〈Fn0,ξ0 |Sn0,ξ0〉L2(ωT×T) (xd),

which is estimated in a similar manner than for the resonant incoming frequencies:

(6.65)
∣∣∣2Re 〈Fn0,ξ0 |Sn0,ξ0〉L2(ωT×T) (xd)

∣∣∣ 6 C ‖Fn0,ξ0‖L2(ωT×T) (xd) + C ‖Sn0,ξ0‖L2(ωT×T) (xd).

One may note here the interest of having reduced the equations to scalar Burgers equations
for the non-resonant modes, since the coefficients |π̃(n0·ζ,ξ0)E(n0, ξ0)|−1 no longer appear, these
ones being not uniformly bounded for the non resonant modes (n0, ξ0).

We now focus on the other side of the equality obtained by taking the double of the real part
of the scalar product of equation (6.64) with the profile Sn0,ξ0 . The analysis of terms (6.64a)
and (6.64b) is analogous to the one made for the outgoing non-resonant modes.
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Concerning the transport term (6.64a), according to identity (3.15) and using an integration
by parts, we obtain

(6.66) 2Re 〈(6.64a) |Sn0,ξ0〉L2(ωT×T) (xd) =
d

dxd
‖Sn0,ξ0‖L2(ωT×T) (xd)

− 1

∂ξτk(n0,ξ0)(n0 · η, ξ0)
‖Sn0,ξ0‖2L2(Rd−1×T) (T ).

Note that since (n0, ξ0) is an incoming mode, the quantity −∂ξτk(n0,ξ0)(n0 · η, ξ0) is positive,
allowing to omit the second term on the right hand side of the equality in the estimates.

For the self-interaction term (6.64b), with computations analogous to the ones used for the
incoming resonant modes, we obtain

2Re 〈(6.64b) |Sn0,ξ0〉L2(ωT×T) (xd) =

− (2π)m
∑

λ∈Z∗

∑

λ1,λ2∈Z∗

λ1+λ2=λ

iλ1 Γ
(
(n0, ξ0), (n0, ξ0)

)
〈ωλ1,n0,ξ0 σλ2,n0,ξ0 |σλ,n0,ξ0〉L2(ωT )

(xd).

Therefore, using the upper bound (6.3), we get
∣∣∣2Re 〈(6.64b) |Sn0,ξ0〉L2(ωT×T) (xd)

∣∣∣

6 C
∑

λ∈Z∗

∑

λ1,λ2∈Z∗

λ1+λ2=λ

|λ1n0|h
∣∣∣〈ωλ1,n0,ξ0 σλ2,n0,ξ0 | σλ,n0,ξ0〉L2(ωT )

(xd)
∣∣∣ .

Here the order of regularity must be taken down to h since we wish for an upper bound indepen-
dent of n0, in the purpose of summing the inequality with respect to n0. An upper bound of the
form C(n0)|λ1| instead of C|λ1n0|h could be obtained, but where the constant C(n0) depends
on n0, and may be arbitrarily large since we consider modes n0 close to the glancing set. The
right hand side of the equality being of the form 〈fg | g〉, the following inequality holds

∣∣∣2Re 〈(6.64b) |Sn0,ξ0〉L2(ωT×T) (xd)
∣∣∣ 6 C ‖Wn0,ξ0‖C(R+

xd
,Hs(ωT×T)) ‖Sn0,ξ0‖L2(ωT×T) (xd),(6.67)

using Sobolev inequality, s being such that s > h+(d+m)/2. Using equations (6.64) and (6.66)
and estimates (6.65) and (6.67), it finally follows the differential inequality

(6.68)
d

dxd
‖Sn0,ξ0‖L2(ωT×T) (xd)

6 C ‖Fn0,ξ0‖L2(ωT×T) (xd) + C
(
1 + ‖Wn0,ξ0‖C(R+

xd
,Hs(ωT×T))

)
‖Sn0,ξ0‖L2(ωT×T) (xd).

To obtain the required Hs(ωT ×T) estimate, we use commutators estimates analogous to the
one for resonant incoming modes, which we do not detail here. Finally we obtain the sought
estimate (6.63).

The a priori estimates (6.44) and (6.63) (for s = 0) as well as the equivalence property of
Proposition 6.22 ensure the uniqueness of the solution to (5.11).

6.6. Construction of a solution.

6.6.1. Construction of an oscillating solution to the linearized system for the resonant incoming
modes. Thanks to the a priori estimate (6.39) of Proposition 6.24 on the linearized system (6.38),
a solution to this system can be constructed, proving the following result.

Proposition 6.27. Consider s > s0 and T > 0, and let V osc
res be a profile of N osc

s,T involving

only resonant incoming modes, F osc
res be in Posc

s,T and G be in Hs(ωT × Tm). Then there exists a

solution Uosc
res in Posc

s,T to system (6.38), involving only resonant incoming modes, that moreover
satisfies the following estimate

‖Uosc
res ‖2Es,T 6 C1 e

C(V )V∗T ‖G‖2Hs(ωT×Tm) + V∗T eC(V )V∗T ‖F osc
res ‖2Es,T ,
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where C(V ) := C1(1 + ‖V osc
res ‖2Es,T ), with C1 a positive constant depending only on L(0, ∂z), on

the boundary frequencies ζ1, . . . , ζm, and on s.

The proof of such a result using an a priori estimate of the form (6.39) is detailed in [JMR95,
Theorem 6.3.3]. Its main ideas are recalled here.

The uniqueness of the solution follows directly from the a priori estimate (6.39). Concerning
the existence, a finite difference scheme is used. Since the operators ∂θj for j = 1, . . . ,m,
are skew-symmetric, skew-symmetric finite difference operators must be considered. Denoting
e1, . . . , em the canonical basis of Rm, we define, for every function U of ΩT × Tm × R+,

δhj U(z, θ, ψd) :=
(
U(z, θ + hej)− U(z, θ − hej

)
/2h,

for j = 1, . . . ,m and h > 0. The proof then consists in showing that there exists, for h > 0, a
unique solution Uosc

h to the regularized system

Ein
res U

osc
h = Uosc

h(6.69a)

Ẽi
in

res

[
L̃(0, ∂z)U

osc
h +

m∑

j=1

L̃1(V
osc
res , ζj) δ

h
j U

osc
h

]
= Ẽi

in

res F
osc
res(6.69b)

(
Uosc
h

)
|xd=0,ψd=0

= Hosc
res(6.69c)

(
Uosc
h

)
|t60

= 0,(6.69d)

and that this solution satisfies the estimate uniform with respect to h > 0,

‖Uosc
h ‖2Es,T 6 C1 e

C(V )V∗T ‖G‖2Hs(ωT×Tm) + V∗T eC(V )V∗T ‖F osc
res ‖2Es,T ,

where C(V ) := C1(1 + ‖V osc
res ‖2Es,T ), with C1 > 0 a constant depending only on the operator

L(0, ∂z), on the boundary frequencies ζ1, . . . , ζm, and on s. This uniform estimate allows to
extract a sequence (Uosc

hn
)n weakly converging towards Uosc

res in Es,T . Passing to the limit in
system (6.69) leads to the result of Proposition 6.27.

6.6.2. Construction of an oscillating solution to systems (6.17) and (6.18). This part is devoted
to the following result, constituting a part of the result of Theorem 4.1.

Proposition 6.28. Consider s > s0, and G in H∞(Rd ×Tm), zero for negative times t. There
exists a time T > 0, depending only on the operator L(0, ∂z), on the boundary frequencies
ζ1, . . . , ζm, on the Hs(Rd × Tm) norm of G and on s, such that system (6.17) and, for every
(n0, ξ0) in (BZm × Cin(n0)) \ F in

res, system (6.18), admit solutions Uosc
res and Sn0,ξ0 in Posc

s,T and

C(R+,H
s(ωT ×T)), where the functions Sn0,ξ0 are of zero mean. Furthermore, if we denote, for

(n0, ξ0) in (BZm × Cin(n0)) \ F in
res,

Sn0,ξ0(z,Θ) =:
∑

λ∈Z∗

σλ,n0,ξ0(z) e
iλΘ,

then the profile Uosc defined, for (z, θ, ψd) in ΩT × Tm × R+, by

(6.70) Uosc(z, θ, ψd) := Uosc
res (z, θ, ψd) +

∑

(n0,ξ0)∈
(BZm×Cin(n0))\F in

res

∑

λ∈Z∗

σλ,n0,ξ0(z) e
iλn0 ·θ eiλξ0ψd E(n0, ξ0),

belongs to the space Posc
s,T .

It is classical to deduce from an existence result of a solution to a linearized system with an
estimate of the form (6.39), the existence of a solution to the original system. The main ideas
of the method described in [BGS07, Théorème 10.1] are recalled here.
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First system (6.17) is investigated, and the following iterative scheme is considered:

Ein
resU

osc
ν+1 = Uosc

ν+1(6.71a)

Ẽi
in

res

[
L̃(0, ∂z)βTU

osc
ν+1 +

m∑

j=1

L̃1(βTU
osc
ν , ζj) ∂θjβTU

osc
ν+1

]
= 0(6.71b)

(
Uosc
ν+1

)
|xd=0,ψd=0

= Hosc
res(6.71c)

(
Uosc
ν+1

)
|t60

= 0,(6.71d)

initialized with Uosc
0 (., xd, ., ψd) := Hosc

res , for all xd, ψd in R+. Proposition 6.27 ensures that the
sequence (Uosc

ν )ν is well defined in Posc
s,T . Then the proof consists in showing that the sequence

(Uosc
ν )ν is bounded in high norm, and contracting in low norm, in order to deduce its weak

convergence in the Banach space Posc
s,T .

Bound in high norm. According to estimate (6.39), we have, for ν > 0,

(6.72)
∥∥Uosc

ν+1

∥∥2
Es,T

6 C1e
C(Uosc

ν )V∗T ‖G‖2Hs(ωT×Tm) ,

where C(Uosc
ν ) = C1

(
1 + ‖Uosc

ν ‖2Es,T
)
. If the time T > 0 is chosen sufficiently small so that

exp
[
C1

(
1 + 2C1 ‖G‖2Hs(ωT×Tm)

)
V∗T

]
6 2,

then an induction argument shows that (Uosc
ν )ν is bounded in Es,T by

√
2C1 ‖G‖Hs(ωT×Tm).

Indeed, the initial step is obvious, up to assuming C1 > 1/2. On an other hand, assuming
‖Uosc

ν ‖Es,T 6
√
2C1 ‖G‖Hs(ωT×Tm) for some ν > 0, according to (6.72) and the assumption on

T , we obtain

∥∥Uosc
ν+1

∥∥2
Es,T

6 C1 exp
[
C1

(
1 + ‖Uosc

ν ‖2Es,T
)
V∗T

]
‖G‖2Hs(ωT×Tm)

6 C1 exp
[
C1

(
1 + 2C1 ‖G‖2Hs(ωT×Tm)

)
V∗T

]
‖G‖2Hs(ωT×Tm)

6 2C1 ‖G‖2Hs(ωT×Tm) ,

which is the expected estimate.
Contraction in low norm. Denote, for ν > 1, W osc

ν := Uosc
ν − Uosc

ν−1, that satisfies the system

Ein
resW

osc
ν+1 =W osc

ν+1(6.73a)

Ẽi
in

res

[
L̃(0, ∂z)βTW

osc
ν+1 +

m∑

j=1

L̃1(βTU
osc
ν , ζj) ∂θjβTW

osc
ν+1

]
= Ẽi

in

res Fν+1(6.73b)

(
W osc
ν+1

)
|xd=0,ψd=0

= 0(6.73c)

(
W osc
ν+1

)
|t60

= 0,(6.73d)

where Fν+1 is given by

Fν+1 :=

m∑

j=1

(
L̃1(βTU

osc
ν−1, ζj)− L̃1(βTU

osc
ν , ζj)

)
∂θjβTU

osc
ν .

According to estimate (6.39) applied to system (6.73) for s = 0, the following inequality holds
∥∥W osc

ν+1

∥∥2
E0,T

6 V∗T eC(Uosc
ν )V∗T ‖Fν+1‖2E0,T .

First note that by assumption on T , and since the sequence (Uosc
ν )ν is bounded in Es,T by√

2C1 ‖G‖Hs(ωT×Tm), we have, for ν > 0,

(6.74) eC(Uosc
ν )V∗T 6 2.
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Now the E0,T norm of Fν+1 is estimated. Thanks to the product estimate and the choice of the
index s, we have

‖Fν+1‖2E0,T 6C

m∑

j=1

∥∥∥
(
L̃1(βTU

osc
ν−1, ζj)− L̃1(βTU

osc
ν , ζj)

)∥∥∥
2

E0,T
‖Uosc

ν ‖2Es,T .

According to the mean value inequality, and since the sequence (Uosc
ν )ν is bounded in Es,T , one

then obtains

(6.75) ‖Fν+1‖2E0,T 6 C ‖Wν‖2E0,T ‖G‖2Hs(ωT×Tm) .

Therefore, according to estimates (6.74) and (6.75), we get
∥∥W osc

ν+1

∥∥2
E0,T

6 CV∗T ‖G‖2Hs(ωT×Tm) ‖W osc
ν ‖2E0,T .

For T > 0 small enough, the sequence (Uosc
ν )ν is therefore convergent in E0,T .

Thus the sequence (Uosc
ν )ν is a Cauchy sequence in the Banach space Posc

0,T , and therefore
converges to a function Uosc

res of Posc
0,T . It is possible to show, with arguments that will not be

recalled here, that Uosc
res is actually in Posc

s,T and satisfies system (6.17), see [BGS07, Theorem

10.1] for similar results.
The proof of the existence of a solution to (6.18) is identical, and is not detailed here. It relies

on a result of existence of a solution to the linearized system (6.62), analogous to Proposition
6.27, that has not been spelled out. One may however note that the existence time T is indeed
independent of (n0, ξ0), since the constants in estimate (6.63) are independent of (n0, ξ0), and
since according to estimate (6.37), each boundary term hn0,ξ0 is controlled in Hs(ωT × T) by
C ‖G‖Hs(ωT×Tm), uniformly with respect to (n0, ξ0).

Finally, it is shown that the profile Uosc defined by (6.70) actually belongs to Posc
s,T . Indeed,

according to Lemma 6.21, we have

‖Uosc‖2Es,T 6 C sup
xd>0

∑

|α|6s

〈
∂αz′,θU

osc
∣∣ ∂αz′,θUosc

〉
in
(xd)

6 C sup
xd>0

∑

|α|6s

〈
∂αz′,θU

osc
res

∣∣ ∂αz′,θUosc
res

〉
in
(xd)

+ C sup
xd>0

∑

(n0,ξ0)∈
(BZm×Cin(n0))\F in

res

∑

λ∈Z∗

‖σλ,n0,ξ0‖2Hs(ωT )
(xd)

6 C ‖Uosc
res ‖2Es,T +C

∑

(n0,ξ0)∈
(BZm×Cin(n0))\F in

res

‖Sn0,ξ0‖2C(R+,Hs(ωT×T)) ,

so that, using the a priori estimates (6.39) and (6.63) as well as the boundary term estimates
(6.37), one gets
(6.76)

‖Uosc‖2Es,T 6 C ‖G‖2Hs(ωT×Tm) + C
∑

(n0,ξ0)∈
(BZm×Cin(n0))\F in

res

‖hn0,ξ0‖2Hs(ωT×T) 6 C ‖G‖2Hs(ωT×Tm) .

6.6.3. Determination of the evanescent part and conclusion. To conclude as to the proof of
Theorem 4.1, it must be proved that there exists a solution U ev in Pev

s,T to system (6.19), where
the parameters s and T are those given in Proposition 6.28.

The polarization condition (6.19a) results, according to Remark 6.20, to

U ev(z, θ, ψd) =
∑

n∈Zm\{0}

eψdA(n·ζ)Πe
CN

(n · ζ)U ev
n (z, 0) ein·θ .

The traces
(
Πe

CN
(n · ζ)U ev

n

)
|ψd=0

for n in Zm \ {0} must therefore be determined to find the

profile U ev. The boundary condition (6.19b) gives the double trace on the boundary, for n in
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Zm \ {0},
U ev
n (z′, 0, 0) = Πe

CN
(n · ζ)U ev

n (z′, 0, 0) = Πe−(n · ζ)
(
B|E−(n·ζ)

)−1
Gn(z

′).

Then this trace is lifted with respect to xd using a function χ of C∞
0 (R+), equaling 1 in 0.

Namely we set

U ev(z, θ, ψd) :=
∑

n∈Zm\{0}

χ(xd) e
ψd A(n·ζ)Πe−(n · ζ)

(
B|E−(n·ζ)

)−1
Gn(z

′) ein·θ.

Note that, by construction, the profile U ev satisfies the polarization condition (6.19a) as well as
the boundary condition (6.19b). It must be now verified that it belongs to the space of evanescent
profiles Pev

s,T . First we note that the profile U
ev belongs to L∞

(
R+
xd
×R+

ψd
,Hs

+(ωT×Tm)
)
. Indeed,

on one hand, the functions Gn being zero for negative times t, the profile U ev is zero for negative

times t. On the other hand, since the function χ is bounded, the inverse map
(
B|E−(n·ζ)

)−1
is

uniformly bounded according to remark 2.8, and the terms eψd A(n·ζ)Πe−(n ·ζ) are also uniformly
bounded according to estimate (6.12a) of Proposition 6.16, for xd, ψd > 0, the following estimate
holds:

(6.77) ‖U ev‖2Hs(ωT×Tm) (xd, ψd) 6 C
∑

n∈Zm\{0}

‖Gn‖2Hs(ωT )
= C ‖G‖2Hs(ωT×Tm) .

From now on we denote, for n in Zm \ {0},
U ev
n (z, ψd) := χ(xd) e

ψd A(n·ζ)Πe−(n · ζ)
(
B|E−(n·ζ)

)−1
Gn(z

′),

so that U ev(z, θ, ψd) =
∑

n∈Zm\{0} U
ev
n (z, ψd) e

in·θ.

Then it is proven that the profile U ev is continuous with respect to (xd, ψd) in R+ ×R+ with
values in Hs(ωT × Tm). Consider (x0d, ψ

0
d) in R+ ×R+, and ε > 0. There holds, for xd, ψd > 0,

∥∥U ev(xd, ψd)− U ev(x0d, ψ
0
d)
∥∥
Hs(ωT×Tm)

6
∥∥U ev(xd, ψd)− U ev(x0d, ψd)

∥∥
Hs(ωT×Tm)

+
∥∥U ev(x0d, ψd)− U ev(x0d, ψ

0
d)
∥∥
Hs(ωT×Tm)

,

and we seek to estimate the two terms on the right hand side of the inequality. For the first one,
according to estimate (6.12a) of Proposition (6.16) and Remark 2.8, for ψd > 0, we get

∥∥U ev(xd, ψd)− U ev(x0d, ψd)
∥∥
Hs(ωT×Tm)

6 C
∣∣χ(xd)− χ(x0d)

∣∣ ‖G‖Hs(ωT×Tm) .

By continuity of χ, there exists therefore δ1 > 0, depending only on ε, such that for all xd such
that |xd − x0d| < δ1 and for all ψd > 0, we have

∥∥U ev(xd, ψd)− U ev(x0d, ψd)
∥∥
Hs(ωT×Tm)

< ε.

For the second one, we denote by M an integer such that∥∥∥∥∥∥

∑

|n|>M

Gn e
in·θ

∥∥∥∥∥∥
Hs(ωT×Tm)

< ε.

Thus, for ψd > 0,
∥∥U ev(x0d, ψd)− U ev(x0d, ψ

0
d)
∥∥
Hs(ωT×Tm)

6

∥∥∥∥∥∥

∑

0<|n|6M

[
U ev
n
(y, x0d, ψd)− U ev

n
(y, x0d, ψ

0
d)
]
ein·θ

∥∥∥∥∥∥
Hs(ωT×Tm)

(6.78a)

+

∥∥∥∥∥∥

∑

|n|>M

[
U ev
n (y, x0d, ψd)− U ev

n (y, x0d, ψ
0
d)
]
ein·θ

∥∥∥∥∥∥
Hs(ωT×Tm)

.(6.78b)

The sum in term (6.78a) being finite and the functions U ev
n

being continuous with respect to
ψd , there exists δ2 > 0 such that for all ψd such that |ψd − ψ0

d| < δ2, we have (6.78a) < ε. On
an other hand, according to estimate (6.12a), Remark 2.8 and since χ is bounded, we have, by
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construction of M , for all ψd > 0, (6.78b) < Cε where C > 0 does not depend on ε. It is then
possible to conclude: for all (xd, ψd) such that |(xd, ψd)− (x0d, ψ

0
d)| < min(δ1, δ2), we have

∥∥U ev(xd, ψd)− U ev(x0d, ψ
0
d)
∥∥
Hs(ωT×Tm)

< (2 + C)ε,

showing the required continuity.
Finally, with similar arguments as above for the continuity property, it is possible to show

that the profile U ev converges towards zero in the space C
(
R+
xd
,Hs(ωT × Tm)

)
when ψd goes to

infinity (so in particular in Hs(ωT × Tm) for every fixed xd).
All points of Definition 3.4 of evanescent profiles have therefore been verified, so it has been

proven that the profile U ev belongs to the space Pev
s,T of evanescent profiles.

Remark 6.29. It has been shown in the previous paragraph, in estimate (6.76), that the oscil-
lating part Uosc is controlled in Es,T by the Hs(ωT × Tm) norm of the boundary term G. On
an other hand, according to estimate (6.77), the evanescent part U ev is also controlled by the
Hs(ωT × Tm) norm of G. Thus the leading profile U satisfies

‖U‖Ps,T 6 C ‖G‖Hs(ωT×Tm) .

6.7. Conclusion and perspectives. It has therefore been proven that for s > h+ (d+m)/2,
there exists a time T > 0 small enough such that systems (6.17), (6.18) and (6.19) admit
solutions Uosc

res , Sn0,ξ0 and U ev in Posc
s,T , C(R+,H

s(ωT × T)) and Pev
s,T . According to Proposition

6.22, the profile U = Uosc +U ev (where Uosc is defined from Uosc
res and Sn0,ξ0 by equation (6.70))

is therefore a solution in Ps,T to system (5.11). It concludes the proof of Theorem 4.1.
Estimate (6.39) is not tame since the norm of V osc in the estimate depends on the regularity

index s. Therefore, it is a priori not possible to obtain the existence of a solution Uosc of infinite
regularity considering a boundary term G infinitely regular, since without a tame estimate, the
existence time T a priori depends on the considered index s. It has been chosen not to attempt
to keep the estimates tame until the end for the sake of simplicity, for example in estimate (6.44),
but it is however conceivable to achieve this more precise statement in further work.

Possible extensions of the result of this article to less restrictive assumptions are now discussed.
It seems reasonable to consider a similar result under the assumption that the system under study
is hyperbolic with constant multiplicity, and not strictly hyperbolic (Assumption 2). Similarly,
Assumption 7 could be removed to allow outgoing frequencies to exist within the domain. It is a
situation of this type which is considered in [CGW11]. But in this case it is no longer possible to
determine beforehand the traces of incoming modes, as done in Proposition 6.22. This may also
open the way to an infinite number of resonances with outgoing phases, which complicates the
functional framework. The weakening of the uniform Kreiss-Lopatinskii condition Assumption 3
shall be discussed in a future work. Concerning the glancing frequencies, Assumption 4 stating
that all glancing frequencies are of order 2 seems to be crucial, see [Wil00]. Likewise, it seems
difficult to do without Assumption 5 ensuring that no glancing frequencies are created on the
boundary.

Finally, this work raises the question of the justification of the geometric optic expansion that
has been constructed, namely to prove that the function

z 7→ εU1(z, z
′ · ζ1/ε, . . . , z′ · ζm/ε, xd/ε)

is indeed a good approximation on a fixed time interval of the exact solution to (2.1) as ε goes
to zero. To do so, two main methods are practicable. As conducted in [Wil96], if there exists
a solution on a time interval independent on the parameter ε, it is conceivable to show that
this exact solution and the function defined above draw near each other when ε goes to 0, see
[JMR95] and [CGW11]. The problem is that in this work we do not have an exact solution
on a fixed time interval. An other strategy relies on using a large number of corrector profiles,
which we do not dispose either here (constructing correctors relies on small divisor accurate
controls for noncharacteristic modes, which goes even further beyond Assumption 6). Both of
these points (getting an existence time of the exact solution independent of epsilon and building
a large number of correctors) do not seem to be within our reach for the moment, but will be
the topics of future studies.
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Appendix A. Additional proofs

A.1. Proof of Proposition 2.21. We detail here the proof of Proposition 2.21, omitted at
first because of its length.

Recall that, for ζ in Ξ0, the projectors Πj(ζ), for j in G(ζ)∪I(ζ), are defined as the projectors

from E−(ζ) on Ej−(ζ) according to decomposition (2.23), and that Πe−(ζ) is defined as the

projector from E−(ζ) on the elliptic stable component Ee−(ζ) = ⊕j∈P(ζ)E
j
−(ζ) according to the

same decomposition. Proposition 2.21 then reads as follows.

Proposition A.1 ([Wil96]). Under assumption 2 and 4, for ζ ∈ Ξ0 the projectors Πj−(ζ) for j
in G(ζ) ∪ I(ζ), and the projectors Πe−(ζ) are uniformly bounded with respect to ζ in Ξ0.

Proof. In all the proof we indistinctly denote by e every analytic function which, evaluated in a
particular point α precised below, is nonzero, and which is therefore nonzero in a neighborhood

of the point α. Since the projectors Πj−(ζ), j ∈ G(ζ) ∪ I(ζ) and Πe−(ζ) are homogeneous of
degree 0 with respect to ζ, the claim is proved locally in Σ0, and the result follows from the
compactness of the sphere Σ0. The study is therefore reduced locally in a neighborhood of every
point of Σ0.

Consider ζ = (τ , η) ∈ Σ0. We are interested in the behavior, on a neighborhood of ζ in

Σ0, of the projectors Πj−(ζ), j ∈ G(ζ) ∪ I(ζ) and Πe−(ζ), and therefore in the behavior, in
a neighborhood of ζ, of the eigenvalues of A(ζ). According to Proposition 2.9 there exists a

neighborhood V of ζ in Σ0, an integer L > 0, and a regular basis CN in which the matrix A(ζ)
is a block diagonal matrix of the form

(A.1) diag
(
A−(ζ),A+(ζ),A1(ζ), . . . ,AL(ζ)

)
,

where the block A−(ζ) (resp. A+(ζ)), eventually of size zero, is of negative definite (resp.
positive definite) real part, and where the blocks Aj(ζ) are of type iii) or iv) with the notations
of Proposition 2.9. According to this proposition, the eigenvalues associated with the blocks of
type iii) remain imaginary for ζ ∈ Σ0 in a neighborhood of ζ and therefore do not contribute to
the elliptic parts of the stable and unstable subspaces. However, the eigenvalues of the blocks of
type iv) may have a nonzero real part in a neighborhood of ζ and thus contribute to the elliptic

parts. Thus, in a neighborhood of ζ in Σ0, the elliptic part ⊕j∈P(ζ)E
j
−(ζ) writes as the direct

sum of the stable subspace for A(ζ) associated with the block A−(ζ) and of the generalized
eigenspaces associated with the potential eigenvalues of negative real part of the blocks Aj(ζ)
of type iv). The detailed description of these eigenspaces constitutes the central point of the
analysis below.

In the basis adapted to decomposition (A.1), which is analytic with respect to ζ ∈ Σ0, we
consider the first vectors associated with the block A−(ζ) and the aim is to complete this set of
vectors into an analytic basis of the stable subspace E−(ζ). The purpose is to construct, in a
neighborhood of ζ, a determination, continuous with respect to ζ, of the stable eigenvectors of
A(ζ) associated with the blocks Aj(ζ) of type iii) and iv) (which are therefore imaginary in ζ)
and to deduce from that the existence of a linearly independent set of generalized eigenvectors
continuously depending on ζ. To this end, the analyis of [Mét00] is followed.

Let i ξ
j
be an imaginary eigenvalue of A(ζ) of algebraic multiplicity nj. By definition of A(ζ)

and with the notations of Assumption 2, there exists a unique index kj between 1 and N such
that

τ = τkj(η, ξj).

Two cases may occur, depending on the cancellation of the quantity
∂τkj
∂ξ (η, ξ

j
). In the first

case we shall see that there exists a continuous extension of the eigenvalue i ξ
j
which remains

imaginary for ζ ∈ Σ0 in a neighborhood of ζ, and that there exists a regular projector on the
associated subspace. In the second case, the eigenvalue i ξ

j
is degenerate (i.e. is not semisim-

ple) and extends to a continuous eigenvalue i ξj , which, depending on the position of ζ in the
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neighborhood of ζ, may become of nonzero real part, or imaginary and simple, or even remains
imaginary and degenerate.

First suppose that
∂τkj
∂ξ

(η, ξ
j
) 6= 0,

that is (τ , η, ξ
j
) is incoming or outgoing. According to Assumption 2, for (ζ, ξ) in Rd+1 \ {0},

we have

(A.2) det
(
A(ζ)− iξI

)
= det(Ad(0))

−1iN detL
(
0, (ζ, ξ)

)
=

(
τ − τkj(η, ξ)

)
e(ζ, ξ),

where e(ζ, ξ
j
) 6= 0. Since

∂τkj
∂ξ (η, ξ

j
) 6= 0, according to the Weierstrass preparation theorem

[Hör90], there exists a unique real analytic function ξj defined in a neighborhood of ζ in Σ0

satisfying ξj(ζ) = ξ
j
and such that in a neighborhood of (ζ, ξ

j
) in Σ0 × R we have

(A.3) τ − τkj(η, ξ) =
(
ξ − ξj(ζ)

)
e(ζ, ξ),

where e(ζ, ξ
j
) 6= 0. Thus, in a neighborhood of (ζ, ξ

j
) in Σ0 × R we have

det
(
A(ζ)− iξI

)
=

(
ξ − ξj(ζ)

)
e(ζ, ξ),

where e(ζ, ξ
j
) 6= 0, so in a neighborhood of ζ in Σ0, i ξj(ζ) is an eigenvalue (analytic with respect

to ζ) of A(ζ) of algebraic multiplicity 1. On an other hand, according to identity (A.3), we have
τ = τkj

(
η, ξj(ζ)

)
, thus

A(ζ)πkj(η, ξj(ζ)) = i ξj(ζ)πkj (η, ξj(ζ)).

In a neighborhood of ζ in Σ0, i ξj(ζ) is therefore an eigenvalue of A(ζ) of geometric multiplicity

1, thus simple. Furthermore the projector πkj
(
η, ξj(ζ)

)
is analytic with respect to ζ and is a

projector on the eigenspace of A(ζ) associated with i ξj(ζ). Thus, in the block decomposition
(A.1), there is a unique scalar block among the blocks Al(ζ) corresponding to the eigenvalue
i ξj(ζ). In the incoming case, we then obtain associated eigenvectors depending analyticly on
ζ ∈ Σ0 in a neighborhood of ζ, contributing to the stable subspace E−(ζ).

If now
∂τkj
∂ξ (η, ξ

j
) = 0, then, according to Assumption 4, we have

∂2τkj
∂ξ2

(η, ξ
j
) 6= 0 and in that

case we say that ξ
j
is glancing. Thus there exists a function e defined in a neighborhood of ξ

j

with e(ξ
j
) 6= 0 such that for ξ close to ξ

j
, we have

τ − τkj (η, ξ) = (ξ − ξ
j
)2 e(ξ).

We deduce, according to (A.2) that for ξ close to ξ
j
,

det
(
A(ζ)− iξI

)
=

(
ξ − ξ

j

)2
e(ξ),

where e(ξ
j
) 6= 0. The algebraic multiplicity nj of the eigenvalue iξ

j
is therefore equal to 2

whereas its geometric multiplicity equals 1 since

ker
(
A(ζ)− i ξ

j
I
)
= kerL

(
0, (ζ, ξ

j
)
)
= Imπkj(η, ξj),

and since the projector πkj(η, ξj) is of rank 1. The aim is therefore to find a basis of the

generalized eigenspace associated with i ξ
j
, which is of dimension 2. By definition of the analytic

function τkj and of the projector πkj , we have, for ξ close to ξ
j
,

L
(
0, τkj (η, ξ), η, ξ

)
πkj(η, ξ) = 0.

Differentiating this equation with respect to ξ and evaluating in ξ = ξ
j
, one gets, since τkj (η, ξj) =

τ ,

∂ξτkj(η, ξj) ∂τL
(
0, τ , η, ξ

j

)
πkj (η, ξj) + ∂ξL

(
0, τ , η, ξ

j

)
πkj(η, ξj) + L

(
0, τ , η, ξ

j

)
∂ξπkj(η, ξj) = 0,
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that is to say, according to the expression of L
(
0, (τ, η, ξ)

)
and using ∂ξτkj (η, ξj) = 0,

Ad(0)πkj (η, ξj) + iAd(0)
(
A(ζ)− iξ

j

)∂πkj
∂ξ

(η, ξ
j
) = 0.

Denoting P 0 := πkj(η, ξj) and P 1 :=
∂πkj
∂ξ (η, ξ

j
) we obtain

(A.4)
(
A(ζ)− iξ

j

)
P 1 = iP 0.

We then denote by Ej a nonzero vector of the linear line Imπkj(η, ξj). Equation (A.4) thus

leads to

(A.5)
(
A(ζ)− iξ

j

)
P 1Ej = iEj.

One can then verify that (Ej, P 1Ej) is a family of linearly independent vectors and that it
therefore forms a basis of the generalized eigenspace associated with i ξ

j
. In this basis, according

to (A.5), the operator A(ζ) restricted to the generalized eigenspace associated with i ξ
j
is given

by the following matrix:

(A.6) Q(ζ) =


 iξ

j
i

0 iξ
j


 .

We have therefore obtained a triangularization of the matrix A(ζ) restricted to the generalized
eigenspace associated with i ξ

j
, and we seek to extend this structure in a neighborhood of ζ and

to study the behavior of the stable eigenvalues of the matrix A(ζ) restricted to the generalized
eigenspace associated with i ξ

j
in a neighborhood of ζ. In [Mét00] and using a result of [Ral71],

it is proved that there exists a linearly independent set of vectors E0
j (ζ), E

1
j (ζ), analytic with

respect to ζ ∈ Σ in a neighborhood of ζ, generating a subspace Fj(ζ) which is stable under A(ζ),

such that E0
j (ζ) = Ej and E

1
j (ζ) = P 1Ej and such that the restriction of A(ζ) to the subspace

Fj(ζ) is given by

(A.7) Q(ζ) = i


 ξ

j
+ q1(ζ) 1

q2(ζ) ξ
j


 ,

where q1(ζ) = q2(ζ) = 0 and where ∂q2
∂τ (ζ) 6= 0. Among the blocks Al(ζ) of the block diagonal-

ization (A.1) of the matrix A(ζ) in a neighborhood of ζ, there is therefore a 2 × 2 block given
by Q(ζ).

The aim is now to study the eigenvalues of the 2×2 block Q(ζ) above and to find a continuous
determination of the stable eigenvalue in a neighborhood of ζ in Σ (and not only in Σ0), namely
the Laplace parameter γ is allowed to be positive. First the expression of the characteristic
polynomial of Q(ζ) is investigated. It is of degree 2, allowing to obtain an explicit formula for
the eigenvalues of Q(ζ). According to (A.2), in a neighborhood of (ζ, ξ

j
), we have

det
(
A(ζ)− iξI

)
=

(
τ − τkj(η, ξ)

)
e(ζ, ξ).

On an other hand, according to the Weierstrass preparation theorem and since ∂ξτkj(η, ξj) = 0

and ∂2ξ τkj(η, ξj) 6= 0, there exists a couple of functions (f0, f1), analytic with respect to ζ,

satisfying f0(ζ) = f1(ζ) = 0 and such that for (ζ, ξ) close to (ζ, ξ
j
),

(A.8) τ − τkj(η, ξ) =
(
ξ2 −

(
2ξ
j
+ f1(ζ)

)
ξ + ξ2

j
+ f0(ζ)

)
e(ζ, ξ),

where e(ζ, ξ
j
) 6= 0. Thus

det
(
A(ζ)− iξI

)
=

(
ξ2 −

(
2ξ
j
+ f1(ζ)

)
ξ + ξ2

j
+ f0(ζ)

)
e(ζ, ξ),
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where e(ζ, ξ
j
) 6= 0. But according to the block decomposition of A(ζ) we have

det
(
A(ζ)− iξI

)
= det

(
Q(ζ)− iξI

)
e(ζ, ξ),

where e(ζ, ξ
j
) 6= 0 so that

ξ2 −
(
2ξ
j
+ f1(ζ)

)
ξ + ξ2

j
+ f0(ζ) = det

(
Q(ζ)− iξI

)
e(ζ, ξ),

where e(ζ, ξ
j
) 6= 0. Since according to (A.7) the ξ polynomial given by det

(
Q(ζ) − iξI

)
is of

degree 2 and of leading coefficient −1, we obtain

det
(
Q(ζ)− iξI

)
= −

(
ξ2 −

(
2ξ
j
+ f1(ζ)

)
ξ + ξ2

j
+ f0(ζ)

)
.

By identification, according to (A.7), we get f1 = q1 and f0 = ξ
j
q1 − q2.

The interest is now made on the behavior of the eigenvalues of Q(ζ), and therefore on the
roots of the polynomial ξ2 −

(
2ξ
j
+ f1(ζ)

)
ξ+ ξ2

j
+ f0(ζ), for ζ in a neighborhood of ζ in Σ. The

Puiseux expansion theory ensure that for γ > 0 small, the eigenvalues of Q(ζ) with ζ = (τ−iγ, η)
admit an expansion of the form

ξ(ζ) = ξ
j
+ α1,2 γ

1/2 +O(γ),

where the coefficients α1,2 are obtained resolving

α2
1,2 = i

(
∂τf0(ζ)− ∂τf1(ζ) ξj

)
.

But since f1 = q1 and f0 = ξ
j
q1 − q2, we have

∂τf0(ζ)− ∂τf1(ζ) ξj = −∂τq2(ζ) 6= 0,

so that Imα1,2 = ±c where c > 0. Thus for γ > 0, Q(τ − iγ, η) admits a unique stable

eigenvalue ξ−j (ζ) (namely such that Im ξ−j (ζ) > 0) and a unique unstable eigenvalue ξ+j (ζ) (such

that Im ξ+j (ζ) < 0). It is deduced that for ζ in a neighborhood of ζ in Σ \ Σ0, Q(ζ) admits a

unique stable eigenvalue denoted by ξj(ζ). We then seek to continuously extend the eigenvalue

ξj for γ = 0, that is to say we are interested in the root ξ2 −
(
2ξ
j
+ f1(ζ)

)
ξ + ξ2

j
+ f0(ζ) that

extends ξj(ζ) to a neighborhood of ζ in Σ. The behavior of this extension ξj shall then depends

on the sign of the discriminant (real when ζ is real) ∆j(ζ) := 4 ξ
j
f1(ζ) + f1(ζ)

2 − 4f0(ζ) which

has been represented in Figure 7.

τ = τ gj (η)

∆j = 0

Σ0

∆j > 0
ξj(ζ) ∈ R

∆j < 0
Im ξj(ζ) > 0

•
ζ

Figure 7. Sign of the discriminant ∆j(ζ) in a neighborhood of ζ.

When the discriminant ∆j(ζ) of this polynomial is negative, the eigenvalue ξj(ζ) is necessarily
given by

ξj(ζ) =
2 ξ

j
+ f1(ζ) + i

√
4f0(ζ)− 4 ξ

j
f1(ζ)− f1(ζ)2

2
,

since it must be of non-negative imaginary part. When the discriminant ∆j(ζ) is zero, ξj(ζ) is
given by

ξj(ζ) =
2 ξ

j
+ f1(ζ)

2
.
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The location of the discriminant roots may even be made precise, since it satisfies ∂τ∆j(ζ) =

4
(
∂τf1(ζ) ξj − ∂τf0(ζ)

)
6= 0, so according to the implicit functions theorem, there exists an

analytic function τ gj defined in a neighborhood of η which parameterizes in a neighborhood of ζ

in Σ0 the set of the discriminant’s roots, see Figure 7. Finally, when the discriminant ∆j(ζ) is
positive, we must determine which one of the real roots

(A.9)
2 ξ

j
+ f1(ζ)±

√
4 ξ

j
f1(ζ) + f1(ζ)2 − 4f0(ζ)

2
,

continuously extends the stable eigenvalue ξj(ζ) when γ = 0. If ξj(ζ) refers to the sought
eigenvalue until γ = 0, and if we denote ζ = (σ, η) := (τ − iγ, η), since ξj(ζ) is real when γ = 0
and Im ξj(ζ) > 0 when γ > 0, we have necessarily

∂ Im ξj
∂ Imσ

∣∣∣
γ=0

6 0,

so that according to the Cauchy-Riemann equations, we must have

∂τ
(
Re ξj

)
|γ=0 6 0.

Thus, if ∂τf0(ζ)− ∂τf1(ζ) ξj > 0, the real root

2 ξ
j
+ f1(ζ) +

√
4 ξ

j
f1(ζ) + f1(ζ)2 − 4f0(ζ)

2

is the one that continuously extends the stable eigenvalue ξj(ζ) when γ = 0, and in the other
case, the other root must be chosen. We have therefore obtained a continuous determination
of the stable eigenvalue ξj(ζ) of the matrix Q(ζ) in a neighborhood of ζ. Note now that an
eigenvector of the matrix 

 ξ
j
+ q1(ζ) 1

q2(ζ) ξ
j




associated with the eigenvalue ξj(ζ) writes
(
1, q2(ζ)

ξj(ζ)−ξj

)
. One thus gets, using the linearly

independent vectors E0
j (ζ), E

1
j (ζ), an eigenvector A(ζ) associated with the stable eigenvalue

i ξj(ζ) continuous with respect to ζ4.
In a nutshell, in a neighborhood of ζ in Σ0, the degenerate imaginary eigenvalue i ξ

j
contin-

uously extends in a stable eigenvalue i ξj(ζ) of which the behavior depends on the sign of the
discriminant ∆j(ζ) in the neighborhood of ζ, which has been figured in Figure 7. If ∆j(ζ) is
negative, then i ξj(ζ) is of negative real part so the eigenvalue i ξj(ζ) contributes to the elliptic
part of the stable subspace E−(ζ). If ∆j(ζ) is positive, then i ξj(ζ) is a simple imaginary eigen-

value of A(ζ) so it contributes to a subspace El−(ζ) with l in I(ζ). Finally if ∆j(ζ) is zero, the

eigenvalue i ξj(ζ) remains imaginary and degenerate so it contributes to a subspace El−(ζ) with
l in G(ζ).

We denote now by i ξ
l
, l = 1, . . . , r the real incoming eigenvalues and by i ξ

l
, l = r+1, . . . , r+

g the glancing eigenvalues of the matrix A(ζ). Using the notations of the beginning of the
proof, we have found continuous extensions i ξl, l = 1, . . . , r + g, of these eigenvalues in a
neighborhood of ζ. Therefore, a continuous determination of the stable eigenvalues of the blocks
A1(ζ), . . . ,AL(ζ) has been determined, as well as a continuous basis of the stable subspace E−(ζ)
constituted of generalized eigenvectors of the matrix A−(ζ) and of eigenvectors of the matrix

A(ζ) associated with the eigenvalues i ξl(ζ) for l = 1, . . . , r + g. Then we denote by Π̃e−(ζ) the
analytic projector from E−(ζ) to the stable subspace associated with the elliptic block A−(ζ),

and, for l = 1, . . . , r+g, Π̃l−(ζ) the continuous projector from E−(ζ) to the eigenspace associated

4Since ξj(ζ) is a root of the polynomial ξ2 −
(

2ξ
j
+ q1(ζ)

)

ξ + ξ2
j
+ ξ

j
q1(ζ) − q2(ζ), according to f1 = q1 and

f0 = ξ
j
q1 − q2, we have q2(ζ)

ξj (ζ)−ξj
= ξj(ζ) − ξ

j
− q1(ζ). Thus the following limit holds q2(ζ)

ξj (ζ)−ξj
−→ 0
ζ→ζ

, and the

considered eigenvector continuously depends on ζ in a neighborhood of ζ
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with i ξl(ζ). Since these projectors are continuous with respect to ζ in a neighborhood of ζ, they
can be assumed to be bounded on this neighborhood.

If l = 1, . . . , r, the eigenvalue i ξl(ζ) is imaginary and simple in a neighborhood of ζ, so, for all

ζ, the projector Π̃l−(ζ) contributes to a projector Πj−(ζ) for some j (depending on ζ) in I(ζ). If
l = r + 1, . . . , r + g, then, depending on the sign of ∆l, the eigenvalue i ξl(ζ) may be imaginary
and simple, or imaginary and degenerate, or even of nonzero real part, so depending on where

ζ is in a neighborhood of ζ, the projector Π̃l−(ζ) contributes to Πe−(ζ) (when ∆l < 0), to Πj−(ζ)

for some j in G(ζ) (when ∆l = 0) or to Πj−(ζ) for some j in I(ζ) (when ∆l > 0). As for it, the

projector Π̃e−(ζ) always contributes to Πe−(ζ).

We seek now to explicitly describe the projectors Πe−(ζ) and Πj−(ζ) for j ∈ I(ζ) ∪ G(ζ). To
simplify the notations, we assume that among the imaginary eigenvalues i ξ

l
, there is only one of

them which is glancing, namely that g = 1. The expressions of the sought projectors depend on
whether the eigenvalue i ξr+1(ζ) is incoming, glancing, or of negative real part, and therefore on
where is ζ in the neighborhood of ζ, see Figure 7. If ζ belongs to the area of the neighborhood
of ζ where ∆r+1(ζ) > 0, then the eigenvalue i ξr+1(ζ) is incoming, so I(ζ) is of cardinality r+1
and G(ζ) is empty. In this case, for all index j in I(ζ), we have

Πj−(ζ) = Π̃l−(ζ),

for some l between 1 and r + 1, and

Πe−(ζ) = Π̃e−(ζ).

If ζ is, in the neighborhood of ζ, on the hypersurface defined by ∆r+1 = 0, then i ξr+1(ζ) is
glancing and in that case I(ζ) is of cardinality r and G(ζ) is if cardinality 1. We have therefore,
for j in I(ζ),

Πj−(ζ) = Π̃l−(ζ),

for some l between 1 and r, for the index j of G(ζ),
Πj−(ζ) = Π̃r+1

− (ζ),

and

Πe−(ζ) = Π̃e−(ζ).

Finally, if ζ belongs to the area of the neighborhood of ζ where ∆j(ζ) < 0, then i ξr+1(ζ) is of
negative real part so it contributes to the elliptic part E−(ζ). Thus I(ζ) is of cardinality r, G(ζ)
is empty and the extension of the degenerate eigenvalue iξr+1(ζ) contributes to the elliptic part.
In this case, for all index j in I(ζ), we have

Πj−(ζ) = Π̃l−(ζ),

for some l between 1 and r, and

Πe−(ζ) = Π̃e−(ζ) + Π̃r+1
− (ζ).

Therefore, since the projectors Π̃l−(ζ), l = 1, . . . , r + 1 and Π̃e−(ζ) are bounded uniformly with

respect to ζ in a neighborhood of ζ, we deduce that the projectors Πe−(ζ) and Πj−(ζ) for j ∈
I(ζ) ∪ G(ζ) are bounded uniformly with respect to ζ in a neighborhood of ζ, which concludes
the proof of Proposition 2.21.

In the general case where there are multiple glancing eigenvalues i ξ
l
(namely when g > 1),

the projectors Πe−(ζ) and Πj−(ζ) for j ∈ I(ζ) ∪ G(ζ) can still be expressed using the projectors

Π̃l−(ζ), l = 1, . . . , r+ g and Π̃e−(ζ). Since the expression of Πe−(ζ) will be needed in the proof of
Proposition 6.16 below, it is given here. For ζ in a neighborhood of ζ in Σ0, we have

(A.10) Πe−(ζ) = Π̃e−(ζ) +

r+g∑

j=r+1

1∆j(ζ)<0 Π̃
j
−(ζ).

�
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A.2. Proof of Lemma 2.22. The following proof of Lemma 2.22 uses results and notations
from the previous one, and is therefore given now. First we recall the statement of Lemma 2.22.

Lemma A.2. There exists a positive constant C > 0 such that, if the real frequency α = (τ, η, ξ)
in R1+d \ {0} is characteristic, and if k between 1 and N is such that τ = τk(η, ξ), then we have

|∂ξτk(η, ξ)| > C
dist

(
(τ, η),G

)1/2

|(τ, η)|1/2 .

Using Lemma 2.15, we therefore obtain the following estimate

(A.11) |π̃αEk(η, ξ)| > C
dist

(
(τ, η),G

)1/2

|(τ, η)|1/2 .

Proof. The interest is made at first in the first equality, which is proved using the homogeneity
of degree zero of ∂ξτk(η, ξ) and of degree one of the distance. The analysis is therefore made on
the sphere Σ0, and we denote, for ζ in Σ0,

mg(ζ) =





1 if sp(A(ζ)) ∩ iR = ∅,

min
j∈G(ζ)∪
I(ζ)∪O(ζ)

∣∣∂ξτkj
(
η, ξj(ζ)

)∣∣ otherwise,

where sp(A(ζ)) refers to the spectrum of the matrix A(ζ), and where the notations kj and ξj(ζ)
has been introduced in Proposition 2.16. Using the compactness of the sphere Σ0, it will be
proved that mg satisfies

(A.12) mg(ζ) > C dist(ζ,G)1/2,
for all ζ in Σ0, where C > 0 is a suitable fixed constant. We thus consider ζ := (τ , η) in Σ0,
and we show that there exists a neighborhood V of ζ in which the previous equality (A.12) is
satisfied.

We recall the results obtained in the proof of Proposition 2.21, in which a continuous deter-
mination of the eigenvalues of A(ζ) for ζ in a neighborhood of ζ has been determined. The
previous proof focused on describing the stable eigenvalues, but it can be immediately extended
to all eigenvalues of A(ζ). Denote by i ξ

j
the imaginary eigenvalues of A(ζ). If the imaginary

eigenvalue i ξ
j
is not glancing, the proof of Proposition 2.21 yields to a continuous extension

i ξj(ζ) in a neighborhood of ζ, which is an eigenvalue of A(ζ). If i ξ
j
is glancing, then we obtain,

in a neighborhood of ζ, two continuous eigenvalues i ξ−j (ζ) and i ξ+j (ζ) extending i ξ
j
, which

are possibly equal (when they are glancing). Finally, the block structure (see Proposition 2.9)
and Proposition 2.21 provide a basis of CN in which the matrix A(ζ) is, in a neighborhood of
ζ, block diagonal, with a block A±(ζ) with eigenvalues of nonzero real part, and scalar blocks
corresponding to the eigenvalues iξj(ζ). Three cases are then to be investigated.

◦ All eigenvalues of A±(ζ) are of nonzero real part in a neighborhood of ζ, so they don’t
contribute to mg(ζ).

◦ If i ξ
j
is imaginary and ∂ξτkj

(
η, ξj(τ , η)

)
6= 0, namely if the real characteristic frequency

αj(ζ) is incoming or outgoing, then it has been proven that the eigenvalue i ξj(ζ) is still
incoming or outgoing in a neighborhood of ζ. Furthermore, according to equation (A.3)
differentiated with respect to ξ and evaluated in ξ = ξj(ζ), for ζ in a neighborhood of ζ, we
have

∂ξτkj
(
η, ξj(ζ)

)
= −e

(
η, ξj(ζ)

)
,

where e is an analytic function nonzero in ζ, which is therefore lower bounded in a neigh-

borhood of
(
ζ, ξj(ζ)

)
. Thus, for ζ in a neighborhood of ζ, we have

∣∣∂ξτkj
(
η, ξj(ζ)

)∣∣ > C,

with C > 0.
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◦ Finally, if i ξ
j
is glancing, namely if i ξ

j
is imaginary and ∂ξτkj (η, ξj) = 0, then i ξ

j
is

extended by two eigenvalues i ξ±j (ζ), of which the behavior depends on where ζ is in the

neighborhood of ζ, see Figure 7. Denote by ∆j(ζ) the discriminant of the characteristic
polynomial of the 2 × 2 block associated with the glancing eigenvalue. If ζ is such that
∆j(ζ) < 0, then the two eigenvalues i ξ±j (ζ) are of nonzero real part, so they do not contribute

to mg(ζ). If ∆j(ζ) = 0, then ξ−j (ζ) = ξ+j (ζ) and the characteristic frequency
(
ζ, ξ±j (ζ)

)
is

glancing, so equality (A.12) is immediately satisfied. Finally, if ∆j(ζ) > 0, then the two
distinct eigenvalues i ξ±j (ζ) are imaginary, and contributes to mg(ζ). According to the

relation (A.8), differentiate with respect to ξ and evaluated in ξ = ξ+j (ζ), we have, for

ζ = (τ, η) in a neighborhood of ζ,

∂ξτkj
(
η, ξ+j (ζ)

)
= 2

(
f1(ζ)/2 + ξ

j
− ξ+j (ζ)

)
e
(
ζ, ξ+j (ζ)

)
,

where e is an analytic function, nonzero in (ζ, ξ
j
). According to expression (A.9) of the

roots ξ±j (ζ), we obtain

∂ξτkj
(
η, ξ+j (ζ)

)
= ±

√
∆j(ζ) e

(
ζ, ξ+j (ζ)

)
.

But, according to the proof of Proposition 2.21 above, one may write, for ζ = (τ, η) in a
neighborhood of ζ,

∆j(ζ) =
(
τ − τ gj (η)

)
e(ζ),

where e is an analytic function, nonzero in ζ, and where the function τ gj parameterizes the
surface of the zeros of ∆j. We finally infer

∣∣∣∂ξτkj
(
η, ξ+j (ζ)

)∣∣∣ > C
∣∣∣τ − τ gj (η)

∣∣∣
1/2

= C
∣∣∣(τ, η)−

(
τ gj (η), η

)∣∣∣
1/2

> C dist
(
ζ,G

)1/2
,

since the frequency
(
τ gj (η), η

)
is glancing by construction of τ gj . The same arguments apply

to i ξ−j (ζ).

Up to reducing the constant C, we have therefore proved the existence of a neighborhood V
in which equality (A.12) is satisfied. The result follows from the compactness of Σ0 and by
homogeneity.

The second inequality of Lemma 2.22 is obtained immediately using the result of Lemma
2.15. �

A.3. Proof of Proposition 6.16. The following proof also comes after the one of Proposition
2.21.

We recall that Πe−(ζ) is the projector from E−(ζ) on the elliptic stable component Ee−(ζ) =

⊕j∈P(ζ)E
j
−(ζ) according to decomposition (2.23) and that, when ζ is not glancing, Πe

CN
(ζ) is

the projection from CN on the stable elliptic component Ee−(ζ) according decomposition (2.25).
The statement of Proposition 6.16 reads as follows.

Proposition A.3. Under Assumption 6, there exists a constant c1 > 0 and a real number b1
such that, for all ζ in Fb \ {0}, the following estimates hold

∣∣∣etA(ζ) Πe−(ζ)
∣∣∣ 6 c1 e

−c1 t |ζ|−b1 6 c1, ∀t > 0,(A.13a)

∣∣∣etA(ζ) Πe
CN

(ζ)
∣∣∣ 6 c1 |ζ|b1 e−c1 t |ζ|

−b1
, ∀t > 0,(A.13b)

∣∣∣etA(ζ)
(
I −Πe

CN
(ζ)

)∣∣∣ 6 c1 |ζ|b1 , ∀t 6 0.(A.13c)

Proof. The homogeneity of degree 1 of the matrix A(ζ) and of degree zero of the projectors
Πe−(ζ) and Πe

CN
(ζ), and the compactness of the unit ball Σ0 are used, and we therefore work in

a neighborhood of every point ζ of Σ0. The result is then extended to a finite conic covering of
Ξ0. Since the projector Πe

CN
(ζ) is defined only for ζ non glancing, for inequalities (A.13b) and

(A.13c) where it occurs, we are only interested in the points of the neighborhood of ζ which are
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not glancing. Thus we consider a point ζ of Σ0 and we come back to the notations of the proof
of Proposition 2.21.

The interest is first made on the first estimate (A.13a). In the proof of Proposition 2.21, we
have constructed, in a neighborhood of ζ, a continuous basis of E−(ζ) associated with a regular
change-of-basis matrix T (ζ) in which the matrix A(ζ) restricted to E−(ζ) is the following block
diagonal matrix of size p× p




A−(ζ) 0

iξ1(ζ)Iω1

. . .

0 iξr+g(ζ)Iωr+g



,

constituted of a block A−(ζ) of negative definite real part, of diagonal blocks iξj(ζ) Iωj , j =
1, . . . , r associated with the incoming eigenvalues ξ

j
and of diagonal blocks iξj(ζ)Iωj , j = r +

1, . . . , r + g associated with the eigenvalues ξ
j
which are glancing in ζ. In that case, according

to expression (A.10) of the projector Πe−(ζ) in a neighborhood of ζ in Σ0, the linear map

etA(ζ) Πe−(ζ) from E−(ζ) to itself is given, in the basis associated with the matrix T (ζ), by the
following p× p block diagonal matrix




etA−(ζ)

0

ei t ξr+1(ζ) 1∆r+1(ζ)<0 Iωr+1

. . .

ei t ξr+g(ζ) 1∆r+g(ζ)<0 Iωr+g




.

On one hand, the block A−(ζ) is of negative definite real part, uniformly with respect to ζ. On
the other hand, one can check that

Im ξr+l(ζ) = |∆r+l(ζ)|1/2/2,
for l = 1, . . . , g, where ∆r+l(ζ) refers to the discriminant of the characteristic polynomial asso-
ciated with the glancing eigenvalue ξ

r+l
defined in the proof of Proposition 2.21 and is depicted

in Figure 7. But one can write, in a neighborhood of ζ in Σ0,

∆j(ζ) =
[
τ − τ gj (η)

]
e(ζ),

with e(ζ) 6= 0, where we recall that τ gj parameterizes in Σ0 the surface of cancellation of ∆j. It
yields to the following estimate on ∆j,

(A.14) |∆j(ζ)| > C
∣∣τ − τ gj (η)

∣∣ = C
∣∣ζ − (τ gj (η), η)

∣∣ > C dist(ζ,G).
Since the matrix T is regular, and therefore uniformly bounded with respect to ζ in a neighbor-
hood of ζ in Σ0, according to (A.14), we get

(A.15)
∣∣∣etA(ζ) Πe−(ζ)

∣∣∣ 6 Ce−C dist(ζ,G)1/2 t.

We consider now ζ in a conic neighborhood of ζ in Ξ0 with ζ = λζ∗ where λ = |ζ| ∈ R∗
+ and ζ∗

is in a neighborhood of ζ in Σ0. Then, by homogeneity and using (A.15) and Assumption 6, we
obtain

∣∣∣etA(ζ) Πe−(ζ)
∣∣∣ =

∣∣∣eλtA(ζ∗)Πe−(ζ
∗)
∣∣∣ 6 Ce−C dist(ζ∗,G)1/2 λt

= Ce−C dist(λζ∗,G)1/2 λ1/2t
6 Ce−C|ζ|(a1+1)/2 t.
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Finally the inequality extends to the whole space Ξ0 by compactness of Σ0, yielding to the
required inequality (A.13a) for all ζ in Fb \ {0}.

Concerning estimate (A.13b), note that, for t > 0 and for ζ non glancing,

etA(ζ) Πe
CN

(ζ) = etA(ζ) Πe−(ζ)Π
−
CN

(ζ),

where Π−
CN

(ζ) is the projector from CN to the stable subspace E−(ζ) according to decomposition

(2.25), defined for ζ non glancing. The aim is therefore to control the projector Π−
CN

(ζ), and
then use inequality (A.13a) to conclude. We still work in a neighborhood of ζ in Σ0 and, to
simplify the notations, we assume that A(ζ) admits a unique glancing eigenvalue ξ

g
of algebraic

multiplicity 2.
Applying the arguments of the proof of Proposition 2.21 to the unstable part E+(ζ), one

obtain an analytic basis
E1(ζ), . . . , EN (ζ)

of CN associated with a change-of-basis matrix T̃ (ζ), analytic in a neighborhood of ζ in Σ0,
such that in this basis, the linear map A(ζ) writes

T̃ (ζ)−1 A(ζ) T̃ (ζ) = diag
(
A−(ζ),A1(ζ), Q(ζ),A+(ζ),A2(ζ)

)
,

where A−(ζ) is of negative definite real part, A1(ζ) is the diagonal block associated with the in-
coming eigenvalues, A+(ζ) is of positive definite real part, A2(ζ) is the diagonal block associated
with the outgoing eigenvalues, and the unique 2 × 2 block Q(ζ), associated with the glancing
eigenvalue ξ

g
, writes

Q(ζ) = i




ξ
g
+ q1(ζ) 1

q2(ζ) ξ
g


 ,

where q1(ζ) = q2(ζ) = 0 and ∂q2
∂τ (ζ) 6= 0.

We want now to construct, using the basis E1, . . . , EN , a new basis F1, . . . , FN adapted to
the decomposition

CN = E−(ζ)⊕ E+(ζ)

for ζ non glancing. If E1(ζ), . . . , Ep−1(ζ) are the p− 1 first vectors corresponding to the blocks
A−(ζ) and A1(ζ) of the basis of CN associated with T (ζ), we set, for j = 1, . . . , p− 1, Fj(ζ) :=
Ej(ζ). Note that

(
F1(ζ), . . . , Fp−1(ζ)

)
is therefore a set of linearly independent vectors of E−(ζ).

We set as well Fj(ζ) := Ej(ζ) for j = p+2, . . . , N , where Ep+2(ζ), . . . , EN (ζ) are the vectors of
the basis of CN defined by T (ζ) associated with the blocks A+(ζ) and A2(ζ), constituting a set
of linearly independent vectors of E+(ζ).

The two vectors Fp(ζ) and Fp+1(ζ) are now to be determined, which are the stable and
unstable eigenvectors of A(ζ) associated with the block Q(ζ). If ξ−(ζ), ξ+(ζ) are the two stable
and unstable eigenvalues (equal for ζ glancing) associated with the glancing eigenvalue ξ

g
, then

the stable and unstable eigenvectors of A(ζ) associated with ξ−(ζ) and ξ+(ζ) are given by

Fp(ζ) := Ep(ζ) +
q2(ζ)

ξ−(ζ)− ξ
g

Ep+1(ζ), Fp+1(ζ) := Ep(ζ) +
q2(ζ)

ξ+(ζ)− ξ
g

Ep+1(ζ).

Indeed, an eigenvector of the matrix T̃ (ζ)−1 A(ζ) T̃ (ζ) associated with the eigenvalue ξ±(ζ) is

given by t(0, . . . , 0, 1, q2(ζ)
ξ±(ζ)−ξ

g

, 0, . . . , 0). Note that when ζ is glancing, namely when ξ−(ζ) =

ξ+(ζ) and q2(ζ) = 0, we have Fp(ζ) = Fp+1(ζ) = Ep(ζ).

The change-of-basis matrix from the canonical basis of CN to the basis F1, . . . , FN is therefore
given by the product of the matrix T (ζ) and the block diagonal matrix

P (ζ) := diag


Ip−1,




1 1

q2(ζ)

ξ−(ζ)− ξ
g

q2(ζ)

ξ+(ζ)− ξ
g


 , IN−p−1


 .
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Thus the projector Π−
CN

writes

Π−
CN

= T (ζ)P (ζ)


 Ip 0

0 0


P (ζ)−1 T (ζ)−1.

The matrix T (ζ) is analytic and therefore bounded as well as its inverse in a neighborhood of

ζ. Since it has already been proven that q2(ζ)
ξ−(ζ)−ξ

g

and q2(ζ)
ξ+(ζ)−ξ

g

are bounded in a neighborhood

of ζ, the matrix P (ζ) and tcomP (ζ) are bounded. The determinant detP (ζ) shall now be

estimated. Since ξ−(ζ) and ξ+(ζ) are the two (possibly equal) roots of the polynomial ξ2 −(
2ξ
g
+ q1(ζ)

)
ξ + ξ2

g
+ ξ

g
q1(ζ)− q2(ζ), we obtain

(
ξ−(ζ)− ξ

g

)(
ξ+(ζ)− ξ

g

)
= −q2(ζ),

so that

detP (ζ) =
q2(ζ)

(
ξ−(ζ)− ξ+(ζ)

)
(
ξ−(ζ)− ξ

g

)(
ξ+(ζ)− ξ

g

) = −
(
ξ−(ζ)− ξ+(ζ)

)
.

It yields to

|detP (ζ)| = |∆g(ζ)|1/2 > C dist(ζ,G)1/2,
according to estimate (A.14). The control (A.13b) follows in the same way as the one of (A.13a)
using estimate (A.13a) and Assumption 6.

Finally, for estimate (A.13c), taking back the notations and the results of the previous point,
the matrix etA(ζ)

(
I −Πe

CN
(ζ)

)
can be written as

etA(ζ)
(
I −Πe

CN
(ζ)

)
=

T̃ (ζ)−1 P (ζ)−1




0

etA1(ζ) 0

etQ(ζ)
1∆g(ζ)>0

0 etA+(ζ)

etA2(ζ)




P (ζ) T̃ (ζ).

Note that the eigenvalues of the matrices A1(ζ), A2(ζ) and of the matrix Q(ζ) when ∆g(ζ) > 0,
are imaginary, and that the matrix A+(ζ) is of positive definite real part uniformly with respect
to ζ. Thus, using the estimate on the change-of-basis matrix P (ζ)−1 proved above, one may
conclude as for estimate (A.13c). �

Acknowledgments. Warm thanks go to Jean-François Coulombel, for his many ideas on the
subject, his proofreading, advice and corrections. His help has been crucial for this paper.

References

[Ben14] Antoine Benoit. Geometric optics expansions for linear hyperbolic boundary value problems and opti-
mality of energy estimates for surface waves. Differential Integral Equations, 27(5-6):531–562, 2014.

[BGS07] Sylvie Benzoni-Gavage and Denis Serre. Multidimensional hyperbolic partial differential equations. Ox-
ford Mathematical Monographs. The Clarendon Press, Oxford University Press, Oxford, 2007. First-
order systems and applications.

[CB64] Yvonne Choquet-Bruhat. Ondes asymptotiques pour certaines équations aux dérivées partielles non-
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