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WEAKLY NONLINEAR MULTIPHASE GEOMETRIC OPTICS FOR

HYPERBOLIC QUASILINEAR BOUNDARY VALUE PROBLEMS:

CONSTRUCTION OF A LEADING PROFILE

CORENTIN KILQUE

Abstract. We investigate in this paper the existence of the leading profile of a WKB expansion
for quasilinear initial boundary value problems with a highly oscillating forcing boundary term.
The framework is weakly nonlinear, as the boundary term is of order O(ε) where the frequencies
are of order O(1/ε). We consider here multiple phases on the boundary, generating a countable
infinite number of phases inside the domain, and we therefore use an almost periodic functional
framework. The major difficulties of this work are the lack of symmetry in the leading profile
equation and the occurrence of infinitely many resonances (opposite to the simple phase case
studied earlier) The leading profile is constructed as the solution of a quasilinear problem, which
is solved using a priori estimates without loss of derivatives. The assumptions of this work are
illustrated with the example of isentropic Euler equations in space dimension two.
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1. Introduction

We consider in this paper hyperbolic quasilinear initial boundary value problems with a highly
oscillating forcing boundary term. We are interested in constructing, in the high frequency
asymptotic, an approximate solution to this problem in the form of a WKB expansion. In
[Wil02], [CGW11], and [Her15], the authors study the same quasilinear problem, but with only
one phase on the boundary. This work is an extension to the multiphase case. The nonlinearity
of the problem generates a countable infinite number of phases inside the domain, forcing us to
consider an almost-periodic framework, the group of frequencies being, in general, not finitely
generated.

This almost-periodic functional framework has been previously used to construct approximate
solutions to semilinear systems in the context of Wiener algebras by [JMR94] for the Cauchy
problem and [Wil96] for the boundary value problem, as well as for quasilinear systems in the
context of Bohr-Besicovich spaces, notably by [JMR95] for the Cauchy problem. In this work
we attempt to achieve the next step, namely to obtain a similar result as the one of [JMR95],
for quasilinear boundary value problems. We adapt the functional framework of [JMR95] to
the context of boundary value problems, by considering functions that are quasi-periodic with
respect to the tangential fast variables and almost-periodic with respect to the normal fast
variable. Concerning the regularity, we choose a Sobolev control for the (slow and fast) tangential
variables, and a uniform control for the normal variables. The leading profile of the WKB
expansion is then obtained as the solution of a quasilinear problem which takes into account
the potentially infinite number of resonances between the phases. We solve this quasilinear
problem in a classical way by proving estimates without loss of regularity. The example of gas
dynamics is used all along the paper to illustrate the general assumptions that will be made
during the analysis. The main difference between this paper and [JMR95] is the absence of
symmetry in the problem. Indeed, starting with an evolution problem in time, we modify it to
obtain a propagation problem in the normal variable xd, with respect to which the system is
not hyperbolic. In [JMR95], these symmetries are used for the a priori estimates to handle the
resonance terms that appear in the equations. Even though it is relatively easy in our problem
to create symmetries for the self-interaction terms, it is more delicate for the resonance terms,
which, unlike the case of [CGW11], are in infinite number. The last assumption of the paper is
made to deal with this issue.

After introducing the problem studied here, we look into the characteristic frequencies as-
sociated with it, and we make several assumptions about the system, ensuring that the initial
boundary problem is well posed locally in time for the exact solution. At this stage, due to
the high frequencies in the forcing term, we do not know if the lifespan of the exact solution is
uniform with respect to the small wavelength. Next we describe the functional framework used
in this work, justified by a formal study of the frequencies that may occur in the solution. Then
we define the ansatz for the asymptotic expansion of the exact solution, and we state the main
result of this paper, namely the existence and uniqueness of the WKB expansion leading pro-
file. At first we formally derive the equations for the leading profile, and we proceed by solving
them. We start by reducing the studied system to two decoupled systems on the evanescent
and oscillating parts, and by decoupling the resonant part and each non-resonant mode for the
oscillating part. The evanescent part is easy to solve, and we show a priori estimates without loss
of regularity for the linearized oscillating systems, which allow us to prove the well-posedness
of these linearized systems, and then by an iterative scheme the existence of solutions to the
original systems. Reassembling the constructed profiles we finally get the leading profile solution
of the initial system.

We shall describe the studied problem in Section 2, as well as the hyperbolicity assumption,
the uniform Kreiss-Lopatinskii condition, the example of Euler equations and the proof of some
preliminary tools. In Section 3, after motivating it with the example, we construct the functional
framework that will be used to state the main theorem. After this long introduction, the main
result of the article will be stated, and the plan of the continuation of the analysis will be
announced. Some technical proofs are finally postponed in an appendix.
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In all the paper the letter C denotes a positive constant that may vary during the analysis,
possibly without any mention being made.

2. Notations and assumptions

2.1. Presentation of the problem. Given a time T > 0 and an integer d > 2, let ΩT be the
domain ΩT := (−∞, T ] × Rd−1 × R+ and ωT := (−∞, T ] × Rd−1 its boundary. We denote as
t ∈ (−∞, T ] the time variable, x = (y, xd) ∈ Rd−1 × R+ the space variable, with y ∈ Rd−1 the
tangential variable and xd ∈ R+ the normal variable, and at last z = (t, x) = (t, y, xd). We also
denote by z′ = (t, y) ∈ ωT the variable of the boundary {xd = 0}. For i = 1, . . . , d, we denote
by ∂i the operator of partial derivative with respect to xi. Finally we denote as α ∈ Rd+1 and
ζ ∈ Rd the dual variables of z ∈ ΩT and z′ ∈ ωT . We consider the following problem

(2.1)





L(uε, ∂z)u
ε := ∂tu

ε +
d∑

i=1

Ai(u
ε) ∂iu

ε = 0 in ΩT ,

B uε|xd=0 = ε gε on ωT ,

uε|t60 = 0,

where the unknown uε is a function from ΩT to an open set O of RN containing zero, with
N > 1, the matrices Aj are regular functions of O with values in MN (R) and the matrix B
belongs to MM×N (R) and is of maximal rank. The integer M is made precise in Assumption
3 below. To simplify the notations and clarify the proofs we consider here linear boundary
conditions, but it would be possible to deal with non-linear ones. Furthermore we assume the
boundary to be noncharacteristic, that is the following assumption is made.

Assumption 1 (Noncharacteristic boundary). For all u in O, the matrix Ad(u) is invertible.

The dependence on ε > 0 of the system (2.1) comes from the source term ε gε on the boundary
ωT , where the quasi-periodic function gε is defined, for z′ in ωT , as

(2.2) gε(z′) = G

(
z′,

z′ · ζ1
ε

, . . . ,
z′ · ζm
ε

)
,

where G is a function of the Sobolev space H∞(Rd×Tm), that vanishes for negative times t and
of zero mean with respect to θ in Tm, and where ζ1, . . . , ζm are frequencies of Rd \ {0}. Here
the notation T stands for the torus R/2πZ. We denote by ζ the m-tuple ζ := (ζ1, . . . , ζm). The
function G being periodic and of zero mean with respect to θ, we may write

(2.3) G(z′, θ) =
∑

n∈Zm\{0}

Gn(z
′) ein·θ,

where Gn is in H∞(Rd) and is zero for negative times t, for all n in Zm \ {0}. The condition
uε|t60 = 0 in (2.1) express the nullity of the initial conditions. The time of existence T > 0 is

not fixed at first and is likely to become sufficiently small to ensure the existence of a leading
profile.

The study of [Wil02], [CGW11] and [Her15] is here extended to several phases on the bound-
ary. No assumption on the group of boundary frequencies generated by the frequencies (ζ1, . . . ,
ζm) is made, apart from it being finitely generated. In particular it may not be discrete.

We want to show that the exact solution of (2.1) behaves, in the limit where ε goes to 0, as ε
in range, and 1/ε in frequencies, and this on a time interval independent of ε. This is the weakly
nonlinear geometric optics framework, see [Rau12] and [Mét09]. To obtain this kind of result,
we first have to make several suitable assumptions about the original problem. The rest of this
section is devoted to these assumptions, and focuses on the characteristic frequencies associated
with the system. Let us first detail the example that inspires the general framework developed
in this paper.
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Example 2.1. The isentropic compressible Euler equations in two dimensions provide a system
of the form of (2.1). Under regularity assumptions on the solution, the associated boundary
value problem reads

(2.4)





∂tV
ε +A1(V

ε) ∂1V
ε +A2(V

ε) ∂2V
ε = 0 in ΩT ,

B V ε
|xd=0 = ε gε on ωT ,

V ε
|t60 = 0,

with V ε = (vε,uε) ∈ R3, where vε ∈ R∗
+ represents the fluid volume, and uε ∈ R2 its velocity,

and where the functions A1 and A2 are defined on R∗
+ × R2 as

(2.5) A1(V ) :=




u1 −v 0

−c(v)2/v u1 0

0 0 u1



, A2(V ) :=




u2 0 −v

0 u2 0

−c(v)2/v 0 u2



,

with c(v) > 0 representing the sound velocity in the fluid, which depends on its volume v. The
noncharacteristic boundary Assumption 1 for the system (2.4) is now discussed. In this article,
we consider geometric optics expansions for the system (2.1) constructed as perturbations around
the equilibrium 0, performing a change of variables if necessary. For the Euler system the natural
coefficients A1, A2 are rather used, and a perturbation around the equilibrium V0 = (v0, 0, u0) is
considered, where v0 > 0 is a fixed volume, and (0, u0) is an incoming subsonic velocity, that is
such that 0 < u0 < c0, where we denote c0 := c(v0).

The Assumption 1 concerns in this case the invertibility of the matrix A2(V ) for V =
(v, u1, u2) ∈ R∗

+ × R2 in the neighborhood V0. The determinant of the matrix A2(V ) is given

by det
(
A2(V )

)
= u2 (u

2
2 − c(v)2), which is nonzero if the velocity u2 satisfies 0 < u2 < c(v).

The equilibrium V0 verifying this condition, every small enough neighborhood O of V0 suits to
satisfy the Assumption 1.

The rest of the section is dedicated to the characteristic frequencies related to the problem
and the associated assumptions.

2.2. Strict hyperbolicity. The following definition introduces the notion of characteristic fre-
quency.

Definition 2.2. For α = (τ, η, ξ) ∈ R × Rd−1 × R, the symbol L(0, α) associated with L(0, ∂z)
is defined as

L(0, α) := τI +
d−1∑

i=1

ηiAi(0) + ξAd(0).

Then we define its characteristic polynomial as p(τ, η, ξ) := detL
(
0, (τ, η, ξ)

)
. We say that

α ∈ R1+d is a characteristic frequency if it is a root of the polynomial p, and we denote by C
the set of characteristic frequencies.

The following assumption, called strict hyperbolicity (see [BGS07]), is made.

Assumption 2 (Strict hyperbolicity). There exist real functions τ1 < · · · < τN , analytic with
respect to (η, ξ) in Rd \ {0}, such that for all (η, ξ) ∈ Rd \ {0} and for all τ ∈ R, the following
factorisation is verified

p(τ, η, ξ) = det
(
τI +

d−1∑

i=1

ηiAi(0) + ξAd(0)
)
=

N∏

k=1

(
τ − τk(η, ξ)

)
,

where the eigenvalues −τk(η, ξ) of the matrix A(η, ξ) :=
∑d−1

i=1 ηiAi(0) + ξAd(0) are therefore

simple. Consequently, for all (η, ξ) ∈ Rd\{0}, the following decompositions of CN into dimension
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1 eigenspaces hold

CN = kerL
(
0, τ1(η, ξ), η, ξ

)
⊕ · · · ⊕ kerL

(
0, τN (η, ξ), η, ξ

)
,(2.6)

CN = Ad(0)
−1 kerL

(
0, τ1(η, ξ), η, ξ

)
⊕ · · · ⊕Ad(0)

−1 kerL
(
0, τN (η, ξ), η, ξ

)
.(2.7)

For k = 1, . . . , N and for (η, ξ) in Rd \ {0}, we define the projectors πk(η, ξ) and π̃k(η, ξ),
respectively associated with the decompositions (2.6) and (2.7).

For k = 1, . . . , N and (η, ξ) ∈ Rd \ {0}, we also denote as Ek(η, ξ) a unitary eigenvector
generating the eigenspace kerL

(
0, τk(η, ξ), η, ξ

)
, so that

(2.8) E1(η, ξ), . . . , EN (η, ξ)

is a real normal basis of CN adapted to the decomposition (2.6). Observe that the family

(2.9) Ad(0)
−1E1(η, ξ), . . . , Ad(0)

−1EN (η, ξ)

is therefore a real normal basis of CN adapted to the decomposition (2.7).

Remark 2.3. i) We will be led further on to consider the modified operator

L̃(0, ∂z) := Ad(0)
−1 L(0, ∂z).

This justifies the introduction of the modified symbol L̃(0, α) := Ad(0)
−1 L(0, α), and thus

of the projector π̃k(η, ξ), the symbols L(0, α) and L̃(0, α) having different ranges.

ii) Since the matrix A(η, ξ) =
∑d−1

i=1 ηiAi(0)+ ξAd(0) is real for (η, ξ) ∈ Rd and the eigenvalues

τ1, . . . , τN are real, the decompositions (2.6) and (2.7) also hold in RN , but we are interested
in the ones of CN since some functions that will be studied are complex valued.

iii) If α = (τ, η, ξ) is a characteristic frequency, then by definition and according to Assumption
2, the triplet (τ, η, ξ) satisfies

N∏

k=1

(
τ − τk(η, ξ)

)
= 0.

There exists therefore an integer k between 1 and N such that τ = τk(η, ξ). In other words,
the characteristic manifold C is the union of the N hypersurfaces given by {τ = τk(η, ξ)},
k = 1, . . . , N .

Remark 2.4. One can verify that in Assumption 2, the functions τk for k = 1, . . . , N are positively
homogeneous of degree 1 in Rd \ {0}. The projectors πk and π̃k for k = 1, . . . , N are therefore
positively homogeneous of degree 0 in Rd \ {0}.
Example 2.5. Returning to the Example 2.1, for the system (2.4) linearized around V0 =
(v0, 0, u0), the characteristic polynomial p reads

p(τ, η, ξ) = det




τ + ξ u0 −v0 η −v0 ξ

−c20 η/v0 τ + ξ u0 0

−c20 ξ/v0 0 τ + ξ u0




= (τ + ξ u0)
(
(τ + ξ u0)

2 − c20 (η
2 + ξ2)

)
.

Thus the eigenvalues of the matrix A(η, ξ) = η A1(V0) + ξ A2(V0) are the opposite of the roots
with respect to τ of the polynomial p, given by

(2.10) τ1(η, ξ) := −u0 ξ − c0
√
η2 + ξ2, τ2(η, ξ) := −u0 ξ, τ3(η, ξ) := −u0 ξ + c0

√
η2 + ξ2.

The functions τ1, τ2 and τ3 are analytic and distinct in R2 \ {0}. The system (2.4) is therefore
strictly hyperbolic, which means that it satisfies the Assumption 2 of strict hyperbolicity. We
have represented in Figure 1 the characteristic frequencies α = (τ, η, ξ) ∈ R3 for the system
(2.4).
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η

ξ

τ

τ = τ1(η, ξ)

τ = τ2(η, ξ)

τ = τ3(η, ξ)

Figure 1. Characteristic frequencies for the isentropic compressible Euler sys-
tem (2.4)

We now define projectors derived from the CN decomposition (2.6), that we extend to non-
characteristic frequencies. We also determine some equalities between the kernel and range of

the projectors πα and π̃α and of the matrices L(0, α) and L̃(0, α). The proof is based on the one
of [CG10, Lemma 3.2].

Definition 2.6. Let α = (τ, η, ξ) ∈ R1+d \ {0} be a characteristic frequency and k the in-
teger between 1 and N such that τ = τk(η, ξ). We denote by πα := πk(η, ξ) (resp. π̃α :=
π̃k(η, ξ)) the projection from CN onto the eigenspace kerL

(
0, τk(η, ξ), η, ξ

)
(resp. the subspace

Ad(0)
−1 kerL

(
0, τk(η, ξ), η, ξ

)
) according to decomposition (2.6) (resp. (2.7)). If the frequency

α ∈ R1+d \ {0} is not characteristic, we denote πα = π̃α := 0 and if α = 0 we denote
π0 := π̃0 := I. For all α in Rd+1, we can verify that πα satisfies

(2.11) kerL(0, α) = ker L̃(0, α) = Imπα,

and

(2.12) ImL(0, α) = ker πα,

and that the projector π̃α satisfies

(2.13) Im L̃(0, α) = ker π̃α,

recalling that L̃(0, α) refers to the modified symbol L̃(0, α) := Ad(0)
−1 L(0, α).

For all α ∈ R1+d \ {0}, we denote by Qα the partial inverse of the matrix L(0, α), namely the
unique matrix Qα such that Qα L(0, α) = L(0, α)Qα = I − πα. If α = 0, we define Qα := I.

Proof. Consider α = (τ, η, ξ) in Rd+1. The equation (2.11) is satisfied by definition of πα, and

equality of the kernels kerL(0, α) and ker L̃(0, α), the matrix Ad(0) being invertible. Regarding
the equation (2.12), we first note that by the rank-nullity theorem and by definition of πα, the
subspaces ImL(0, α) and ker πα have the same dimension. We denote by k0 the integer between
1 and N such that τ = τk0(η, ξ). We consider then an element L(0, α)X of ImL(0, α), with X

in CN that we decompose according to (2.6), as X =
∑N

k=1 πk(η, ξ)X. For k = 1, . . . , N , the
projector πk(η, ξ) admitting the eigenspace of the matrix A(η, ξ) associated with the eigenvalue
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−τk(η, ξ) as range, we have

L(0, α)X =

N∑

k=1

(
τk0(η, ξ) I +A(η, ξ)

)
πk(η, ξ)X

=
∑

k 6=k0

(
τk0(η, ξ)− τk(η, ξ)

)
πk(η, ξ)X.

The equation (2.11) being satisfied, we deduce that L(0, α)X belongs to
⊕

k 6=k0

kerL
(
0, (τk(η, ξ), η, ξ)

)
,

which, by definition of the projectors πk, is equal to the kernel of πk0(η, ξ) = πα. With the
equality of dimensions the equation (2.12) is therefore verified. The proof of the equation (2.13)

is similar: we consider X in CN that we decompose as X =
∑N

k=1 πk(η, ξ)X, and then we write

L̃(0, α)X = Ad(0)
−1

N∑

k=1

(
τk0(η, ξ) I +A(η, ξ)

)
πk(η, ξ)X

= Ad(0)
−1

∑

k 6=k0

(
τk0(η, ξ) − τk(η, ξ)

)
πk(η, ξ)X,

so that L̃(0, α)X belongs to
⊕

k 6=k0

Ad(0)
−1 kerL

(
0, (τk(η, ξ), η, ξ)

)
= ker π̃α.

Once again by equality of dimensions it leads to equation (2.13). �

Remark 2.7. i) For every k = 1, . . . , N , the projectors πk(η, ξ) and π̃k(η, ξ) are positively
homogeneous of degree 0 in (η, ξ) ∈ Rd \{0}. Furthermore, by strict hyperbolicity, the basis
E1(η, ξ), . . . , EN (η, ξ) and Ad(0)

−1E1(η, ξ), . . . , Ad(0)
−1EN (η, ξ) are analytic with respect

to (η, ξ) ∈ Rd \ {0}, and the maps (η, ξ) 7→ πk(η, ξ) and (η, ξ) 7→ π̃k(η, ξ) are therefore
analytic in Rd \ {0}. Thus, by compactness of the sphere Sd−1, for all k = 1, . . . , N , the
projectors πk(η, ξ) and π̃k(η, ξ) are uniformly bounded with respect to (η, ξ) ∈ Rd \ {0}.
The projectors πα and π̃α are therefore bounded with respect to α in R1+d.

ii) Unlike the projectors πk and π̃k, k = 1, . . . , N , the projectors πα and π̃α are homogeneous of
degree 0 with respect to α in Rd+1, and not only positively homogeneous. Indeed, the claim is
obvious if α is zero or noncharacteristic, and if α is a nonzero characteristic frequency, and λ
a nonzero real number, then, since kerL(0, λ α) = kerL(0, α) and ImL(0, λ α) = ImL(0, α),
we have πλα = πα. The proof is the same for π̃α.

2.3. The uniform Kreiss-Lopatinskii condition and some preliminary results. We de-
fine the following space of frequencies

Ξ := {ζ = (σ = τ − iγ, η) ∈ (C× Rd−1)\{0} | γ > 0},
Σ :=

{
ζ ∈ Ξ | τ2 + γ2 + |η|2 = 1

}
,

Ξ0 := {ζ ∈ Ξ | γ = 0},
Σ0 := Ξ0 ∩Σ.

We also define the matrix that we get when applying the Laplace-Fourier transform to the
operator L(0, ∂z). For all ζ = (σ, η) ∈ Ξ, let

A(ζ) := −iAd(0)−1
(
σI +

d−1∑

i=1

ηj Aj(0)
)
.

The noncharacteristic boundary Assumption 1 is used here to define the matrix A(ζ). We note
that if ζ = (τ, η) ∈ Ξ0, and if iξ is an imaginary eigenvalue of A(ζ), then the frequency (τ, η, ξ)
is a real characteristic frequency, and vice versa.
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The Hersh lemma ([Her63]) ensures that for ζ in Ξ\Ξ0, the matrix A(ζ) has no eigenvalue of
zero real part, and that the stable subspace associated with the eigenvalues of negative real part,
denoted by E−(ζ), is of constant dimension, denoted p. Furthermore, the integer p is obtained
as the number of positive eigenvalues of the matrix Ad(0). We denote by E+(ζ) the unstable
subspace A(ζ) associated with eigenvalues of positive real part, that is of dimension N − p.

In [Kre70] (see also [CP82] and [BGS07]) it is shown that the stable and unstable subspaces
E± extend continuously to the whole space Ξ in the strictly hyperbolic case (Assumption 2). We
still denote by E± the extensions to Ξ. The main assumption of this work may now be stated,
which, along with Assumptions 1 and 2, ensures that the system (2.1) is well posed locally in
time. Indeed the three assumptions 1, 2 and 3 are stable under small perturbations around the
equilibrium.

Assumption 3 (Uniform Kreiss-Lopatinskii condition). For all ζ ∈ Ξ, we have

kerB ∩ E−(ζ) = {0}.
In particular, it forces the rank of the matrix B to be equal to the dimension of E−(ζ), namely
M = p.

Remark 2.8. Historically, the first given definition of the uniform Kreiss-Lopatinskii condition
did not involve the extension of E− to Ξ0. The original definition states that, for all ζ ∈ Ξ \Ξ0,

kerB ∩ E−(ζ) = {0} ,

and that the linear map
(
B|E−(ζ)

)−1
is uniformly bounded with respect to ζ ∈ Ξ \ Ξ0, see for

instance [Sar65]. Indeed, the space E−(ζ) being homogeneous of degree zero and continuous with
respect to ζ ∈ Ξ, and by compactness of the unitary sphere Σ, we note that the Assumption 3

implies that the linear map
(
B|E−(ζ)

)−1
is uniformly bounded with respect to ζ ∈ Ξ.

It has already been discussed that for ζ ∈ Ξ\Ξ0, the matrix A(ζ) has no imaginary eigenvalue.
We now commit to describe more precisely the matrix A(ζ) for ζ in Ξ0 as well as the continuous
extension to Ξ0 of the spaces E±(ζ). The following result, proved by Kreiss [Kre70] for the
strictly hyperbolic case that is of interest here, Métivier [Mét00] for the constantly hyperbolic
case, and extended by Métivier and Zumbrun [MZ05] to an even more general framework, gives
a very useful decomposition of the matrix A(ζ) when ζ belongs to Ξ0.

Proposition 2.9 (Block structure). When the Assumption 2 is satisfied, for all ζ ∈ Ξ, there
exist a neighborhood V of ζ in Ξ, an integer L > 1, a partition N = ρ1 + · · · + ρL and an
invertible matrix T analytic in V such that for all ζ ∈ V, we have

T (ζ)A(ζ)T (ζ)−1 = diag
(
A1(ζ), . . . ,AL(ζ)

)
,

where for all j the matrix Aj(ζ) is of size ρj and satisfies one of the following properties:

i) the real part of the matrix Aj(ζ), defined by (Aj(ζ) +Aj(ζ)
∗)/2, is positive-definite,

ii) the real part of the matrix Aj(ζ) is negative-definite,
iii) ρj = 1, Aj(ζ) is imaginary when γ is zero and ∂γAj(ζ) ∈ R∗,
iv) ρj > 1, the coefficients of Aj(ζ) are imaginary when γ is zero, there exists ξj ∈ R such

that

Aj(ζ) =




i ξj i 0

. . . i

0 i ξj


 ,

and the bottom left coefficient of ∂γAj(ζ) is real and non zero.

This result, commonly referred to as ”block structure” [BGS07], is fundamental for the proof
of Proposition 2.21 below. In the aim of describing the subspaces E±(ζ) for ζ ∈ Ξ0, the vector
fields associated with each real characteristic phase are now defined.
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Figure 2. Incoming (i), outgoing (o) and glancing (g) vector field.

Definition 2.10. Let α = (τ, η, ξ) ∈ Rd+1\ {0} be a characteristic frequency, and k the integer
between 1 and N such that τ = τk(η, ξ). The group velocity vα associated with α is defined as

vα := ∇η,ξ τk(η, ξ).

We shall say that α is glancing (resp. incoming, outgoing) if ∂ξτk(η, ξ) is zero (resp. negative,
positive). Then the vector field Xα associated with α is defined as

(2.14) Xα := ∂t − vα · ∇x = ∂t −∇ητk(η, ξ) · ∇y − ∂ξτk(η, ξ) ∂xd .

The vector field Xα is represented in Figure 2 in the glancing, incoming and outgoing case.

Example 2.11. We start by giving an example of a boundary condition for the Example 2.1
satisfying the uniform Kreiss-Lopatinskii condition. For this purpose we look for a matrix B in
M2,3(R) of maximal rank, that generates strictly dissipative boundary conditions (see [BGS07]),
namely such that its kernel, which is of dimension 1, is generated by a nonzero vector E satisfying

tE S(V )A2(V )E < 0

for all V in the neighborhood of V0, where the matrix S(V ) refers to a Friedrichs symmetrizer
of the system. Such strictly dissipative boundary conditions satisfy in particular the uniform
Kreiss-Lopatinskii condition, see [BGS07]. In our example, the following symmetrizer may be
considered

S(V ) = diag
(
c(v)2, v2, v2

)
.

Recall that, in the notations of the example, a symmetrizer S(V ) is a positive definite matrix
such that the matrices S(V )A1(V ) and S(V )A2(V ) are symmetric for all V in a neighborhood
of V0. It is then determined that a suitable vector E is given by E = (v0, 0, u0), since in that
case we have

tE S(V0)A2(V0)E = u0 v
2
0 (u

2
0 − c20)

the right-hand side quantity being negative by assumption on V0, so it stays negative in a
neighborhood of V0. Thus a matrix B of maximal rank whose kernel is generated by E is for
example given by

B :=


 0 v0 0

−u0 0 v0


 ,

which gives an example of a boundary condition satisfying the uniform Kreiss-Lopatinskii con-
dition for the Example 2.1 of compressible isentropic Euler equations in dimension 2.
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Interest is now made on the eigenvalues of the matrix A(τ, η) for the system of Example 2.1.
Their expressions, for (τ, η) ∈ R2 \ {0}, depend on the sign of τ2 − η2 (c20 − u20), as represented
in Figure 3.

If |τ | >
√
c20 − u20 |η|, i.e. if ζ = (τ, η) is in the so-called hyperbolic regionH ([Ben14, Definition

2.1]), then the matrix A(ζ) admits three simple imaginary eigenvalues given by

i ξ1(τ, η) := i
τ u0 + sign(τ) c0

√
τ2 − η2 (c20 − u20)

c20 − u20
,(2.15a)

i ξ2(τ, η) := i
τ u0 − sign(τ) c0

√
τ2 − η2 (c20 − u20)

c20 − u20
,(2.15b)

i ξ3(τ, η) := i
−τ
u0
,(2.15c)

where sign(x) := x/|x| for x 6= 0. The number ξ1(τ, η) being real, the frequency α1(τ, η) :=(
τ, η, ξ1(τ, η)

)
is a real characteristic frequency. It is then determined that we have τ =

τ3
(
η, ξ1(τ, η)

)
if τ > 0 and τ = τ1

(
η, ξ1(τ, η)

)
if τ < 0. A calculation gives, if τ > 0,

∂ξτ3
(
η, ξ1(τ, η)

)
=

√
τ2 − η2(c20 − u20)

η2 + ξ21(τ, η)
,

and, if τ < 0,

∂ξτ1
(
η, ξ1(τ, η)

)
=

√
τ2 − η2(c20 − u20)

η2 + ξ21(τ, η)
.

Thus the frequency α1(τ, η) =
(
τ, η, ξ1(τ, η)

)
is always outgoing. Likewise, it is determined that

the real characteristic frequency α2(τ, η) :=
(
τ, η, ξ2(τ, η)

)
is always incoming, and the frequency

α3(τ, η) :=
(
τ, η, ξ3(τ, η)

)
is incoming as well.

If ζ is located in the so-called glancing region G, i.e. if |τ | =
√
c20 − u20 |η|, then the matrix

A(ζ) admits one imaginary simple eigenvalue i ξ3(ζ) which is still given by the formula (2.15c),
and a double imaginary eigenvalue given by

i ξ1(ζ) = i ξ2(ζ) = i
τ u0

c20 − u20
.

In this case we still have τ = τ3
(
η, ξ1(τ, η)

)
if τ > 0 and τ = τ1

(
η, ξ1(τ, η)

)
if τ < 0, and

regarding the characteristic frequency α3(τ, η) =
(
τ, η, ξ3(τ, η)

)
, we still have τ = τ2

(
η, ξ3(τ, η)

)
.

Thus it is determined that

∂ξτ1
(
η, ξ1(τ, η)

)
= ∂ξτ3

(
η, ξ1(τ, η)

)
= 0,

and therefore, regardless of the sign of τ , the frequency α1(τ, η) is glancing. As for it, the
frequency α3(τ, η) is always incoming.

Finally if |τ | <
√
c20 − u20 |η| and so if ζ is in the so-called mixed region EH, then the matrix

A(ζ) has one simple imaginary eigenvalue i ξ3(ζ) given by the formula (2.15c), and two simple
eigenvalues of nonzero real part (symmetric with respect to the imaginary axis), that are still
denoted by i ξ1 et i ξ2 and which are given by

i ξ1(τ, η) := i
τ u0 + i c0 sign(τ)

√
η2 (c20 − u20)− τ2

c20 − u20
,

i ξ2(τ, η) := i
τ u0 − i c0 sign(τ)

√
η2 (c20 − u20)− τ2

c20 − u20
.

The real characteristic frequency α3(τ, η) =
(
τ, η, ξ3(τ, η)

)
is once again incoming.

In the following, in order for the matrix in factor of the partial derivative with respect to the

normal variable xd in the equations to be the identity matrix, the modified operator L̃(u, ∂z) :=
Ad(u)

−1 L(u, ∂z) shall be considered. The following lemma, which is a result of [Lax57] adapted
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Figure 3. Areas of Ξ0 for the isentropic compressible Euler equations

by [CGW11, Lemma 2.11], shows that, under suitable assumptions, the operator π̃α L̃(0, ∂z)πα
is given by a constant coefficient scalar transport operator, and therefore that the operator

π̃α L̃(0, ∂z) acts on polarized profiles (i.e. profiles U such that πα U = U) as a much simpler
operator.

Lemma 2.12 ([CGW11, Lax Lemma]). Let α = (τ, η, ξ) ∈ R1+d \ {0} be a real non glancing
characteristic frequency and k the integer between 1 and N such that τ = τk(η, ξ). Then we have

π̃α L̃(0, ∂z)πα =
−1

∂ξτk(η, ξ)
Xα π̃α πα,

where Xα is the vector field associated with α defined by (2.14). Then we denote

X̃α :=
−1

∂ξτk(η, ξ)
Xα.

For the sake of completeness, the proof of [CGW11] is recalled here.

Proof. The notations of the Lemma are used. According to the identity (2.11), we have

(2.16) L̃
(
0, (τk(η, ξ), η, ξ)

)
πk(η, ξ) =

(
τk(η, ξ) Ã0(0) +

d−1∑

i=1

ηi Ãi(0) + ξ I
)
πk(η, ξ) = 0.

The Dunford formula and the implicit function theorem ensure that in the strictly hyperbolic
case, the projectors πk as well as the real functions τk are differentiable with respect to (η, ξ) in
Rd \{0} (they even depend analytically of (η, ξ)). Thus the identity (2.16) is differentiated with
respect to ξ in a neighborhood of a frequency (η, ξ) in Rd \ {0} to obtain

(
∂ξτk(η, ξ) Ã0(0) + I

)
πk(η, ξ) +

(
τk(η, ξ) Ã0(0) +

d−1∑

i=1

ηi Ãi(0) + ξ I
)
∂ξπk(η, ξ) = 0,

and therefore, multiplying by π̃k(η, ξ) on the left, according to identity (2.13), we get

(2.17) π̃k(η, ξ) Ã0(0)πk(η, ξ) = − 1

∂ξτk(η, ξ)
π̃k(η, ξ)πk(η, ξ).

Likewise, for i = 1, . . . , d − 1, the equality (2.16) is differentiated with respect to ηi and next
multiplied by π̃k(η, ξ) to obtain

π̃k(η, ξ)
(
∂ηjτk(η, ξ) Ã0(0) + Ãi(0)

)
πk(η, ξ) = 0.

With (2.17), we thus get

π̃k(η, ξ) Ãi(0)πk(η, ξ) =
∂ηiτk(η, ξ)

∂ξτk(η, ξ)
π̃k(η, ξ)πk(η, ξ),

which concludes the proof of the lemma. �



12 CORENTIN KILQUE

The following results use the classical Lax Lemma, whose proof is similar to 2.12. The result
is recalled here.

Lemma 2.13 ([Lax57]). Let α = (τ, η, ξ) ∈ R1+d \ {0} be a real characteristic frequency and k
the integer between 1 and N such that τ = τk(η, ξ). Then we have

πα L(0, ∂z)πα = Xα πα,

where Xα is the vector field associated with α defined by (2.14).

The first lemma below, quite standard, states that the group velocities vα are bounded. The
result presented here is not optimal, considering the constant C can be taken equal to 1, but it
is sufficient for our analysis, and its proof is simpler.

Lemma 2.14. There exists a positive constant C such that, for k = 1 . . . , N and (η, ξ) in
Rd \ {0}, we have

|∇η,ξτk(η, ξ)| 6 C sup
(η,ξ)∈Sd−1

ρ
(
A(η, ξ)

)
,

where we recall that A(η, ξ) has been defined for (η, ξ) in Rd \ {0} in Assumption 2, and where
ρ
(
A(η, ξ)

)
refers to the spectral radius of the matrix A(η, ξ). Then we denote by V∗ the finite

quantity
V∗ := C sup

(η,ξ)∈Sd−1

ρ
(
A(η, ξ)

)
,

which bounds the group velocities.

Proof. First note that the quantity V∗ is actually finite. Indeed, according to Assumption 2, we
have

ρ
(
A(η′, ξ′)

)
= max

k=1,...,N

∣∣τk(η′, ξ′)
∣∣ ,

and the real functions τ1, . . . , τN are analytic in Rd \ {0}, and thus bounded on Sd−1.
Now let (η, ξ) be in Rd \ {0} and k between 1 and N . According to the Lax Lemma 2.13, we

have, for (η′, ξ′) in Sd−1,

πk(η, ξ)A(η
′, ξ′)πk(η, ξ) = −dτk(η, ξ) · (η′, ξ′)πk(η, ξ).

But since the following equality holds,

|∇η,ξτk(η, ξ)| = sup
(η′,ξ′)∈Sd−1

∣∣dτk(η, ξ) · (η′, ξ′)
∣∣ ,

we obtain

(2.18) |∇η,ξτk(η, ξ)| 6 ‖πk(η, ξ)‖ sup
(η′,ξ′)∈Sd−1

∥∥A(η′, ξ′)
∥∥ .

On an other hand, because of Remark 2.7, there exists a positive constant C such that

(2.19) ‖πk(η, ξ)‖ 6 C, k = 1, . . . , N,

uniformly with respect to (η, ξ) in Rd \ {0}. Finally, Assumption 2 claims that the matrix
A(η′, ξ′) is diagonalizable and well-conditioned, so there exists a positive constant C such that

(2.20) sup
(η′,ξ′)∈Sd−1

∥∥A(η′, ξ′)
∥∥ 6 C sup

(η′,ξ′)∈Sd−1

ρ
(
A(η′, ξ′)

)
.

Equations (2.18), (2.19), and (2.20) then lead to the result. �

The second result quantitatively links the vector π̃αEk(η, ξ) to the vector Ek(η, ξ), which will
be useful in the following to get a control from below of the first vector. It is mentioned, for its
second part, in [CG10].

Lemma 2.15. Let α = (τ, η, ξ) ∈ R1+d \ {0} be a real characteristic frequency and k the integer
between 1 and N such that τ = τk(η, ξ). Then we have

π̃αEk(η, ξ) = −∂ξτk(η, ξ)Ad(0)−1Ek(η, ξ).

In particular, if the frequency α is not glancing, the projector π̃α induces an isomorphism from
Imπα to Im π̃α.
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Proof. First the vector Ek(η, ξ) is decomposed in the basis (2.9) adapted to the decomposition
(2.7):

(2.21) Ek(η, ξ) =
N∑

j=1

λj Ad(0)
−1Ej(η, ξ),

so that we have π̃αEk(η, ξ) = λk Ad(0)
−1Ek(η, ξ). Thus the aim is to determine the coefficient

λk. Given that παEk(η, ξ) = Ek(η, ξ), and according to decomposition (2.21), we have

Ad(0)πα Ek(η, ξ) =

N∑

j=1

λj Ej(η, ξ),

thus
παAd(0)πα Ek(η, ξ) = λk Ek(η, ξ).

And we conclude using the Lax Lemma 2.13 which claims that παAd(0)πα = −∂ξτk(η, ξ)πα.
To show that the projector π̃α induces an isomorphism from Imπα to Im π̃α, the two spaces

Imπα and Im π̃α having the same dimension, it is sufficient to prove that the intersection

ker π̃α ∩ Imπα

is trivial. So we consider a vector X of CN belonging to this intersection. Because X belongs
to Im π̃α, by definition of the vector Ek(η, ξ), it writes

X = λEk(η, ξ),

where k is the integer between 1 and N such that α =
(
τk(η, ξ), η, ξ

)
and λ ∈ R. According to

the previous result, we have

π̃αX = −∂ξτk(η, ξ)Ad(0)−1X.

But we also have π̃αX = 0 by assumption and ∂ξτk(η, ξ) 6= 0, the frequency α being non-
glancing. We therefore obtain X = 0, which is the sought result. �

We are now in position to describe the decomposition of the stable subspace E−(ζ) for ζ ∈ Ξ0,
which requires the strict hyperbolicity Assumption 2.

Proposition 2.16 ([Wil96], Proposition 3.4). Consider ζ = (τ, η) ∈ Ξ0. We denote by i ξj(ζ)
for j = 1, . . . ,M(ζ) the distinct eigenvalues of the matrix A(ζ), and if ξj(ζ) is real, we shall
denote by αj(ζ) := (τ, η, ξj(τ, η)) the associated real characteristic frequency. If ξj(ζ) is real,
we also denote by kj the integer between 1 and N such that τ = τkj(η, ξj(ζ)). Then the set
{1, 2, . . . ,M(ζ)} decomposes as the disjoint union

(2.22) {1, 2, . . . ,M(ζ)} = G(ζ) ∪R(ζ) ∪ P(ζ) ∪ S(ζ) ∪ N (ζ),

where the sets G(ζ), R(ζ), P(ζ), S(ζ) and N (ζ) correspond to indexes j such that respectively
αj(ζ) is glancing, αj(ζ) is incoming, Im(ξj(ζ)) is positive, αj(ζ) is outgoing and Im(ξj(ζ)) is
negative.

Then the following decomposition of E−(ζ) holds

(2.23) E−(ζ) =
⊕

j∈G(ζ)

Ej−(ζ)⊕
⊕

j∈R(ζ)

Ej−(ζ)⊕
⊕

j∈P(ζ)

Ej−(ζ),

where for each index j, the subspace Ej−(ζ) is precisely described as follows.

i) If j ∈ P(ζ), the space Ej−(ζ) is the generalized eigenspace A(ζ) associated with the
eigenvalue i ξj(ζ).

ii) If j ∈ R(ζ), we have Ej−(ζ) = kerL
(
0, αj(ζ)

)
, which is of dimension 1.

iii) If j ∈ G(ζ), we denote by nj the algebraic multiplicity of the imaginary eigenvalue iξj(ζ).
For small positive γ, the multiple eigenvalue i ξj(τ, η) splits into nj simple eigenvalues,

denoted by i ξkj (τ − iγ, η), k = 1, . . . , nj , all of nonzero real part. We denote by µj the

number (independent of γ > 0) of the eigenvalues i ξkj (τ − iγ, η) of negative real part.

Then Ej−(ζ) is of dimension µj and is generated by the vectors w satisfying [A(ζ) −
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iξj(ζ)]
µjw = 0. Furthermore, if nj is even, µj = nj/2 and if nj is odd, µj is equal to

(nj − 1)/2 or (nj + 1)/2.

Likewise, the unstable subspace E+(ζ) decomposes as

(2.24) E+(ζ) =
⊕

j∈G(ζ)

Ej+(ζ)⊕
⊕

j∈S(ζ)

Ej+(ζ)⊕
⊕

j∈N (ζ)

Ej+(ζ),

with similar description of the subspaces Ej+(ζ). In particular, if the set G(ζ) is empty, then

CN = E−(ζ)⊕ E+(ζ).

Remark 2.17. The notation ξj(ζ) should not be taken for a function ξj depending on ζ ∈
Ξ0. Indeed for example the set M(ζ) depends on ζ. However, note that the matrix A(ζ)
is homogeneous of degree 1 with respect to ζ in Ξ0. Thus the number M(ζ) as well as the
cardinality of the sets G(ζ), R(ζ) ∪ S(ζ) and P(ζ) ∪ N (ζ) do not depend on the direction of ζ
in Ξ0. We therefore assume that, ζ ∈ Ξ0 being fixed, for λ ∈ R∗, the indexes 1, . . . ,M(λ ζ) are
arranged in a way that, for j = 1, . . . ,M(ζ), we have

ξj(λ ζ) = λ ξj(ζ), so that αj(λ ζ) = λαj(ζ).

With this ordering, we note that if for ζ ∈ Ξ0, the frequency αj(ζ) is glancing, incoming or
outgoing (resp. ξj(ζ) is of nonzero imaginary part), i.e. if j ∈ G(ζ) ∪ S(ζ) ∪ R(ζ) (resp.
j ∈ P(ζ)∪N (ζ)), then for λ ∈ R∗, the frequency αj(λ ζ) = λαj(ζ) is still glancing, incoming or
outgoing (resp. ξj(λ ζ) is still of nonzero imaginary part), that is to say j ∈ G(λ ζ) ∪ S(λ ζ) ∪
R(λ ζ) (resp. j ∈ P(λ ζ) ∪ N (λ ζ)). More precisely, if j ∈ P(ζ) (resp. N (ζ)), then j ∈ N (−ζ)
(resp. P(−ζ)).
Definition 2.18. Consider ζ ∈ Ξ0. We say that ζ is a glancing point and we denote ζ ∈ G
if, with notations of Proposition 2.16, there exists an index j between 1 and M(ζ) such that
j ∈ G(ζ), in other words, if ζ is such that there exists a real nonzero number ξ such that the
frequency (ζ, ξ) is characteristic and glancing.

An assumption is now made, that helps to prove that the projectors associated with the
decomposition (2.23) are bounded uniformly with respect to ζ in Ξ0. This assumption has
already been made in [Sar65] and [Wil96].

Assumption 4. For all k = 1, . . . , N , and for all (η, ξ) ∈ Rd \ {0}, we have

∂τk
∂ξ

(η, ξ) = 0 ⇒ ∂2τk
∂ξ2

(η, ξ) 6= 0.

Remark 2.19. We will see during the proof of the Proposition 2.21 in appendix A that the
assumption 4 implies that for all ζ in Ξ0, for all index j in G(ζ), we have nj = 2, using the

notations of Proposition 2.16. We deduce that µj = 1 and that the component Ej−(ζ) of the

stable subspace E−(ζ) is of dimension 1 and given by kerL
(
0, αj(ζ)

)
.

Definition 2.20. For ζ ∈ Ξ0 and, using the notations of Proposition 2.16, for an index j in

G(ζ) ∪R(ζ), we denote by Πj−(ζ) the projection from E−(ζ) on the component Ej−(ζ) according
to decomposition (2.23).

We also denote by Πe−(ζ) the projection from E−(ζ) on the elliptic stable component Ee−(ζ) :=

⊕j∈P(ζ)E
j
−(ζ) according to the decomposition (2.23).

Finally, if ζ is not glancing, that is if the set G(ζ) is empty, then according to Proposition
2.16 we have the following decomposition of CN

(2.25) CN =
⊕

j∈S(ζ)

Ej+(ζ)⊕
⊕

j∈N (ζ)

Ej+(ζ)⊕
⊕

j∈R(ζ)

Ej−(ζ)⊕
⊕

j∈P(ζ)

Ej−(ζ).

In that case we denote by Πe
CN

(ζ) the projection from CN on the stable elliptic component Ee−(ζ)
according to this decomposition.

The following proposition will be a key result in our analysis. It uses in a crucial way the
Assumption 4, as well as the strict hyperbolicity Assumption 2.
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Proposition 2.21 ([Wil96]). For all ζ ∈ Ξ0 the projectors Πj−(ζ) for j in G(ζ)∪R(ζ), and the
projectors Πe−(ζ) are uniformly bounded with respect to ζ in Ξ0.

The proof of this result, omitted in [Wil96] and which requires some work, is postponed until
Appendix A.

Thanks to Assumption 4 we are also able to prove the following result, which continues the
Lemma 2.15, and establishes a control from below over the normal component of the group
velocity, and therefore over the vector π̃αEk(η, ξ) for all α =

(
τk(η, ξ), η, ξ

)
, involving the

distance from
(
τk(η, ξ), η

)
to the glancing set G. Its proof uses notations and results from

the one of Proposition 2.21, and is therefore also skipped until Appendix A.

Lemma 2.22. There exists a positive constant C > 0 such that, if the real frequency α = (τ, η, ξ)
in R1+d \ {0} is characteristic, and if k between 1 and N is such that τ = τk(η, ξ), then we have

|∂ξτk(η, ξ)| > C
dist

(
(τ, η),G

)1/2

|τ, η|1/2 .

Using Lemma 2.15, we therefore obtain the following estimate

(2.26) |π̃αEk(η, ξ)| > C
dist

(
(τ, η),G

)1/2

|τ, η|1/2 .

3. Functional framework

3.1. Set of frequencies inside the domain. To define the functional framework that will
be used, we need first to determine a priori which frequencies may appear in the solution of
(2.1). For a detailed discussion of this analysis, reference is made to [Rau12, Chapters 9 and 10]
and [MA88]. The presence on the boundary of the frequencies ζ1, . . . , ζm creates, by nonlinear
interaction, the following group of frequencies on the boundary

(3.1) Fb := ζ1 Z+ · · · + ζm Z ⊂ Rd.

The assumption is now made that this group does not contain any glancing point, which have
been introduced in Definition 2.18.

Assumption 5. We have (
Fb \ {0}

)
∩ G = ∅.

In other words, with the notations of Proposition 2.16, for all ζ ∈ Fb \ {0}, the set G(ζ) of
indexes j between 1 and M(ζ) such that the characteristic frequency

(
ζ, ξj(ζ)

)
is glancing, is an

empty set.

However, attention must be paid on the fact that despite Assumption 5, the set Fb \ {0} may
contain frequencies arbitrary close to the set of glancing frequencies G, namely frequencies ζ
admitting a lifting inside the domain α =

(
τk(η, ξ), η, ξ

)
of which the normal component of the

group velocity given by −∂ξτk(η, ξ) is arbitrary close to zero. This phenomenon is well illustrated
in Example 3.1 of compressible isentropic Euler equations below. In the following, we will need
a control on the projectors Πe

CN
(ζ) for ζ in the group Fb\{0}, defined for ζ non glancing. Indeed

the norm of this projector increases when ζ gets close to the glancing set G. This is why a small
divisor assumption is now made, that gives a control over the distance between ζ in Fb and G
for large ζ, notably leading to Proposition 6.16 below.

Assumption 6. There exists a real number a1 and a positive constant c such that for all ζ in
Fb \ {0}, we have

dist
(
ζ,G

)
> c |ζ|−a1 .

The operator L(0, ∂z) being hyperbolic, the frequencies on the boundary ζ ∈ Fb \{0} are then
lifted inside the domain into frequencies (ζ, ξ). We will see that the polarization conditions for
the leading profile cancel the modes associated with noncharacteristic frequencies. Therefore,
since we are interested in bounded solutions, at this point only the incoming and evanescent
characteristic frequencies lifted from frequencies on the boundary are created. Assumption 5
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is used here to exclude the possibility of creating glancing frequencies
(
ζ, ξj(ζ)

)
, that is with

j ∈ G(ζ). Thus, at this stage, the set of frequencies {0} ∪ F in ∪ Fev has been obtained for the
leading profile, where the sets F in and Fev are given by
(3.2)

F in :=
{(
ζ, ξj(ζ)

)
, ζ ∈ Fb \ {0} , j ∈ R(ζ)

}
, Fev :=

{(
ζ, ξj(ζ)

)
, ζ ∈ Fb \ {0} , j ∈ P(ζ)

}
.

Apart from exceptional cases, the set F in is not finitely generated, which imposes an almost-
periodic framework for the normal fast variable.

Interest is now made on resonances that may occur inside the domain. By nonlinear interac-
tion, two frequencies αjp(ζp) =

(
ζp, ξjp(ζp)

)
and αjq(ζq) =

(
ζq, ξjq(ζq)

)
of F in may resonate to

create a characteristic frequency αjr(ζr) =
(
ζr, ξjr(ζr)

)
in the following way:

np αjp(ζp) + nq αjq(ζq) = nr αjr(ζr), np, nq, nr ∈ Z \ {0} .
If the index jr belongs to the set S(ζr), that is to say if αjr(ζr) is an outgoing real characteristic
frequency, a new frequency inside the domain is thus created, which does not already belong to
the initial set F in defined above. The simplifying assumption that it does not occur is made, so
there is no outgoing characteristic frequency created through a resonant triplet. More precisely,
we assume that the outgoing and the incoming frequencies do not resonate one with the other.
The set of outgoing frequencies Fout is defined as

(3.3) Fout :=
{(
ζ, ξj(ζ)

)
, ζ ∈ Fb \ {0} , j ∈ S(ζ)

}
.

Assumption 7. i) There does not exist a couple (αp, αq) of incoming characteristic frequen-
cies F in and a couple of integer (np, nq) such that the frequency

np αp + nq αq

is real, characteristic and outgoing.
ii) There does not exist a couple (αp, αq) of outgoing characteristic frequencies Fout and a

couple of integer (np, nq) such that the frequency

np αp + nq αq

is real, characteristic and incoming.

Note that if three real characteristic frequencies αp, αq, αr resonate as

np αp + nq αq = nr αr, np, nq, nr ∈ Z,

then according to the previous assumption, the frequencies αp, αq, αr are either all incoming or all
outgoing. On an other hand, despite Assumption 7, there may exist a countable infinite number
of resonances between incoming frequencies, as it is the case in Example 3.1 of compressible
isentropic Euler equations in dimension 2.

At this stage, for a new frequency to be created from F in, there must exist a resonance
between two frequencies of F in, that creates a real characteristic frequency which does not
already belong to F in. The frequencies in F in are incoming, and according to Assumption 7
above, a resonance between two incoming frequencies may only produce an incoming frequency,
which already belongs to F in. There is therefore no new frequency created, and the final set
of frequencies inside the domain created by nonlinear interaction on the boundary and lifting
inside the domain is given by

(3.4) F := {0} ∪
{
αj(ζ), ζ ∈ Fb \ {0} , j ∈ R(ζ) ∪ P(ζ)

}
.

We expect for the leading profile of the solution of (2.1) to feature all frequencies in F created
by lifting. It leads to consider, to maintain generality, all frequencies in F . Yet it seems unlikely
that the group generated by F may be finitely generated, which a priori excludes an asymptotic
expansion of the solution uε in the form of quasi-periodic functions. Following [JMR95] and
[CGW11] after, a quasi-periodic framework is nevertheless considered for the tangential fast
variables (the group of frequencies on the boundary being finitely generated), but an almost-
periodic framework for the normal fast variable is considered. The next subsection is devoted to
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p/q > K+ K+ > p/q > −δ p/q < −δ

q > 0
ζp,q is in the hyperbolic
region H with τp,q > 0

ζp,q is in the mixed region
EH

ζp,q is in the hyperbolic
region H with τp,q < 0

q < 0
ζp,q is in the hyperbolic
region H with τp,q < 0

ζp,q is in the mixed region
EH

ζp,q is in the hyperbolic
region H with τp,q > 0

Figure 4. Position of ζp,q depending on p and q.

that question and describes the functional framework used in this analysis. This part is ended
by verifying the different assumptions and assertions made in this subsection for the Example
2.1 of compressible isentropic Euler equations in dimension 2.

Example 3.1. The notations of Example 2.1 and those after are used. The assumptions 5,6 and 7
concern the group of frequencies on the boundary Fb, thus adequate frequencies on the boundary
must be considered for Example 2.1. To simplify the calculations, we take two frequencies ζ1

and ζδ given by ζ1 := (c0 η0, η0) and ζ
δ := (c0 δ η0, η0), with η0 > 0 and δ an irrational number

strictly larger than 1, so that ζ1 and ζδ are both in the hyperbolic region H. Recall that
c0 = c(v0) > 0 refers to the sound velocity and that the equilibrium V0 = (v0, 0, u0) satisfies
0 < u0 < c0. The boundary frequencies lattice Fb is therefore given in this example by

Fb =
{(
c0 η0 (p+ δ q), η0 (p+ q)

)
| p, q ∈ Z

}
⊂ R2.

We denote by ζp,q := (τp,q, ηp,q) :=
(
c0 η0 (p + δq), η0 (p + q)

)
the frequency of Fb given by

p ζ1 + q ζδ, for p, q in Z.
A nonzero frequency ζp,q is glancing if and only if |τp,q| =

√
c20 − u20 |ηp,q|, that is to say if and

only if 1

(3.5)
p

q
∈
{√

1−M2 − δ

1−
√
1−M2

,
−
√
1−M2 − δ

1 +
√
1−M2

}
.

We have denoted by M the Mach number given by M := u0/c0, belonging to (0, 1). If the two
real numbers

(3.6) K− :=

√
1−M2 − δ

1−
√
1−M2

et K+ :=
−
√
1−M2 − δ

1 +
√
1−M2

are irrational, then there does not exist a relation of the form (3.5), and there is therefore no
glancing frequency in the group Fb \ {0}. Thus we make the assumption that K− and K+ are

irrational, so that the assumption 5 is verified. We may for example take M =
√
3/2 and δ > 1

irrational. We summarize now the different areas where the frequencies ζp,q may be, depending
on p and q. First note that we have 0 > K+ > K− > −δ. Recall that the frequency ζp,q
is in the hyperbolic region (resp. mixed region) if and only if |τp,q| >

√
c20 − u20 |ηp,q| (resp.

|τp,q| <
√
c20 − u20 |ηp,q|). We thus infer the classification given in Figure 4. The calculation steps

are not detailed, but one case is treated in more details below.

The remark concerning the group velocities that follows Assumption 5 is now illustrated.
For that purpose a sequence of frequencies on the boundary that draw near the glancing set
is considered, see Figure 5. The real number K+ given (3.6) being irrational, there exist two
sequences (pk)k and (qk)k of integers such that for k > 0, pk and qk are coprime, qk > 0, and
such that

pk
qk

>−−−−→
k→+∞

−
√
1−M2 − δ

1 +
√
1−M2

= K+.

Note that since K+ > K− > −δ, for all k > 0, we have pk/qk > K− > −δ, so on one hand
we have pk + δqk > 0, and on the other hand, independently of the sign of pk + qk, we have

1If q = 0, then according to the relation |τp,q | =
√

c20 − u2
0 |ηp,q|, we have p2 = (1− u2

0/c
2
0) p

2 so p is also zero, i.e.
the frequency ζp,q is zero, which is excluded by assumption.
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pk + δqk >
√
1−M2 |pk + qk|. The frequencies ζpk,qk are therefore in the hyperbolic region H

with τ > 0, and draw near the glancing region G, see Figure 5. Since τpk,qk > 0, according to
Example 2.11, the last component of the group velocity associated with the frequency on the
inside α1(τpk,qk , ηpk,qk) is given by

∂ξτ3
(
ηpk,qk , ξ1(τpk,qk , ηpk,qk)

)
6

√
τ2pk,qk − η2pk,qk (c

2
0 − u20)

η2pk,qk
(3.7)

= c0

√
qk

(
1 +

√
1−M2

) pk + δqk − (pk + qk)(1 −M2)

(pk + qk)2

√
pk
qk

− −
√
1−M2 − δ

1 +
√
1−M2

.(3.8)

Note that the quantity under the first square root sign of (3.8) is non negative, since for all
k > 0, qk > 0 and pk/qk > K−, so that pk + δqk − (pk + qk)(1 −M2) > 0. This quantity being
bounded, the quantity (3.8) converges towards zero by construction of the integers (pk, qk). We
see that the normal group velocity (3.7) of the hyperbolic frequencies ζpk,qk converges towards
zero as k goes to infinity. It shows that the normal group velocity of the hyperbolic frequencies,
although nonzero, may be arbitrary close to zero.

η

τ

G

H

EH

• • • •
• • •

ζp1,q1

ζp2,q2
ζp3,q3

ζp4,q4
. .
.

Figure 5. Sequence of frequencies that draw near the glancing region, of which
the normal group velocity goes to zero.

Interest is now made on Assumption 7 and into the resonances between real characteristic
frequencies. We recall the notations of Example 2.11, and we first determine that, in the
hyperbolic region, the eigenvalues i ξ1(ζ), i ξ2(ζ) and i ξ3(ζ), defined by (2.15), are given, for
ζ = ζp,q in Fb \ {0}, by

i ξ1(ζp,q) = i η0
M (p + δq) + sign(p+ δq)

√
(p+ q)2M2 + 2pq(δ − 1) + q2(δ2 − 1)

1−M2
,

i ξ2(ζp,q) = i η0
M (p + δq)− sign(p+ δq)

√
(p+ q)2M2 + 2pq(δ − 1) + q2(δ2 − 1)

1−M2
,

i ξ3(ζp,q) = −i η0
p+ δq

M
.

The case of the glancing region is excluded by assumption, and the one of the mixed region is
included in the following, considering there is in this case only one imaginary eigenvalue, which
is the linear eigenvalue i ξ3(ζ). We first observe that, the eigenvalue i ξ3(ζp,q) begin linear, it
generates resonances of the form

α3(ζp,q) + α3(ζr,s) = α3(ζp+r,q+s), ∀p, q, r, s ∈ Z.
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The frequency α3(ζp,q) being always incoming, there are therefore already an infinite number
of resonances between incoming frequencies. From now on the notation α1,2 refers to one of
the characteristic frequency α1 or α2. Since by linearity of α3, the resonance between two
frequencies α3 and a frequency α1,2 is impossible, the two following cases of resonance are still
to be investigated:

α1,2(ζp,q) + α1,2(ζr,s) = α3(ζp+r,q+s) et α1,2(ζp,q) + α1,2(ζr,s) = α1,2(ζp+r,q+s).

In the first case, it is equivalent to the relation

(3.9)[
(p + q)2 − (r + s)2

]
M8 + 2

[
(p+ q)2 − (r + s)2

](
2(rs− pq)(δ − 1) + (s2 − q2)(δ2 − 1)

)
M6

+ C4(p, q, r, s, δ)M
4 +C2(p, q, r, s, δ)M

2 + (p + r + δq + δs)2 = 0

where coefficients C4(p, q, r, s, δ) and C2(p, q, r, s, δ) are polynomial in their variables. Two cases
may now occur, depending on whether the coefficient in front of M8 in equation (3.9) is zero or
not.

i) Either we have (p + q)2 − (r + s)2 6= 0, in which case the equation (3.9) is a polynomial
equation of degree 4 in Q[δ] satisfied by M2.

ii) Or we have (p+q)2 = (r+s)2, and in this case (3.9) is a polynomial equation of degree at most
2 satisfied by M2 in Q[δ]. If once again the coefficients C4(p, q, r, s, δ) and C2(p, q, r, s, δ) in
front of M4 and M2 are zero, then we get p + r + δq + δs = 0. Therefore we have r = −p
and s = −q, that is to say ζr,s = −ζp,q, so the studied resonance is actually self-interaction
of ζp,q with itself to generate the zero frequency. Thus, if (p+ q)2 = (r+ s)2, the only cases
of a real resonance are those where M2 is a root of a polynomial of degree 1 or 2 in Q[δ].

It has therefore been determined that for a resonance of the first type to occur (not of self-
interaction type), then M2 needs to be a root of a polynomial of degree at most 4 in Q[δ].

For the second type of resonance, such a relation is verified if and if only if the following
relation holds

(3.10) (ps− qr)2(1−M2)(δ − 1)2 = 0,

that is to say, since we have 0 < M < 1 and δ > 1, if and only if the two frequencies ζp,q and
ζr,s are collinear. Then one may write ζp,q = λ ζt,w and ζr,s = µ ζt,w, with ζt,w a hyperbolic
frequency, and λ, µ in Z∗. Next verify that, since we have sign(λ (t−w)) = sign(λ) sign(t−w),
the two following relations hold ξ1(λ ζt,w) = λ ξ1(ζt,w) and ξ2(λ ζt,w) = λ ξ2(ζt,w). The same
holds for the two frequencies µ ζt,w and (λ + µ) ζt,w. The only two resonances that may occur
are therefore

λα1(ζt,w) + µα1(ζt,w) = (λ+ µ)α1(ζt,w) et λα2(ζt,w) + µα2(ζt,w) = (λ+ µ)α2(ζt,w),

which both are actually self-interaction of frequencies α1(ζt,w) and α2(ζt,w) with themselves: the
evolution of the harmonics λ and µ are coupled with the one of λ+ µ. In particular, the three
frequencies implied in this resonance are either all incoming or all outgoing. Thus, if M2 is not
a root of a polynomial of degree at most 4 in Q[δ], Assumption 7 is verified for the compressible
isentropic Euler equations in dimension 2, with the group of frequencies on the boundary that
has been considered.

We finally dig into the small divisors Assumption 6. One can check that2, depending on the
sign of p, q, the distance between ζp,q and the glancing set G is given by

dist(ζp,q,G) = C
∣∣∣(p+ δq)±

√
1−M2(p+ q)

∣∣∣ = Cq
(
1±

√
1−M2

) ∣∣∣∣
p

q
−K±

∣∣∣∣ .

2Using the fact that the glancing set is constituted here of two lines, an elementary geometrical argument allows
to reduce to the distance with respect to η only, where the constant C is given by

C :=
η0 sin arctan(

√

c20 − u2
0)√

1−M2
.
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If p and q are not of the same size scale, then the same holds of p+ δq and p+ q, so the previous
distance can be lower bounded by a positive constant. We thus may in the following assume
that

(3.11) C1|p| 6 |q| 6 C2|p|.
According to Roth theorem, see [Sch91, Theorem 2A], if the real numbers K+ and K− given
by (3.6) are algebraic numbers (and irrational, which has been previously assumed), then they
satisfy ∣∣∣∣K± − p

q

∣∣∣∣ > C |q|−(2+ε),

for all q ∈ N∗, p ∈ Z and ε > 0. So for all ζp,q in Fb \ {0}, we get, using (3.11),

dist(ζp,q,G) > C|q|−3/2
> C|ζp,q|−3/2,

and Assumption 6 is therefore verified.
In conclusion, for the compressible isentropic Euler equations in dimension 2 to satisfies

Assumptions 5, 6 and 7, it is therefore sufficient that the Mach number M and the parameter
δ > 1 are such thatK+ andK− are irrational algebraic numbers and thatM2 is not a polynomial
solution of degree at most 4 in Q[δ]. The set of solutions of such equations being countable, one
may convince himself that the set of real numbers M satisfying these properties is not empty.
On may for example choose M :=

√
3/2, which gives K− = 1 − 2δ and K+ = −(1 + 2δ)/3,

and also choose δ = 7
√
2 > 1. In this way the real numbers K+ and K− are actually irrational

algebraic numbers. On an other hand, a relation of the form (3.9) cannot be satisfied, except
for trivial cases on p, q, r, s, because one can check that it forms an algebraic equation of degree
4 in δ, which is not an algebraic number of degree 4.

3.2. Spaces of profiles. According to the analysis of which frequencies may appear in the
solution of (2.1), we must define for the leading profile a functional framework that allows to
consider superposition of waves of the form

a(z) ei α·z/ε,

for α a characteristic frequency in F . Since we choose a quasi-periodic framework for the fast
tangential variables, we write such a wave as

a(z) ei n1 ζ1·z′/ε · · · ei nm ζm·z′/ε ei ξ xd/ε,

where α = (ζ, ξ) with ζ = n1 ζ1 + · · · + nm ζm ∈ Fb and ξ ∈ C. Next we denote by θ =
(θ1, . . . , θm) ∈ Tm the fast tangential variables which substitute to (z′ · ζ1/ε, . . . , z′ · ζm/ε) and
ψd ∈ R+ the fast normal variable substituting to xd/ε.

For each integer s > 0 and for T > 0, we denote by Hs
+(ωT × Tm) the space of functions of

(t, y, θ) ∈ ωT × Tm, zero for negative times t, of which all derivatives of order less or equal to s
belong to L2(ωT × Tm).

Now we describe the general space that will contain the oscillating and evanescent profiles
spaces. We choose only a uniform control with respect to the fast and slow normal variables
since it would be difficult to control derivatives of the leading profile with respect to these two
variables.

Definition 3.2. For an integer s > 0 and for T > 0, we define the space Es,T as the set of
functions U of (z′, xd, θ, ψd) ∈ ωT ×R+ ×Tm ×R+, bounded continuous with respect to (xd, ψd)
in R+ × R+ with values in Hs

+(ωT × Tm), equipped with the obvious norm

‖U‖Es,T := sup
xd>0,ψd>0

‖U( . , xd, . , ψd)‖Hs
+(ωT×Tm) .

We may now introduce the space of oscillating profiles, corresponding to real frequencies αj(ζ).
Following [JMR95], we choose a quasi-periodic framework with respect to θ and an almost-
periodic one with respect to ψd, namely we consider the closure of the space of trigonometric
polynomials with respect to ψd in the space Es,T of quasi-periodic functions with respect to θ.
See [Cor09] for more details about almost-periodic functions with values in a Banach space.
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Definition 3.3 ([Cor09]). We call a trigonometric polynomial with respect to ψd every function
U of Es,T that writes as a finite sum in real numbers ξ,

U(z, θ, ψd) =
∑

ξ

Uξ(z, θ) e
i ψd ξ,

with Uξ in Cb(R+
xd
,Hs

+(ωT × Tm)) for all ξ.
The space of oscillating profiles Posc

s,T is then defined as the closure in Es,T of the set of trigono-
metric polynomials with respect to ψd. This space is equipped with the norm of Es,T .

Concerning evanescent profiles, corresponding to frequencies αj(ζ) with j ∈ P(ζ), we consider

quasi-periodic functions with respect to θ′. The factors ei ξ ψd with Im ξ > 0 are expressed with
an exponential decay in ψd.

Definition 3.4. For s > 0 and T > 0, the space Pev
s,T of evanescent profiles is defined as the set

of functions U of Es,T , converging to zero in Hs(ωT ×Tm) as ψd goes to infinity (for every fixed
xd > 0), that writes

U(z, θ, ψd) =
∑

n∈Zm

Un(z, ψd) e
in·θ,

and such that for all n in Zm, there exists a real number δn > 0 such that the following function

(z, ψd) 7→ eδn ψd Un(z, ψd)

belongs to the space Cb(R+
ψd

× R+
xd
,Hs

+(ωT )). The space Pev
s,T is equipped with the norm of Es,T .

We may now describe the space of profiles, constructed as the sum of an oscillating and an
evanescent part.

Definition 3.5. For T > 0 and s > 0, we define the space of profiles Ps,T of regularity of order
s as

Ps,T := Posc
s,T ⊕ Pev

s,T ,

equipped with the obvious norm. If U belongs to Ps,T , we denote by Uosc ∈ Posc
s,T and U ev ∈ Pev

s,T

the profiles such that U = Uosc + U ev.

The proof of the fact that the spaces Posc
s,T and Posc

s,T are indeed in a direct sum is presented
later, after the introduction of a scalar product used in the proof.

One can find in [JMR95] a partial proof of the following result, that we recall here for the
sake of clarity.

Lemma 3.6 ([JMR95, Lemma 6.1.2]). For all T > 0 and for s > (d + m)/2, the spaces
Es,T , Posc

s,T , Pev
s,T and Ps,T are all normed algebras. Furthermore, if U and V decomposes in

Ps,T = Posc
s,T ⊕Pev

s,T as U = Uosc+U ev and V = V osc+V ev, then the oscillating part of the profile
UV is given by UoscV osc and and its evanescent part by UoscV ev + U evV osc + U evV ev.

Moreover, for T > 0 and s > 0, the spaces Es,T and Posc
s,T are Banach spaces.

Proof. The algebra properties for Es,T and Pev
s,T arise immediately from the one of Hs

+(ωT ×Tm).
The same holds for Posc

s,T since the set of trigonometric polynomials is stable under multiplication.

Finally, this algebra property for Hs
+(ωT × Tm) shows that if U belongs to Posc

s,T and V to Pev
s,T ,

then the product UV belongs to Pev
s,T , so the space Ps,T is also an algebra.

As for them, the completeness properties are obvious. �

3.3. Scalar products on the space of oscillating profiles. We now define three scalar
products that will be useful in the following, notably to obtain a priori estimates. This part
is adapted from [JMR95] to the framework of boundary value problems. We shall use a scalar
product with the time variable t fixed (as in [JMR95], which is a priori adapted to the Cauchy
problem) as well as a scalar product with the space variable xd fixed, more adapted to the initial
boundary problem.
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For U, V two functions of ωT × R+ × Tm × R+, we denote, when the formulas are licit, for
xd > 0,

〈U |V 〉in (xd) := lim
R→+∞

1

R

∫ R

0
〈U |V 〉L2(ωT×Tm) (xd, ψd) dψd,(3.12)

for 0 < t < T ,

〈U |V 〉out (t) := lim
R→+∞

1

R

∫ R

0
〈U |V 〉L2(Rd−1×R+×Tm) (t, ψd) dψd.(3.13)

and, if K is a domain of ΩT bounded in the xd direction,

〈U |V 〉K := lim
R→+∞

1

R

∫ R

0
〈U |V 〉L2(K×Tm) (ψd) dψd.(3.14)

The first scalar product is suited to the study of incoming modes when the second one is for
the outgoing modes, and the last one will be used to prove the finite velocity propagation of the
leading profile oscillating part.

If U and V are trigonometric polynomials of Posc
s,T of the form3

U(z, θ, ψd) =
∑

n∈Zm

∑

ξ∈R

Un,ξ(z) e
in·θ ei ξ ψd , V (z, θ, ψd) =

∑

n∈Zm

∑

ξ∈R

Vn,ξ(z) e
in·θ ei ξ ψd ,

then Theorem 3.4 and Remark 4.17 of [Cor09] ensure that the scalar products 〈U |V 〉in (xd) and
〈U |V 〉K are well-defined and satisfies, for xd > 0,

〈U |V 〉in (xd) = (2π)m
∑

n∈Zm

∑

ξ∈R

〈Un,ξ |Vn,ξ〉L2(ωT )
(xd),(3.15)

and

〈U |V 〉K = (2π)m
∑

n∈Zm

∑

ξ∈R

〈Un,ξ |Vn,ξ〉L2(K) .(3.16)

Indeed, each function U of Posc
s,T belongs to L2(K×Tm) and their traces with respect to xd belong

to L2(ωT × Tm) for all xd > 0. If U and V are moreover of compact support with respect to xd
and if s > 1, then the traces of U and V with respect to t belong to L2(Rd−1 × R+ × Tm), and
the same results from [Cor09] ensure that the scalar product 〈U |V 〉out (t) is well-defined and
satisfy, for t > 0,

(3.17) 〈U |V 〉out (t) = (2π)m
∑

n∈Zm

∑

ξ∈R

〈Un,ξ |Vn,ξ〉L2(Rd−1×R+) (t).

In short, the scalar products (3.12) and (3.14) (resp. (3.13)) are well-defined on the space
of profiles Posc

s,T , s > 0 (resp. for profiles of Posc
s,T with compact support with respect to xd with

s > 1), and formulas (3.15), (3.16) and (3.17) are satisfied in this case.
The incoming scalar product (3.12) is used to prove the following result.

Lemma 3.7. For all T > 0, the spaces Posc
0,T and Pev

0,T are in direct sum.

Proof. Consider a profile U in Posc
0,T ∩ Pev

0,T that writes, because it is an oscillating profile,

U(z, θ, ψd) =
∑

n∈Zm

∑

ξ∈R

Un,ξ(z) e
in·θ ei ξ ψd ,

the sum in ξ being countable. The profile U also being evanescent, for all xd > 0, the function
ψd 7→ U(., xd, ., ψd) converges to zero in L2(ωT ×Tm) as ψd goes to infinity. Thus, for all xd > 0,
we have

〈U |U〉in (xd) = 0,

3The sums in ξ are necessarily countable.
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since the mean value (in terms of (3.12)) of a continuous function on R+ converging to zero at
infinity is zero. But, since U is an oscillating profile, we have

〈U |U〉in (xd) = (2π)m
∑

n∈Zm

∑

ξ∈R

‖Un,ξ‖2L2(ωT )
(xd),

so, for all n, ξ, the function Un,ξ(xd) is zero in L2(ωT × Tm), and the profile U is therefore zero
as well. �

4. Ansatz and main result

We seek to construct an approximate solution of (2.1) under the form of a formal series
uε,app(z, z′ · ζ1/ε, . . . , z′ · ζm/ε, xd/ε), where uε,app is given by

(4.1) uε,app(z, θ, ψd) :=
∑

k>1

εk Uk(z, θ, ψd),

with at least U1 in Ps,T for some s > 0. As for them, correctors (Uk)k>2 a priori exhibit
frequencies that may not be characteristic. The convergence of the associated series then relies on
a small divisor assumption which is different from the previously made small divisor assumption
6. Thus we only consider correctors as formal trigonometric series involving all frequencies in
the group 〈F〉 generated by the set F .

We are now in place to state the main result of this work. It is placed under Assumptions 1 to
7, as well as Assumption 8 that will be made further on. We denote by h an integer larger than
or equal to (3− a1)/2 where a1 is the real number introduced in the small divisors Assumption
6. Then we denote s0 := h+ (d+m)/2.

Theorem 4.1. Let s be an integer such that s > s0. Under previously listed assumptions, there
exists a time T > 0 such that the system (5.10) described below and that governs the evolution
of the leading profile in the asymptotic expansion (4.1) admits a unique solution U1 in Ps,T .

We recall that we have considered a forcing term G in H∞(Rd×Tm), zero for negative times t
and of zero mean with respect to θ in Tm, but the infinite regularity assumption is made only for
simplicity, and the estimates, and thus the existence time T , only depend on the Hs(Rd × Tm)
norm of G. More precisely, the existence time T depends on the operator L(0, ∂z), the frequencies
on the boundary ζ1, . . . , ζm, the order of regularity s, and the Hs(ωT ×Tm) norm of the forcing
term G.

The formal WKB study shows that the function

z 7→ εU1(z, z
′ · ζ1/ε, . . . , z′ · ζm/ε, xd/ε)

is formally an approximate solution of the system (2.1).
We start by formally deriving the cascade of equations that must be verified by the amplitudes

(Uk)k>1. By resolving, first formally and then rigorously for a part of it, a fast problem, this
cascade is triangularized and a system of equations for the leading profile is extracted from it.
After a discussion about the different types of resonances that appear, the system is reduced to
two decoupled systems for the oscillating and evanescent parts, the one on the oscillating part
involving only the incoming phases. The oscillating system is even decoupled in a system for all
resonant modes, and a system for each non-resonant mode. Next a priori estimates are proved
for the linearized system for the oscillating parts, leading to the construction of solutions to these
linearized systems. Such estimates prove in particular that the solution of (5.10) is unique. An
iterative scheme is then used to construct solutions to the nonlinear systems, and the evanescent
part is finally determined. Unlike in [JMR95, Part 6], from which the following is mainly inspired,
there is no symmetry in the system, since it is not hyperbolic as a propagation system in the
variable xd. This lack of symmetry is a genuine obstacle to deal with the resonance terms (that
are in infinite number) in the a priori estimates. Assumption 8, concerning all resonances with
the possible exception of a finite number of them, allows to work around the problem and to
obtain estimates for the associated terms. Assumption 8 will be carefully verified for the Euler
system.
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5. Formal WKB study

5.1. Cascade of equations for the profiles. We seek to formally determine the equations
the sequence of profiles (Un)n>1 must satisfy for the formal series z 7→ uε,app(z, z′ · ζ1/ε, . . . , z′ ·
ζm/ε, xd/ε) given by (4.1) to be solution of the system (2.1). In the following we wish for the
coefficient (a priori dependent on uε,app) in factor of the partial derivative with respect to xd to
be the identity matrix, so that its differential is zero. The analogous property for the partial
derivative in time is crucial in [JMR95] from which we mainly draw our analysis. This choice
is justified here by the particular role of the variable xd in a priori estimates for the principal
profile. This is why we are interested from now on in the following equivalent system

(5.1)





L̃(uε,app, ∂z)u
ε,app = 0 in ΩT ,

B uε,app|xd=0 = ε gε on ωT ,

uε,app|t60 = 0

where we have denoted

L̃(u, ∂z) := Ad(u)
−1 L(u, ∂z) = Ã0(u) ∂t +

d−1∑

i=1

Ãi(u) ∂i + ∂d,

with Ãi(u) := Ad(u)
−1Ai(u) for i = 0, . . . , d − 1, and A0(u) := I. In the following we may use

the notation ∂0 := ∂t.

5.1.1. WKB Cascade inside the domain. We are now able to write the equations verified by
the profiles Uk, k > 1. First, we note that the following Taylor expansion is verified, for
i = 0, . . . , d− 1:

Ãi(u
ε,app) = Ãi(0) + ε dÃi(0) · U1 +

∑

k>2

εk
[
dÃi(0) · Uk +Gik−1

]
,

where, for k > 2, Gik−1 only depends on U1, . . . , Uk−1. The operator L̃
(
uε,app, ∂z

)
thus writes

(5.2) L̃
(
uε,app, ∂z

)
= L̃(0, ∂z) +

∑

k>1

εkL̃k(Uk, ∂z′),

with

L̃1

(
U1, ∂z′

)
:=

d−1∑

i=0

dÃi(0) · U1 ∂i, L̃k
(
Uk, ∂z′

)
:=

d−1∑

i=0

(
dÃi(0) · Uk +Gik−1

)
∂i, ∀k > 2.

For k > 2, despite the fact that only the Uk dependency is indicated in the operators L̃k(Uk, ∂z′),
these ones also depend on the profiles U1, . . . , Uk−1, via the functions Gik−1. The operator

L̃1(U1, ∂z′) depends however only on U1.

We see here the benefit of considering the modified operator L̃(u, ∂z): there is an xd derivative

only in the leading operator L̃(0, ∂z), and not in the other operators L̃k(Uk, ∂z′). Furthermore,
we verify that

L̃(uε,app, ∂z)
[
uε,app(z, z′ · ζ1/ε, . . . , z′ · ζm/ε, xd/ε)

]
(5.3)

=
[
L̃(uε,app, ∂z)u

ε +
1

ε

m∑

j=1

L̃(uε,app, ζj) ∂θju
ε,app +

1

ε
∂ψdu

ε,app
]

(z, z′ · ζ1/ε, . . . , z′ · ζm/ε, xd/ε).
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where, for j = 1, . . . ,m, the symbol L̃(uε,app, ζj) is defined by
∑d−1

i=0 ζ
i
j Ãi(u

ε,app) with ζj =

(ζ0j , . . . , ζ
d−1
j ). The expansion (5.2) of the operator L̃(uε,app, ∂z) leads to the analogous expan-

sions of the operators L̃(uε,app, ζj) for j = 1, . . . ,m:

(5.4) L̃
(
uε,app, ζj

)
= L̃(0, ζj) +

∑

k>1

εkL̃k(Uk, ζj)

where

L̃1

(
U1, ζj

)
:=

d−1∑

i=0

ζ ij dÃi(0) · U1, L̃k
(
Uk, ζj

)
:=

d−1∑

i=0

ζ ij

(
dÃi(0) · Uk +Gik−1

)
, ∀k > 2.

Thus, according to the expansions (5.2), (5.3) and (5.4), the following asymptotic expansion
holds

L̃(uε,app, ∂z)
[
uε,app(z, z′ · ζ1/ε, . . . , z′ · ζm/ε, xd/ε)

]

=
1

ε

{ m∑

j=1

L̃(0, ζj) ∂θju
ε,app + ∂ψdu

ε,app
}
+ L̃(0, ∂z)u

ε +

m∑

j=1

L̃(U1, ζj) ∂θju
ε,app

+
∑

k>1

εk
{
L̃k(Uk, ∂z′)u

ε,app +

m∑

j=1

L̃k+1(Uk+1, ζj) ∂θju
ε,app

}
,

where the right hand side is evaluated in (z, z′·ζ1/ε, . . . , z′·ζm/ε, xd/ε). The operator L(uε,app, ∂z)
applied to uε,app(z, z′ · ζ1/ε, . . . , z′ · ζm/ε, xd/ε) is therefore given by the formal series

(5.5)

L(uε,app, ∂z)
[
uε,app(z, z′ ·ζ1/ε, . . . , z′ ·ζm/ε, xd/ε)

]
=

∑

k>0

εkWk(z, z
′ ·ζ1/ε, . . . , z′ ·ζm/ε, xd/ε),

where, if the variables θ and ψd are substituted to (z′ ·ζ1/ε, . . . , z′ ·ζm/ε) and xd/ε, the amplitudes
(Wk)k>0 of the formal series (5.5) are given by

(5.6a) W0 :=
{ m∑

j=1

L̃(0, ζj) ∂θj + ∂ψd

}
U1,

(5.6b) W1 :=
{ m∑

j=1

L̃(0, ζj) ∂θj + ∂ψd

}
U2 +

{
L̃(0, ∂z) +

m∑

j=1

L̃1(U1, ζj) ∂θj

}
U1,

and for k > 2,

(5.6c) Wk :=
{ m∑

j=1

L̃(0, ζj) ∂θj + ∂ψd

}
Uk+1 +

{
L̃(0, ∂z) +

m∑

j=1

L̃1(U1, ζj) ∂θj

}
Uk

+

k−1∑

l=1

{
L̃k−1(Uk−l, ∂z′) +

m∑

j=1

L̃k−l+1(Uk−l+1, ζj) ∂θj

}
Ul.

The formulas (5.6a) and (5.6b) correspond to the analogous ones in [CGW11] in the case m = 1.
Thus, for the formal series (4.1) to be solution of (2.1), the formal series (5.5) must be zero,

or equivalently

Wk = 0, ∀k > 0.

We note that each equation Wk = 0 involves the fast operator

L(∂θ, ∂ψd) :=
m∑

j=1

L̃(0, ζj) ∂θj + ∂ψd ,

which is linear and has constant coefficients, as customary in weakly nonlinear geometric optics,
see [Rau12]. The subject of the following part is to study this operator in order to rewrite the
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equations (5.6) in an equivalent manner. Before that the WKB cascades on the boundary and
at initial time are determined.

5.1.2. WKB cascade on the boundary. Since we want the formal series (4.1) to satisfy the bound-
ary condition

B uε,app|xd=0 = ε gε,

the profiles (Uk)k>1 must verify, using variables (z′, θ), the following boundary conditions

(B U1)|xd=0,ψd=0 = G

(B Uk)|xd=0,ψd=0 = 0, k > 2.

5.1.3. Initial conditions. In a similar manner, the profiles (Uk)k>1 must satisfy, in the variables
(z′, θ), the following initial conditions

(Uk)|t60 = 0, k > 1.

5.2. Resolution of the fast problem L(∂θ, ∂ψd)U = H. In this part we seek to resolve in
the formal trigonometric series framework the equation

L(∂θ, ∂ψd)U = H,

and more precisely, to formally determine the kernel and range of the operator L(∂θ, ∂ψd). We
follow, in a formal manner, the analysis of [Les07, Part 3]. Thus we consider U writing

U(z, θ, ψd) =
∑

n∈Zm

∑

ξ∈R

Uosc
n,ξ (z) e

in·θ ei ξ ψd +
∑

n∈Zm

U ev
n (z, ψd) e

in·θ,

and H writing

H(z, θ, ψd) =
∑

n∈Zm

∑

ξ∈R

Hosc
n,ξ(z) e

in·θ ei ξ ψd +
∑

n∈Zm

Hev
n
(z, ψd) e

in·θ,

where, for all n in Zm, the sum in ξ is countable. Then, by definition of the fast operator
L(∂θ, ∂ψd), we get

L(∂θ, ∂ψd)U(z, θ, ψd) =
∑

n∈Zm

∑

ξ∈R

i L̃
(
0, (n · ζ, ξ)

)
Uosc
n,ξ (z) e

in·θ ei ξ ψd

+
∑

n∈Zm

{
i L̃

(
0, (n · ζ, 0)

)
+ ∂ψd

}
U ev
n
(z, ψd) e

in·θ,

where we recall that ζ refers to the m-tuple of elements of Rd given by ζ = (ζ1, . . . , ζm).
Therefore, the profile U is a solution of L(∂θ, ∂ψd)U = H if and only if, for all n in Zm and for
all ξ in R, we have

i L̃
(
0, (n · ζ, ξ)

)
Uosc
n,ξ (z) = Hosc

n,ξ(z),(5.7a)

and
(
i L̃

(
0, (n · ζ, 0)

)
+ ∂ψd

)
U ev
n
(z, ψd) = Hev

n
(z, ψd).(5.7b)

For n in Zm and for ξ in R, the equation (5.7a) admits a solution if and only if Hosc
n,ξ belongs

to the range of the matrix L̃(0, (n · ζ, ξ)), that is to say, according to Definition 2.6, the kernel
ker π̃(n·ζ,ξ). According to Definition 2.6 of the partial inverse Qα, every solution is therefore of
the form

Uosc
n,ξ = Xn,ξ − iQ(n·ζ,ξ)Ad(0)H

osc
n,ξ ,

with Xn,ξ an element of Imπ(n·ζ,ξ), and thus satisfies

Uosc
n,ξ = π(n·ζ,ξ)U

osc
n,ξ − iQ(n·ζ,ξ)Ad(0)H

osc
n,ξ .
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As for it, the differential equation (5.7b) admits a solution for every n in Zm. We recall that for
n ∈ Zm, the amplitude Hev

n decays exponentially. For n = 0, the solution is given by

U ev
0 (z, ψd) = −

∫ +∞

ψd

Hev
0 (z, s) ds,

and, for n in Zm \ {0}, according to Duhamel’s principle, by

U ev
n (z, ψd) =e

ψdA(n·ζ)Πe
CN

(n · ζ)U ev
n (z, 0) +

∫ ψd

0
e(ψd−s)A(n·ζ)Πe

CN
(n · ζ)Hev

n (z, s) ds

−
∫ +∞

ψd

e(ψd−s)A(n·ζ)
(
I −Πe

CN
(n · ζ)

)
Hev

n (z, s) ds,

noting that i L̃
(
0, (n ·ζ, 0)

)
= −A(n ·ζ). Indeed, according to Assumption 5, the frequency n ·ζ

is not glancing and the projector Πe
CN

(n · ζ) is thus well defined. The Duhamel’s principle then
applies separately to Πe

CN
(n ·ζ)U ev

CN
and (I−Πe

CN
(n ·ζ))U ev

CN
, and the integrals converge since,

according to Proposition 6.16 proved in appendix, the matrix etA(n·ζ)Πe
CN

(n · ζ) is bounded

by a decaying exponential for t > 0, and the matrix etA(n·ζ) (I − Πe
CN

(n · ζ)) is bounded for
t 6 0, with estimates depending on the frequency n · ζ. The following result is deduced from
this analysis.

Lemma 5.1 ([Les07, Theorem 2.14]). The equation L(∂θ, ∂ψd)U = H admits a solution in the

framework of formal trigonometric series if and only if ẼiH = 0, and every solution is of the
form

U = EU +QH,

where projectors E and Ẽi and operator Q are defined further on. In particular we have

kerL(∂θ, ∂ψd) = ImE and ImL(∂θ, ∂ψd) = ker Ẽi.

If U is given by

U(z, θ, ψd) =
∑

n∈Zm

∑

ξ∈R

Uosc
n,ξ (z) e

in·θ ei ξ ψd +
∑

n∈Zm

U ev
n (z, ψd) e

in·θ,

then Ẽi U is defined as

(5.8) Ẽi U(z, θ, ψd) :=
∑

n∈Zm

∑

ξ∈R

π̃(n·ζ,ξ)U
osc
n,ξ (z) e

i n·θ ei ξ ψd ,

EU as

EU(z, θ, ψd) :=
∑

n∈Zm

∑

ξ∈R

π(n·ζ,ξ) U
osc
n,ξ (z) e

i n·θ ei ξ ψd(5.9)

+
∑

n∈Zm\{0}

eψdA(n·ζ)Πe
CN

(n · ζ)U ev
n (z, 0) ei n·θ,

and QU as

QU(z, θ, ψd) := −
∑

n∈Zm

∑

ξ∈R

iQ(n·ζ,ξ)Ad(0)U
osc
n,ξ (z) e

in·θ ei ξ ψd −
∫ +∞

ψd

U ev
0
(z, s) ds

+
∑

n∈Zm\{0}

(∫ ψd

0
e(ψd−s)A(n·ζ)Πe

CN
(n · ζ)U ev

n
(z, s) ds

−
∫ +∞

ψd

e(ψd−s)A(n·ζ)
(
I −Πe

CN
(n · ζ)

)
U ev
n (z, s) ds

)
ein·θ.

Even if the operatorQ cannot be rigorously defined in the functional framework used here (the
issue is essentially the same as in [JMR95] and relies on a small divisor control), the projectors

E and Ẽi, that are the only one involved in the leading profile equations, can be defined in the
space Ps,T . This result will constitute a part of the following section.
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5.3. System of equations satisfied by the leading profile. According to expressions (5.6a)
and (5.6b) of the amplitudesW0 andW1, and using the previous Lemma 5.1, we get the following
system of equations for the leading profile U1, simply denoted from now on by U :

EU = U(5.10a)

Ẽi
[
L̃(0, ∂z)U +

m∑

j=1

L̃1(U, ζj) ∂θjU
]
= 0(5.10b)

B U|xd=0,ψd=0 = G(5.10c)

U|t60 = 0.(5.10d)

We note that the leading profile U1 is polarized, in the sense that it satisfies the equation
(5.10a), so according to Definition (5.9) of the projector E, only the characteristic frequencies
occur in its Fourier expansion. We shall see in the next section that the oscillating part Uosc of
profile U satisfies the problem

EUosc = Uosc(5.11a)

Ẽi
[
L̃(0, ∂z)U

osc +

m∑

j=1

L̃1(U
osc, ζj) ∂θjU

osc
]
= 0(5.11b)

B
(
Uosc + U ev

)
|xd=0,ψd=0

= G(5.11c)

Uosc
|t60 = 0.(5.11d)

The question is to know whether or not the boundary condition (5.11c) determines on its own
the trace Uosc

|xd=0,ψd=0. As already explained in [CGW11] and [CW17], the answer depends on the

existence of a resonance between two incoming frequencies that generates an outgoing frequency.
Such a resonance pattern is excluded by Assumption 7. In this case the boundary condition
(5.11c) also determines the trace U ev

|xd=0,ψd=0, which, according to the polarization conditions,

immediately leads to construction of the evanescent part of U .

6. Construction of the leading profile

We are now in position of constructing the leading profile U solution of the system (5.10).
First some notations are introduced and an additional assumption is made, mainly involving the

resonances. Then the projectors E and Ẽi are rigorously defined, and it is shown that the mean
value and the outgoing part of every solution of (5.10) are zero, which allows to decouple the
system. Next a priori estimates on the linearized systems are proved, which are used to prove
existence of solutions to these problems, and the convergence of some iterative schemes towards
functions constituting the profile Uosc. We conclude by determining the evanescent part.

6.1. Resonance coefficient and additional assumption. The sets defined below permit to
gather the characteristic frequencies according to collinearity.

Definition 6.1. We consider the subset of Zm\{0}, denoted by BZm , constituted of all m-tuples
of coprime integers of which the first nonzero term is positive:

BZm :=

{
(n1, . . . , nm) ∈ Zm \ {0}

∣∣∣∣
n1 ∧ · · · ∧ nm = 1,

∃k ∈ {0, . . . ,m− 1} , n1, . . . , nk = 0, nk+1 > 0

}
.

On can verify that for all n of Zm \ {0}, there exists a unique element n0 of BZM and a unique
nonzero integer λ such that n = λn0.

Then we introduce the following notation for real characteristic frequencies lifted from fre-
quencies on the boundary.

Definition 6.2. For n in Zm \ {0}, we denote by C(n) the finite set of real numbers ξ such that
the frequency (n · ζ, ξ) is real and characteristic, namely

C(n) := {ξ ∈ R | (n · ζ, ξ) ∈ C} .
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We also denote by Cin(n) (resp. Cout(n)) the set of real numbers ξ such that the frequency (n·ζ, ξ)
is real, characteristic and incoming (resp. outgoing), namely

Cin(n) = {ξj(n · ζ) | j ∈ R(n · ζ)} , Cout(n) = {ξj(n · ζ) | j ∈ S(n · ζ)} ,
with notations of Proposition 2.16.

We recall that according to Assumption 5, there is no glancing frequency in F , so the disjoint
union

C(n) = Cin(n) ∪ Cout(n)
is satisfied for all n in Zm \ {0}. All real characteristic frequencies have been considered here,
but there may also exist non-real characteristic frequencies lifted from n · ζ.
Remark 6.3. One can check that, according to Remark 2.17, the sets C, Cin and Cout are homo-
geneous of degree 1. Thus, if n belongs to Zm \ {0} and ξ to C(n), and if n0 in BZm and λ in Z∗

are such that n = λn0, then there exists ξ0 in C(n0) such that ξ = λ ξ0.

We now introduce some notations for the resonances.

Definition 6.4. For n in Zm \ {0} and ξ in C(n), we denote by E(n, ξ) the vector of the basis
E1, . . . , EN of CN given by (2.8) that generates the linear line kerL

(
0, (n · ζ, ξ)

)
.

Remark 6.5. Note that for n in Zm \ {0}, ξ in C(n) and λ in Z∗, since the linear subspaces
kerL

(
0, (n ·ζ , ξ)

)
and kerL

(
0, (λn ·ζ , λξ)

)
are equal, we infer E(n, ξ) = E(λn, λξ), so the vector

E(n, ξ) is homogeneous of degree 0.

The following definition is based on [Rau12, Chapter 11].

Definition 6.6. Let np, nq be two elements of Zm \ {0}, and let (ξp, ξq) in C(np) × C(nq) be
such that the frequency

(nr · ζ, ξr) := (np · ζ, ξp) + (nq · ζ, ξq)
is real and characteristic (i.e. such that there is a resonance). Then the resonance coefficient
Γ
(
(np, ξp), (nq, ξq)

)
is defined by the equation

π̃(nr ·ζ,ξr) L̃1

(
E(np, ξp),nq · ζ

)
E(nq, ξq) = Γ

(
(np, ξp), (nq, ξq)

)
π̃(nr ·ζ,ξr)E(nr, ξr).

This coefficient exists by definition of the projectors π̃k, for k = 1, . . . , N and according to
Lemma 2.15.

Remark 6.7. i) Since all quantities involved in the definition of Γ are homogeneous of degree
0 or 1, the coefficient Γ is homogeneous of 1, i.e. for all np, nq in Zm \ {0}, (ξp, ξq) in
C(np)×C(nq) such that the frequency (np · ζ, ξp) + (nq · ζ, ξq) is characteristic (that is such
that there is a resonance) and for all λ in Z∗, we have

Γ
(
(λnp, λξp), (λnq, λξq)

)
= λΓ

(
(np, ξp), (nq, ξq)

)
.(6.1)

By definition and for the same reason, we also have, for n0 in Zm \{0} and ξ0 in C(n0), and
for λ1, λ2 in Z∗,

(6.2) Γ
(
λ1(n0, ξ0), λ2(n0, ξ0)

)
= λ2 Γ

(
(n0, ξ0), (n0, ξ0)

)
.

ii) Since according to Remark 2.7 the projectors π̃α are bounded and the vectors E(n, ξ) are
of norm 1, for all n in Zm \ {0} and all ξ in C(n), we have

∣∣Γ
(
(n, ξ), (n, ξ)

)∣∣ 6 C
|n|∣∣π̃(n·ζ,ξ)E(n, ξ)

∣∣ .

Therefore, according to the lower bound (2.26) of Lemma 2.22 and the small divisors As-
sumption 6, for all n in Zm \ {0} and all ξ in C(n), we have

(6.3)
∣∣Γ
(
(n, ξ), (n, ξ)

)∣∣ 6 C|n|h,
where h is an integer larger than (3− a1)/2 with notation of Assumption 6.
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iii) The quantity π̃(nr ·ζ,ξr) L̃1

(
E(np, ξp),nq · ζ

)
E(nq, ξq) being homogeneous of degree 1 with

respect to nq, the resonance coefficient Γ
(
(np, ξp), (nq, ξq)

)
formally corresponds to a partial

derivative with respect to the fast tangential variables, applied to the profile associated with
the frequency (nq · ζ, ξq).

The coefficients Γ defined above shall appear in the computations to obtain a priori estimates
for the system (5.10). In particular, when these coefficients present some symmetry property,
the associated resonance is easy to control in the a priori estimates. Thus we discriminate the
resonances satisfying this symmetry property from the others.

Definition 6.8. Fix a constant C0 > 0. Let nr be in BZm, and ξr in C(nr). We consider the set
of 7-tuples (λp, λq, λr,np,nq, ξp, ξq) with λp, λq, λr in Z∗, np,nq in BZm , (ξp, ξq) in C(np)×C(nq),
(np · ζ, ξp) and (nq · ζ, ξq) non collinear and λp, λq, λr coprime numbers, that resonate to give
the resonance λr (nr · ζ, ξ) in the following way

λp (np · ζ, ξp) + λq (nq · ζ, ξq) = λr (nr · ζ, ξr).
This set is written as the disjoint union

R1(nr, ξr) ⊔R2(nr, ξr),

where the sets R1(nr, ξr) and R2(nr, ξr) are defined as follows.

i) The set R1(nr, ξr) is constituted of 7-tuples (λp, λq, λr,np,nq, ξp, ξq) satisfying

(6.4)
∣∣Γ
(
(np, ξp), (nq , ξq)

)
+ Γ

(
(np, ξp), (−nr,−ξr)

)∣∣ 6 C0|np, ξp|
where C0 > 0 is the constant which have been fixed in the beginning and which does not
depend on λp, λq, λr, np, nq, nr, ξp, ξq, ξr. These resonances are said to be of type 1.

ii) The 7-tuples (λp, λq, λr,np,nq, ξp, ξq) which do not satisfy the previous property constitute
the set of type 2 resonances, denoted by R2(nr, ξr).

Remark 6.9. i) Note that the sets R1(n, ξ) and R2(n, ξ) depend on the constant C0 > 0 fixed
at the beginning, although this dependence is not indicated.

ii) According to Assumption 7, note that if the frequency (n ·ζ, ξ) is outgoing (resp.incoming),
then both sets R1(n, ξ) and R2(n, ξ) are constituted only of 7-tuples corresponding to
outgoing (resp. incoming) frequencies.

iii) Note that since the coefficients Γ are not symmetrical, the type of a resonance

λp (np · ζ, ξp) + λq (nq · ζ, ξq) = λr (nr · ζ, ξr),
depends on the way it is written. However, since the condition (6.4) is symmetrical in (q, r),
the resonance

λp (np · ζ, ξp) + λq (nq · ζ, ξq) = λr (nr · ζ, ξr),
is of type 1 if and only if the resonance

λp (np · ζ, ξp)− λr (nr · ζ, ξr) = −λq (nq · ζ, ξq),
is of type 1.

iv) Also note that if a resonance of the form

λp (np · ζ, ξp) + λq (nq · ζ, ξq) = λr (nr · ζ, ξr),
holds, then for k in Z∗, the following resonance relation is also satisfied

k λp (np · ζ, ξp) + k λq (nq · ζ, ξq) = k λr (nr · ζ, ξr).
This explains the choice made in Definition 6.8 to consider only 3-tuples (λp, λq, λr) of
coprime integers and m-tuples np, nq and nr of BZm .

The previous definition leads to the last assumption of this work.

Assumption 8. There exists a constant C0 > 0 such that the sets R1(n, ξ) and R2(n, ξ), for n

in Zm \ {0} and ξ in C(n), defined in Definition 6.8 satisfy the two following properties.
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a) The sets of incoming resonances of type 2 and outgoing resonances of types 1 and 2
⋃

n∈BZm

ξ∈Cin(n)

R2(n, ξ),
⋃

n∈BZm

ξ∈Cout(n)

(
R1(n, ξ) ∪R2(n, ξ)

)
,

are finite sets.
b) For all incoming frequency (n, ξ) of BZm × Cin(n) such that the set R1(n, ξ) is nonempty,

the following lower bound holds

(6.5)
∣∣π̃(n·ζ,ξ)E(n, ξ)

∣∣ > 1

C0
.

Remark 6.10. i) The self-interaction between two collinear frequencies always constitute a
resonance, but these terms should not be an issue in the analysis, since they induce terms of
Burgers type, which are commonly treated in the estimates. However the resonances of type
2 are difficult to control, that is why a finiteness assumption is made on this set, whereas the
property (6.4) satisfied by resonances of type 1 allows to treat an infinite number of them
(to the prize of a uniform control). Such an infinity of resonances appears irremediably in
Example 2.1 of compressible isentropic Euler equations in dimension 2. It constitute one
of the main additional difficulty addressed here in comparison to the monophase case of
[CGW11].

ii) We already know that for (n, ξ) in BZm×C(n), the vector π̃(n·ζ,ξ)E(n, ξ) is bounded, accord-
ing to Remark 2.7, and that it goes to zero in a controlled way, according to estimate (2.26)
and Assumption 6. In the case of an infinite number of resonances, namely for incoming
resonances of type 1, we also need to make sure that these vectors do not go to zero, for a
technical reason explained below. This is why the uniform lower bound Assumption (6.5) is
made. This assumption excludes the possibility of the existence of a sequence of frequencies
(n, ξ) such that R1(n, ξ) is nonempty, converging to the glancing set G.

According to Assumption 7, it has already been established that the sets of incoming and
outgoing frequencies F in and Fout defined in (3.2) and (3.3) do not resonate with each other.
This decomposition of the frequencies set in sets that do not resonate with each other is now to
be refined, which will allow to decouple the studied system according to these sets.

Definition 6.11. In this definition we confuse the frequency (n ·ζ, ξ) with the couple (n, ξ). Let
C0 > 0 be the constant fixed in Assumption 8. We denote by Fout

res the set of outgoing frequencies
(n, ξ) of BZm×Cout(n) involved in resonances of type 1 or 2, namely such that R1(n, ξ)∪R2(n, ξ)
is nonempty. Then the following disjoint union holds

(6.6) {(n, ξ) ∈ BZm × Cout(n)} = Fout
res ⊔

⊔

(n,ξ)∈(BZm×Cout(n))\Fout
res

{(n, ξ)} ,

where the set involved in the disjoint union do not resonate with each other. The set F in
res is

defined in a similar way for incoming frequencies, so that the following decomposition holds

(6.7) {(n, ξ) ∈ BZm × Cin(n)} = F in
res ⊔

⊔

(n,ξ)∈(BZm×Cin(n))\F in
res

{(n, ξ)} ,

where the set involved in the disjoint union do not resonate with each other.

Remark 6.12. In Assumption 8, the bound (6.5) a priori applies to couples (n, ξ) such that the
set R1(n, ξ) is nonempty. But since according to Assumption 8 there is only a finite number
of type 2 resonances, we can assume without loss of generality that this bound also applies to
couples (n, ξ) such that R1(n, ξ) is empty but R2(n, ξ) is not, namely to all elements of F in

res.
Therefore for all (n, ξ) in F in

res, the following bound holds

(6.8)
∣∣Γ
(
(n, ξ), (n, ξ)

)∣∣ 6 C|n|.
Note that the previous estimate differs from (6.3) by a linear control and not an algebraic control
of degree h.
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Finally the projectors analogous to E and Ẽi, selecting only the resonant frequencies, are
defined, and we verify after that Assumption 8 for the Euler equations example considered in
this paper.

Definition 6.13. For all formal trigonometric series U writing

U(z, θ, ψd) =
∑

n∈Zm

∑

ξ∈R

Uosc
n,ξ (z) e

in·θ ei ξ ψd +
∑

n∈Zm

U ev
n
(z, ψd) e

in·θ,

the series Ẽi
in

res U is defined as

(6.9) Ẽi
in

res U(z, θ, ψd) :=
∑

(n0,ξ0)∈F in
res

∑

λ∈Z∗

π̃(λn0·ζ,λξ0) U
osc
λn0,λξ0(z) e

i λn0·θ ei λξ0 ψd ,

and Ein
res U as

Ein
resU(z, θ, ψd) :=

∑

(n0,ξ0)∈F in
res

∑

λ∈Z∗

π(λn0·ζ,λξ0) U
osc
λn0,λξ0(z) e

i λn0·θ ei λξ0 ψd .(6.10)

Example 6.14. We return to Example 2.1 of compressible isentropic Euler equations in dimension
2, for which we check the last assumption of this work, namely Assumption 8 about the control
of resonances. Recall the notations and results of Example 2.1 and those after, and notably the
analysis of the resonances made in Example 3.1, and consider a Mach number M satisfying the
previously made assumptions. Is has been shown that ifM2 is not an algebraic number of degree
less than 4 in Q[δ], then the only resonances (except for the self-interactions) occurring are those
involving the linear frequency α3(ζ), which are in infinite number, even with collinearity, and
between incoming frequencies. It will be shown that there exists a constant C0 > 0 such that
these resonances satisfy the property (6.4) and such that all frequencies α3(ζp,q) satisfy the
lower bound (6.5), proving that the system (2.4) verifies Assumption 8. First we look for the
coefficients Γ for this type of resonances. Consider (p, q) and (r, s) in Z2 \ {0}. The aim is to
determine the coefficient

Γ
(
(p, q), ξ3(ζp,q), (r, s), ξ3(ζr,s)

)

relative to the resonance

α3(ζp,q) + α3(ζr,s) = α3(ζp+r,q+s),

denoted more briefly by Γ
(
(p, q), (r, s)

)
. Since, for ζ in R2 \{0}, the real characteristic frequency

α3(ζ) = (τ, η, ξ3(ζ)) satisfies τ = τ2
(
η, ξ3(ζ)

)
, we obtain

E
(
(p, q), ξ3(ζp,q)

)
= E2

(
ηp,q, ξ3(ζp,q)

)
, E

(
(r, s), ξ3(ζr,s)

)
= E2

(
ηr,s, ξ3(ζr,s)

)
,

E
(
(p + r, q + s), ξ3(ζp+r,q+s)

)
= E2

(
ηp+r,q+s, ξ3(ζp+r,q+s)

)
,

where E2(η, ξ) is the vector of the basis (2.8) of CN given in this example by

E2(η, ξ) :=
1√

η2 + ξ2




0

ξ

−η


 , (η, ξ) ∈ R2 \ {0} .

Thus the associated vector of basis (2.9) is given by

A2(V0)
−1E2(η, ξ) =

1

(u20 − c20)
√
η2 + ξ2




−η v0
ξ
u20−c

2
0

u0

−η u0


 , (η, ξ) ∈ R2 \ {0} .

Also computing the vectors E1(η, ξ) and E3(η, ξ) for (η, ξ) ∈ R2 \ {0}, it is determined that
the projector π̃((p+r,q+s)·ζ,ξ3(ζp+r,q+s)) occurring in the coefficient Γ

(
(p, q), (r, s)

)
is given in this
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example by π̃2(ηp+r,q+s, ξ3(ζp+r,q+s)) where, for (η, ξ) in R2 \ {0},

π̃2(η, ξ) =
1

u0(u20 − c20)(η
2 + ξ2)




−u0 c20 η2 −u20 v0 η ξ u20 v0 η
2

η ξ c20 (u
2
0 − c20)/v0 ξ2 u0 (u

2
0 − c20) −η ξ u0 (u20 − c20)

−η2 c20 u20/v0 −η ξ u30 u30 η
2



.

Thus the vector π̃2(η, ξ)E2(η, ξ) is given by u0A2(V0)
−1E2(η, ξ), for (η, ξ) in R2\{0}. It ensures

in particular that Assumption 8 is verified, since the following uniform lower bound holds
∣∣π̃α3(ζp,q)E

(
(p, q), ξ3(ζp,q)

)∣∣ =
∣∣π̃2

(
ηp,q, ξ3(ζp,q)

)
E2

(
ηp,q, ξ3(ζp,q)

)∣∣

=
∣∣u0A2(V0)

−1E2

(
ηp,q, ξ3(ζp,q)

)∣∣ > C
∣∣E2

(
(p, q), ξ3(ζp,q)

)∣∣ = C.

Returning to the determination of coefficients Γ
(
(p, q), (r, s)

)
, by computing differentials dÃi(V0),

we finally get

L̃1

(
E2

(
ηp,q, ξ3(ζp,q)

)
, ζr,s

)
E2

(
ηr,s, ξ3(ζr,s)

)

=
τp,q ηr,s − τr,s ηp,q√

η2p,q + τ2p,q/u
2
0

√
η2r,s + τ2r,s/u

2
0




v0 ηr,s/[u0 (u
2
0 − c20)]

τr,s/u
3
0

ηr,s/(u
2
0 − c20)



.

The formula ξ3(ζ) = −τ/u0, for ζ = (τ, η) in R2 \ {0} has been used here. Then we have

π̃2(ηp+r,q+s, ξ3(ζp+r,q+s)) L̃1

(
E2

(
ηp,q, ξ3(ζp,q)

)
, ζr,s

)
E2

(
ηr,s, ξ3(ζr,s)

)

=
(τp,q ηr,s − τr,s ηp,q)(τp+r,q+s τr,s + u2 ηp+r,q+s ηr,s)

u20 (u
2
0 − c20)

√
η2p,q + τ2p,q/u

2
0

√
η2r,s + τ2r,s/u

2
0

(
η2p+r,q+s + τ2p+r,q+s/u

2
0

)




ηp+r,q+s v0/u0

τp+r,q+s (u
2
0 − c20)/u

3
0

ηp+r,q+s



.

We deduce from the relation π̃2(η, ξ)E2(η, ξ) = u0A2(V0)
−1E2(η, ξ) the following formula for

the pursued coefficient Γ
(
(p, q), (r, s)

)
:

(6.11) Γ
(
(p, q), (r, s)

)
= − (τp,q ηr,s − τr,s ηp,q)(τp+r,q+s τr,s + u20 ηp+r,q+s ηr,s)

u40

√
η2p,q + τ2p,q/u

2
0

√
η2r,s + τ2r,s/u

2
0

√
η2p+r,q+s + τ2p+r,q+s/u

2
0

.

We now check the estimate (6.4) with these coefficients. Let (p, q), (r, s) and (t, w) be in
Z2 \ {0} such that (p, q) + (r, s) + (t, w) = (0, 0). One can verify, using the formulas τp,q =
c0 (p + δq) η0, ηp,q = (p+ q) η0, p+ r = −t and q + s = −w, that we get

Γ
(
(p, q), (r, s)

)

=
(1− δ)(ps − qr)

(
(t+ δw) (r + δs) +M2 (t+ w) (r + s)

)
√

(p+ q)2 + (p+ δq)2/M2
√

(r + s)2 + (r + δs)2/M2
√

(t+ w)2 + (t+ δw)2/M2

η0 c
3
0

u40
.

Since ps− qr = −(pw − qt), we finally have

Γ
(
(p, q), (r, s)

)
+ Γ

(
(p, q), (t, w)

)
= 0,

so estimate (6.4) is in particular trivially satisfied and therefore so is Assumption 8. Note that
in this example, the set Fout

res is empty and the set F in
res is given by

F in
res = {α3(ζ) | ζ ∈ Fb} .

It concludes the analysis in this paper of the example of compressible isentropic Euler equations
in dimension 2, which, with the chosen parameters, satisfies all assumptions of this work.
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Remark 6.15. Note that the coefficient Γ determined above corresponds to the one in [Rau12,
(11.5.9)].

In the following subsection, some rigorous results on projectors E and Ẽi will be proved, using
the small divisors Assumption 6.

6.2. Rigorous definition of projectors E, Ẽi, Ein
res and Ẽi

in

res. This part follows [JMR95,

Section 6.2]. Before considering the projectors E, Ẽi, Ein
res and Ẽi

in

res, we state the following
controls over spectral projectors, that will be used to rigorously define the projectors E and
Ein

res. The proof of these controls uses notations and results from the one of Proposition 2.21,
and is therefore postponed after it, in Appendix A.

Proposition 6.16. Under Assumption 6, there exists a constant c1 > 0 and a real number b1
such that, for all ζ in Fb \ {0}, the following estimates hold

∣∣∣etA(ζ) Πe−(ζ)
∣∣∣ 6 c1 e

−c1 t |ζ|−b1 6 c1, ∀t > 0,(6.12a)

∣∣∣etA(ζ) Πe
CN

(ζ)
∣∣∣ 6 c1 |ζ|b1 e−c1 t |ζ|

−b1
, ∀t > 0,(6.12b)

∣∣∣etA(ζ)
(
I −Πe

CN
(ζ)

)∣∣∣ 6 c1 |ζ|b1 , ∀t 6 0.(6.12c)

We are now in position to rigorously define projectors E and Ẽi. The result concerning the
oscillating part comes from [JMR95, Proposition 6.2.1] and [CGW11, Proposition 2.2], but the
proof is recalled here. The result concerning the evanescent part is simpler, and reduces to prove
that some series converges.

Lemma 6.17 ([JMR95, Proposition 6.2.1]). For all T > 0 and s > 0, the projectors Ẽi and
E defined by (5.8) and (5.9) on the space of trigonometric polynomials each admit a unique
extension from the space Posc

s,T to itself. Moreover, for T0 > 0, their norm is uniformly bounded

with respect to T in ]0, T0].
On an other hand, for T > 0 and s > 0, the projector E is well-defined from the space

Pev
s+⌈b1⌉,T

to the space Pev
s,T . Furthermore it is uniformly bounded with respect to s and T . Recall

that b1 refers to the real number of Proposition 6.16.

Finally, for T > 0 and s > 0, the projectors Ẽi
in

res and Ein
res defined as (6.9) and (6.10) on the

space of trigonometric polynomials each admit a unique extension from the space Ps,T to itself.
Moreover, for T0 > 0, their norm is uniformly bounded with respect to T in ]0, T0].

Proof. First the oscillating case is investigated. We consider Uosc a trigonometric polynomial
writing

Uosc(z, θ, ψd) =
∑

n∈Zm

∑

ξ∈R

Uosc
n,ξ (z) e

in·θ ei ξ ψd ,

where each sum in ξ is finite, and we denote, for n ∈ Zm,

(6.13) Uosc
n

(z, ψd) :=
∑

ξ

Uosc
n,ξ (z) e

i ξ ψd .

According to the formula (5.9) for the projector E and since the projectors πα are zero for every
noncharacteristic frequency α, we obtain, for n ∈ Zm,

EUosc
n

(z, ψd) =
∑

ξ∈C(n)

π(n·ζ,ξ)U
osc
n,ξ (z) e

i ξ ψd ,

so that, according to Remark 2.7 ensuring that the projectors πα are uniformly bounded,

|EUosc
n (z, ψd)|2 6 C N

∑

ξ∈C(n)

∣∣Uosc
n,ξ (z)

∣∣2 .
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On an other hand, according to (6.13), for n in Zm and ξ in R, we have

Uosc
n,ξ (z) = lim

R→+∞

1

R

∫ R

0
Uosc
n (z, ψd) e

−i ξ ψd dψd,

so that, using Cauchy-Schwarz inequality,

|EUosc
n

(z, ψd)|2 6 C N2 lim
R→+∞

1

R

∫ R

0
|Uosc

n
(z, ψd)|2 dψd.

Then Fatou’s lemma is applied to the sum with respect to n in Zm and the integration with
respect to z′ in ωT to get

∑

n∈Zm

‖EUosc
n

(., xd, ψd)‖2L2(ωT )
6 C N2 lim inf

R→+∞

1

R

∫ R

0

∑

n∈Zm

‖Uosc
n

(., xd, ψd)‖2L2(ωT )
dψd,

thus

‖EU(., xd, ., ψd)‖2L2(ωT×Tm) 6 C N2 sup
ψd>0

‖Uosc(., xd, ., ψd)‖2L2(ωT×Tm) ,

that is to say

‖EU‖E0,T 6
√
C N ‖U‖E0,T .

The projector E thus admits a uniformly bounded unique extension from P0,T to P0,T . The
result for the space Ps,T for s > 1 is obtained by observing that the projector E commutes with

the partial derivatives with respect to z′ and θ. The same argument applies to the projector Ẽi,
which concludes the proof relative to the oscillating part.

Concerning the evanescent part of E, it must be proved that if U ev writing

U ev(z, θ, ψd) =
∑

n∈Zm

U ev
n
(z, ψd) e

in·θ

belongs to Pev
s+⌈b1⌉,T

, then EU ev is in Pev
s,T . By definition of the norm of Es,T and according to

the Parseval’s identity, we obtain

‖EU ev‖2Es,T = sup
xd>0,ψd>0

∑

n∈Zm\{0}

s∑

l=0

(1 + |n|2)s−l
∥∥∥eψdA(n·ζ)Πe

CN
(n · ζ)U ev

n (., 0)
∥∥∥
2

Hl
+(ωT )

6 sup
xd>0,ψd>0

∑

n∈Zm\{0}

s∑

l=0

(1 + |n|2)s−l c21 |n · ζ|2 b1 ‖U ev
n
(., 0)‖2Hl

+(ωT )
,

according to estimate (6.12b) of Proposition 6.16 and recalling the notations of this result. It
leads to the following estimate

‖EU ev‖Es,T 6 C ‖U ev‖Es+⌈b1⌉,T
.

We get in a similar manner, for xd > 0,

‖EU ev(xd, ψd)‖Hs(ωT×Tm) 6 C ‖U ev(xd, ψd)‖Hs+⌈b1⌉(ωT×Tm) −−−−−→ψd→+∞
0,

therefore the profile EU ev goes to zero in C(R+
xd
,Hs(ωT × Tm)) when ψd goes to infinity. Con-

cerning the exponential decay of each mode of EU ev, the following inequality holds

sup
xd>0,ψd>0

∥∥∥eψdA(n·ζ)Πe
CN

(n · ζ)U ev
n (., xd, 0)

∥∥∥
2

Hs(ωT )

6 sup
xd>0,ψd>0

∥∥∥c1|n · ζ|b1e−c1ψd|n·ζ|−b1 U ev
n
(., xd, 0)

∥∥∥
2

Hs(ωT )
,

and the mode n ∈ Zm of EU ev is therefore exponentially decaying at velocity δn := c1|n · ζ|−b1 ,
which is positive. The profile EU ev thus satisfies the condition of Definition 3.4 of the evanescent
profiles of Pev

s,T , concluding the proof.
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Concerning the projectors Ein
res and Ẽi

in

res, the proof is analogous to the one for the oscillating

part of E and Ẽ. �

Now that the projectors E, Ẽi, Ein
res and Ẽi

in

res are well-defined, it can be proved that the
kernel in Ps,T of the fast operator L(∂θ, ∂ψd) is actually given by the range of the projector E.

Definition 6.18. For s > 0 and T > 0, we denote by Ns,T the range in Ps,T of Ps+⌈b1⌉,T

projected by E. We also denote N osc
s,T := Ns,T ∩ Posc

s,T and N ev
s,T := Ns,T ∩ Pev

s,T .

Lemma 6.19 ([JMR95, Lemma 6.2.3.]). The space Ns,T is the kernel in Ps,T of the operator
L(∂θ, ∂ψd).
Proof. Since Ns,T is equal to the kernel ker I −E in Ps,T , it must be shown that the equality of
kernels ker I −E = kerL(∂θ, ∂ψd) holds in Ps,T . Let U = Uosc + U ev be in kerL(∂θ, ∂ψd). Since
the operator L(∂θ, ∂ψd) keeps stable the decomposition Ps,T = Posc

s,T ⊕ Pev
s,T , each of the profiles

Uosc and U ev are in the kernel of L(∂θ, ∂ψd). Writing U ev in Pev
s,T as

U ev(z, θ, ψd) =
∑

n∈Zm

U ev
n (z, ψd) e

in·θ,

and resolving the differential equations
(
−A(n · ζ) + ∂ψd

)
U ev
n = 0,

for n in Zm, one gets EU ev = U ev. Concerning the oscillating part, the profile Uosc is expanded
in Fourier series with respect to θ as

Uosc(z, θ, ψd) = U∗(z, ψd) +
∑

n∈Zm\{0}

Uosc
n

(z, ψd) e
in·θ.

Performing the integration, for n in Zm,
∫

Tm
L(∂θ, ∂ψd)Uosc(z, θ, ψd) e

−in·θ dθ,

one gets

∂ψd U
∗ = 0,(6.14a)

and
(
i L̃

(
0, (n · ζ, 0)

)
+ ∂ψd

)
Uosc
n

= 0, ∀n ∈ Zm \ {0} .(6.14b)

Thus, for z in ΩT , we have U∗(z, ψd) = U∗(z, 0), that we denote by U∗(z). On an other hand,
since Uosc

n
is a limit of trigonometric polynomials in Cb(R+

ψd
× R+

xd
,Hs

+(ωT )), and according to

Proposition 2.16, every profile Uosc
n may be written as

Uosc
n =

∑

ξ∈C(n)

π(n·ζ,ξ)U
osc
n ,

where we recall that the set C(n) has been introduced in Definition 6.2. For n in Zm \ {0},
equation (6.14b) leads to

∂ψd π(n·ζ,ξ)U
osc
n = i ξ π(n·ζ,ξ)U

osc
n , ξ ∈ C(n).

Thus, for n in Zm \ {0},
Uosc
n

(z, ψd) =
∑

ξ∈C(n)

π(n·ζ,ξ)U
osc
n

(z, 0) ei ξ ψd ,

so that Uosc = EUosc.
Conversely, if U ev = EU ev, it immediately leads to L(∂θ, ∂ψd)U ev = 0. On an other hand,

supposingUosc = EUosc, we consider a sequence (Uosc
ν )ν of trigonometric polynomials converging

in Es+⌈b1⌉,T towards Uosc. By continuity of the projector E, the sequence of trigonometric
polynomials (EUosc

ν )ν converges in Es,T towards Uosc. But one can check immediately that
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these trigonometric polynomials satisfy L(∂θ, ∂ψd)EUosc
ν = 0, then passing to the limit yields

to L(∂θ, ∂ψd)Uosc = 0. �

Remark 6.20. In the proof above, it has been proven in particular that if U = Uosc+U ev belongs
to N osc

s,T ⊕N ev
s,T , then the profile Uosc writes

(6.15) Uosc(z, θ, ψd) = U∗(z) +
∑

n∈Zm\{0}

∑

ξ∈C(n)

Uosc
n,ξ (z) e

in·θ ei ξ ψd ,

with, for n in Zm \ {0} and ξ in C(n), π(n·ζ,ξ)Uosc
n,ξ = Uosc

n,ξ , and the profile U ev writes

(6.16) U ev(z, θ, ψd) =
∑

n∈Zm\{0}

eψdA(n·ζ)Πe
CN

(n · ζ)U ev
n
(z, 0) ei n·θ.

The previous remark leads to the following result, which links the norm Cb(R+
ψd
, L2(ωT ×Tm))

of a profile of N osc
0,T and its incoming scalar product (3.12) with itself. This result will be used

in the following to deduce from a priori estimates on the scalar product a priori estimates on
the norm Posc

s,T . It is analogous to [JMR95, Lemma 6.2.4], in a weaker form (because of a lack of

symmetry in our context).

Lemma 6.21. There exists a constant C > 0 such that for every profile Uosc of N osc
0,T , we have,

for xd > 0,

C ‖Uosc‖2Cb(R+
ψd
,L2(ωT×Tm))

(xd) 6 〈Uosc |Uosc〉in (xd) 6 ‖Uosc‖2Cb(R+
ψd
,L2(ωT×Tm))

(xd).

Proof. The second inequality is obvious by definition of the scalar product 〈. | .〉in, since we have

〈Uosc |Uosc〉in (xd) = lim
R→+∞

1

R

∫ R

0
‖Uosc‖2L2(ωT×Tm) (xd, ψd) dψd 6 sup

ψd>0
‖Uosc‖2L2(ωT×Tm) (xd, ψd).

On the other hand, according to Remark 6.20, if Uosc belongs to N osc
0,T , then the profile writes

Uosc(z, θ, ψd) = U∗(z) +
∑

n∈Zm\{0}

∑

ξ∈C(n)

Uosc
n,ξ (z) e

in·θ ei ξ ψd ,

where, for n in Zm \ {0} and ξ in C(n), each amplitude satisfies Uosc
n,ξ = π(n·ζ,ξ)U

osc
n,ξ . The

Parseval’s identity then gives

‖Uosc‖2L2(ωT×Tm) (xd, ψd) = ‖U∗‖2L2(ωT )
+

∑

n∈Zm\{0}

∥∥∥∥∥∥

∑

ξ∈C(n)

Uosc
n,ξ (z) e

i ξ ψd

∥∥∥∥∥∥

2

L2(ωT )

.

Therefore, since for all n in Zm \ {0}, the set C(n) is of cardinality at most N , we have

‖Uosc‖2L2(ωT×Tm) (xd, ψd) 6 ‖U∗‖2L2(ωT )
+N

∑

n∈Zm\{0}

∑

ξ∈C(n)

∥∥Uosc
n,ξ

∥∥2
L2(ωT )

(xd)

6 C 〈Uosc |Uosc〉in (xd),
according to formula (3.15). The first inequality of Lemma 6.21 follows finally by passing to the
supremum in ψd > 0. �

6.3. Reducing the system. It is shown in this part that in every solution of the system (5.10)
there occur only incoming modes (in particular every solution is of zero mean), and every solution
is supported in a finite interval in xd. We also show that the system (5.10) decouples according
to the oscillating and the evanescent part, and even, for the oscillating part, according to the
set F in

res of resonant modes and each non resonant mode. More precisely, the following result is
proved. Recall that s0 is given by s0 = h+ (d+m)/2 where h is an integer greater or equal to
(3− a1)/2 occurring in estimate (6.3), with a1 the real number of Assumption 6.
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Proposition 6.22. Consider T > 0, and s > s0. Every solution U in Ps,T of the system (5.10)
is such that its oscillating part Uosc features only incoming modes. Furthermore, the system
(5.10) on U = Uosc + U ev in Ps,T is equivalent to the following decoupled systems, the first one
involving the resonant incoming modes,

Ein
res U

osc
res = Uosc

res(6.17a)

Ẽi
in

res

[
L̃(0, ∂z)βTU

osc
res +

m∑

j=1

L̃1(βTU
osc
res , ζj) ∂θjβTU

osc
res

]
= 0(6.17b)

(
Uosc
res

)
|xd=0,ψd=0

= Hosc
res(6.17c)

(
Uosc
res

)
|t60

= 0,(6.17d)

then the system verified by each non resonant incoming mode, for (n0, ξ0) in
(
BZm × Cin(n0)

)
\

F in
res,

X̃(n0·ζ,ξ0)Sn0,ξ0 + Γ
(
(n0, ξ0), (n0, ξ0)

)
Sn0,ξ0∂ΘSn0,ξ0 = 0(6.18a)
(
Sn0,ξ0

)
|xd=0

= hn0,ξ0(6.18b)
(
Sn0,ξ0

)
|t60

= 0,(6.18c)

and finally the system for the evanescent part U ev,

EU ev = U ev(6.19a)

U ev
|xd=0,ψd=0 = Hev,(6.19b)

where, if the solution Uosc (occurring only outgoing modes and being polarized) writes

Uosc(z, θ, ψd) =
∑

n0∈BZm

ξ0∈Cin(n0)

∑

λ∈Z∗

σλn0,λξ0(z) e
i λn0·θ ei λξ0 ψd E(n0, ξ0),

then the resonant part Uosc
res is given by

Uosc
res (z, θ, ψd) =

∑

(n0,ξ0)∈F in
res

∑

λ∈Z∗

σλn0,λξ0(z) e
i λn0·θ ei λξ0 ψd E(n0, ξ0),

and the scalar component Sn0,ξ0 of ΩT × T to C for each non resonant direction (n0, ξ0) in(
BZm × Cin(n0)

)
\ F in

res, is given by

Sn0,ξ0(z,Θ) :=
∑

λ∈Z∗

σλ,n0,ξ0(z) e
iλΘ,

where the function βT of xd, of class C∞, equals 1 on [0,V∗T ] and 0 on [2V∗T,+∞) (where V∗

has been defined in Lemma 2.14), and where Hosc
res , hn0,ξ0 for (n0, ξ0) in

(
BZm × Cin(n0)

)
\ F in

res,
and Hev are defined from G by the formulas

Hosc
res (z

′, θ) :=
∑

(n0,ξ0)∈F in
res

∑

λ∈Z∗

Π
j(λn0,λξ0)
− (λn0 · ζ)

(
B|E−(λn0·ζ)

)−1
Gλn0(z

′) eiλn0·θ,(6.20a)

hn0,ξ0(z
′,Θ) :=

∑

λ∈Z∗

〈
Π
j(λn0,λξ0)
− (λn0 · ζ)

(
B|E−(λn0·ζ)

)−1
Gλn0(z

′)
∣∣∣E(n0, ξ0)

〉
CN

eiλΘ,(6.20b)

Hev(z′, θ) :=
∑

n∈Zm\{0}

Πe−(n · ζ)
(
B|E−(n·ζ)

)−1
Gn(z

′) ein·θ,(6.20c)

where, for n in Zm \ {0} and ξ in Cin(n), j(n, ξ) is the index such that ξ = ξj(n,ξ)(n · ζ). Recall

that amplitudes Gn of the function G have been defined by (2.3), and that projectors Ein
res and

Ẽi
in

res have been introduced in Definition 6.13.
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To prove the Theorem 4.1, it is therefore equivalent to prove that there exists solutions Uosc
res ,

Sn0,ξ0 and U ev to the systems (6.17), (6.18) and (6.19).
In this part dedicated to the proof of Proposition 6.22, we consider a solution U of (5.10)

sufficiently regular, and we start by showing that its mean value U∗ is zero, by extracting from
(5.10) a homogeneous linear hyperbolic system satisfied by it. To show that there is no outgoing
mode, the scalar product (3.13) for outgoing modes is used, which is defined for profiles of
compact support with respect to xd. Thus we must prove before that the considered solution
U is of compact support with respect to xd. Then the outgoing modes are isolated in equation
(5.10), deducing that they are zero. First the left term of equation (5.10b) is rewritten.

6.3.1. Rewriting the evolution equation. According to remark 6.20, since U satisfies the polar-
ization condition (5.10a), and according to Remark 6.20, the profile writes U = Uosc + U ev,
where

(6.21a) Uosc(z, θ, ψd) = U∗(z) +
∑

n∈Zm\{0}

∑

ξ∈C(n)

Uosc
n,ξ (z) e

in·θ ei ξ ψd ,

and

(6.21b) U ev(z, θ, ψd) =
∑

n∈Zm\{0}

eψdA(n·ζ)Πe
CN

(n · ζ)U ev
n
(z, 0) ein·θ ,

with π(n·ζ,ξ)U
osc
n,ξ = Uosc

n,ξ for all n, ξ. Then Uosc is rewritten to take advantage of collinearities,

using notations of Part 6.1. Let n be in Zm \ {0}, and n0 in BZm , λ in Z∗ such that n = λn0,
and let also ξ be in C(n). Since the set C is homogeneous of degree 1, we have C(n) = λ C(n0),
so there exists ξ0 in C(n0) such that ξ = λ ξ0. By polarization of the profile U , the amplitude
Uosc
n,ξ belongs to the kernel of L

(
0, (n · ζ, ξ)

)
, which is given according to Definition 6.4 by

VectE(n, ξ) = VectE(n0, ξ0). One may thus write

Uosc
n,ξ (z) = σλ,n0,ξ0(z)E(n0, ξ0),

where σλ,n0,ξ0 is a function of ΩT . Since the profile Uosc is assumed to be real, coefficients
σλ,n0,ξ0 satisfy σ−λ,n0,ξ0 = σλ,n0,ξ0 for all λ, n0 and ξ0. In this notation, the profile Uosc writes

Uosc(z, θ, ψd) = U∗(z) +
∑

n0∈BZm

ξ0∈C(n0)

∑

λ∈Z∗

σλ,n0,ξ0(z) e
i λn0·θ ei λξ0 ψd E(n0, ξ0).

Note that according to identity (3.17) and since the vectors E(n0, ξ0) are of norm 1, when the
scalar product is well-defined, the scalar product 〈Uosc |Uosc〉out (t) is given in these notations
by

〈Uosc |Uosc〉out (t) = (2π)m ‖U∗‖2L2(Rd−1×R+) (t) + (2π)m
∑

n0∈BZm

ξ0∈C(n0)

∑

λ∈Z∗

‖σλ,n0,ξ0‖2L2(Rd−1×R+) (t).

Since the projector Ẽi occurring in equation (5.10b) only acts on oscillating profiles, the

oscillating part of the term L̃(0, ∂z)U +
∑m

j=1 L̃1(U, ζj) ∂θjU must be determined. On one hand,

the oscillating part of L̃(0, ∂z)U is given by

L̃(0, ∂z)U
osc = L̃(0, ∂z)U

∗ +
∑

n0∈BZm

ξ0∈C(n0)

∑

λ∈Z∗

L̃(0, ∂z)σλ,n0,ξ0 e
i λn0·θ ei λξ0 ψd E(n0, ξ0).

These two terms correspond to the terms (6.23a) and (6.23b) of equation (6.23) below.
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On the other hand, according to Lemma 3.6 concerning the algebra properties of the space of

profiles Ps,T , the oscillating part of the quadratic term
∑m

j=1 L̃1(U, ζj) ∂θjU is given by

m∑

j=1

L̃1(U
osc, ζj) ∂θjU

osc =
∑

n0∈BZm

ξ0∈C(n0)

∑

λ∈Z∗

L̃1(U
∗, i λn0 · ζ)E(n0, ξ0)σλ,n0,ξ0 e

i λn0·θ ei λξ0 ψd(6.22)

+
∑

n1,n2∈BZm

∑

ξ1∈C(n1)
ξ2∈C(n2)

∑

λ1,λ2∈Z∗

L̃1(E(n1, ξ1), i λ2n2 · ζ)E(n2, ξ2)

σλ1,n1,ξ1 σλ2,n2,ξ2 e
i (λ1n1+λ2n2)·θ ei (λ1ξ1+λ2ξ2)ψd .

The first term of the right hand side of the equation (6.22) corresponds to the term (6.23c) of
equation (6.23) below. In the second term of the right hand side of the equation (6.22), since the

projectors π̃α appear in the projector Ẽi, only the frequencies
(
(λ1n1 + λ2n2) · ζ, λ1ξ1 + λ2ξ2

)

that are characteristic will be preserved.

i) If n1 = n2, ξ1 = ξ2 and λ1 = −λ2, the created frequency is zero, so it is characteristic. This
non oscillating term corresponds to the term (6.23d) of equation (6.23) below.

ii) If n1 = n2, ξ1 = ξ2 and λ1 + λ2 6= 0, then the nonzero frequency obtained is given by
(λ1 + λ2) (n1 · ζ, ξ1) which is characteristic. This is called self-interaction of the frequency
(n1 · ζ, ξ1) with itself, and constitutes the term (6.23e) of equation (6.23).

iii) Finally, in the remaining cases, if the nonzero frequency obtained λ1 (n1 ·ζ, ξ1)+λ2 (n2 ·ζ, ξ2)
is characteristic, then it corresponds to a resonance in the sense of Definition 6.8. Namely
there exist λ0 in Z∗, n0 in BZm and ξ0 in C(n0) such that

λ1 (n1 · ζ, ξ1) + λ2 (n2 · ζ, ξ2) = λ0 (n0 · ζ, ξ0),
thus there exists ℓ in Z∗ such that (λ1, λ2, λ0) = ℓ (λp, λq, λr) where the 7-tuple (λp, λq, λr,
np,nq, ξp, ξq) belongs to one of the sets R1(n0, ξ0) or R2(n0, ξ0) These resonances constitute
the terms (6.23f) and (6.23g) of equation (6.23).

According to the expression of the projector Ẽi, the term Ẽi
[
L̃(0, ∂z)U+

∑m
j=1 L̃1(U, ζj) ∂θjU

]

is thus given by

Ẽi
[
L̃(0, ∂z)U +

m∑

j=1

L̃1(U, ζj) ∂θjU
]
= L̃(0, ∂z)U

∗(6.23a)

+
∑

n0∈BZm

ξ0∈C(n0)

∑

λ∈Z∗

π̃(n0·ζ,ξ0) L̃(0, ∂z)E(λn0, λξ0)σλ,n0,ξ0 e
i λn0·θ ei λξ0 ψd ,(6.23b)

constituting the transport terms of the mean value and the oscillating part, then the terms of
resonances with the mean value as well as the resonances creating a zero frequency

+
∑

n0∈BZm

ξ0∈C(n0)

∑

λ∈Z∗

π̃(n0·ζ,ξ0) L̃1(U
∗, i λn0 · ζ)E(λn0, λξ0)σλ,n0,ξ0 e

i λn0·θ ei λξ0 ψd(6.23c)

+
∑

n0∈BZm

ξ0∈C(n0)

∑

λ∈Z∗

L̃1(E(−λn0,−λξ0), i λn0 · ζ)E(λn0, λξ0)σλ,n0,ξ0 σ−λ,n0,ξ0 ,(6.23d)

and finally the self-interaction term

+
∑

n0∈BZm

ξ0∈C(n0)

∑

λ∈Z∗

∑

λ1,λ2∈Z∗

λ1+λ2=λ

π̃(n0·ζ,ξ0) L̃1(E(λ1n0, λ1ξ0), i λ2 n0 · ζ)(6.23e)

E(λ2n0, λ2ξ0)σλ1,n0,ξ0 σλ2,n0,ξ0 e
i λn0·θ ei λξ0 ψd ,



MULTIPHASE GEOMETRIC OPTICS FOR QUASILINEAR BOUNDARY VALUE PROBLEMS 41

and the resonances of types 1 and 2 terms

+
∑

n0∈BZm

ξ0∈C(n0)

∑

(λp,λq,λr,np,nq,
ξp,ξq)∈R1(n0,ξ0)

∑

ℓ∈Z∗

π̃(n0·ζ,ξ0) L̃1(E(ℓλpnp, ℓλpξp), iℓλqnq · ζ)(6.23f)

E(ℓλqnq, ℓλqξq)σℓλp,np,ξp σℓλq,nq,ξq e
i ℓ λr n0·θ ei ℓ λrξ0 ψd

+
∑

n0∈BZm

ξ0∈C(n0)

∑

(λp,λq,λr,np,nq,
ξp,ξq)∈R2(n0,ξ0)

∑

ℓ∈Z∗

π̃(n0·ζ,ξ0) L̃1(E(ℓλpnp, ℓλpξp), iℓλqnq · ζ)(6.23g)

E(ℓλqnq, ℓλqξq)σℓλp,np,ξp σℓλq,nq,ξq e
i ℓ λr n0·θ ei ℓ λrξ0 ψd .

The homogeneity of degree zero of the projectors π̃α has been used here. In the following,
Definition 6.6 of coefficients Γ will be used to rewrite the different terms of (6.23). In equation
(6.23), the vectors E(n, ξ) being homogeneous of degree 0, coefficients λ, λ1, λ2, λp, λq and ℓ may
or may not appear. They are indicated here because they will be useful in a computation below.
They may however be removed without any mention being made.

6.3.2. The mean value is zero. We prove now that the mean value U∗ is zero, by extracting the

system verified by it. According to equation (6.23), the mean value of the term Ẽi
(
L̃(0, ∂z)U +∑m

j=1 L̃1(U, ζj) ∂θjU
)
is a priori given by

(6.24) L̃(0, ∂z)U
∗ +

∑

n0∈BZm

ξ0∈C(n0)

∑

λ∈Z∗

L̃1(E(n0, ξ0), iλn0 · ζ)E(n0, ξ0)σλ,n0,ξ0 σ−λ,n0,ξ0 .

The change of variables λ = −λ then shows that the term (6.24) is actually zero. Indeed one
can compute

∑

n0∈BZm

ξ0∈C(n0)

∑

λ∈Z∗

L̃1(E(n0, ξ0), iλn0 · ζ)E(n0, ξ0)σλ,n0,ξ0 σ−λ,n0,ξ0

=
∑

n0∈BZm

ξ0∈C(n0)

∑

λ∈Z∗

L̃1(E(n0, ξ0),−iλn0 · ζ)E(n0, ξ0)σ−λ,n0,ξ0 σλ,n0,ξ0

=−
∑

n0∈BZm

ξ0∈C(n0)

∑

λ∈Z∗

L̃1(E(n0, ξ0), iλn0 · ζ)E(n0, ξ0)σλ,n0,ξ0 σ−λ,n0,ξ0 = 0.

The second term of (6.24) being zero, the non oscillating terms of (6.23) are given by the term

L̃(0, ∂z)U
∗ only. Thus, using the system (5.10), we see that the mean value U∗ satisfies the

decoupled system 



L̃(0, ∂z)U
∗ = 0,

B U∗
|xd=0 = 0,

U∗
|t60 = 0

since G is of zero mean value. The mean value U∗ therefore satisfies a boundary value problem

verifying the uniform Kreiss-Lopatinskii condition with a strictly hyperbolic operator L̃(0, ∂z).
According to [Kre70], the problem is thus well-posed so U∗ is zero on ΩT .

6.3.3. Finite velocity propagation. It can be proved that if U is a smooth enough solution of
(5.10), then it is supported in a finite interval in xd. More precisely the following result is
verified.
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Lemma 6.23. Consider T > 0 and s > s0, and let U in Ps,T be a solution of the system (5.10).
Then its oscillating part Uosc is zero outside the dihedron {(t, y, xd) ∈ ΩT | 0 6 xd 6 V∗t} (see
Figure 6).

The proof of this lemma uses techniques developed below, so it is postponed, in order to focus
on the derivation of a priori estimates. We use the fact that U travels at finite velocity in the
normal direction, according to Lemma 2.14.

According to this result, in the system (5.10) and the associated linearized systems, the profile
Uosc can be replaced by βT U

osc, where βT is the function of C∞
0 (R+

xd
) introduced in Proposition

6.22, equating 1 on [0,V∗T ] and 0 on [2V∗T,+∞). In the following, the scalar product (3.13)
suited for outgoing profiles can be used, since it is well-defined for profile of compact support
with respect to xd.

6.3.4. There is no outgoing mode. The aim is now to determine the equations satisfied by the
outgoing modes. According to equation (6.23), since the mean value U∗ is zero, the following
equality holds

∑

n0∈BZm

ξ0∈Cout(n0)

∑

λ∈Z∗

X̃(n0·ζ,ξ0) σλ,n0,ξ0 e
i λn0·θ ei λξ0 ψd π̃(n0·ζ,ξ0)E(n0, ξ0)(6.25a)

+
∑

n0∈BZm

ξ0∈Cout(n0)

∑

λ∈Z∗

∑

λ1,λ2∈Z∗

λ1+λ2=λ

i σλ1,n0,ξ0 σλ2,n0,ξ0 Γ
(
λ1(n0, ξ0), λ2(n0, ξ0)

)
(6.25b)

ei λn0·θ ei λξ0 ψd π̃(n0·ζ,ξ0)E(n0, ξ0)

+
∑

n0∈BZm

ξ0∈Cout(n0)

∑

(λp,λq,λr,np,nq,ξp,ξq)
∈R1(n0,ξ0)∪R2(n0,ξ0)

∑

ℓ∈Z∗

i σℓλp,np,ξp σℓλq,nq,ξq Γ
(
ℓλp(np, ξp), ℓλq(nq, ξq)

)
(6.25c)

ei ℓ λqn0·θ ei ℓ λrξ0 ψd π̃(n0·ζ,ξ0)E(n0, ξ0) = 0.

The Lax Lemma 2.12 has been used here to rewrite the term (6.23b) as the term (6.25a), using
that, by definition, we have E(n0, ξ0) = π(n0·ζ,ξ0)E(n0, ξ0), and Definition 6.6 of coefficients Γ
has also been used to rewrite the terms (6.23e) and (6.23g) as (6.25b) and (6.25c). Note that
according to Assumption 7, all modes Uosc

n,ξ involved in the equation (6.25) are outgoing modes,
and also that the equations are now scalar equations.

The equation (6.25) is coupled to the initial condition

(6.26)
(
Uosc
n,ξ

)
|t60

= 0, n ∈ Zm \ {0} , ξ ∈ Cout(n).
We thus seek to solve the problem (6.25), (6.26). We will prove a priori estimates for this
purpose, using the scalar product (3.13). The decomposition (6.6) of Definition 6.11 will be
used, and the set Fout

res of outgoing frequencies involved in resonances will be treated separately,
which is finite according to Assumption 8.

Non resonant modes. First the modes that are not involved in resonances are investigated,
namely we consider n0 in BZm and ξ0 in Cout(n0) such that (n0, ξ0) does not belong to Fout

res . The
sets R1(n0, ξ0) and R2(n0, ξ0) are therefore empty, so, according to equation (6.25), we obtain

∑

λ∈Z∗

X̃(n0·ζ,ξ0) σλ,n0,ξ0 e
i λn0·θ ei λξ0 ψd π̃(n0·ζ,ξ0)E(n0, ξ0)(6.27a)

+
∑

λ∈Z∗

∑

λ1,λ2∈Z∗

λ1+λ2=λ

i σλ1,n0,ξ0 σλ2,n0,ξ0 λ2 Γ
(
(n0, ξ0), (n0, ξ0)

)
(6.27b)

ei λn0·θ ei λξ0 ψd π̃(n0·ζ,ξ0)E(n0, ξ0) = 0.

Here we have used identity (6.2) to get the term (6.27b). Note that if, for z in ΩT and Θ in T,
we define

Sn0,ξ0(z,Θ) :=
∑

λ∈Z∗

σλ,n0,ξ0(z) e
iλΘ,
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then one can check that the real valued function Sn0,ξ0 satisfies the following scalar Burgers
equation

X̃(n0·ζ,ξ0)Sn0,ξ0 + Γ
(
(n0, ξ0), (n0, ξ0)

)
Sn0,ξ0∂ΘSn0,ξ0 = 0,

that could be solved classically. Indeed, recall that X̃(n0·ζ,ξ0), defined in Lemma 2.12, is given
by

X̃(n0·ζ,ξ0) =
−1

∂ξτk(n0,ξ0)(n0 · η, ξ0)
∂t +

1

∂ξτk(n0,ξ0)(n0 · η, ξ0)
∇ητk(η0,ξ0)(n0 · η, ξ0) · ∇y + ∂xd .

We choose however to explain on this easy example the techniques that shall be applied in the
following to equations that go beyond the scope of the mere Burgers equations.

We take the scalar product 〈. | .〉out of equality (6.27) with the quantity

∑

λ∈Z∗

σλ,n0,ξ0 e
i λn0·θ ei λξ0 ψd

π̃(n0·ζ,ξ0)E(n0, ξ0)∣∣π̃(n0·ζ,ξ0)E(n0, ξ0)
∣∣2 ,

to obtain
∑

λ∈Z∗

〈
X̃(n0·ζ,ξ0) σλ,n0,ξ0

∣∣∣ σλ,n0,ξ0

〉
L2(Rd−1×R+)

(t)(6.28a)

+
∑

λ∈Z∗

∑

λ1,λ2∈Z∗

λ1+λ2=λ

i λ2 Γ
(
(n0, ξ0), (n0, ξ0)

)
〈σλ1,n0,ξ0 σλ2,n0,ξ0 | σλ,n0,ξ0〉L2(Rd−1×R+) (t) = 0.(6.28b)

Note that the scalar product is well defined since Uosc is of compact support with respect to xd.
An integration by parts shows that the transport term (6.28a) satisfies

2Re (6.28a) =
∑

λ∈Z∗

−1

∂ξτk(n0,ξ0)(n0 · η, ξ0)
∂t ‖σλ,n0,ξ0‖2L2(Rd−1×R+) (t)

−
∑

λ∈Z∗

‖σλ,n0,ξ0‖2L2(Rd−1) (t, 0).

We have denoted by k(n0, ξ0) the integer between 1 and N such that if (τ, η, ξ0) := (n0 · ζ, ξ0),
then τ = τk(n0,ξ0)(η, ξ0). It leads to the following equality

2Re (6.28a) =
−1

∂ξτk(n0,ξ0)(n0 · η, ξ0)
d

dt

∑

λ∈Z∗

‖σλ,n0,ξ0‖2L2(Rd−1×R+) (t)(6.29)

−
∑

λ∈Z∗

‖σλ,n0,ξ0‖2L2(Rd−1) (t, 0).

Then the Burgers term (6.28b) is studied, and more precisely the following sums, that is S
given by

S :=
∑

λ∈Z∗

∑

λ1,λ2∈Z∗

λ1+λ2=λ

i λ 〈σλ1,n0,ξ0 σλ2,n0,ξ0 | σλ,n0,ξ0〉L2(Rd−1×R+) (t, xd).

and, for j = 1, 2,

Sj :=
∑

λ∈Z∗

∑

λ1,λ2∈Z∗

λ1+λ2=λ

i λj 〈σλ1,n0,ξ0 σλ2,n0,ξ0 |σλ,n0,ξ0〉L2(Rd−1×R+) (t, xd),

the term (6.28b) being given by Γ
(
(n0, ξ0), (n0, ξ0)

)
S2. First, one can verify that S = S1 + S2.

But, on one hand, we have immediately S1 = S2. On the other hand, the following equality
holds:

S =
∑

λ∈Z∗

∑

λ1,λ2∈Z∗

λ1+λ2=λ

i λ 〈σλ1,n0,ξ0 σλ,n0,ξ0 | σλ2,n0,ξ0〉L2(Rd−1×R+) (t, xd)
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then, with the consecutive changes of variables λ2 = λ1 + λ2 and λ1 = −λ1,

S =
∑

λ∈Z∗

∑

λ1,λ2∈Z∗

λ2−λ1=λ

i λ2 〈σλ1,n0,ξ0 σλ2,n0,ξ0 | σλ,n0,ξ0〉L2(Rd−1×R+) (t, xd)

=
∑

λ∈Z∗

∑

λ1,λ2∈Z∗

λ2+λ1=λ

i λ2 〈σ−λ1,n0,ξ0 σλ2,n0,ξ0 | σλ,n0,ξ0〉L2(Rd−1×R+) (t, xd)

finally, since we have σ−λ1,n0,ξ0 = σλ1,n0,ξ0 (the profile Uosc being real), one gets

S =
∑

λ∈Z∗

∑

λ1,λ2∈Z∗

λ2+λ1=λ

i λ2 〈σλ1,n0,ξ0 σλ2,n0,ξ0 | σλ,n0,ξ0〉L2(Rd−1×R+) (t, xd)

= −S2.

It follows from S = 2S2 that S2 = 0, so the term (6.28b) is zero. With equalities (6.28) and
(6.29), we thus obtain

d

dt

∑

λ∈Z∗

‖σλ,n0,ξ0‖2L2(Rd−1×R+) (t) + ∂ξτk(n0,ξ0)(n0 · η, ξ0)
∑

λ∈Z∗

‖σλ,n0,ξ0‖2L2(Rd−1) (t, 0) = 0,

and therefore, with the initial condition (6.26), for t > 0, we get

∑

λ∈Z∗

‖σλ,n0,ξ0‖2L2(Rd−1×R+) (t) + ∂ξτk(n0,ξ0)(n0 · η, ξ0)
∫ t

0

∑

λ∈Z∗

‖σλ,n0,ξ0‖2L2(Rd−1) (ρ, 0) dρ = 0.

Since the quantity ∂ξτk(n0,ξ0)(n0 · η, ξ0) is positive (the frequency (n0 · ζ, ξ0) being outgoing),
we deduce that σλ,n0,ξ0 is zero for all λ in Z∗, and Uosc

λn0,λξ0
is therefore zero for n0 in BZm , ξ0 in

Cout(n0) such that R2(n0, ξ0) and R2(n0, ξ0) are empty, and λ in Z∗.
Resonant modes. Outgoing modes involved in resonances are now investigated, namely the

couples (n0, ξ0) of the set Fout
res , that are coupled through the equation (6.25), because of the

resonances, and therefore must be treated all together. From equation (6.25) is deduced the
equation for the resonant modes, occurring, in addition to a transport and a Burgers terms, a
resonant one. There holds

∑

(n0,ξ0)∈Fout
res

∑

λ∈Z∗

X̃(n0·ζ,ξ0) σλ,n0,ξ0 e
i λn0·θ ei λξ0 ψd π̃(n0·ζ,ξ0)E(n0, ξ0)(6.30a)

+
∑

(n0,ξ0)∈Fout
res

∑

λ∈Z∗

∑

λ1,λ2∈Z∗

λ1+λ2=λ

i λ2 σλ1,n0,ξ0 σλ2,n0,ξ0 Γ
(
(n0, ξ0), (n0, ξ0)

)
(6.30b)

ei λn0·θ ei λξ0 ψd π̃(n0·ζ,ξ0)E(n0, ξ0)

+
∑

(n0,ξ0)∈Fout
res

∑

(λp,λq,λr,np,nq,ξp,ξq)
∈R1(n0,ξ0)∪R2(n0,ξ0)

∑

ℓ∈Z∗

i ℓ σℓλp,np,ξp σℓλq,nq,ξq Γ
(
λp(np, ξp), λq(nq, ξq)

)
(6.30c)

ei ℓ λrn0·θ ei ℓ λrξ0 ψd π̃(n0·ζ,ξ0)E(n0, ξ0) = 0.

The identities (6.1) and (6.2) have been used here. Two profiles constructed from the resonant
modes are defined here, that will be used in the following

Uosc
Rout(z, θ, ψd) :=

∑

(n0,ξ0)∈Fout
res

∑

λ∈Z∗

σλ,n0,ξ0(z) e
i λn0·θ ei λξ0 ψd E(n0, ξ0),

Ũosc
Rout(z, θ, ψd) :=

∑

(n0,ξ0)∈Fout
res

∑

λ∈Z∗

σλ,n0,ξ0(z) e
i λn0·θ ei λξ0 ψd π̃(n0·ζ,ξ0)E(n0, ξ0).
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Taking the scalar product 〈. | .〉out of equality (6.30) with the profile Ũosc
Rout , one gets

∑

(n0,ξ0)∈Fout
res

∑

λ∈Z∗

∣∣π̃(n0·ζ,ξ0)E(n0, ξ0)
∣∣2
〈
X̃(n0·ζ,ξ0) σλ,n0,ξ0

∣∣∣σλ,n0,ξ0

〉
L2(Rd−1×R+)

(t)(6.31a)

+
∑

(n0,ξ0)∈Fout
res

∑

λ∈Z∗

∑

λ1,λ2∈Z∗

λ1+λ2=λ

i λ2 Γ
(
(n0, ξ0), (n0, ξ0)

) ∣∣π̃(n0·ζ,ξ0)E(n0, ξ0)
∣∣2(6.31b)

〈σλ1,n0,ξ0 σλ2,n0,ξ0 |σλ,n0,ξ0〉L2(Rd−1×R+) (t)

+
∑

(n0,ξ0)∈Fout
res

∑

(λp,λq,λr ,np,nq,ξp,ξq)
∈R1(n0,ξ0)∪R2(n0,ξ0)

∑

ℓ∈Z∗

i ℓΓ
(
λp(np, ξp), λq(nq, ξq)

) ∣∣π̃(n0·ζ,ξ0)E(n0, ξ0)
∣∣2(6.31c)

〈
σℓλp,np,ξp σℓλq ,nq,ξq

∣∣ σℓλr,n0,ξ0

〉
L2(Rd−1×R+)

(t) = 0.

The first two terms are treated in the same way as for the non resonant modes (see above), so
we obtain

2Re (6.31a) =−
∑

(n0,ξ0)∈Fout
res

∣∣π̃(n0·ζ,ξ0)E(n0, ξ0)
∣∣2

∂ξτk(n0,ξ0)(n0 · η, ξ0)
d

dt

∑

λ∈Z∗

‖σλ,n0,ξ0‖2L2(Rd−1×R+) (t)(6.32)

−
∑

(n0,ξ0)∈Fout
res

∑

λ∈Z∗

‖σλ,n0,ξ0‖2L2(Rd−1) (t, 0)

6−C
d

dt

〈
Ũosc
Rout

∣∣∣ Ũosc
Rout

〉
out

(t),

with C > 0, using that Fout
res is finite and that the group velocity ∂ξτk(n0,ξ0)(n0 · η, ξ0) is pos-

itive. On an other hand, with the same techniques than for the non resonant modes, one
gets (6.31b) = 0. Finally the resonance term (6.31c) is investigated. Since the sets Fout

res and⋃
(n0,ξ0)∈Fout

res

(
R1(n0, ξ0) ∪R2(n0, ξ0)

)
are finite, the following bound holds

∣∣Γ
(
λp(np, ξp), λq(nq, ξq)

)∣∣ ∣∣π̃(n0·ζ,ξ0)E(n0, ξ0)
∣∣2 6 C,

where the constant C > 0 is independent of np,nq,nr, ξp, ξq and ξr. Thus a term of the form
〈f ∗ g | g〉 is obtained in (6.31c), which is estimated using Cauchy-Schwarz and Young inequali-
ties, and the injection of L2(Tm) into L1(Tm), which gives the following estimate on the term
(6.31c):

(6.33) |2Re (6.31c)| 6 C ‖Uosc
Rout‖Es,T

〈
Ũosc
Rout

∣∣∣ Ũosc
Rout

〉
out

(t).

It follows from equations (6.30), (6.32) and (6.33) the differential inequality

d

dt

〈
Ũosc
Rout

∣∣∣ Ũosc
Rout

〉
out

(t) 6 C ‖Uosc
Rout‖Es,T

〈
Ũosc
Rout

∣∣∣ Ũosc
Rout

〉
out

(t)

The initial conditions (6.26) ensure that
(
Ũosc
Rout

)
|t=0

= 0, so, for t > 0, we have

〈
Ũosc
Rout

∣∣∣ Ũosc
Rout

〉
out

(t) =
∑

(n0,ξ0)∈Fout
res

∑

λ∈Z∗

‖σλ,n0,ξ0‖2L2(Rd−1×R+) (t) = 0.

Thus, for all (n0, ξ0) in Fout
res and λ in Z∗, and for all t > 0, the function σλ,n0,ξ0(t, .) is zero,

therefore the same holds for the outgoing amplitude Uosc
λn0,λξ0

, for all (n0, ξ0) in Fout
res and λ in

Z∗.
In conclusion, it has been proven that for every profile U regular enough solution of the system

(5.10), its mean value U∗ as well as each of its outgoing modes Uosc
n,ξ , n ∈ Zm \ {0}, ξ ∈ Cout(n),

are zero.
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6.3.5. Decoupling the system. Because of the algebra property of the space of profiles Ps,T , and
since the projectors E and Ẽi preserve the decomposition Ps,T = Posc

s,T ⊕Pev
s,T , equations (5.10a)

and (5.10b) decoupled according to the oscillating and evanescent parts, and the same holds for
equation (5.10d). The evanescent part therefore satisfies the equation

EU ev = U ev

and the oscillating part the equations

EUosc = Uosc

Ẽi
[
L̃(0, ∂z)U

osc +

m∑

j=1

L̃1(U
osc, ζj) ∂θjU

osc
]
= 0.

The second equation may be rewritten as, using notations for Uosc that have been already
introduced,

∑

n0∈BZm

ξ0∈Cin(n0)

∑

λ∈Z∗

X̃(n0·ζ,ξ0) σλ,n0,ξ0 e
i λn0·θ ei λξ0 ψd π̃(n0·ζ,ξ0)E(n0, ξ0)(6.34a)

+
∑

n0∈BZm

ξ0∈Cin(n0)

∑

λ∈Z∗

∑

λ1,λ2∈Z∗

λ1+λ2=λ

i λ2 σλ1,n0,ξ0 σλ2,n0,ξ0 Γ
(
(n0, ξ0), (n0, ξ0)

)
(6.34b)

ei λn0·θ ei λξ0 ψd π̃(n0·ζ,ξ0)E(n0, ξ0)

+
∑

n0∈BZm

ξ0∈Cin(n0)

∑

(λp,λq ,λr,np,nq,ξp,ξq)
∈R1(n0,ξ0)∪R2(n0,ξ0)

∑

ℓ∈Z∗

i ℓ σℓλp,np,ξp σℓλq,nq,ξq Γ
(
λp(np, ξp), λq(nq, ξq)

)
(6.34c)

ei ℓ λrn0·θ ei ℓ λrξ0 ψd π̃(n0·ζ,ξ0)E(n0, ξ0) = 0.

This equation decouples according to the set F in
res of resonant modes, and each of the non resonant

mode. For each mode (n0, ξ0) in (BZm × Cin(n0)) \ F in
res, which is therefore such that the sets

R1(n0, ξ0) and R2(n0, ξ0) are empty, we define

Sn0,ξ0(z,Θ) :=
∑

λ∈Z∗

σλ,n0,ξ0(z) e
iλΘ.

Then, according to equations (6.34a) and (6.34b), this function satisfies the following scalar
Burgers equation

X̃(n0·ζ,ξ0)Sn0,ξ0 + Γ
(
(n0, ξ0), (n0, ξ0)

)
Sn0,ξ0 ∂ΘSn0,ξ0 = 0.

On an other hand the resonant modes of F in
res satisfy the independent equation

∑

(n0,ξ0)∈F in
res

∑

λ∈Z∗

X̃(n0·ζ,ξ0) σλ,n0,ξ0 e
i λn0·θ ei λξ0 ψd π̃(n0·ζ,ξ0)E(n0, ξ0)

+
∑

(n0,ξ0)∈F in
res

∑

λ∈Z∗

∑

λ1,λ2∈Z∗

λ1+λ2=λ

i λ2 σλ1,n0,ξ0 σλ2,n0,ξ0 Γ
(
(n0, ξ0), (n0, ξ0)

)

ei λn0·θ ei λξ0 ψd π̃(n0·ζ,ξ0)E(n0, ξ0)

+
∑

(n0,ξ0)∈F in
res

∑

(λp,λq ,λr,np,nq,ξp,ξq)
∈R1(n0,ξ0)∪R2(n0,ξ0)

∑

ℓ∈Z∗

i ℓ σℓλp,np,ξp σℓλq,nq,ξq Γ
(
λp(np, ξp), λq(nq, ξq)

)

ei ℓ λrn0·θ ei ℓ λrξ0 ψd π̃(n0·ζ,ξ0)E(n0, ξ0) = 0,

that may be rewritten, with already introduced notations (see Definition 6.13), as

Ẽi
in

res

[
L̃(0, ∂z)U

osc
res +

m∑

j=1

L̃1(U
osc
res , ζj) ∂θjU

osc
res

]
= 0.
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Note that by assumption on the set F in
res, all modes involved in this equation are part of the set

F in
res. Furthermore it is clear that the polarization condition EUosc = Uosc as well as the initial

condition decouple in the same way. Therefore, to conclude the proof of Proposition 6.22, it
must be shown that the boundary condition also decouples in this manner.

6.3.6. Determination of the trace on the boundary. It is possible to determine the traces on the
boundary (Uosc

res )|xd=0,ψd=0, (Sn0,ξ0)xd=0 and U ev
|xd=0,ψd=0 from the boundary condition (5.10c)

using the fact that there are only incoming modes, which will prove the intended decoupling of
the system. According to polarization conditions (6.21a) and (6.21b), and since there are only
incoming frequencies, for n in Zm \ {0}, the boundary condition (5.10c) writes

(6.35) B
[ ∑

ξ∈Cin(n)

π(n·ζ,ξ)U
osc
n,ξ (z

′, 0) + Πe
CN

(n · ζ)U ev
n (z′, 0, 0)

]
= Gn(z

′),

where the amplitudes Gn have been defined with the formula (2.3). For all ξ in Cin(n), the term
π(n·ζ,ξ)U

osc
n,ξ belongs to kerL

(
0, (n ·ζ , ξ)

)
which is included in E−(n ·ζ) according to Proposition

2.16, since the frequency (n · ζ, ξ) is incoming. In the same way, according to the definition of
the projector Πe

CN
(n · ζ), the term Πe

CN
(n · ζ)U ev

n
(z, 0) belongs to the space E−(n · ζ). The

vector on which acts the matrix B in (6.35) therefore belongs to E−(n · ζ), and the matrix B
restricted to this subspace is invertible according to the uniform Kreiss-Lopatinskii condition

3. It then follows by projecting on the spaces Ej−(n · ζ) and Ee−(n · ζ) the following boundary
conditions

π(n·ζ,ξ)U
osc
n,ξ (z

′, 0) = Π
j(n,ξ)
− (n · ζ)

(
B|E−(n·ζ)

)−1
Gn(z

′), ξ ∈ Cin(n),(6.36a)

Πe
CN

(n · ζ)U ev
n (z′, 0, 0) = Πe−(n · ζ)

(
B|E−(n·ζ)

)−1
Gn(z

′),(6.36b)

where, for ξ in Cin(n), j(n, ξ) is the index such that ξ = ξj(n,ξ)(n · ζ). Therefore, according to
(6.36) and the polarization conditions (6.21a) and (6.21b), the profiles Hosc

res and Hev defined by
(6.20) are such that (Uosc

res )|xd=0,ψd=0 = Hosc
res and U ev

|xd=0,ψd=0 = Hev. On an other hand, since,

according to (6.36a), we have, for all (n0, ξ0) in (BZm × Cin(n0)) \ F in
res,

(σλ,n0,ξ0)|zd=0E(n0, ξ0) = Π
j(n,ξ)
− (n · ζ)

(
B|E−(n·ζ)

)−1
Gn,

and since the vectors E(n0, ξ0) are of norm 1, the function hn0,ξ0 defined by the formula (6.20b)
satisfies (Sn0,ξ0)xd=0 = hn0,ξ0 . We finally check that the boundary termsHosc

res , hn0,ξ0 andH
ev are

controlled in Hs(ωT ) by G. On one hand, according to the uniform Kreiss-Lopatinskii condition
3, the inverse matrix (B|E−(n·ζ))

−1 is uniformly bounded, see Remark 2.8. On the other hand,

according to Proposition 2.21, projectors Π
j(n,ξ)
− (n ·ζ) and Πe−(n ·ζ) are uniformly bounded with

respect to n in Zm \{0}. According to formulas (2.3) and (6.20) and the Parseval’s identity, the
sought control in L2(ωT ) is ensured. The control in Hs(ωT × Tm) for all s > 0 follows, using

that the quantities Π
j(n,ξ)
− (n · ζ)

(
B|E−(n·ζ)

)−1
and Πe−(n · ζ)

(
B|E−(n·ζ)

)−1
do not depend on z′

in ωT . Therefore we obtain
(6.37)

‖Hosc
res ‖2Hs(ωT×Tm) +

∑

(n0,ξ0)∈
(BZm×Cin(n0))\F in

res

‖hn0,ξ0‖2Hs(ωT×T) + ‖Hev‖2Hs(ωT×Tm) 6 C ‖G‖2Hs(ω×Tm) ,

where the positive constant C does not depend on T or s. This completes the proof of Proposition
6.22.

6.4. A priori estimate on the linearized system for the oscillating resonant part.

According to Proposition 6.22, the study may be narrowed down to the one of the systems
(6.17), (6.18) and (6.19). This part deals with the first one, and we will prove a priori estimates
on the associated linearized system, which will be used to show the convergence of an iterative
scheme. Recall that s0 is given by s0 = h + (d + m)/2 where h is an integer greater than
(3− a1)/2, occurring in estimate (6.3), whith a1 the real number of Assumption 6.
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Proposition 6.24. Consider s > s0 and let Uosc
res be in Posc

s,T , V
osc
res in N osc

s,T both involving only
incoming resonant modes, and F osc

res in Posc
s,T , satisfying the system

Ein
res U

osc
res = Uosc

res(6.38a)

Ẽi
in

res

[
L̃(0, ∂z)βTU

osc
res +

m∑

j=1

L̃1(βTV
osc
res , ζj) ∂θjβTU

osc
res

]
= Ẽi F osc

res(6.38b)

(
Uosc
res

)
|xd=0,ψd=0

= Hosc
res(6.38c)

(
Uosc
res

)
|t60

= 0,(6.38d)

where Hosc is defined by equation (6.20a). Then the profile Uosc
res satisfies the a priori estimate

(6.39) ‖Uosc
res ‖2Es,T 6 C1 e

C(V )V∗T ‖G‖2Hs(ωT×Tm) + V∗T eC(V )V∗T ‖F osc
res ‖2Es,T ,

where C(V ) := C1

(
1 + ‖V osc

res ‖2Es,T
)
, with C1 > 0 a positive constant depending only on the

operator L(0, ∂z) and of s. Recall that the real number V∗, which bounds the group velocities vα,
has been defined in Lemma 2.14.

Consider from now on an integer s > s0.

6.4.1. Rewriting the linearized oscillating system. In the system (6.38) which is the linearization
of the system (6.17) around V osc

res in Posc
s,T , a source term F osc

res in Posc
s,T has been added, which will

be useful to deduce from the L2 estimate the higher order estimates, as well as in the iterative
schemes used to construct solutions of the linearized system (6.17) and of the system (5.10). To
simplify the equations, the function βT will be omitted in the following.

The analysis conducted in the previous subsection is now reproduced to rewrite the left term
of the equality (6.38b). Since the profile Uosc

res satisfies the polarization condition (6.38a) and
involves only incoming modes, according to Remark 6.20, it writes

(6.40) Uosc
res (z, θ, ψd) =

∑

(n0,ξ0)∈F in
res

∑

λ∈Z∗

Uosc
λn0,λξ0(z) e

iλn0 ·θ eiλξ0 ψd .

with Uosc
λn0,λξ0

= π(λn0·ζ,λξ0) U
osc
λn0,λξ0

for all n0, ξ0, λ. In the same way, since V osc
res is in N osc

s,T with
only incoming resonant modes, we have

(6.41) V osc
res (z, θ, ψd) =

∑

(n0,ξ0)∈F in
res

∑

λ∈Z∗

V osc
λn0,λξ0(z) e

iλn0 ·θ eiλξ0 ψd .

with V osc
λn0,λξ0

= π(λn0·ζ,λξ0) V
osc
λn0,λξ0

for all n0, ξ0, λ. Once again, for (n0, ξ0) in F in
res and λ in Z∗,

since the profiles U and V are polarized, we write

Uosc
λn0,λξ0(z) = σλ,n0,ξ0(z)E(n0, ξ0),

V osc
λn0,λξ0(z) = ωλ,n0,ξ0(z)E(n0, ξ0).

Note that according to identity (3.15), the scalar product 〈Uosc
res |Uosc

res 〉in (xd) is given in this
notation by

〈Uosc
res |Uosc

res 〉in (xd) = (2π)m
∑

(n0,ξ0)∈F in
res

∑

λ∈Z∗

‖σλ,n0,ξ0‖2L2(ωT )
(xd).

Since the projector Ẽi
in

res is applied to the source term F osc
res , one can assume without loss of

generality that the latter writes

F osc
res (z, θ, ψd) =

∑

(n0,ξ0)∈F in
res

∑

λ∈Z∗

Fλ,n0,ξ0(z) e
in·θ eiξ ψd .

We then denote, for (n0, ξ0) in F in
res and λ in Z∗, by fλ,n0,ξ0 the scalar function of ΩT such that

π̃(n0·ζ,ξ0) Fλ,n0,ξ0 = fλ,n0,ξ0 π̃(n0·ζ,ξ0)E(n0, ξ0)
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so that Ẽi
in

res F
osc
res writes

Ẽi
in

res F
osc
res (z, θ, ψd) =

∑

(n0,ξ0)∈F in
res

∑

λ∈Z∗

fλ,n0,ξ0(z) e
in·θ eiξ ψd π̃(n0·ζ,ξ0)E(n0, ξ0).

According to the estimate (6.5) of Assumption 8, there exists a positive constant C such that
for all (n0, ξ0) in F in

res and all λ in Z∗, we have

(6.42) ‖fλ,n0,ξ0‖L2(ΩT )
6 C ‖Fλ,n0,ξ0‖L2(ΩT )

.

In this notation, the resonant incoming modes satisfy the following coupled equation, con-

necting the source term Ẽi
in

res F
osc
res

∑

(n0,ξ0)∈F in
res

∑

λ∈Z∗

fλ,n0,ξ0(z) e
i λn0·θ ei λξ0 ψd π̃(n0·ζ,ξ0)E(n0, ξ0)(6.43a)

with the sum of a transport term, corresponding to L̃(0, ∂z)U
osc
res ,

=
∑

(n0,ξ0)∈F in
res

∑

λ∈Z∗

X̃(n0·ζ,ξ0) σλ,n0,ξ0 e
i λn0·θ ei λξ0 ψd π̃(n0·ζ,ξ0)E(n0, ξ0),(6.43b)

a self-interaction term,

+
∑

(n0,ξ0)∈F in
res

∑

λ∈Z∗

∑

λ1,λ2∈Z∗

λ1+λ2=λ

i λ2 ωλ1,n0,ξ0 σλ2,n0,ξ0 Γ
(
(n0, ξ0), (n0, ξ0)

)
(6.43c)

ei λn0·θ ei λξ0 ψd π̃(n0·ζ,ξ0)E(n0, ξ0),

and resonance terms of type 1,

+
∑

(n0,ξ0)∈F in
res

∑

(λp,λq ,λr,np,nq,
ξp,ξq)∈R1(n0,ξ0)

∑

ℓ∈Z∗

i ℓ ωℓλp,np,ξp σℓλq,nq,ξq Γ
(
λp(np, ξp), λq(nq, ξq)

)
(6.43d)

ei ℓ λrn0·θ ei ℓ λrξ0 ψd π̃(n0·ζ,ξ0)E(n0, ξ0),

and of type 2,

+
∑

(n0,ξ0)∈F in
res

∑

(λp,λq ,λr,np,nq,
ξp,ξq)∈R2(n0,ξ0)

∑

ℓ∈Z∗

i ℓ ωℓλp,np,ξp σℓλq,nq,ξq Γ
(
λp(np, ξp), λq(nq, ξq)

)
(6.43e)

ei ℓ λrn0·θ ei ℓ λrξ0 ψd π̃(n0·ζ,ξ0)E(n0, ξ0).

Note that in the terms (6.43c), (6.43d) and (6.43e), the factors λ2 Γ
(
(n0, ξ0), (n0, ξ0)

)
and

Γ
(
λp(np, ξp), λq(nq, ξq)

)
imply that something like a derivative with respect to θ is applied to U .

To obtain estimates without loss of derivatives, one therefore needs the θ derivative to apply to
the coefficient V osc

res , which is the whole point of the following paragraph. The terms (6.43c) and
(6.43e) are treated in the same way as the corresponding terms for the outgoing modes, whereas
the assumption 8 is used to treat the term (6.43d) of resonances of type 1.

6.4.2. L2 estimate. This subsection is devoted to the proof of the following lemma.

Lemma 6.25. Consider s > s0 and T > 0, and let Uosc
res be in Posc

1,T , F
osc
res in Posc

0,T and V osc
res in

N osc
s,T , only involving resonant incoming modes, satisfying the system (6.38). Then the following

estimate holds for xd > 0,

(6.44)
d

dxd
〈Uosc

res |Uosc
res 〉in (xd) 6 C 〈F osc

res |F osc
res 〉in (xd) + C

(
1 + ‖V osc

res ‖Es,T
)
〈Uosc

res |Uosc
res 〉in (xd).
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Proof. Consider the modified profile Ũosc
res given by

Ũosc
res (z, θ, ψd) :=

∑

(n0,ξ0)∈F in
res

∑

λ∈Z∗

σλ,n0,ξ0(z) e
i λn0·θ ei λξ0 ψd

π̃(n0·ζ,ξ0)E(n0, ξ0)

|π̃(n0·ζ,ξ0)E(n0, ξ0)|2
.

Note that despite the factor |π̃(n0·ζ,ξ0)E(n0, ξ0)|−1 that could present a problem, the profile Ũosc
res

is well defined, since the set F in
res satisfies the property (6.5) ensuring that these factors are

uniformly lower bounded. They have been introduced to balance the factors |π̃(n0·ζ,ξ0)E(n0, ξ0)|
which will occur in the estimate. These factors may not be uniformly bounded with respect
to (n0, ξ0) varying in the (potentially infinite) set of non-collinear frequencies (n0, ξ0) of BZm ×
Cin(n0) such that R1(n0, ξ0)∪R2(n0, ξ0) is empty, justifying the choice to treat them separately
below.

Taking the double of the real part of the scalar product (3.12) of equality (6.43) with the

profile Ũosc
res , one gets an equality, with on one side the term

2Re

〈
Ẽi

in

res F
osc
res

∣∣∣∣ Ũ
osc
res

〉

in

(xd),

which is estimated in the following way:
∣∣∣∣2Re

〈
Ẽi

in

res F
osc
res

∣∣∣∣ Ũ
osc
res

〉

in

(xd)

∣∣∣∣ =
∣∣∣2Re

〈
F̂ osc
res

∣∣∣ Ûosc
res

〉
in
(xd)

∣∣∣

6 C
〈
F̂ osc
res

∣∣∣ F̂ osc
res

〉1/2

in
(xd)

〈
Ûosc
res

∣∣∣ Ûosc
res

〉1/2

in
(xd)

6 C 〈F osc
res |F osc

res 〉in (xd) + C 〈Uosc
res |Uosc

res 〉in (xd),(6.45)

where it has been denoted

F̂ osc
(n0,ξ0)

(z, θ, ψd) :=
∑

λ∈Z∗

fλ,n0,ξ0(z) e
i λn0·θ ei λξ0 ψd

π̃(n0·ζ,ξ0)E(n0, ξ0)∣∣π̃(n0·ζ,ξ0)E(n0, ξ0)
∣∣ ,

and

Ûosc
(n0,ξ0)

(z, θ, ψd) :=
∑

λ∈Z∗

σλ,n0,ξ0(z) e
i λn0·θ ei λξ0 ψd

π̃(n0·ζ,ξ0)E(n0, ξ0)∣∣π̃(n0·ζ,ξ0)E(n0, ξ0)
∣∣ ,

so that the profile Ûosc
res is such that its scalar product with itself equals the one of Uosc

(n0,ξ0)
with

itself, and according to estimate (6.42), the scalar product of F̂ osc
res with itself is bounded, up to

a positive multiplicative constant, by the one of F osc
res with itself. Since the lower bound (6.5) is

in general not verified by the non resonant modes, the analogue of estimate (6.45) seems false,
explaining why these modes cannot be treated in the same way as the resonant modes in this
subsection, which leads us to go back to scalar equations for the first ones.

Now the right hand side terms of the equality obtained by taking the double of the real part

of the scalar product of equality (6.43) with Ũosc
res are investigated. The analysis of the terms

corresponding to the terms (6.43b), (6.43c) and (6.43e) is analogous to the one made for the
outgoing modes.

Concerning the transport term (6.43b), identity (3.15) and an integration by parts lead to

(6.46) 2Re
〈
(6.43b)

∣∣∣ Ũosc
res

〉
in
(xd) =

d

dxd
〈Uosc

res |Uosc
res 〉in (xd)

+ (2π)m
∑

(n0,ξ0)∈F in
res

∑

λ∈Z∗

−1

∂ξτk(n0,ξ0)(n0 · η, ξ0)
‖σλ,n0,ξ0‖2L2(Rd−1) (T ).

Note that since all modes are incoming here, the quantity −∂ξτk(n0,ξ0)(n0 ·η, ξ0) is positive for all
(n0, ξ0), which will allow us to omit the second term on the right of the equality in the estimates
below.



MULTIPHASE GEOMETRIC OPTICS FOR QUASILINEAR BOUNDARY VALUE PROBLEMS 51

For the self-interaction term (6.43c) one can compute,
〈
(6.43c)

∣∣∣ Ũosc
res

〉
in
(xd)

= (2π)m
∑

(n0,ξ0)∈F in
res

∑

λ∈Z∗

∑

λ1,λ2∈Z∗

λ1+λ2=λ

iλ2 Γ
(
(n0, ξ0), (n0, ξ0)

)
〈ωλ1,n0,ξ0 σλ2,n0,ξ0 |σλ,n0,ξ0〉L2(ωT )

(xd)

(6.47a)

= (2π)m
∑

(n0,ξ0)∈F in
res

∑

λ∈Z∗

∑

λ1,λ2∈Z∗

λ1+λ2=λ

iλΓ
(
(n0, ξ0), (n0, ξ0)

)
〈ωλ1,n0,ξ0 σλ2,n0,ξ0 | σλ,n0,ξ0〉L2(ωT )

(xd)

(6.47b)

− (2π)m
∑

(n0,ξ0)∈F in
res

∑

λ∈Z∗

∑

λ1,λ2∈Z∗

λ1+λ2=λ

iλ1 Γ
(
(n0, ξ0), (n0, ξ0)

)
〈ωλ1,n0,ξ0 σλ2,n0,ξ0 |σλ,n0,ξ0〉L2(ωT )

(xd).

(6.47c)

But with already detailed computations, one gets (6.47b) = −(6.47a), so

2Re
〈
(6.43c)

∣∣∣ Ũosc
res

〉
in
(xd) =

− (2π)m
∑

(n0,ξ0)∈F in
res

∑

λ∈Z∗

∑

λ1,λ2∈Z∗

λ1+λ2=λ

iλ1 Γ
(
(n0, ξ0), (n0, ξ0)

)
〈ωλ1,n0,ξ0 σλ2,n0,ξ0 |σλ,n0,ξ0〉L2(ωT )

(xd).

Note that this term differs from (6.47a) because of the coefficient λ1 instead of λ2, which makes
the derivatives with respect to θ apply on the coefficient V osc

res instead of on the unknown Uosc
res .

The upper bound (6.8) therefore leads to
∣∣∣2Re

〈
(6.43c)

∣∣∣ Ũosc
res

〉
in
(xd)

∣∣∣

6 C
∑

(n0,ξ0)∈F in
res

∑

λ∈Z∗

∑

λ1,λ2∈Z∗

λ1+λ2=λ

|λ1n0|
∣∣∣〈ωλ1,n0,ξ0 σλ2,n0,ξ0 | σλ,n0,ξ0〉L2(ωT )

(xd)
∣∣∣ .

The term on the right of the equality is of the form 〈fg | g〉, so we get

(6.48)
∣∣∣2Re

〈
(6.43c)

∣∣∣ Ũosc
res

〉
in
(xd)

∣∣∣ 6 C ‖V osc
res ‖Es,T 〈Uosc

res |Uosc
res 〉in (xd).

For the term (6.43e) of type 2 resonances, we write
〈
(6.43e)

∣∣∣ Ũosc
res

〉
in
(xd) =

∑

(n0,ξ0)∈F in
res

∑

(λp,λq,λr ,np,nq,
ξp,ξq)∈R2(n0,ξ0)

∑

ℓ∈Z∗

iℓΓ
(
λp(np, ξp), λq(nq, ξq)

)

〈
ωℓλp,np,ξp σℓλq,nq,ξq

∣∣σℓλr ,nr,ξr
〉
L2(ωT )

(xd).

Then the following upper bound is derived, for all (λp, λq, λr,np,nq, ξp, ξq) ∈ R2(n0, ξ0) with
n0 ∈ BZm , ξ0 ∈ Cin(n0) (which constitutes a finite set, see Assumption 8),

∣∣Γ
(
λp(np, ξp), λq(nq, ξq)

)∣∣ 6 C|λp| |np, ξp| ,
where the constant C > 0 is independent of np,nq,n0, ξp, ξq and ξ0. Once again, with this
bound, the derivative with respect to θ no longer apply on Uosc

res but only on V osc
res . The following

estimate is thus deduced:

(6.49)
∣∣∣2Re

〈
(6.43e)

∣∣∣ Ũosc
res

〉
in
(xd)

∣∣∣ 6 C ‖V osc
res ‖E1,T 〈Uosc

res |Uosc
res 〉in (xd).

The estimated term here is of the form 〈f ∗ g | g〉, inducing a E1,T norm of V osc
res , whereas for the

terms of the form 〈fg | g〉, an Es,T norm has been obtained.
Finally the term (6.43d) of type 1 resonances is investigated, which is treated following [Rau12,

Chapter 11]. Once again the aim is to have a derivative applying totally on V osc
res . First the set
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on which the sum (6.43d) is taken is parameterized in a different way. The set R1 of type 1
incoming resonant 3-tuples is defined as

R1 :=





(
ℓ λp np, ℓ λp ξp, ℓ λq nq,

ℓ λq ξq,−ℓ λr n0,−ℓ λr ξ0
)

∣∣∣∣∣∣
ℓ ∈ Z∗, n0 ∈ BZm, ξ0 ∈ Cin(n0),

(λp, λq, λr,np,nq, ξp, ξq) ∈ R1(n0, ξ0)



 .

Note that if (np, ξp,nq, ξq,nr, ξr) is in R1, then np + nq + nr = 0, and ξp + ξq + ξr = 0. We
also see that, according to remark 6.9, a 6-tuple (np, ξp,nq, ξq,nr, ξr) is in R1 if and only if the
symmetrical 6-tuple (np, ξp,nr, ξr,nq, ξq) is in R1. According to identity (6.1), we have

(6.43d) =
∑

(n0,ξ0)∈F in
res

∑

(λp,λq,λr,np,nq ,
ξp,ξq)∈R1(n0,ξ0)

∑

ℓ∈Z∗

i ωℓλp,np,ξp σℓλq,nq,ξq Γ
(
(ℓλpnp, ℓλpξp), (ℓλqnq, ℓλqξq)

)

ei ℓλrn0·θ ei ℓλrξ0 ψd π̃(ℓλrn0·ζ,ℓλrξ0)E(ℓλrn0, ℓλrξ0)

=
∑

(np,ξp,nq ,ξq,
nr ,ξr)∈R1

i ωnp,ξp σnq,ξq Γ
(
(np, ξp), (nq, ξq)

)
e−inr·θ e−iξr ψd π̃(nr ·ζ,ξr)E(nr, ξr).

If n in Zm \ {0} and ξ in C(n) write as (n, ξ) = λ (n0, ξ0) with n0 ∈ BZm , ξ ∈ C(n0) and λ ∈ Z∗,
we have denoted

σn,ξ := σλ,n0,ξ0 , and ωn,ξ := ωλ,n0,ξ0 .

Therefore we have〈
(6.43e)

∣∣∣ Ũosc
res

〉
in
(xd) =

∑

(np,ξp,nq,ξq,
nr ,ξr)∈R1

iΓ
(
(np, ξp), (nq , ξq)

) 〈
ωnp,ξp σnq ,ξq

∣∣σ−nr ,−ξr

〉
L2(ωT )

(xd)

=
∑

(np,ξp,nq,ξq,
nr ,ξr)∈R1

iΓ
(
(np, ξp), (nq , ξq)

)〈
ω−np,−ξp σ−nr,−ξr

∣∣σnq ,ξq
〉
L2(ωT )

(xd)

=
∑

(np,ξp,nq,ξq,
nr ,ξr)∈R1

−iΓ
(
(np, ξp), (nr, ξr)

)〈
ωnp,ξp σnq ,ξq

∣∣ σ−nr,−ξr

〉
L2(ωT )

(xd).

We have used here the fact that ωnp,ξp = ω−np,−ξp , the profile V osc being real, a change of
variables (np,nr,nq, ξp, ξr, ξq) = −(np,nq,nr, ξp, ξq, ξr), the fact that −R1 = R1 and the identity
(6.1). Thus we obtain

2Re
〈
(6.43e)

∣∣∣ Ũosc
res

〉
in
(xd)

=
∑

(np,ξp,nq,ξq,
nr ,ξr)∈R1

i
{
Γ
(
(np, ξp), (nq , ξq)

)
+ Γ

(
(np, ξp), (nr , ξr)

)} 〈
ωnp,ξp σnq ,ξq

∣∣ σ−nr,−ξr

〉
L2(ωT )

(xd).

Using the uniform estimate (6.4) given by Assumption 8, one obtains
∣∣∣2Re

〈
(6.43e)

∣∣∣ Ũosc
res

〉
in
(xd)

∣∣∣ 6 C
∑

(np,ξp,nq ,ξq,
nr ,ξr)∈R1

|np, ξp|
∣∣∣
〈
ωnp,ξp σnq,ξq

∣∣σ−nr ,−ξr

〉
L2(ωT )

(xd)
∣∣∣

6 C
∥∥V osc

Rin

∥∥
E1,T

〈Uosc
res |Uosc

res 〉in (xd).(6.50)

Only the profiles V osc
res and Uosc

res appear in the estimate since only frequencies of F in
res occur in

R1.
Equations (6.43) and (6.46) and estimates (6.45), (6.48), (6.49) and (6.50) finally lead to

(6.51)
d

dxd
〈Uosc

res |Uosc
res 〉in (xd) 6 C 〈F osc

res |F osc
res 〉in (xd) + C

(
1 + ‖V osc

res ‖Es,T
)
〈Uosc

res |Uosc
res 〉in (xd),

which is the expected differential inequality. �
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6.4.3. Proof of Lemma 6.23. All requisite techniques to show Lemma 6.23 have now been devel-
oped, so the proof is given here. It follows [BGS07, Section 1.3.1]. Recall that at this stage, we
have considered a solution U of (5.10) regular enough, and we have shown that its mean value
is zero.

Proof (Lemma 6.23). It has been shown that if U is a solution of (5.10), then, with already
introduced notations, we have

∑

n0∈BZm

ξ0∈C(n0)

∑

λ∈Z∗

X̃(n0·ζ,ξ0) σλ,n0,ξ0 e
i λn0·θ ei λξ0 ψd π̃(n0·ζ,ξ0)E(n0, ξ0)(6.52a)

+
∑

n0∈BZm

ξ0∈C(n0)

∑

λ∈Z∗

∑

λ1,λ2∈Z∗

λ1+λ2=λ

i λ2 σλ1,n0,ξ0 σλ2,n0,ξ0 Γ
(
(n0, ξ0), (n0, ξ0)

)
(6.52b)

ei λn0·θ ei λξ0 ψd π̃(n0·ζ,ξ0)E(n0, ξ0)

+
∑

n0∈BZm

ξ0∈C(n0)

∑

(λp,λq,λr ,np,nq,
ξp,ξq)∈R1(n0,ξ0)∪R2(n0,ξ0)

∑

ℓ∈Z∗

i ℓ σℓλp,np,ξp σℓλq,nq,ξq(6.52c)

Γ
(
λp(np, ξp), λq(nq, ξq)

)
ei ℓ λrn0·θ ei ℓ λrξ0 ψd π̃(n0·ζ,ξ0)E(n0, ξ0) = 0.

For 0 6 t0 6 T and x0d > 0, consider the domain K(t0, x
0
d), bounded with respect to xd, given

by
K(t0, x

0
d) :=

{
(t, y, xd) ∈ ΩT

∣∣V∗t 6 xd 6 x0d + V∗(t0 − t), 0 6 t 6 t0
}
,

see Figure 6. Let us prove that Uosc is zero on the upper boundary of this domain, namely for
t = t0 and V∗t0 6 xd 6 x0d, which suffices to prove that Uosc is zero outside {0 6 xd 6 V∗t} for
all t in [0, T ]. Take the scalar product (3.14) of expression (6.52) with the modified profile

∑

n0∈BZm

ξ0∈C(n0)

∑

λ∈Z∗

(
− ∂ξτk(n0,ξ0)(n0 · η, ξ0)

)
σλ,n0,ξ0 e

i λn0·θ ei λξ0 ψd π̃(n0·ζ,ξ0)E(n0, ξ0),

to obtain, according to (3.16),

∑

n0∈BZm

ξ0∈C(n0)

∑

λ∈Z∗

〈
X(n0·ζ,ξ0) σλ,n0,ξ0

∣∣σλ,n0,ξ0

〉
L2(K(t0,x0d))

∣∣π̃(n0·ζ,ξ0)E(n0, ξ0)
∣∣2

(6.53a)

+
∑

n0∈BZm

ξ0∈C(n0)

∑

λ∈Z∗

∑

λ1,λ2∈Z∗

λ1+λ2=λ

i λ2 Γ
(
(n0, ξ0), (n0, ξ0)

)
〈σλ1,n0,ξ0 σλ2,n0,ξ0 |σλ,n0,ξ0〉L2(K(t0,x0d))

(6.53b)

(
− ∂ξτk(n0,ξ0)(n0 · η, ξ0)

) ∣∣π̃(n0·ζ,ξ0)E(n0, ξ0)
∣∣2

+
∑

n0∈BZm

ξ0∈C(n0)

∑

(λp,λq,λr ,np,nq,
ξp,ξq)∈R1(n0,ξ0)∪R2(n0,ξ0)

∑

ℓ∈Z∗

i ℓΓ
(
λp(np, ξp), λq(nq, ξq)

)(
− ∂ξτk(n0,ξ0)(n0 · η, ξ0)

)(6.53c)

〈
σℓλp,np,ξp σℓλq,nq,ξq

∣∣σλ,n0,ξ0

〉
L2(K(t0,x0d))

∣∣π̃(n0·ζ,ξ0)E(n0, ξ0)
∣∣2 = 0.

The term (6.53a) is obtained by noting that, with the notations of Definition 2.10 and Lemma

2.12, we have
(
− ∂ξτk(η, ξ)

)
X̃α = Xα. First the term (6.53a) is investigated. According to

Green’s formula, for all n0 in BZm , ξ0 in C(n0) and λ in Z∗, we obtain

2Re
〈
X(n0·ζ,ξ0) σλ,n0,ξ0

∣∣ σλ,n0,ξ0

〉
L2(K(t0,x0d))

= 2Re

∫

∂K(t0,x0d)

(
nt + ~nx · v(n0·ζ,ξ0)

)
|σλ,n0,ξ0 |2 dS,

where the notation vα has been introduced in Definition 2.10, ~n := (nt, ~nx) is the outward
normal vector associated with ∂K(t0, x

0
d), and dS is the surface measure. The vector ~n is
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xd

t

y

6≡ 0 K(t0, x
0
d)

T

t0

V∗TV∗t0 x0d x0d + V∗t0

Figure 6. Propagation zone.

given (see Figure 6), for the upper boundary by ~n = (1, 0, . . . , 0), for the lower boundary by

~n = (−1, 0, . . . , 0), for the left boundary by ~n = (V∗, 0, . . . , 0,−1)/
√

1 + (V∗)2 and for the right

boundary by ~n = (V∗, 0, . . . , 0, 1)/
√

1 + (V∗)2. Thus we get

2Re
〈
X(n0·ζ,ξ0) σλ,n0,ξ0

∣∣σλ,n0,ξ0

〉
L2(K(t0,x0d))

=2 ‖σλ,n0,ξ0‖2L2(Rd−1×[V∗t0,x0d])
(t0)− 2 ‖σλ,n0,ξ0‖2L2(Rd−1×[0,x0d])

(0)

+
2√

1 + (V∗)2

∫

{(t,y,V∗t),06t6t0}

(
V∗ − ∂ξτk(n0,ξ0)(n0 · η, ξ0)

)
|σλ,n0,ξ0 |2 dS

+
2√

1 + (V∗)2

∫

{(t,y,x0d+V∗(t0−t)),06t6t0}
(
V∗ + ∂ξτk(n0,ξ0)(n0 · η, ξ0)

)
|σλ,n0,ξ0 |2 dS.

Then note that on one hand we have ‖σλ,n0,ξ0‖2L2(Rd−1×R+) (0) = 0 according to the initial

condition (5.10d), and on the other hand, according to Lemma 2.14, the quantities
(
V∗ −

∂ξτk(n0,ξ0)(n0 · η, ξ0)
)
and

(
V∗ + ∂ξτk(n0,ξ0)(n0 · η, ξ0)

)
are non-negative. Therefore,

(6.54) 2Re (6.53a) > 2
∑

n0∈BZm

ξ0∈C(n0)

∑

λ∈Z∗

‖σλ,n0,ξ0‖2L2(Rd−1×[V∗t0,x0d])
(t0)

∣∣π̃(n0·ζ,ξ0)E(n0, ξ0)
∣∣2 .

As for them, the terms (6.53b) and (6.53c) are treated the same way as before. For the
self-interaction term (6.53b), it is proved in the same manner than the term (6.28b) that it
satisfies

2Re (6.53b) = 0.

For the resonance term (6.53c), the same techniques as for the terms (6.49) and (6.50) are
used. According to Lemma 2.14, the group velocities

(
−∂ξτk(n0,ξ0)(n0 ·η, ξ0)

)
can be uniformly

bounded to obtain

(6.55) |2Re (6.53c)| 6 C ‖Uosc‖E1,T
∑

n0∈BZm

ξ0∈C(n0)

∑

λ∈Z∗

‖σλ,n0,ξ0‖2L2(K(t0 ,x0d))

∣∣π̃(n0·ζ,ξ0)E(n0, ξ0)
∣∣2 .

Noting that

∑

n0∈BZm

ξ0∈C(n0)

∑

λ∈Z∗

‖σλ,n0,ξ0‖2L2(K(t0,x0d))

∣∣π̃(n0·ζ,ξ0)E(n0, ξ0)
∣∣2

=

∫ t0

0

∑

n0∈BZm

ξ0∈C(n0)

∑

λ∈Z∗

‖σλ,n0,ξ0‖2L2(Rd−1×[V∗t,x0d+V∗(t0−t)])
(t)

∣∣π̃(n0·ζ,ξ0)E(n0, ξ0)
∣∣2 dt,



MULTIPHASE GEOMETRIC OPTICS FOR QUASILINEAR BOUNDARY VALUE PROBLEMS 55

using equations (6.53), (6.54) and (6.55) and according to the Grönwall’s inequality, it follows
∑

n0∈BZm

ξ0∈C(n0)

∑

λ∈Z∗

‖σλ,n0,ξ0‖2L2(Rd−1×[V∗t0,x0d])
(t0)

∣∣π̃(n0·ζ,ξ0)E(n0, ξ0)
∣∣2 = 0.

Therefore, for all n0 in BZm , ξ0 in C(n0) and λ in Z∗, the function σλ,n0,ξ0 is zero on
{
t = t0,

V∗t0 6 xd 6 x0d
}
, so the profile Uosc is also zero in this set, concluding the proof of the

Lemma. �

6.4.4. Estimating the derivatives. Returning to the proof of the a priori estimate, Proposition
6.24 is proved here using estimate (6.44) of Lemma 6.25. Consider a multi-index α of Nd+m such

that |α| 6 s. Since the operator ∂αz′,θ commutes with the projectors Ein
res and Ẽi

in

res, the profile

∂αz′,θU
osc satisfies a system of the form (6.38), with ∂αz′,θG as boundary term, and Ẽi

in

res

[
∂αz′,θF

osc
res +

Fα
]
as source term, where Fα is the following commutator

Fα :=
[ m∑

j=1

L̃1(V
osc
res , ζj) ∂θj , ∂

α
z′,θ

]
Uosc
res .

Thus, according to the estimate (6.44) and applying the triangle inequality, we get

(6.56)
d

dxd

〈
∂αz′,θU

osc
res

∣∣ ∂αz′,θUosc
res

〉
in
(xd) 6 C

〈
∂αz′,θF

osc
res

∣∣ ∂αz′,θF osc
res

〉
in
(xd) + C 〈Fα |Fα〉in (xd)

+ C
(
1 + ‖V osc

res ‖Es,T
) 〈
∂αz′,θU

osc
res

∣∣ ∂αz′,θUosc
res

〉
in
(xd).

Note that according to Lemma 6.21 we have

〈Fα |Fα〉in (xd) 6 ‖Fα‖2Cb(R+
ψd
,L2(ωT×Tm))

(xd),

and in the same way

〈
∂αz′,θF

osc
res

∣∣ ∂αz′,θF osc
res

〉
in
(xd) 6

∥∥∂αz′,θF osc
res

∥∥2
Cb(R

+
ψd
,L2(ωT×Tm))

(xd).

On an other hand, according to the algebra property of Hs(ωT ×Tm) (since s > (d+m)/2 + 1)
and the commutator estimate [BGS07, Proposition C.13], we obtain

‖Fα‖2Cb(R+,L2(ωT×Tm)) (xd) 6 C ‖V osc
res ‖2Cb(R+,Hs(ωT×Tm)) (xd) ‖Uosc

res ‖2Cb(R+,Hs(ωT×Tm)) (xd)

6 C ‖V osc
res ‖2Es,T ‖Uosc

res ‖2Cb(R+,Hs(ωT×Tm)) (xd).

Finally, by definition of the Hs(ωT × Tm) norm and according to Lemma 6.21, we get

‖Uosc
res ‖2Cb(R+,Hs(ωT×Tm)) (xd) =

∑

|α|6s

∥∥∂αz′,θUosc
res

∥∥2
Cb(R+,L2(ωT×Tm))

(xd)(6.57)

6 C
∑

|α|6s

〈
∂αz′,θU

osc
res

∣∣ ∂αz′,θUosc
res

〉
in
(xd).

Therefore, by summing the equations (6.56) for |α| 6 s, one gets

(6.58)
d

dxd

∑

|α|6s

〈
∂αz′,θU

osc
res

∣∣ ∂αz′,θUosc
res

〉
in
(xd) 6 C ‖F osc

res ‖2Cb(R+
ψd
,Hs(ωT×Tm))

(xd)

+ C
(
1 + ‖V osc

res ‖2Es,T
) ∑

|α|6s

〈
∂αz′,θU

osc
res

∣∣ ∂αz′,θUosc
res

〉
in
(xd).
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Thus, according to Grönwall’s inequality,

(6.59)
∑

|α|6s

〈
∂αz′,θU

osc
res

∣∣ ∂αz′,θUosc
res

〉
in
(xd) 6 eC(V )xd

∑

|α|6s

〈
∂αz′,θU

osc
res

∣∣ ∂αz′,θUosc
res

〉
in
(0)

+

∫ xd

0
eC(V )(xd−x

′
d) ‖F osc

res ‖2Cb(R+
ψd
,Hs(ωT×Tm))

(x′d) dx
′
d,

where C(V ) = C(1 + ‖V osc
res ‖2Es,T ). The trace on the boundary Uosc

res is therefore given by(
Uosc
res

)
|xd=0,ψd=0

= Hosc
res where Hosc

res is determined by equation (6.20a). Remark 2.8, Propo-

sition 2.21 and Lemma 6.21 ensure that, for |α| 6 s,
〈
∂αz′,θU

osc
res

∣∣ ∂αz′,θUosc
res

〉
in
(0) 6

∥∥∂αz′,θUosc
res (0)

∥∥2
L2(ωT×Tm)

=
∥∥∂αz′,θHosc

res

∥∥2
L2(ωT×Tm)

(6.60)

6 C
∥∥∂αz′,θG

∥∥2
L2(ωT×Tm)

.

It thus follows, with (6.57), (6.59) and (6.60),

(6.61) ‖Uosc
res ‖2Cb(R+

ψd
,Hs(ωT×Tm))

(xd) 6 CeC(V )xd ‖G‖2Hs(ωT×Tm)

+

∫ xd

0
eC(V )(xd−x

′
d) ‖F osc

res ‖2Cb(R+
ψd
,Hs(ωT×Tm))

(x′d) dx
′
d,

where C(V ) = C(1 + ‖V osc
res ‖2Es,T ). Because of the function βT in equation (6.38b), it is possible

to bound xd by 2V∗T then to pass to the upper bound with respect to xd in estimate (6.61) to
obtain the required estimate (6.39), concluding the proof of Proposition 6.24.

6.5. A priori estimate for the linearized Burgers equations. We prove now a priori esti-
mates for the linearized Burgers equations (6.18), corresponding to the non-resonant incoming
modes. These a priori estimates will be used to prove the existence of solution to these Burgers
equations. However the estimates will have to be summed with respect to (n0, ξ0), so we wish
for constants independent of (n0, ξ0). This part is devoted to the proof of the following result.

Proposition 6.26. Consider (n0, ξ0) ∈ (BZm ×Cin(n0))\F in
res, s > s0 and let Sn0,ξ0, Wn0,ξ0 and

Fn0,ξ0 be in C(R+
xd
,Hs(ωT × T)) of zero mean, satisfying the scalar boundary value problem

X̃(n0·ζ,ξ0)Sn0,ξ0 + Γ
(
(n0, ξ0), (n0, ξ0)

)
Wn0,ξ0∂ΘSn0,ξ0 = Fn0,ξ0(6.62a)
(
Sn0,ξ0

)
|xd=0

= hn0,ξ0(6.62b)
(
Sn0,ξ0

)
|t60

= 0,(6.62c)

where hn0,ξ0 is defined by equation (6.20b). Then the function Sn0,ξ0 satisfies the a priori esti-
mate

(6.63) ‖Sn0,ξ0‖2C(R+
xd
,Hs(ωT×T))

6 C1 e
C(W )V∗T ‖hn0,ξ0‖2Hs(ωT×Tm) + V∗T eC(W )V∗T ‖Fn0,ξ0‖2C(R+

xd
,Hs(ωT×T))

,

where C(W ) := C1

(
1+ ‖Wn0,ξ0‖2C(R+

xd
,Hs(ΩT×T))

)
, with C1 > 0 a constant depending only on the

operator L(0, ∂z) and of s, but not on n0, ξ0. Recall that the real number V∗, bounding the group
velocities vα, has been defined in Lemma 2.14.

First the L2(ωT×T) estimate, analogous to estimate (6.44) for resonant modes, is investigated,
and the equation (6.62a) is rewritten. Write Sn0,ξ0 , Wn0,ξ0 and Fn0,ξ0 in C(R+

xd
,Hs(ωT × T)) as

Sn0,ξ0(z,Θ) =
∑

λ∈Z∗

σλ,n0,ξ0(z) e
iλΘ, Wn0,ξ0(z,Θ) =

∑

λ∈Z∗

ωλ,n0,ξ0(z) e
iλΘ,

Fn0,ξ0(z,Θ) =
∑

λ∈Z∗

fλ,n0,ξ0(z) e
iλΘ,
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with σλ,n0,ξ0 , ωλ,n0,ξ0 and fλ,n0,ξ0 scalar functions on ΩT . Then the equation (6.62a) writes

∑

λ∈Z∗

fλ,n0,ξ0(z) e
i λn0·θ eiλΘ = X̃(n0·ζ,ξ0)

∑

λ∈Z∗

σλ,n0,ξ0 e
iλΘ,

(6.64a)

+ Γ
(
(n0, ξ0), (n0, ξ0)

) ∑

λ∈Z∗

∑

λ1,λ2∈Z∗

λ1+λ2=λ

i λ2 ωλ1,n0,ξ0 σλ2,n0,ξ0 e
iλΘ.(6.64b)

Recall that the vector field X̃(n0·ζ,ξ0), defined in Lemma 2.12, is given by

X̃(n0·ζ,ξ0) =
−1

∂ξτk(n0,ξ0)(n0 · η, ξ0)
∂t +

1

∂ξτk(n0,ξ0)(n0 · η, ξ0)
∇ητk(η0,ξ0)(n0 · η, ξ0) · ∇y + ∂xd .

By taking the double of the real part of the L2(ωT ×T) scalar product of equality (6.64) with
the function Sn0,ξ0 , one obtains an equality, with on one side of it the term

2Re 〈Fn0,ξ0 |Sn0,ξ0〉L2(ωT×T) (xd),

which is estimated in a similar manner than for the resonant incoming frequencies:

(6.65)
∣∣∣2Re 〈Fn0,ξ0 |Sn0,ξ0〉L2(ωT×T) (xd)

∣∣∣ 6 C ‖Fn0,ξ0‖L2(ωT×T) (xd) + C ‖Sn0,ξ0‖L2(ωT×T) (xd).

One may note here the interest of having reduced the equations to scalar Burgers equations
for the non-resonant modes, since the coefficients |π̃(n0·ζ,ξ0)E(n0, ξ0)|−1 no longer appear, these
ones being not uniformly bounded for the non resonant modes (n0, ξ0).

We now focus on the other side of the equality obtained by taking the double of the real part
of the scalar product of equation (6.64) with the profile Sn0,ξ0 . The analysis of the terms (6.64a)
and (6.64b) is analogous to the one made for the incoming non resonant modes.

Concerning the transport term (6.64a), according to identity (3.15) and using an integration
by parts, we obtain

(6.66) 2Re 〈(6.64a) |Sn0,ξ0〉L2(ωT×T) (xd) =
d

dxd
‖Sn0,ξ0‖L2(ωT×T) (xd)

− 1

∂ξτk(n0,ξ0)(n0 · η, ξ0)
‖Sn0,ξ0‖2L2(Rd−1×T) (T ).

Note that since (n0, ξ0) is an incoming mode, the quantity −∂ξτk(n0,ξ0)(n0 · η, ξ0) is positive,
allowing to omit the second term on the right hand side of the equality in the estimates.

For the self-interaction term (6.64b), with computations analogous to the ones used for the
incoming resonant modes, we obtain

2Re 〈(6.64b) |Sn0,ξ0〉L2(ωT×T) (xd) =

− (2π)m
∑

λ∈Z∗

∑

λ1,λ2∈Z∗

λ1+λ2=λ

iλ1 Γ
(
(n0, ξ0), (n0, ξ0)

)
〈ωλ1,n0,ξ0 σλ2,n0,ξ0 |σλ,n0,ξ0〉L2(ωT )

(xd).

Therefore, using the upper bound (6.3), we get

∣∣∣2Re 〈(6.64b) |Sn0,ξ0〉L2(ωT×T) (xd)
∣∣∣

6 C
∑

λ∈Z∗

∑

λ1,λ2∈Z∗

λ1+λ2=λ

|λ1n0|h
∣∣∣〈ωλ1,n0,ξ0 σλ2,n0,ξ0 | σλ,n0,ξ0〉L2(ωT )

(xd)
∣∣∣ .

Here the order of regularity must be taken down to h since we wish for an upper bound indepen-
dent of n0, in the purpose of summing the inequality with respect to n0. An upper bound of the
form C(n0)|λ1| instead of C|λ1n0|h could be obtained, but where the constant C(n0) depends
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on n0, and may be arbitrarily large since we consider modes n0 close to the glancing set. The
right hand side of the equality being of the form 〈fg | g〉, the following inequality holds

∣∣∣2Re 〈(6.64b) |Sn0,ξ0〉L2(ωT×T) (xd)
∣∣∣ 6 C ‖Wn0,ξ0‖C(R+

xd
,Hs(ωT×T)) ‖Sn0,ξ0‖L2(ωT×T) (xd),(6.67)

using Sobolev inequality, s being such that s > h+(d+m)/2. Using equations (6.64) and (6.66)
and estimates (6.65) and (6.67), it finally follows the differential inequality

(6.68)
d

dxd
‖Sn0,ξ0‖L2(ωT×T) (xd)

6 C ‖Fn0,ξ0‖L2(ωT×T) (xd) + C
(
1 + ‖Wn0,ξ0‖C(R+

xd
,Hs(ωT×T))

)
‖Sn0,ξ0‖L2(ωT×T) (xd).

To obtain the required Hs(ωT ×T) estimate, we use commutators estimates analogous to the
one for resonant incoming modes, which we do not detail here. Finally we obtain the sought
estimate (6.63).

The a priori estimates (6.44) and (6.63) (for s = 0) as well as the equivalence property 6.22
ensure the uniqueness of the solution to (5.10).

6.6. Construction of a solution.

6.6.1. Construction of an oscillating solution to the linearized system for the resonant incoming
modes. Thanks to the a priori estimate (6.39) of Proposition 6.24 on the linearized system (6.38),
a solution to this system can be constructed, proving the following result.

Proposition 6.27. Consider s > s0 and T > 0, and let V osc
res be a profile of N osc

s,T involving

only resonant incoming modes, F osc
res be in Posc

s,T and G be in Hs(ωT × Tm). Then there exists

a solution Uosc
res in Posc

s,T to the system (6.38), involving only resonant incoming modes, that
moreover satisfies the following estimate

‖Uosc
res ‖2Es,T 6 C1 e

C(V )V∗T ‖G‖2Hs(ωT×Tm) + V∗T eC(V )V∗T ‖F osc
res ‖2Es,T ,

where C(V ) := C1(1 + ‖V osc
res ‖2Es,T ), with C1 a positive constant depending only on L(0, ∂z), on

the boundary frequencies ζ1, . . . , ζm, and on s.

The proof of such a result using an a priori estimate of the form (6.39) is detailed in [JMR95,
Theorem 6.3.3]. Its main ideas are recalled here.

The uniqueness of the solution follows directly from the a priori estimate (6.39). Concerning
the existence, a finite difference scheme is used. Since the operators ∂θj for j = 1, . . . ,m,
are skew-symmetric, skew-symmetric finite difference operators must be considered. Denoting
e1, . . . , em the canonical basis of Rm, we define, for every function U of ΩT × Tm × R+,

δhj U(z, θ, ψd) :=
(
U(z, θ + hej)− U(z, θ − hej

)
/2h,

for j = 1, . . . ,m and h > 0. The proof then consists in showing that there exists, for h > 0, a
unique solution Uosc

h to the regularized system

Ein
res U

osc
h = Uosc

h(6.69a)

Ẽi
in

res

[
L̃(0, ∂z)U

osc
h +

m∑

j=1

L̃1(V
osc
res , ζj) δ

h
j U

osc
h

]
= Ẽi

in

res F
osc
res(6.69b)

(
Uosc
h

)
|xd=0,ψd=0

= Hosc
res(6.69c)

(
Uosc
h

)
|t60

= 0,(6.69d)

and that this solution satisfies the estimate uniform with respect to h > 0,

‖Uosc
h ‖2Es,T 6 C1 e

C(V )V∗T ‖G‖2Hs(ωT×Tm) + V∗T eC(V )V∗T ‖F osc
res ‖2Es,T ,

where C(V ) := C1(1 + ‖V osc
res ‖2Es,T ), with C1 > 0 a constant depending only on the operator

L(0, ∂z), on the boundary frequencies ζ1, . . . , ζm, and on s. This uniform estimate allows to
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extract a sequence (Uosc
hn

)n weakly converging towards Uosc
res in Es,T . Passing to the limit in the

system (6.69) leads to the result of Proposition 6.27.

6.6.2. Construction of an oscillating solution to the systems (6.17) and (6.18). This part is
devoted to the following result, constituting a part of the result of Theorem 4.1.

Proposition 6.28. Consider s > s0, and G in H∞(Rd ×Tm), zero for negative times t. There
exists a time T > 0, depending only on the operator L(0, ∂z), on the boundary frequencies
ζ1, . . . , ζm, on the Hs(Rd×Tm) norm of G and on s, such that the systems (6.17) and (6.18) for
(n0, ξ0) in (BZm×Cin(n0))\F in

res, admit solutions Uosc
res and Sn0,ξ0 in Posc

s,T and C(R+,H
s(ωT ×T)),

where the functions Sn0,ξ0 are of zero mean. Furthermore, if we denote, for (n0, ξ0) in (BZm ×
Cin(n0)) \ F in

res,

Sn0,ξ0(z,Θ) =:
∑

λ∈Z∗

σλ,n0,ξ0(z) e
iλΘ,

then the profile Uosc defined, for (z, θ, ψd) in ΩT × Tm × R+, by

(6.70) Uosc(z, θ, ψd) := Uosc
res (z, θ, ψd) +

∑

(n0,ξ0)∈
(BZm×Cin(n0))\F in

res

∑

λ∈Z∗

σλ,n0,ξ0(z) e
iλn0 ·θ eiλξ0ψd ,

belongs to the space Posc
s,T .

It is classical to deduce from an existence result of a solution to a linearized system with an
estimate of the form (6.39), the existence of a solution to the original system. The main ideas
of the method described in [BGS07, Théorème 10.1] are recalled here.

First the system (6.17) is investigated, and the following iterative scheme is considered:

Ein
resU

osc
ν+1 = Uosc

ν+1(6.71a)

Ẽi
in

res

[
L̃(0, ∂z)βTU

osc
ν+1 +

m∑

j=1

L̃1(βTU
osc
ν , ζj) ∂θjβTU

osc
ν+1

]
= 0(6.71b)

(
Uosc
ν+1

)
|xd=0,ψd=0

= Hosc
res(6.71c)

(
Uosc
ν+1

)
|t60

= 0,(6.71d)

initialized with Uosc
0 (., xd, ., ψd) := Hosc

res , for all xd, ψd in R+. Proposition 6.27 ensures that the
sequence (Uosc

ν )ν is well defined in Posc
s,T . Then the proof consists in showing that the sequence

(Uosc
ν )ν is bounded in high norm, and contracting in small norm, in order to deduce its weak

convergence in the Banach space Posc
s,T .

Bound in high norm. According to estimate (6.39), we have, for ν > 0,

(6.72)
∥∥Uosc

ν+1

∥∥2
Es,T

6 C1e
C(Uosc

ν )V∗T ‖G‖2Hs(ωT×Tm) ,

where C(Uosc
ν ) = C1

(
1 + ‖Uosc

ν ‖2Es,T
)
. If the time T > 0 is chosen sufficiently small so that

exp
[
C1

(
1 + 2C1 ‖G‖2Hs(ωT×Tm)

)
V∗T

]
6 2,

then an induction argument shows that (Uosc
ν )ν is bounded in Es,T by

√
2C1 ‖G‖Hs(ωT×Tm).

Indeed, the initial step is obvious, up to assuming C1 > 1/2. On an other hand, assuming
‖Uosc

ν ‖Es,T 6
√
2C1 ‖G‖Hs(ωT×Tm) for some ν > 0, according to (6.72) and the assumption on

T , we obtain
∥∥Uosc

ν+1

∥∥2
Es,T

6 C1 exp
[
C1

(
1 + ‖Uosc

ν ‖2Es,T
)
V∗T

]
‖G‖2Hs(ωT×Tm)

6 C1 exp
[
C1

(
1 + 2C1 ‖G‖2Hs(ωT×Tm)

)
V∗T

]
‖G‖2Hs(ωT×Tm)

6 2C1 ‖G‖2Hs(ωT×Tm) ,

which is the expected estimate.
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Contraction in small norm. Denote, for ν > 1, W osc
ν := Uosc

ν −Uosc
ν−1, that satisfies the system

Ein
resW

osc
ν+1 =W osc

ν+1(6.73a)

Ẽi
in

res

[
L̃(0, ∂z)βTW

osc
ν+1 +

m∑

j=1

L̃1(βTU
osc
ν , ζj) ∂θjβTW

osc
ν+1

]
= Ẽi

in

res Fν+1(6.73b)

(
W osc
ν+1

)
|xd=0,ψd=0

= 0(6.73c)

(
W osc
ν+1

)
|t60

= 0,(6.73d)

where Fν+1 is given by

Fν+1 :=

m∑

j=1

(
L̃1(βTU

osc
ν−1, ζj)− L̃1(βTU

osc
ν , ζj)

)
∂θjβTU

osc
ν .

According to estimate (6.39) applied to the system (6.73) for s = 0, the following inequality
holds

∥∥W osc
ν+1

∥∥2
E0,T

6 V∗T eC(Uosc
ν )V∗T ‖Fν+1‖2E0,T .

First note that by assumption on T , and since the sequence (Uosc
ν )ν is bounded in Es,T by√

2C1 ‖G‖Hs(ωT×Tm), we have, for ν > 0,

(6.74) eC(Uosc
ν )V∗T 6 2.

Now the E0,T norm of Fν+1 is estimated. Thanks to the product estimate and the choice of the
index s, we have

‖Fν+1‖2E0,T 6C

m∑

j=1

∥∥∥
(
L̃1(βTU

osc
ν−1, ζj)− L̃1(βTU

osc
ν , ζj)

)∥∥∥
2

E0,T
‖Uosc

ν ‖2Es,T .

According to the mean value inequality, and since the sequence (Uosc
ν )ν is bounded in Es,T , one

then obtains

(6.75) ‖Fν+1‖2E0,T 6 C ‖Wν‖2E0,T ‖G‖2Hs(ωT×Tm) .

Therefore, according to estimates (6.74) and (6.75), we get

∥∥W osc
ν+1

∥∥2
E0,T

6 CV∗T ‖G‖2Hs(ωT×Tm) ‖W osc
ν ‖2E0,T .

For T > 0 small enough, the sequence (Uosc
ν )ν is therefore convergent in E0,T .

Thus the sequence (Uosc
ν )ν is a Cauchy sequence in the Banach space Posc

0,T , and therefore
converges to a function Uosc

res of Posc
0,T . It is possible to show, with arguments that will not be

recalled here, that Uosc
res is actually in Posc

s,T and satisfies the system (6.17), see [BGS07, Theorem

10.1] for similar results.
The proof of the existence of a solution to (6.18) is identical, and is not detailed here. It relies

on a result of existence of a solution to the linearized system (6.62), analogous to Proposition
6.27, that has not been spelled out. One may however note that the existence time T is indeed
independent of (n0, ξ0), since the constants in estimate (6.63) are independent of (n0, ξ0), and
since according to estimate (6.37), each boundary term hn0,ξ0 is controlled in Hs(ωT × T) by
C ‖G‖Hs(ωT×Tm), uniformly with respect to (n0, ξ0).
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Finally, it is shown that the profile Uosc defined by (6.70) actually belongs to Posc
s,T . Indeed,

according to Lemma 6.21, we have

‖Uosc‖2Es,T 6 C sup
xd>0

∑

|α|6s

〈
∂αz′,θU

osc
∣∣ ∂αz′,θUosc

〉
in
(xd)

6 C sup
xd>0

∑

|α|6s

〈
∂αz′,θU

osc
res

∣∣ ∂αz′,θUosc
res

〉
in
(xd)

+ C sup
xd>0

∑

(n0,ξ0)∈
(BZm×Cin(n0))\F in

res

∑

λ∈Z∗

‖σλ,n0,ξ0‖2Hs(ωT )
(xd)

6 C ‖Uosc
res ‖2Es,T +C

∑

(n0,ξ0)∈
(BZm×Cin(n0))\F in

res

‖Sn0,ξ0‖2C(R+,Hs(ωT×T)) ,

so that, using the a priori estimates (6.39) and (6.63) as well as the boundary term estimates
(6.37), one gets
(6.76)

‖Uosc‖2Es,T 6 C ‖G‖2Hs(ωT×Tm) + C
∑

(n0,ξ0)∈
(BZm×Cin(n0))\F in

res

‖hn0,ξ0‖2Hs(ωT×T) 6 C ‖G‖2Hs(ωT×Tm) .

6.6.3. Determination of the evanescent part and conclusion. To conclude as to the proof of
Theorem 4.1, it must be proved that there exists a solution U ev in Pev

s,T to the system (6.19),
where the parameters s and T are those given in Proposition 6.28.

The polarization condition (6.19a) results, according to Remark 6.20, to

U ev(z, θ, ψd) =
∑

n∈Zm\{0}

eψdA(n·ζ)Πe
CN

(n · ζ)U ev
n
(z, 0) ein·θ .

The traces
(
Πe

CN
(n · ζ)U ev

n

)
|ψd=0

for n in Zm \ {0} must therefore be determined to find the

profile U ev. The boundary condition (6.19b) gives the double trace on the boundary, for n in
Zm \ {0},

U ev
n
(z′, 0, 0) = Πe

CN
(n · ζ)U ev

n
(z′, 0, 0) = Πe−(n · ζ)

(
B|E−(n·ζ)

)−1
Gn(z

′).

Then this trace is lifted with respect to xd using a function χ of C∞
0 (R+), equaling 1 in 0.

Namely we set

U ev(z, θ, ψd);=
∑

n∈Zm\{0}

χ(xd) e
ψd A(n·ζ)Πe−(n · ζ)

(
B|E−(n·ζ)

)−1
Gn(z

′) ein·θ.

Note that, by construction, the profile U ev satisfies the polarization condition (6.19a) as well as
the boundary condition (6.19b). It must be now verified that it belongs to the space of evanescent
profiles Pev

s,T . First we note that the profile U ev belongs to L∞
(
R+
xd

× R+
ψd
,Hs

+(ωT × Tm)
)
.

Indeed, on one hand, the functions Gn being zero for negative times t, the profile U ev is zero
for negative times t. On the other hand, since the function χ is bounded, the inverse map(
B|E−(n·ζ)

)−1
is uniformly bounded according to remark 2.8, and the terms eψdA(n·ζ)Πe−(n · ζ)

are also uniformly bounded according to the estimate (6.12a) of Proposition 6.16, for xd, ψd > 0,
the following estimate holds:

(6.77) ‖U ev‖2Hs(ωT×Tm) (xd, ψd) 6 C
∑

n∈Zm\{0}

‖Gn‖2Hs(ωT )
= C ‖G‖2Hs(ωT×Tm) .

From now on we denote, for n in Zm \ {0},

U ev
n
(z, ψd) := χ(xd) e

ψd A(n·ζ)Πe−(n · ζ)
(
B|E−(n·ζ)

)−1
Gn(z

′),
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so that U ev(z, θ, ψd) =
∑

n∈Zm\{0} U
ev
n (z, ψd) e

in·θ. Since the function χ is bounded, according

to the estimate (6.12a) of Proposition (6.16) and according to the Remark 2.8, for xd, ψd > 0,
we obtain

‖U ev
n
‖2Hs(ωT )

(xd, ψd) 6 Ce−c1|n·ζ|
−b1ψd ‖Gn‖2Hs(ωT )

,

therefore, setting δn := c1|n · ζ|−b1 , the function (z, ψd) 7→ eδnψd U ev
n (z, ψd) belongs to the space

Cb
(
R+
xd

× R+
ψd
,Hs

+(ωT )
)
.

Then it is proved that the profile U ev is continuous with respect to (xd, ψd) in R+ ×R+ with
values in Hs(ωT × Tm). Consider (x0d, ψ

0
d) in R+ ×R+, and ε > 0. There holds, for xd, ψd > 0,

∥∥U ev(xd, ψd)− U ev(x0d, ψ
0
d)
∥∥
Hs(ωT×Tm)

6
∥∥U ev(xd, ψd)− U ev(x0d, ψd)

∥∥
Hs(ωT×Tm)

+
∥∥U ev(x0d, ψd)− U ev(x0d, ψ

0
d)
∥∥
Hs(ωT×Tm)

,

and we seek to estimate the two terms on the right hand side of the inequality. For the first one,
according to the estimate (6.12a) of Proposition (6.16) and Remark 2.8, for ψd > 0, we get

∥∥U ev(xd, ψd)− U ev(x0d, ψd)
∥∥
Hs(ωT×Tm)

6 C
∣∣χ(xd)− χ(x0d)

∣∣ ‖G‖Hs(ωT×Tm) .

By continuity of χ, there exists therefore δ1 > 0, depending only on ε, such that for all xd such
that |xd − x0d| < δ1 and for all ψd > 0, we have

∥∥U ev(xd, ψd)− U ev(x0d, ψd)
∥∥
Hs(ωT×Tm)

< ε.

For the second one, we denote by M an integer such that∥∥∥∥∥∥

∑

|n|>M

Gn e
in·θ

∥∥∥∥∥∥
Hs(ωT×Tm)

< ε.

Thus, for ψd > 0,
∥∥U ev(x0d, ψd)− U ev(x0d, ψ

0
d)
∥∥
Hs(ωT×Tm)

6

∥∥∥∥∥∥

∑

0<|n|6M

[
U ev
n
(y, x0d, ψd)− U ev

n
(y, x0d, ψ

0
d)
]
ein·θ

∥∥∥∥∥∥
Hs(ωT×Tm)

(6.78a)

+

∥∥∥∥∥∥

∑

|n|>M

[
U ev
n (y, x0d, ψd)− U ev

n (y, x0d, ψ
0
d)
]
ein·θ

∥∥∥∥∥∥
Hs(ωT×Tm)

.(6.78b)

The sum in the term (6.78a) being finite and the functions U ev
n

being continuous with respect
to ψd , there exists δ2 > 0 such that for all ψd such that |ψd − ψ0

d| < δ2, we have (6.78a) < ε.
On an other hand, according to estimate (6.12a), Remark 2.8 and since χ is bounded, we have,
by construction of M , for all ψd > 0, (6.78b) < Cε where C > 0 does not depend on ε. It is
then possible to conclude: for all (xd, ψd) such that |(xd, ψd)− (x0d, ψ

0
d)| < min(δ1, δ2), we have

∥∥U ev(xd, ψd)− U ev(x0d, ψ
0
d)
∥∥
Hs(ωT×Tm)

< (2 + C)ε,

showing the required continuity.
Finally, with similar arguments as above for the continuity property, it is possible to show

that the profile U ev converges towards zero in the space C
(
R+
xd
,Hs(ωT × Tm)

)
when ψd goes to

infinity (so in particular in Hs(ωT × Tm) for every fixed xd).
All points of Definition 3.4 of evanescent profiles have therefore been verified, so it has been

proven that the profile U ev belongs to the space Pev
s,T of evanescent profiles.

Remark 6.29. It has been shown in the previous paragraph, in estimate (6.76), that the oscil-
lating part Uosc is controlled in Es,T by the Hs(ωT × Tm) norm of the boundary term G. On
an other hand, according to estimate (6.77), the evanescent part U ev is also controlled by the
Hs(ωT × Tm) norm of G. Thus the leading profile U satisfies

‖U‖Ps,T 6 C ‖G‖Hs(ωT×Tm) .
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6.7. Conclusion and perspectives. It has therefore been proven that for s > h+ (d+m)/2,
there exists a time T > 0 small enough such that the systems (6.17), (6.18) and (6.19) admit
solutions Uosc

res , Sn0,ξ0 and U ev in Posc
s,T , C(R+,H

s(ωT × T)) and Pev
s,T . According to Proposition

6.22, the profile U = Uosc +U ev (where Uosc is defined from Uosc
res and Sn0,ξ0 by equation (6.70))

is therefore a solution in Ps,T of the system (5.10). It concludes the proof of theorem 4.1.
The estimate (6.39) is not tame since the norm of V osc in the estimate depends on the

regularity index s. Therefore, it is a priori not possible to obtain the existence of a solution
Uosc of infinite regularity considering a boundary term G infinitely regular, since without a tame
estimate, the existence time T a priori depends on the considered index s. It has been chosen
not to attempt to keep the estimates tame until the end for the sake of simplicity, for example in
estimate (6.44), but it is however conceivable to achieve this more precise statement in further
work.

Possible extensions of the result of this article to less restrictive assumptions are now discussed.
It seems reasonable to consider a similar result under the assumption that the system under study
is hyperbolic with constant multiplicity, and not strictly hyperbolic (Assumption 2). Similarly,
the Hypothesis 7 could be removed to allow outgoing frequencies to exist within the domain. It is
a situation of this type which is considered in [CGW11]. But in this case it is no longer possible to
determine beforehand the traces of incoming modes, as done in Proposition 6.22. This may also
open the way to an infinite number of resonances with outgoing phases, which complicates the
functional framework. The weakening of the uniform Kreiss-Lopatinskii condition Assumption
3 shall be discussed in a future work. Concerning the glancing frequencies, the Assumption 4
stating that all glancing frequencies are of order 2 seems to be crucial, see [Wil00]. Likewise, it
seems difficult to do without Assumption 5 ensuring that no glancing frequencies are created on
the boundary.

Finally, this work raises the question of the justification of the geometric optic expansion that
has been constructed, namely to prove that the function

z 7→ εU1(z, z
′ · ζ1/ε, . . . , z′ · ζm/ε, xd/ε)

is indeed a good approximation on a fixed time interval of the exact solution of (2.1) as ε goes
to zero. To do so, two main methods are practicable. As conducted in [Wil96], if there exists
a solution on a time interval independent on the parameter ε, it is conceivable to show that
this exact solution and the function defined above draw near each other when ε goes to 0, see
[JMR95] and [CGW11]. The problem is that in this work we do not have an exact solution
on a fixed time interval. An other strategy relies on using a large number of corrector profiles,
which we do not dispose either here (constructing correctors relies on small divisor accurate
controls for noncharacteristic modes, which goes even further beyond assumption 6). Both of
these points (getting an existence time of the exact solution independent of epsilon and building
a large number of correctors) do not seem to be within our reach for the moment, but will be
the topics of future studies.

Appendix A. Additional proofs

A.1. Proof of Proposition 2.21. We detail here the proof of Proposition 2.21, omitted at
first because of its length.

Recall that, for ζ in Ξ0, the projectors Πj(ζ), for j in G(ζ)∪R(ζ), are defined as the projectors

from E−(ζ) on Ej−(ζ) according to decomposition (2.23), and that Πe−(ζ) is defined as the

projector from E−(ζ) on the elliptic stable component Ee−(ζ) = ⊕j∈P(ζ)E
j
−(ζ) according to the

same decomposition. Proposition 2.21 then reads as follows.

Proposition A.1 ([Wil96]). For all ζ ∈ Ξ0 the projectors Πj−(ζ) for j in G(ζ) ∪R(ζ), and the
projectors Πe−(ζ) are uniformly bounded with respect to ζ in Ξ0.

Proof. In all the proof we indistinctly denote by e every analytic function which, evaluated in a
particular point α precised below, is nonzero, and which is therefore nonzero in a neighborhood

of the point α. Since the projectors Πj−(ζ), j ∈ G(ζ) ∪ R(ζ) and Πe−(ζ) are homogeneous of
degree 0 with respect to ζ, the claim is proved locally in Σ0, and the result follows from the
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compactness of the sphere Σ0. The study is therefore reduced locally in a neighborhood of every
point of Σ0.

Consider ζ = (τ , η) ∈ Σ0. We are interested in the behavior, on a neighborhood of ζ in

Σ0, of the projectors Πj−(ζ), j ∈ G(ζ) ∪ R(ζ) and Πe−(ζ), and therefore in the behavior, in
a neighborhood of ζ, of the eigenvalues of A(ζ). According to Proposition 2.9 there exists a

neighborhood V of ζ in Σ0, an integer L > 0, and a regular basis CN in which the matrix A(ζ)
is a block diagonal matrix of the form

(A.1) diag
(
A−(ζ),A+(ζ),A1(ζ), . . . ,AL(ζ)

)
,

where the block A−(ζ) (resp. A+(ζ)), eventually of size zero, is of negative definite (resp.
positive definite) real part, and where the blocks Aj(ζ) are of type iii) or iv) with the notations
of Proposition 2.9. According to this proposition, the eigenvalues associated with the blocks of
type iii) remain imaginary for ζ ∈ Σ0 in a neighborhood of ζ and therefore do not contribute to
the elliptic parts of the stable and unstable subspaces. However, the eigenvalues of the blocks of
type iv) may have a nonzero real part in a neighborhood of ζ and thus contribute to the elliptic

parts. Thus, in a neighborhood of ζ in Σ0, the elliptic part ⊕j∈P(ζ)E
j
−(ζ) writes as the direct

sum of the stable subspace for A(ζ) associated with the block A−(ζ) and of the generalized
eigenspaces associated with the potential eigenvalues of negative real part of the blocks Aj(ζ)
of type iv). The detailed description of these eigenspaces constitutes the central point of the
analysis below.

In the basis adapted to the decomposition (A.1), which is analytic with respect to ζ ∈ Σ0, we
consider the first vectors associated with the block A−(ζ) and the aim is to complete this set of
vectors into an analytic basis of the stable subspace E−(ζ). The purpose is to construct, in a
neighborhood of ζ, a determination, continuous with respect to ζ, of the stable eigenvectors of
A(ζ) associated with the blocks Aj(ζ) of type iii) and iv) (which are therefore imaginary in ζ)
and to deduce from that the existence of a linearly independent set of generalized eigenvectors
continuously depending on ζ. To this end, the analyis of [Mét00] is followed.

Let i ξ
j
be an imaginary eigenvalue of A(ζ) of algebraic multiplicity nj. By definition of A(ζ)

and with the notations of Assumption2, there exists a unique index kj between 1 and N such
that

τ = τkj(η, ξj).

Two cases may occur, depending on the cancellation of the quantity
∂τkj
∂ξ (η, ξ

j
). In the first

case we shall see that there exists a continuous extension of the eigenvalue i ξ
j
which remains

imaginary for ζ ∈ Σ0 in a neighborhood of ζ, and that there exists a regular projector on the
associated subspace. In the second case, the eigenvalue i ξ

j
is degenerate (i.e. is not semisim-

ple) and extends to a continuous eigenvalue i ξj , which, depending on the position of ζ in the
neighborhood of ζ, may become of nonzero real part, or imaginary and simple, or even remains
imaginary and degenerate.

First suppose that
∂τkj
∂ξ

(η, ξ
j
) 6= 0,

that is (τ , η, ξ
j
) is incoming or outgoing. According to Assumption 2, for (ζ, ξ) in Rd+1 \ {0},

we have

(A.2) det
(
A(ζ)− iξI

)
= det(Ad(0))

−1iN detL
(
0, (ζ, ξ)

)
=

(
τ − τkj(η, ξ)

)
e(ζ, ξ),

where e(ζ, ξ
j
) 6= 0. Since

∂τkj
∂ξ (η, ξ

j
) 6= 0, according to the Weierstrass preparation theorem

[Hör90], there exists a unique real analytic function ξj defined in a neighborhood of ζ in Σ0

satisfying ξj(ζ) = ξ
j
and such that in a neighborhood of (ζ, ξ

j
) in Σ0 × R we have

(A.3) τ − τkj(η, ξ) =
(
ξ − ξj(ζ)

)
e(ζ, ξ),
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where e(ζ, ξ
j
) 6= 0. Thus, in a neighborhood of (ζ, ξ

j
) in Σ0 × R we have

det
(
A(ζ)− iξI

)
=

(
ξ − ξj(ζ)

)
e(ζ, ξ),

where e(ζ, ξ
j
) 6= 0, so in a neighborhood of ζ in Σ0, i ξj(ζ) is an eigenvalue (analytic with respect

to ζ) of A(ζ) of algebraic multiplicity 1. On an other hand, according to identity (A.3), we have
τ = τkj

(
η, ξj(ζ)

)
, thus

A(ζ)πkj(η, ξj(ζ)) = i ξj(ζ)πkj (η, ξj(ζ)).

In a neighborhood of ζ in Σ0, i ξj(ζ) is therefore an eigenvalue of A(ζ) of algebraic multiplicity

1, thus simple. Furthermore the projector πkj
(
η, ξj(ζ)

)
is analytic with respect to ζ and is a

projector on the eigenspace of A(ζ) associated with i ξj(ζ). Thus, in the block decomposition
(A.1), there is a unique scalar block among the blocks Al(ζ) corresponding to the eigenvalue
i ξj(ζ). In the incoming case, we then obtain associated eigenvectors depending analyticly on
ζ ∈ Σ0 in a neighborhood of ζ, contributing to the stable subspace E−(ζ).

If now
∂τkj
∂ξ (η, ξ

j
) = 0, then, according to Assumption 4, we have

∂2τkj
∂ξ2 (η, ξ

j
) 6= 0 and in that

case we say that ξ
j
is glancing. Thus there exists a function e defined in a neighborhood of ξ

j

with e(ξ
j
) 6= 0 such that for ξ close to ξ

j
, we have

τ − τkj (η, ξ) = (ξ − ξ
j
)2 e(ξ).

We deduce, according to (A.2) that for ξ close to ξ
j
,

det
(
A(ζ)− iξI

)
=

(
ξ − ξ

j

)2
e(ξ),

where e(ξ
j
) 6= 0. The algebraic multiplicity nj of the eigenvalue iξ

j
is therefore equal to 2

whereas its geometric multiplicity equals 1 since

ker
(
A(ζ)− i ξ

j
I
)
= kerL

(
0, (ζ, ξ

j
)
)
= Imπkj(η, ξj),

and since the projector πkj(η, ξj) is of rank 1. The aim is therefore to find a basis of the

generalized eigenspace associated with i ξ
j
, which is of dimension 2. By definition of the analytic

function τkj and of the projector πkj , we have, for ξ close to ξ
j
,

L
(
0, τkj (η, ξ), η, ξ

)
πkj(η, ξ) = 0.

Differentiating this equation with respect to ξ and evaluating in ξ = ξ
j
, one gets, since τkj (η, ξj) =

τ ,

∂ξτkj(η, ξj) ∂τL
(
0, τ , η, ξ

j

)
πkj (η, ξj) + ∂ξL

(
0, τ , η, ξ

j

)
πkj(η, ξj) + L

(
0, τ , η, ξ

j

)
∂ξπkj(η, ξj) = 0,

that is to say, according to the expression of L
(
0, (τ, η, ξ)

)
and using ∂ξτkj (η, ξj) = 0,

Ad(0)πkj (η, ξj) + iAd(0)
(
A(ζ)− iξ

j

)∂πkj
∂ξ

(η, ξ
j
) = 0.

Denoting P 0 := πkj(η, ξj) and P 1 :=
∂πkj
∂ξ (η, ξ

j
) we obtain

(A.4)
(
A(ζ)− iξ

j

)
P 1 = iP 0.

We then denote by Ej a nonzero vector of the linear line Imπkj(η, ξj). The equation (A.4) thus

leads to

(A.5)
(
A(ζ)− iξ

j

)
P 1Ej = iEj.

One can then verify that the set of vectors Ej , P 1Ej is linearly independent and that it therefore
forms a basis of the generalized eigenspace associated with i ξ

j
. In this basis, according to (A.5),
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the operator A(ζ) restricted to the generalized eigenspace associated with i ξ
j
is given by the

following matrix:

(A.6) Q(ζ) =


 iξ

j
i

0 iξ
j


 .

We have therefore obtained a triangularization of the matrix A(ζ) restricted to the generalized
eigenspace associated with i ξ

j
, and we seek to extend this structure in a neighborhood of ζ and

to study the behavior of the stable eigenvalues of the matrix A(ζ) restricted to the generalized
eigenspace associated with i ξ

j
in a neighborhood of ζ. In [Mét00] and using a result of [Ral71],

it is proved that there exists a linearly independent set of vectors E0
j (ζ), E

1
j (ζ), analytic with

respect to ζ ∈ Σ in a neighborhood of ζ, generating a subspace Fj(ζ) which is stable under A(ζ),

such that E0
j (ζ) = Ej and E

1
j (ζ) = P 1Ej and such that the restriction of A(ζ) to the subspace

Fj(ζ) is given by

(A.7) Q(ζ) = i


 ξ

j
+ q1(ζ) 1

q2(ζ) ξ
j


 ,

where q1(ζ) = q2(ζ) = 0 and where ∂q2
∂τ (ζ) 6= 0. Among the blocks Al(ζ) of the block diagonal-

ization (A.1) of the matrix A(ζ) in a neighborhood of ζ, there is therefore a 2 × 2 block given
by Q(ζ).

The aim is now to study the eigenvalues of the 2×2 block Q(ζ) above and to find a continuous
determination of the stable eigenvalue in a neighborhood of ζ in Σ (and not only in Σ0), namely
the Laplace parameter γ is allowed to be positive. First the expression of the characteristic
polynomial of Q(ζ) is investigated. It is of degree 2, allowing to obtain an explicit formula for
the eigenvalues of Q(ζ). According to (A.2), in a neighborhood of (ζ, ξ

j
), we have

det
(
A(ζ)− iξI

)
=

(
τ − τkj(η, ξ)

)
e(ζ, ξ).

On an other hand, according to the Weierstrass preparation theorem and since ∂ξτkj(η, ξj) = 0

and ∂2ξ τkj(η, ξj) 6= 0, there exists a couple of functions (f0, f1), analytic with respect to ζ,

satisfying f0(ζ) = f1(ζ) = 0 and such that for (ζ, ξ) close to (ζ, ξ
j
),

(A.8) τ − τkj(η, ξ) =
(
ξ2 −

(
2ξ
j
+ f1(ζ)

)
ξ + ξ2

j
+ f0(ζ)

)
e(ζ, ξ),

where e(ζ, ξ
j
) 6= 0. Thus

det
(
A(ζ)− iξI

)
=

(
ξ2 −

(
2ξ
j
+ f1(ζ)

)
ξ + ξ2

j
+ f0(ζ)

)
e(ζ, ξ),

where e(ζ, ξ
j
) 6= 0. But according to the block decomposition of A(ζ) we have

det
(
A(ζ)− iξI

)
=

(
det

(
Q(ζ)− iξI

))
e(ζ, ξ),

where e(ζ, ξ
j
) 6= 0 so that

(
ξ2 −

(
2ξ
j
+ f1(ζ)

)
ξ + ξ2

j
+ f0(ζ)

)
=

(
det

(
Q(ζ)− iξI

))
e(ζ, ξ),

where e(ζ, ξ
j
) 6= 0. Since according to (A.7) the ξ polynomial given by det

(
Q(ζ) − iξI

)
is of

degree 2 and of leading coefficient −1, we obtain

det
(
Q(ζ)− iξI

)
= −

(
ξ2 −

(
2ξ
j
+ f1(ζ)

)
ξ + ξ2

j
+ f0(ζ)

)
.

By identification, according to (A.7), we get f1 = q1 and f0 = ξ
j
q1 − q2.

The interest is now made on the behavior of the eigenvalues of Q(ζ), and therefore on the
roots of the polynomial ξ2 −

(
2ξ
j
+ f1(ζ)

)
ξ+ ξ2

j
+ f0(ζ), for ζ in a neighborhood of ζ in Σ. The
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Puiseux expansion theory ensure that for γ > 0 small, the eigenvalues of Q(ζ) with ζ = (τ−iγ, η)
admit an expansion of the form

ξ(ζ) = ξ
j
+ α1,2 γ

1/2 +O(γ),

where the coefficients α1,2 are obtained resolving

(α1,2)
2 = i

(
∂τf0(ζ)− ∂τf1(ζ) ξj

)
.

But since f1 = q1 and f0 = ξ
j
q1 − q2, we have

∂τf0(ζ)− ∂τf1(ζ) ξj = −∂τq2(ζ) 6= 0,

so that Imα1,2 = ±c where c > 0. Thus for γ > 0, Q(τ − iγ, η) admits a unique stable

eigenvalue ξ−j (ζ) (namely such that Im ξ−j (ζ) > 0) and a unique unstable eigenvalue ξ+j (ζ) (such

that Im ξ+j (ζ) < 0). It is deduced that for ζ in a neighborhood of ζ in Σ \ Σ0, Q(ζ) admits a

unique stable eigenvalue denoted by ξj(ζ). We then seek to continuously extend the eigenvalue

ξj for γ = 0, that is to say we are interested in the root ξ2 −
(
2ξ
j
+ f1(ζ)

)
ξ + ξ2

j
+ f0(ζ) that

extends ξj(ζ) to a neighborhood of ζ in Σ. The behavior of this extension ξj shall then depends

on the sign of the discriminant (real when ζ is real) ∆j(ζ) := 4 ξ
j
f1(ζ) + f1(ζ)

2 − 4f0(ζ) which

has been represented in Figure 7.

τ = τ gj (η)

∆j = 0

Σ0

∆j > 0
ξj(ζ) ∈ R

∆j < 0
Im ξj(ζ) > 0

•
ζ

Figure 7. Sign of the discriminant ∆j(ζ) in a neighborhood of ζ.

When the discriminant ∆j(ζ) of this polynomial is negative, the eigenvalue ξj(ζ) is necessarily
given by

ξj(ζ) =
2 ξ

j
+ f1(ζ) + i

√
4f0(ζ)− 4 ξ

j
f1(ζ)− f1(ζ)2

2
,

since it must be of non-negative imaginary part. When the discriminant ∆j(ζ) is zero, ξj(ζ) is
given by

ξj(ζ) =
2 ξ

j
+ f1(ζ)

2
.

The location of the discriminant roots may even be made precise, since it satisfies ∂τ∆j(ζ) =

4
(
∂τf1(ζ) ξj − ∂τf0(ζ)

)
6= 0, so according to the implicit functions theorem, there exists an

analytic function τ gj defined in a neighborhood of η which parameterizes in a neighborhood of ζ

in Σ0 the set of the discriminant’s roots, see Figure 7. Finally, when the discriminant ∆j(ζ) is
positive, we must determine which one of the real roots

(A.9)
2 ξ

j
+ f1(ζ)±

√
4 ξ

j
f1(ζ) + f1(ζ)2 − 4f0(ζ)

2
,

continuously extends the stable eigenvalue ξj(ζ) when γ = 0. If ξj(ζ) refers to the sought
eigenvalue until γ = 0, and if we denote ζ = (σ, η) := (τ − iγ, η), since ξj(ζ) is real when γ = 0
and Im ξj(ζ) > 0 when γ > 0, we have necessarily

∂ Im ξj
∂ Imσ

∣∣∣
γ=0

6 0,
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so that according to the Cauchy-Riemann equations, we must have

∂τ
(
Re ξj

)
|γ=0 6 0.

Thus, if ∂τf0(ζ)− ∂τf1(ζ) ξj > 0, the real root

2 ξ
j
+ f1(ζ) +

√
4 ξ

j
f1(ζ) + f1(ζ)2 − 4f0(ζ)

2

is the one that continuously extends the stable eigenvalue ξj(ζ) when γ = 0, and in the other
case, the other root must be chosen. We have therefore obtained of continuous determination
of the stable eigenvalue ξj(ζ) of the matrix Q(ζ) in a neighborhood of ζ. Note now that an
eigenvector of the matrix 

 ξ
j
+ q1(ζ) 1

q2(ζ) ξ
j




associated with the eigenvalue ξj(ζ) writes
(
1, q2(ζ)

ξj(ζ)−ξj

)
. One thus gets, using the linearly inde-

pendent set of vectors E0
j (ζ), E

1
j (ζ), an eigenvector A(ζ) associated with the stable eigenvalue

i ξj(ζ) continuous with respect to ζ4.
In a nutshell, in a neighborhood of ζ in Σ0, the degenerate imaginary eigenvalue i ξ

j
contin-

uously extends in a stable eigenvalue i ξj(ζ) of which the behavior depends on the sign of the
discriminant ∆j(ζ) in the neighborhood of ζ, which has been figured in Figure 7. If ∆j(ζ) is
negative, then i ξj(ζ) is of negative real part so the eigenvalue i ξj(ζ) contributes to the elliptic
part of the stable subspace E−(ζ). If ∆j(ζ) is positive, then i ξj(ζ) is a simple imaginary eigen-

value of A(ζ) so it contributes to a subspace El−(ζ) with l in R(ζ). Finally if ∆j(ζ) is zero, the

eigenvalue i ξj(ζ) remains imaginary and degenerate so it contributes to a subspace El−(ζ) with
l in G(ζ).

We denote now by i ξ
l
, l = 1, . . . , r the real incoming eigenvalues and by i ξ

l
, l = r+1, . . . , r+

g the glancing eigenvalues of the matrix A(ζ). Using the notations of the beginning of the
proof, we have found continuous extensions i ξl, l = 1, . . . , r + g, of these eigenvalues in a
neighborhood of ζ. Therefore, a continuous determination of the stable eigenvalues of the blocks
A1(ζ), . . . ,AL(ζ) has been determined, as well as a continuous basis of the stable subspace E−(ζ)
constituted of generalized eigenvectors of the matrix A−(ζ) and of eigenvectors of the matrix

A(ζ) associated with the eigenvalues i ξl(ζ) for l = 1, . . . , r + g. Then we denote by Π̃e−(ζ) the
analytic projector from E−(ζ) to the stable subspace associated with the elliptic block A−(ζ),

and, for l = 1, . . . , r+g, Π̃l−(ζ) the continuous projector from E−(ζ) to the eigenspace associated
with i ξl(ζ). Since these projectors are continuous with respect to ζ in a neighborhood of ζ, they
can be assumed to be bounded on this neighborhood.

If l = 1, . . . , r, the eigenvalue i ξl(ζ) is imaginary and simple in a neighborhood of ζ, so, for all

ζ, the projector Π̃l−(ζ) contributes to a projector Πj−(ζ) for some j (depending on ζ) in R(ζ). If
l = r + 1, . . . , r + g, then, depending on the sign of ∆l, the eigenvalue i ξl(ζ) may be imaginary
and simple, or imaginary and degenerate, or even of nonzero real part, so depending on where

ζ is in a neighborhood of ζ, the projector Π̃l−(ζ) contributes to Πe−(ζ) (when ∆l < 0), to Πj−(ζ)

for some j in G(ζ) (when ∆l = 0) or to Πj−(ζ) for some j in R(ζ) (when ∆l > 0). As for it, the

projector Π̃e−(ζ) always contributes to Πe−(ζ).

We seek now to explicitly describe the projectors Πe−(ζ) and Πj−(ζ) for j ∈ R(ζ) ∪ G(ζ). To
simplify the notations, we assume that among the imaginary eigenvalues i ξ

l
, there is only one

of them which is glancing, namely that g = 1. The expressions of the sought projectors depend
on whether the eigenvalue i ξr+1(ζ) is incoming, glancing, or of negative real part, and therefore

4Since ξj(ζ) is a root of the polynomial ξ2 −
(

2ξ
j
+ q1(ζ)

)

ξ + ξ2
j
+ ξ

j
q1(ζ) − q2(ζ), according to f1 = q1 and

f0 = ξ
j
q1 − q2, we have q2(ζ)

ξj (ζ)−ξj
= ξj(ζ) − ξ

j
− q1(ζ). Thus the following limit holds q2(ζ)

ξj (ζ)−ξj
−→ 0
ζ→ζ

, and the

considered eigenvector continuously depends on ζ in a neighborhood of ζ
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on where is ζ in the neighborhood of ζ, see 7. If ζ belongs to the area of the neighborhood of
ζ where ∆r+1(ζ) > 0, then the eigenvalue i ξr+1(ζ) is incoming, so R(ζ) is of cardinality r + 1
and G(ζ) is empty. In this case, for all index j in R(ζ), we have

Πj−(ζ) = Π̃l−(ζ),

for some l between 1 and r + 1, and

Πe−(ζ) = Π̃e−(ζ).

If ζ is, in the neighborhood of ζ, on the hypersurface defined by ∆r+1 = 0, then i ξr+1(ζ) is
glancing and in that case R(ζ) is of cardinality r and G(ζ) is if cardinality 1. We have therefore,
for j in R(ζ),

Πj−(ζ) = Π̃l−(ζ),

for some l between 1 and r, for the index j of G(ζ),
Πj−(ζ) = Π̃r+1

− (ζ),

and

Πe−(ζ) = Π̃e−(ζ).

Finally, if ζ belongs to the area of the neighborhood of ζ where ∆j(ζ) < 0, then i ξr+1(ζ) is of
negative real part so it contributes to the elliptic part E−(ζ). Thus R(ζ) is of cardinality r,
G(ζ) is empty and the extension of the degenerate eigenvalue iξr+1(ζ) contributes to the elliptic
part. In this case, for all index j in R(ζ), we have

Πj−(ζ) = Π̃l−(ζ),

for some l between 1 and r, and

Πe−(ζ) = Π̃e−(ζ) + Π̃r+1
− (ζ).

Therefore, since the projectors Π̃l−(ζ), l = 1, . . . , r + 1 and Π̃e−(ζ) are bounded uniformly with

respect to ζ in a neighborhood of ζ, we deduce that the projectors Πe−(ζ) and Πj−(ζ) for j ∈
R(ζ) ∪ G(ζ) are bounded uniformly with respect to ζ in a neighborhood of ζ, which concludes
the proof of Proposition 2.21.

In the general case where there are multiple glancing eigenvalues i ξ
l
(namely when g > 1),

the projectors Πe−(ζ) and Πj−(ζ) for j ∈ R(ζ) ∪ G(ζ) can still be expressed using the projectors

Π̃l−(ζ), l = 1, . . . , r+ g and Π̃e−(ζ). Since the expression of Πe−(ζ) will be needed in the proof of
Proposition 6.16 below, it is given here. For ζ in a neighborhood of ζ in Σ0, we have

(A.10) Πe−(ζ) = Π̃e−(ζ) +

r+g∑

j=r+1

1∆j(ζ)<0 Π̃
j
−(ζ).

�

A.2. Proof of Lemma 2.22. The following proof of Lemma 2.22 uses results and notations
from the previous one, and is therefore given now. First we recall the statement of the Lemma.

Lemma A.2. There exists a positive constant C > 0 such that, if the real frequency α = (τ, η, ξ)
in R1+d \ {0} is characteristic, and if k between 1 and N is such that τ = τk(η, ξ), then we have

|∂ξτk(η, ξ)| > C
dist

(
(τ, η),G

)1/2

|τ, η|1/2 .

Using Lemma 2.15, we therefore obtain the following estimate

(A.11) |π̃αEk(η, ξ)| > C
dist

(
(τ, η),G

)1/2

|τ, η|1/2 .
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Proof. The interest is made at first in the first equality, which is proved using the homogeneity
of degree zero of ∂ξτk(η, ξ) and of degree one of the distance. The analysis is therefore made on
the sphere Σ0, and we denote, for ζ in Σ0,

mg(ζ) =





1 if sp(A(ζ)) ∩ iR = ∅,

min
j∈G(ζ)∪

R(ζ)∪S(ζ)

∣∣∂ξτkj
(
η, ξj(ζ)

)∣∣ otherwise,

where sp(A(ζ)) refers to the spectrum of the matrix A(ζ), and where the notations kj and ξj(ζ)
has been introduced in Proposition 2.16. Using the compactness of the sphere Σ0, it will be
proved that mg satisfies

(A.12) mg(ζ) > C dist(ζ,G)1/2,

for all ζ in Σ0, where C > 0 is a suitable fixed constant. We thus consider ζ := (τ , η) in Σ0,
and we show that there exists a neighborhood V of ζ in which the previous equality (A.12) is
satisfied.

We recall the results obtained in the proof of Proposition 2.21, in which a continuous deter-
mination of the eigenvalues of A(ζ) for ζ in a neighborhood of ζ has been determined. The
previous proof focused on describing the stable eigenvalues, but it can be immediately extended
to all eigenvalues of A(ζ). Denote by i ξ

j
the imaginary eigenvalues of A(ζ). If the imaginary

eigenvalue i ξ
j
is not glancing, the proof of the Proposition 2.21 yields to a continuous extension

i ξj(ζ) in a neighborhood of ζ, which is an eigenvalue of A(ζ). If i ξ
j
is glancing, then we obtain,

in a neighborhood of ζ, two continuous eigenvalues i ξ−j (ζ) and i ξ
+
j (ζ) extending i ξj , which are

possibly equals (when they are glancing). Finally, the block structure 2.9 and the Proposition
2.21 provide a basis of CN in which the matrix A(ζ) is, in a neighborhood of ζ, block diagonal,
with a block A±(ζ) with eigenvalues of nonzero real part, and scalar blocks corresponding to
the eigenvalues iξj(ζ). Three cases are then to be investigated.

◦ All eigenvalues of A±(ζ) are of nonzero real part in a neighborhood of ζ, so they don’t
contribute to mg(ζ).

◦ If i ξ
j
is imaginary and ∂ξτkj

(
η, ξj(τ , η)

)
6= 0, namely if the real characteristic frequency

αj(ζ) is incoming or outgoing, then it has been proven that the eigenvalue i ξj(ζ) is still
incoming or outgoing in a neighborhood of ζ. Furthermore, according to equation (A.3)
differentiated with respect to ξ and evaluated in ξ = ξj(ζ), for ζ in a neighborhood of ζ, we
have

∂ξτkj
(
η, ξj(ζ)

)
= −e

(
η, ξj(ζ)

)
,

where e is an analytic function nonzero in ζ, which is therefore lower bounded in a neigh-

borhood of
(
ζ, ξj(ζ)

)
. Thus, for ζ in a neighborhood of ζ, we have

∣∣∂ξτkj
(
η, ξj(ζ)

)∣∣ > C,

with C > 0.
◦ Finally, if i ξ

j
is glancing, namely if i ξ

j
is imaginary and ∂ξτkj (η, ξj) = 0, then i ξ

j
is

extended by two eigenvalues i ξ±j (ζ), of which the behavior depends on where ζ is in the

neighborhood of ζ, see Figure 7. Denote by ∆j(ζ) the discriminant of the characteristic
polynomial of the 2 × 2 block associated with the glancing eigenvalue. If ζ is such that
∆j(ζ) < 0, then the two eigenvalues i ξ±j (ζ) are of nonzero real part, so they do not contribute

to mg(ζ). If ∆j(ζ) = 0, then ξ−j (ζ) = ξ+j (ζ) and the characteristic frequency
(
ζ, ξ±j (ζ)

)
is

glancing, so the equality (A.12) is immediately satisfied. Finally, if ∆j(ζ) > 0, then the

two distinct eigenvalues i ξ±j (ζ) are imaginary, and contributes to mg(ζ). According to the

relation (A.8), differentiate with respect to ξ and evaluated in ξ = ξ+j (ζ), we have, for
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ζ = (τ, η) in a neighborhood of ζ,

∂ξτkj
(
η, ξ+j (ζ)

)
= 2

(
f1(ζ)/2 + ξ

j
− ξ+j (ζ)

)
e
(
ζ, ξ+j (ζ)

)
,

where e is an analytic function, nonzero in (ζ, ξ
j
). According to the expression (A.9) of the

roots ξ±j (ζ), we obtain

∂ξτkj
(
η, ξ+j (ζ)

)
= ±

√
∆j(ζ) e

(
ζ, ξ+j (ζ)

)
.

But, according to the proof of Proposition 2.21 above, one may write, for ζ = (τ, η) in a
neighborhood of ζ,

∆j(ζ) =
(
τ − τ gj (η)

)
e(ζ),

where e is an analytic function, nonzero in ζ, and where the function τ gj parameterizes the
surface of the zeros of ∆j. We finally infer

∣∣∣∂ξτkj
(
η, ξ+j (ζ)

)∣∣∣ > C
∣∣∣τ − τ gj (η)

∣∣∣
1/2

= C
∣∣∣(τ, η)−

(
τ gj (η), η

)∣∣∣
1/2

> C dist
(
ζ,G

)1/2
,

since the frequency
(
τ gj (η), η

)
is glancing by construction of τ gj . The same arguments apply

to i ξ−j (ζ).

Up to reducing the constant C, we have therefore proved the existence of a neighborhood V in
which the equality (A.12) is satisfied. The result follows from the compactness of Σ0 and by
homogeneity.

The second inequality of the Lemma 2.22 is obtained immediately using the result of Lemma
2.15. �

A.3. Proof of Proposition 6.16. The following proof also comes after the one of Proposition
2.21.

We recall that Πe−(ζ) is the projector from E−(ζ) on the elliptic stable component Ee−(ζ) =

⊕j∈P(ζ)E
j
−(ζ) according to the decomposition (2.23) and that, when ζ is not glancing, Πe

CN
(ζ) is

the projection from CN on the stable elliptic component Ee−(ζ) according decomposition (2.25).
The statement of Proposition 6.16 reads as follows.

Proposition A.3. Under Assumption 6, there exists a constant c1 > 0 and a real number b1
such that, for all ζ in Fb \ {0}, the following estimates hold

∣∣∣etA(ζ) Πe−(ζ)
∣∣∣ 6 c1 e

−c1 t |ζ|−b1 6 c1, ∀t > 0,(A.13a)

∣∣∣etA(ζ) Πe
CN

(ζ)
∣∣∣ 6 c1 |ζ|b1 e−c1 t |ζ|

−b1
, ∀t > 0,(A.13b)

∣∣∣etA(ζ)
(
I −Πe

CN
(ζ)

)∣∣∣ 6 c1 |ζ|b1 , ∀t 6 0.(A.13c)

Proof. The homogeneity of degree 1 of the matrix A(ζ) and of degree zero of the projectors
Πe−(ζ) and Πe

CN
(ζ), and the compactness of the unit ball Σ0 are used, and we therefore work in

a neighborhood of every point ζ of Σ0. The result is then extended to a finite conic covering of
Ξ0. Since the projector Πe

CN
(ζ) is defined only for ζ non glancing, for inequalities (A.13b) and

(A.13c) where it occurs, we are only interested in the points of the neighborhood of ζ which are
not glancing. Thus we consider a point ζ of Σ0 and we come back to the notations of the proof
of Proposition 2.21.

The interest is first made on the first estimate (A.13a). In the proof of Proposition 2.21, we
have constructed, in a neighborhood of ζ, a continuous basis of E−(ζ) associated with a regular
change-of-basis matrix T (ζ) in which the matrix A(ζ) restricted to E−(ζ) is the following block
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diagonal matrix of size p× p



A−(ζ) 0

iξ1(ζ)Iω1

. . .

0 iξr+g(ζ)Iωr+g



,

constituted of a block A−(ζ) of negative definite real part, of diagonal blocks iξj(ζ) Iωj , j =
1, . . . , r associated with the incoming eigenvalues ξ

j
and of diagonal blocks iξj(ζ)Iωj , j = r +

1, . . . , r + g associated with the eigenvalues ξ
j
which are glancing in ζ. In that case, according

to the expression (A.10) of the projector Πe−(ζ) in a neighborhood of ζ in Σ0, the linear map

etA(ζ) Πe−(ζ) from E−(ζ) to itself is given, in the basis associated with the matrix T (ζ), by the
following p× p block diagonal matrix




etA−(ζ)

0

ei t ξr+1(ζ) 1∆r+1(ζ)<0 Iωr+1

. . .

ei t ξr+g(ζ) 1∆r+g(ζ)<0 Iωr+g




.

On one hand, the block A−(ζ) is of negative definite real part, uniformly with respect to ζ. On
the other hand, one can check that

Im ξr+l(ζ) = |∆r+l(ζ)|1/2/2,
for l = 1, . . . , g, where ∆r+l(ζ) refers to the discriminant of the characteristic polynomial asso-
ciated with the glancing eigenvalue ξ

r+l
defined in the proof of Proposition 2.21 and is figured

in Figure 7. But one can write, in a neighborhood of ζ in Σ0,

∆j(ζ) =
[
τ − τ gj (η)

]
e(ζ),

with e(ζ) 6= 0, where we recall that τ gj parameterizes in Σ0 the surface of cancellation of ∆j. It
yields to the following estimate on ∆j,

(A.14) |∆j(ζ)| > C
∣∣τ − τ gj (η)

∣∣ = C
∣∣ζ − (τ gj (η), η)

∣∣ > C dist(ζ,G).
Since the matrix T is regular, and therefore uniformly bounded with respect to ζ in a neighbor-
hood of ζ in Σ0, according (A.14), we get

(A.15)
∣∣∣etA(ζ) Πe−(ζ)

∣∣∣ 6 Ce−C dist(ζ,G)1/2 t.

We consider now ζ in a conic neighborhood of ζ in Ξ0 with ζ = λζ∗ where λ = |ζ| ∈ R∗
+ and ζ∗

is in a neighborhood of ζ in Σ0. Then, by homogeneity and using (A.15) and Assumption 6, we
obtain

∣∣∣etA(ζ) Πe−(ζ)
∣∣∣ =

∣∣∣eλtA(ζ∗)Πe−(ζ
∗)
∣∣∣ 6 Ce−C dist(ζ∗,G)1/2 λt

= Ce−C dist(λζ∗,G)1/2 λ1/2t
6 Ce−C|ζ|(a1+1)/2 t.

Finally the inequality extends to the whole space Ξ0 by compactness of Σ0, yielding to the
required inequality (A.13a) for all ζ in Fb \ {0}.

Concerning estimate (A.13b), note that, for t > 0 and for ζ non glancing,

etA(ζ) Πe
CN

(ζ) = etA(ζ) Πe−(ζ)Π
−
CN

(ζ),
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where Π−
CN

(ζ) is the projector from CN to the stable subspace E−(ζ) according to the decompo-

sition (2.25), defined for ζ non glancing. The aim is therefore to control the projector Π−
CN

(ζ),
and then use the inequality (A.13a) to conclude. We still work in a neighborhood of ζ in Σ0

and, to simplify the notations, we assume that there exists in ζ a unique glancing eigenvalue ξ
g

of algebraic multiplicity 2.
Applying the arguments of the proof of Proposition 2.21 to the unstable part E+(ζ), one

obtain an analytic basis

E1(ζ), . . . , EN (ζ)

of CN associated with a change-of-basis matrix T̃ (ζ), analytic in a neighborhood of ζ in Σ0,
such that in this basis, the linear map A(ζ) writes

T̃ (ζ)−1 A(ζ) T̃ (ζ) = diag
(
A−(ζ),A1(ζ), Q(ζ),A+(ζ),A2(ζ)

)
,

where A−(ζ) is of negative definite real part, A1(ζ) is the diagonal block associated with the in-
coming eigenvalues, A+(ζ) is of positive definite real part, A2(ζ) is the diagonal block associated
with the outgoing eigenvalues, and the unique 2 × 2 block Q(ζ), associated with the glancing
eigenvalue ξ

g
, writes

Q(ζ) = i




ξ
g
+ q1(ζ) 1

q2(ζ) ξ
g


 ,

where q1(ζ) = q2(ζ) = 0 and ∂q2
∂τ (ζ) 6= 0.

We want now to construct, using the basis E1, . . . , EN , a new basis F1, . . . , FN adapted to
the decomposition

CN = E−(ζ)⊕ E+(ζ)

for ζ non glancing. If E1(ζ), . . . , Ep−1(ζ) are the p− 1 first vectors corresponding to the blocks
A−(ζ) and A1(ζ) of the basis of CN associated with T (ζ), we set, for j = 1, . . . , p− 1, Fj(ζ) :=
Ej(ζ). Note that F1(ζ), . . . , Fp−1(ζ) is therefore a set of linearly independent vectors of E−(ζ).
We set as well Fj(ζ) := Ej(ζ) for j = p+2, . . . , N , where Ep+2(ζ), . . . , EN (ζ) are the vectors of
the basis of CN defined by T (ζ) associated with the blocks A+(ζ) and A2(ζ), constituting a set
of linearly independent vectors of E+(ζ).

The two vectors Fp(ζ) and Fp+1(ζ) are now to be determined, which are the stable and
unstable eigenvectors of A(ζ) associated with the block Q(ζ). If ξ−(ζ), ξ+(ζ) are the two stable
and unstable eigenvalues (equal for ζ glancing) associated with the glancing eigenvalue ξ

g
, then

the stable and unstable eigenvectors of A(ζ) associated with ξ−(ζ) and ξ+(ζ) are given by

Fp(ζ) := Ep(ζ) +
q2(ζ)

ξ−(ζ)− ξ
g

Ep+1(ζ), Fp+1(ζ) := Ep(ζ) +
q2(ζ)

ξ+(ζ)− ξ
g

Ep+1(ζ).

Indeed, an eigenvector of the matrix T̃ (ζ)−1 A(ζ) T̃ (ζ) associated with the eigenvalue ξ±(ζ) is

given by t(0, . . . , 0, 1, q2(ζ)
ξ±(ζ)−ξ

g

, 0, . . . , 0). Note that when ζ est glancing, namely when ξ−(ζ) =

ξ+(ζ) and q2(ζ) = 0, we have Fp(ζ) = Fp+1(ζ) = Ep(ζ).
The change-of-basis matrix from the canonical basis of CN to the basis F1, . . . , FN is therefore

given by the product of the matrix T (ζ) and the block diagonal matrix

P (ζ) := diag


Ip−1,




1 1

q2(ζ)

ξ−(ζ)− ξ
g

q2(ζ)

ξ+(ζ)− ξ
g


 , IN−p−1


 .

Thus the projector Π−
CN

writes

Π−
CN

= T (ζ)P (ζ)


 Ip 0

0 0


P (ζ)−1 T (ζ)−1.
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The matrix T (ζ) is analytic and therefore bounded as well as its inverse in a neighborhood of

ζ. Since it has already been proven that q2(ζ)
ξ−(ζ)−ξ

g

and q2(ζ)
ξ+(ζ)−ξ

g

are bounded in a neighborhood

of ζ, the matrix P (ζ) and tcomP (ζ) are bounded. The determinant detP (ζ) shall now be

estimated. Since ξ−(ζ) and ξ+(ζ) are the two (possibly equal) roots of the polynomial ξ2 −(
2ξ
g
+ q1(ζ)

)
ξ + ξ2

g
+ ξ

g
q1(ζ)− q2(ζ), we obtain

(
ξ−(ζ)− ξ

g

)(
ξ+(ζ)− ξ

g

)
= −q2(ζ),

so that

detP (ζ) =
q2(ζ)

(
ξ−(ζ)− ξ+(ζ)

)
(
ξ−(ζ)− ξ

g

)(
ξ+(ζ)− ξ

g

) = −
(
ξ−(ζ)− ξ+(ζ)

)
.

It yields to

|detP (ζ)| = |∆g(ζ)|1/2 > C dist(ζ,G)1/2,
according to estimate (A.14). The control (A.13b) follows in the same way as the one of (A.13a)
using estimate (A.13a) and Assumption 6.

Finally, for estimate (A.13c), taking back the notations and the results of the previous point,
the matrix etA(ζ)

(
I −Πe

CN
(ζ)

)
can be written as

etA(ζ)
(
I −Πe

CN
(ζ)

)
=

T̃ (ζ)−1 P (ζ)−1




0

etA1(ζ) 0

etQ(ζ)
1∆g(ζ)>0

0 etA+(ζ)

etA2(ζ)




P (ζ) T̃ (ζ).

Note that the eigenvalues of the matrices A1(ζ), A2(ζ) and of the matrix Q(ζ) when ∆g(ζ) > 0,
are imaginary, and that the matrix A+(ζ) is of positive definite real part uniformly with respect
to ζ. Thus, using the estimate on the change-of-basis matrix P (ζ)−1 proved above, one may
conclude as for the estimate (A.13c). �
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